cciss: make sure we request the performant mode irq
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / cciss.c
blob4f59f03f91ff4ab37c1b8b591f9e1f941f69001d
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3235103C, "Smart Array P400i", &SA5_access},
134 {0x3211103C, "Smart Array E200i", &SA5_access},
135 {0x3212103C, "Smart Array E200", &SA5_access},
136 {0x3213103C, "Smart Array E200i", &SA5_access},
137 {0x3214103C, "Smart Array E200i", &SA5_access},
138 {0x3215103C, "Smart Array E200i", &SA5_access},
139 {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access},
143 {0x3234103C, "Smart Array P400", &SA5_access},
144 {0x323D103C, "Smart Array P700m", &SA5_access},
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3250103C, "Smart Array", &SA5_access},
153 {0x3251103C, "Smart Array", &SA5_access},
154 {0x3252103C, "Smart Array", &SA5_access},
155 {0x3253103C, "Smart Array", &SA5_access},
156 {0x3254103C, "Smart Array", &SA5_access},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
166 #define MAX_CTLR 32
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t *hba[MAX_CTLR];
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_release(struct gendisk *disk, fmode_t mode);
182 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
183 unsigned int cmd, unsigned long arg);
184 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
186 static int cciss_revalidate(struct gendisk *disk);
187 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
188 static int deregister_disk(ctlr_info_t *h, int drv_index,
189 int clear_all, int via_ioctl);
191 static void cciss_read_capacity(int ctlr, int logvol,
192 sector_t *total_size, unsigned int *block_size);
193 static void cciss_read_capacity_16(int ctlr, int logvol,
194 sector_t *total_size, unsigned int *block_size);
195 static void cciss_geometry_inquiry(int ctlr, int logvol,
196 sector_t total_size,
197 unsigned int block_size, InquiryData_struct *inq_buff,
198 drive_info_struct *drv);
199 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
200 __u32);
201 static void start_io(ctlr_info_t *h);
202 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
203 __u8 page_code, unsigned char scsi3addr[],
204 int cmd_type);
205 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
206 int attempt_retry);
207 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
209 static int add_to_scan_list(struct ctlr_info *h);
210 static int scan_thread(void *data);
211 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
212 static void cciss_hba_release(struct device *dev);
213 static void cciss_device_release(struct device *dev);
214 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
215 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
217 /* performant mode helper functions */
218 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
219 int *bucket_map);
220 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
222 #ifdef CONFIG_PROC_FS
223 static void cciss_procinit(int i);
224 #else
225 static void cciss_procinit(int i)
228 #endif /* CONFIG_PROC_FS */
230 #ifdef CONFIG_COMPAT
231 static int cciss_compat_ioctl(struct block_device *, fmode_t,
232 unsigned, unsigned long);
233 #endif
235 static const struct block_device_operations cciss_fops = {
236 .owner = THIS_MODULE,
237 .open = cciss_open,
238 .release = cciss_release,
239 .locked_ioctl = cciss_ioctl,
240 .getgeo = cciss_getgeo,
241 #ifdef CONFIG_COMPAT
242 .compat_ioctl = cciss_compat_ioctl,
243 #endif
244 .revalidate_disk = cciss_revalidate,
247 /* set_performant_mode: Modify the tag for cciss performant
248 * set bit 0 for pull model, bits 3-1 for block fetch
249 * register number
251 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
253 if (likely(h->transMethod == CFGTBL_Trans_Performant))
254 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
258 * Enqueuing and dequeuing functions for cmdlists.
260 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
262 hlist_add_head(&c->list, list);
265 static inline void removeQ(CommandList_struct *c)
268 * After kexec/dump some commands might still
269 * be in flight, which the firmware will try
270 * to complete. Resetting the firmware doesn't work
271 * with old fw revisions, so we have to mark
272 * them off as 'stale' to prevent the driver from
273 * falling over.
275 if (WARN_ON(hlist_unhashed(&c->list))) {
276 c->cmd_type = CMD_MSG_STALE;
277 return;
280 hlist_del_init(&c->list);
283 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
284 CommandList_struct *c)
286 unsigned long flags;
287 set_performant_mode(h, c);
288 spin_lock_irqsave(&h->lock, flags);
289 addQ(&h->reqQ, c);
290 h->Qdepth++;
291 start_io(h);
292 spin_unlock_irqrestore(&h->lock, flags);
295 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
296 int nr_cmds)
298 int i;
300 if (!cmd_sg_list)
301 return;
302 for (i = 0; i < nr_cmds; i++) {
303 kfree(cmd_sg_list[i]);
304 cmd_sg_list[i] = NULL;
306 kfree(cmd_sg_list);
309 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
310 ctlr_info_t *h, int chainsize, int nr_cmds)
312 int j;
313 SGDescriptor_struct **cmd_sg_list;
315 if (chainsize <= 0)
316 return NULL;
318 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
319 if (!cmd_sg_list)
320 return NULL;
322 /* Build up chain blocks for each command */
323 for (j = 0; j < nr_cmds; j++) {
324 /* Need a block of chainsized s/g elements. */
325 cmd_sg_list[j] = kmalloc((chainsize *
326 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
327 if (!cmd_sg_list[j]) {
328 dev_err(&h->pdev->dev, "Cannot get memory "
329 "for s/g chains.\n");
330 goto clean;
333 return cmd_sg_list;
334 clean:
335 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
336 return NULL;
339 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
341 SGDescriptor_struct *chain_sg;
342 u64bit temp64;
344 if (c->Header.SGTotal <= h->max_cmd_sgentries)
345 return;
347 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
348 temp64.val32.lower = chain_sg->Addr.lower;
349 temp64.val32.upper = chain_sg->Addr.upper;
350 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
353 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
354 SGDescriptor_struct *chain_block, int len)
356 SGDescriptor_struct *chain_sg;
357 u64bit temp64;
359 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
360 chain_sg->Ext = CCISS_SG_CHAIN;
361 chain_sg->Len = len;
362 temp64.val = pci_map_single(h->pdev, chain_block, len,
363 PCI_DMA_TODEVICE);
364 chain_sg->Addr.lower = temp64.val32.lower;
365 chain_sg->Addr.upper = temp64.val32.upper;
368 #include "cciss_scsi.c" /* For SCSI tape support */
370 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
371 "UNKNOWN"
373 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
375 #ifdef CONFIG_PROC_FS
377 static inline u32 next_command(ctlr_info_t *h)
379 u32 a;
381 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
382 return h->access.command_completed(h);
384 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
385 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
386 (h->reply_pool_head)++;
387 h->commands_outstanding--;
388 } else {
389 a = FIFO_EMPTY;
391 /* Check for wraparound */
392 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
393 h->reply_pool_head = h->reply_pool;
394 h->reply_pool_wraparound ^= 1;
396 return a;
400 * Report information about this controller.
402 #define ENG_GIG 1000000000
403 #define ENG_GIG_FACTOR (ENG_GIG/512)
404 #define ENGAGE_SCSI "engage scsi"
406 static struct proc_dir_entry *proc_cciss;
408 static void cciss_seq_show_header(struct seq_file *seq)
410 ctlr_info_t *h = seq->private;
412 seq_printf(seq, "%s: HP %s Controller\n"
413 "Board ID: 0x%08lx\n"
414 "Firmware Version: %c%c%c%c\n"
415 "IRQ: %d\n"
416 "Logical drives: %d\n"
417 "Current Q depth: %d\n"
418 "Current # commands on controller: %d\n"
419 "Max Q depth since init: %d\n"
420 "Max # commands on controller since init: %d\n"
421 "Max SG entries since init: %d\n",
422 h->devname,
423 h->product_name,
424 (unsigned long)h->board_id,
425 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
426 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
427 h->num_luns,
428 h->Qdepth, h->commands_outstanding,
429 h->maxQsinceinit, h->max_outstanding, h->maxSG);
431 #ifdef CONFIG_CISS_SCSI_TAPE
432 cciss_seq_tape_report(seq, h->ctlr);
433 #endif /* CONFIG_CISS_SCSI_TAPE */
436 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
438 ctlr_info_t *h = seq->private;
439 unsigned ctlr = h->ctlr;
440 unsigned long flags;
442 /* prevent displaying bogus info during configuration
443 * or deconfiguration of a logical volume
445 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
446 if (h->busy_configuring) {
447 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
448 return ERR_PTR(-EBUSY);
450 h->busy_configuring = 1;
451 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
453 if (*pos == 0)
454 cciss_seq_show_header(seq);
456 return pos;
459 static int cciss_seq_show(struct seq_file *seq, void *v)
461 sector_t vol_sz, vol_sz_frac;
462 ctlr_info_t *h = seq->private;
463 unsigned ctlr = h->ctlr;
464 loff_t *pos = v;
465 drive_info_struct *drv = h->drv[*pos];
467 if (*pos > h->highest_lun)
468 return 0;
470 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
471 return 0;
473 if (drv->heads == 0)
474 return 0;
476 vol_sz = drv->nr_blocks;
477 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
478 vol_sz_frac *= 100;
479 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
481 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
482 drv->raid_level = RAID_UNKNOWN;
483 seq_printf(seq, "cciss/c%dd%d:"
484 "\t%4u.%02uGB\tRAID %s\n",
485 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
486 raid_label[drv->raid_level]);
487 return 0;
490 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
492 ctlr_info_t *h = seq->private;
494 if (*pos > h->highest_lun)
495 return NULL;
496 *pos += 1;
498 return pos;
501 static void cciss_seq_stop(struct seq_file *seq, void *v)
503 ctlr_info_t *h = seq->private;
505 /* Only reset h->busy_configuring if we succeeded in setting
506 * it during cciss_seq_start. */
507 if (v == ERR_PTR(-EBUSY))
508 return;
510 h->busy_configuring = 0;
513 static const struct seq_operations cciss_seq_ops = {
514 .start = cciss_seq_start,
515 .show = cciss_seq_show,
516 .next = cciss_seq_next,
517 .stop = cciss_seq_stop,
520 static int cciss_seq_open(struct inode *inode, struct file *file)
522 int ret = seq_open(file, &cciss_seq_ops);
523 struct seq_file *seq = file->private_data;
525 if (!ret)
526 seq->private = PDE(inode)->data;
528 return ret;
531 static ssize_t
532 cciss_proc_write(struct file *file, const char __user *buf,
533 size_t length, loff_t *ppos)
535 int err;
536 char *buffer;
538 #ifndef CONFIG_CISS_SCSI_TAPE
539 return -EINVAL;
540 #endif
542 if (!buf || length > PAGE_SIZE - 1)
543 return -EINVAL;
545 buffer = (char *)__get_free_page(GFP_KERNEL);
546 if (!buffer)
547 return -ENOMEM;
549 err = -EFAULT;
550 if (copy_from_user(buffer, buf, length))
551 goto out;
552 buffer[length] = '\0';
554 #ifdef CONFIG_CISS_SCSI_TAPE
555 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
556 struct seq_file *seq = file->private_data;
557 ctlr_info_t *h = seq->private;
559 err = cciss_engage_scsi(h->ctlr);
560 if (err == 0)
561 err = length;
562 } else
563 #endif /* CONFIG_CISS_SCSI_TAPE */
564 err = -EINVAL;
565 /* might be nice to have "disengage" too, but it's not
566 safely possible. (only 1 module use count, lock issues.) */
568 out:
569 free_page((unsigned long)buffer);
570 return err;
573 static const struct file_operations cciss_proc_fops = {
574 .owner = THIS_MODULE,
575 .open = cciss_seq_open,
576 .read = seq_read,
577 .llseek = seq_lseek,
578 .release = seq_release,
579 .write = cciss_proc_write,
582 static void __devinit cciss_procinit(int i)
584 struct proc_dir_entry *pde;
586 if (proc_cciss == NULL)
587 proc_cciss = proc_mkdir("driver/cciss", NULL);
588 if (!proc_cciss)
589 return;
590 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
591 S_IROTH, proc_cciss,
592 &cciss_proc_fops, hba[i]);
594 #endif /* CONFIG_PROC_FS */
596 #define MAX_PRODUCT_NAME_LEN 19
598 #define to_hba(n) container_of(n, struct ctlr_info, dev)
599 #define to_drv(n) container_of(n, drive_info_struct, dev)
601 static ssize_t host_store_rescan(struct device *dev,
602 struct device_attribute *attr,
603 const char *buf, size_t count)
605 struct ctlr_info *h = to_hba(dev);
607 add_to_scan_list(h);
608 wake_up_process(cciss_scan_thread);
609 wait_for_completion_interruptible(&h->scan_wait);
611 return count;
613 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
615 static ssize_t dev_show_unique_id(struct device *dev,
616 struct device_attribute *attr,
617 char *buf)
619 drive_info_struct *drv = to_drv(dev);
620 struct ctlr_info *h = to_hba(drv->dev.parent);
621 __u8 sn[16];
622 unsigned long flags;
623 int ret = 0;
625 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
626 if (h->busy_configuring)
627 ret = -EBUSY;
628 else
629 memcpy(sn, drv->serial_no, sizeof(sn));
630 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
632 if (ret)
633 return ret;
634 else
635 return snprintf(buf, 16 * 2 + 2,
636 "%02X%02X%02X%02X%02X%02X%02X%02X"
637 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
638 sn[0], sn[1], sn[2], sn[3],
639 sn[4], sn[5], sn[6], sn[7],
640 sn[8], sn[9], sn[10], sn[11],
641 sn[12], sn[13], sn[14], sn[15]);
643 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
645 static ssize_t dev_show_vendor(struct device *dev,
646 struct device_attribute *attr,
647 char *buf)
649 drive_info_struct *drv = to_drv(dev);
650 struct ctlr_info *h = to_hba(drv->dev.parent);
651 char vendor[VENDOR_LEN + 1];
652 unsigned long flags;
653 int ret = 0;
655 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
656 if (h->busy_configuring)
657 ret = -EBUSY;
658 else
659 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
660 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
662 if (ret)
663 return ret;
664 else
665 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
667 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
669 static ssize_t dev_show_model(struct device *dev,
670 struct device_attribute *attr,
671 char *buf)
673 drive_info_struct *drv = to_drv(dev);
674 struct ctlr_info *h = to_hba(drv->dev.parent);
675 char model[MODEL_LEN + 1];
676 unsigned long flags;
677 int ret = 0;
679 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
680 if (h->busy_configuring)
681 ret = -EBUSY;
682 else
683 memcpy(model, drv->model, MODEL_LEN + 1);
684 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
686 if (ret)
687 return ret;
688 else
689 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
691 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
693 static ssize_t dev_show_rev(struct device *dev,
694 struct device_attribute *attr,
695 char *buf)
697 drive_info_struct *drv = to_drv(dev);
698 struct ctlr_info *h = to_hba(drv->dev.parent);
699 char rev[REV_LEN + 1];
700 unsigned long flags;
701 int ret = 0;
703 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
704 if (h->busy_configuring)
705 ret = -EBUSY;
706 else
707 memcpy(rev, drv->rev, REV_LEN + 1);
708 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
710 if (ret)
711 return ret;
712 else
713 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
715 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
717 static ssize_t cciss_show_lunid(struct device *dev,
718 struct device_attribute *attr, char *buf)
720 drive_info_struct *drv = to_drv(dev);
721 struct ctlr_info *h = to_hba(drv->dev.parent);
722 unsigned long flags;
723 unsigned char lunid[8];
725 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
726 if (h->busy_configuring) {
727 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
728 return -EBUSY;
730 if (!drv->heads) {
731 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
732 return -ENOTTY;
734 memcpy(lunid, drv->LunID, sizeof(lunid));
735 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
736 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
737 lunid[0], lunid[1], lunid[2], lunid[3],
738 lunid[4], lunid[5], lunid[6], lunid[7]);
740 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
742 static ssize_t cciss_show_raid_level(struct device *dev,
743 struct device_attribute *attr, char *buf)
745 drive_info_struct *drv = to_drv(dev);
746 struct ctlr_info *h = to_hba(drv->dev.parent);
747 int raid;
748 unsigned long flags;
750 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
751 if (h->busy_configuring) {
752 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
753 return -EBUSY;
755 raid = drv->raid_level;
756 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
757 if (raid < 0 || raid > RAID_UNKNOWN)
758 raid = RAID_UNKNOWN;
760 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
761 raid_label[raid]);
763 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
765 static ssize_t cciss_show_usage_count(struct device *dev,
766 struct device_attribute *attr, char *buf)
768 drive_info_struct *drv = to_drv(dev);
769 struct ctlr_info *h = to_hba(drv->dev.parent);
770 unsigned long flags;
771 int count;
773 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
774 if (h->busy_configuring) {
775 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
776 return -EBUSY;
778 count = drv->usage_count;
779 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
780 return snprintf(buf, 20, "%d\n", count);
782 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
784 static struct attribute *cciss_host_attrs[] = {
785 &dev_attr_rescan.attr,
786 NULL
789 static struct attribute_group cciss_host_attr_group = {
790 .attrs = cciss_host_attrs,
793 static const struct attribute_group *cciss_host_attr_groups[] = {
794 &cciss_host_attr_group,
795 NULL
798 static struct device_type cciss_host_type = {
799 .name = "cciss_host",
800 .groups = cciss_host_attr_groups,
801 .release = cciss_hba_release,
804 static struct attribute *cciss_dev_attrs[] = {
805 &dev_attr_unique_id.attr,
806 &dev_attr_model.attr,
807 &dev_attr_vendor.attr,
808 &dev_attr_rev.attr,
809 &dev_attr_lunid.attr,
810 &dev_attr_raid_level.attr,
811 &dev_attr_usage_count.attr,
812 NULL
815 static struct attribute_group cciss_dev_attr_group = {
816 .attrs = cciss_dev_attrs,
819 static const struct attribute_group *cciss_dev_attr_groups[] = {
820 &cciss_dev_attr_group,
821 NULL
824 static struct device_type cciss_dev_type = {
825 .name = "cciss_device",
826 .groups = cciss_dev_attr_groups,
827 .release = cciss_device_release,
830 static struct bus_type cciss_bus_type = {
831 .name = "cciss",
835 * cciss_hba_release is called when the reference count
836 * of h->dev goes to zero.
838 static void cciss_hba_release(struct device *dev)
841 * nothing to do, but need this to avoid a warning
842 * about not having a release handler from lib/kref.c.
847 * Initialize sysfs entry for each controller. This sets up and registers
848 * the 'cciss#' directory for each individual controller under
849 * /sys/bus/pci/devices/<dev>/.
851 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
853 device_initialize(&h->dev);
854 h->dev.type = &cciss_host_type;
855 h->dev.bus = &cciss_bus_type;
856 dev_set_name(&h->dev, "%s", h->devname);
857 h->dev.parent = &h->pdev->dev;
859 return device_add(&h->dev);
863 * Remove sysfs entries for an hba.
865 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
867 device_del(&h->dev);
868 put_device(&h->dev); /* final put. */
871 /* cciss_device_release is called when the reference count
872 * of h->drv[x]dev goes to zero.
874 static void cciss_device_release(struct device *dev)
876 drive_info_struct *drv = to_drv(dev);
877 kfree(drv);
881 * Initialize sysfs for each logical drive. This sets up and registers
882 * the 'c#d#' directory for each individual logical drive under
883 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
884 * /sys/block/cciss!c#d# to this entry.
886 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
887 int drv_index)
889 struct device *dev;
891 if (h->drv[drv_index]->device_initialized)
892 return 0;
894 dev = &h->drv[drv_index]->dev;
895 device_initialize(dev);
896 dev->type = &cciss_dev_type;
897 dev->bus = &cciss_bus_type;
898 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
899 dev->parent = &h->dev;
900 h->drv[drv_index]->device_initialized = 1;
901 return device_add(dev);
905 * Remove sysfs entries for a logical drive.
907 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
908 int ctlr_exiting)
910 struct device *dev = &h->drv[drv_index]->dev;
912 /* special case for c*d0, we only destroy it on controller exit */
913 if (drv_index == 0 && !ctlr_exiting)
914 return;
916 device_del(dev);
917 put_device(dev); /* the "final" put. */
918 h->drv[drv_index] = NULL;
922 * For operations that cannot sleep, a command block is allocated at init,
923 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
924 * which ones are free or in use. For operations that can wait for kmalloc
925 * to possible sleep, this routine can be called with get_from_pool set to 0.
926 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
928 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
930 CommandList_struct *c;
931 int i;
932 u64bit temp64;
933 dma_addr_t cmd_dma_handle, err_dma_handle;
935 if (!get_from_pool) {
936 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
937 sizeof(CommandList_struct), &cmd_dma_handle);
938 if (c == NULL)
939 return NULL;
940 memset(c, 0, sizeof(CommandList_struct));
942 c->cmdindex = -1;
944 c->err_info = (ErrorInfo_struct *)
945 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
946 &err_dma_handle);
948 if (c->err_info == NULL) {
949 pci_free_consistent(h->pdev,
950 sizeof(CommandList_struct), c, cmd_dma_handle);
951 return NULL;
953 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
954 } else { /* get it out of the controllers pool */
956 do {
957 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
958 if (i == h->nr_cmds)
959 return NULL;
960 } while (test_and_set_bit
961 (i & (BITS_PER_LONG - 1),
962 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
963 #ifdef CCISS_DEBUG
964 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
965 #endif
966 c = h->cmd_pool + i;
967 memset(c, 0, sizeof(CommandList_struct));
968 cmd_dma_handle = h->cmd_pool_dhandle
969 + i * sizeof(CommandList_struct);
970 c->err_info = h->errinfo_pool + i;
971 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
972 err_dma_handle = h->errinfo_pool_dhandle
973 + i * sizeof(ErrorInfo_struct);
974 h->nr_allocs++;
976 c->cmdindex = i;
979 INIT_HLIST_NODE(&c->list);
980 c->busaddr = (__u32) cmd_dma_handle;
981 temp64.val = (__u64) err_dma_handle;
982 c->ErrDesc.Addr.lower = temp64.val32.lower;
983 c->ErrDesc.Addr.upper = temp64.val32.upper;
984 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
986 c->ctlr = h->ctlr;
987 return c;
991 * Frees a command block that was previously allocated with cmd_alloc().
993 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
995 int i;
996 u64bit temp64;
998 if (!got_from_pool) {
999 temp64.val32.lower = c->ErrDesc.Addr.lower;
1000 temp64.val32.upper = c->ErrDesc.Addr.upper;
1001 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1002 c->err_info, (dma_addr_t) temp64.val);
1003 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1004 c, (dma_addr_t) c->busaddr);
1005 } else {
1006 i = c - h->cmd_pool;
1007 clear_bit(i & (BITS_PER_LONG - 1),
1008 h->cmd_pool_bits + (i / BITS_PER_LONG));
1009 h->nr_frees++;
1013 static inline ctlr_info_t *get_host(struct gendisk *disk)
1015 return disk->queue->queuedata;
1018 static inline drive_info_struct *get_drv(struct gendisk *disk)
1020 return disk->private_data;
1024 * Open. Make sure the device is really there.
1026 static int cciss_open(struct block_device *bdev, fmode_t mode)
1028 ctlr_info_t *host = get_host(bdev->bd_disk);
1029 drive_info_struct *drv = get_drv(bdev->bd_disk);
1031 #ifdef CCISS_DEBUG
1032 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
1033 #endif /* CCISS_DEBUG */
1035 if (drv->busy_configuring)
1036 return -EBUSY;
1038 * Root is allowed to open raw volume zero even if it's not configured
1039 * so array config can still work. Root is also allowed to open any
1040 * volume that has a LUN ID, so it can issue IOCTL to reread the
1041 * disk information. I don't think I really like this
1042 * but I'm already using way to many device nodes to claim another one
1043 * for "raw controller".
1045 if (drv->heads == 0) {
1046 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1047 /* if not node 0 make sure it is a partition = 0 */
1048 if (MINOR(bdev->bd_dev) & 0x0f) {
1049 return -ENXIO;
1050 /* if it is, make sure we have a LUN ID */
1051 } else if (memcmp(drv->LunID, CTLR_LUNID,
1052 sizeof(drv->LunID))) {
1053 return -ENXIO;
1056 if (!capable(CAP_SYS_ADMIN))
1057 return -EPERM;
1059 drv->usage_count++;
1060 host->usage_count++;
1061 return 0;
1065 * Close. Sync first.
1067 static int cciss_release(struct gendisk *disk, fmode_t mode)
1069 ctlr_info_t *host = get_host(disk);
1070 drive_info_struct *drv = get_drv(disk);
1072 #ifdef CCISS_DEBUG
1073 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1074 #endif /* CCISS_DEBUG */
1076 drv->usage_count--;
1077 host->usage_count--;
1078 return 0;
1081 #ifdef CONFIG_COMPAT
1083 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1084 unsigned cmd, unsigned long arg)
1086 int ret;
1087 lock_kernel();
1088 ret = cciss_ioctl(bdev, mode, cmd, arg);
1089 unlock_kernel();
1090 return ret;
1093 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1094 unsigned cmd, unsigned long arg);
1095 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1096 unsigned cmd, unsigned long arg);
1098 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1099 unsigned cmd, unsigned long arg)
1101 switch (cmd) {
1102 case CCISS_GETPCIINFO:
1103 case CCISS_GETINTINFO:
1104 case CCISS_SETINTINFO:
1105 case CCISS_GETNODENAME:
1106 case CCISS_SETNODENAME:
1107 case CCISS_GETHEARTBEAT:
1108 case CCISS_GETBUSTYPES:
1109 case CCISS_GETFIRMVER:
1110 case CCISS_GETDRIVVER:
1111 case CCISS_REVALIDVOLS:
1112 case CCISS_DEREGDISK:
1113 case CCISS_REGNEWDISK:
1114 case CCISS_REGNEWD:
1115 case CCISS_RESCANDISK:
1116 case CCISS_GETLUNINFO:
1117 return do_ioctl(bdev, mode, cmd, arg);
1119 case CCISS_PASSTHRU32:
1120 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1121 case CCISS_BIG_PASSTHRU32:
1122 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1124 default:
1125 return -ENOIOCTLCMD;
1129 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1130 unsigned cmd, unsigned long arg)
1132 IOCTL32_Command_struct __user *arg32 =
1133 (IOCTL32_Command_struct __user *) arg;
1134 IOCTL_Command_struct arg64;
1135 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1136 int err;
1137 u32 cp;
1139 err = 0;
1140 err |=
1141 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1142 sizeof(arg64.LUN_info));
1143 err |=
1144 copy_from_user(&arg64.Request, &arg32->Request,
1145 sizeof(arg64.Request));
1146 err |=
1147 copy_from_user(&arg64.error_info, &arg32->error_info,
1148 sizeof(arg64.error_info));
1149 err |= get_user(arg64.buf_size, &arg32->buf_size);
1150 err |= get_user(cp, &arg32->buf);
1151 arg64.buf = compat_ptr(cp);
1152 err |= copy_to_user(p, &arg64, sizeof(arg64));
1154 if (err)
1155 return -EFAULT;
1157 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1158 if (err)
1159 return err;
1160 err |=
1161 copy_in_user(&arg32->error_info, &p->error_info,
1162 sizeof(arg32->error_info));
1163 if (err)
1164 return -EFAULT;
1165 return err;
1168 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1169 unsigned cmd, unsigned long arg)
1171 BIG_IOCTL32_Command_struct __user *arg32 =
1172 (BIG_IOCTL32_Command_struct __user *) arg;
1173 BIG_IOCTL_Command_struct arg64;
1174 BIG_IOCTL_Command_struct __user *p =
1175 compat_alloc_user_space(sizeof(arg64));
1176 int err;
1177 u32 cp;
1179 err = 0;
1180 err |=
1181 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1182 sizeof(arg64.LUN_info));
1183 err |=
1184 copy_from_user(&arg64.Request, &arg32->Request,
1185 sizeof(arg64.Request));
1186 err |=
1187 copy_from_user(&arg64.error_info, &arg32->error_info,
1188 sizeof(arg64.error_info));
1189 err |= get_user(arg64.buf_size, &arg32->buf_size);
1190 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1191 err |= get_user(cp, &arg32->buf);
1192 arg64.buf = compat_ptr(cp);
1193 err |= copy_to_user(p, &arg64, sizeof(arg64));
1195 if (err)
1196 return -EFAULT;
1198 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1199 if (err)
1200 return err;
1201 err |=
1202 copy_in_user(&arg32->error_info, &p->error_info,
1203 sizeof(arg32->error_info));
1204 if (err)
1205 return -EFAULT;
1206 return err;
1208 #endif
1210 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1212 drive_info_struct *drv = get_drv(bdev->bd_disk);
1214 if (!drv->cylinders)
1215 return -ENXIO;
1217 geo->heads = drv->heads;
1218 geo->sectors = drv->sectors;
1219 geo->cylinders = drv->cylinders;
1220 return 0;
1223 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1225 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1226 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1227 (void)check_for_unit_attention(host, c);
1230 * ioctl
1232 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1233 unsigned int cmd, unsigned long arg)
1235 struct gendisk *disk = bdev->bd_disk;
1236 ctlr_info_t *host = get_host(disk);
1237 drive_info_struct *drv = get_drv(disk);
1238 int ctlr = host->ctlr;
1239 void __user *argp = (void __user *)arg;
1241 #ifdef CCISS_DEBUG
1242 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1243 #endif /* CCISS_DEBUG */
1245 switch (cmd) {
1246 case CCISS_GETPCIINFO:
1248 cciss_pci_info_struct pciinfo;
1250 if (!arg)
1251 return -EINVAL;
1252 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1253 pciinfo.bus = host->pdev->bus->number;
1254 pciinfo.dev_fn = host->pdev->devfn;
1255 pciinfo.board_id = host->board_id;
1256 if (copy_to_user
1257 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1258 return -EFAULT;
1259 return 0;
1261 case CCISS_GETINTINFO:
1263 cciss_coalint_struct intinfo;
1264 if (!arg)
1265 return -EINVAL;
1266 intinfo.delay =
1267 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1268 intinfo.count =
1269 readl(&host->cfgtable->HostWrite.CoalIntCount);
1270 if (copy_to_user
1271 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1272 return -EFAULT;
1273 return 0;
1275 case CCISS_SETINTINFO:
1277 cciss_coalint_struct intinfo;
1278 unsigned long flags;
1279 int i;
1281 if (!arg)
1282 return -EINVAL;
1283 if (!capable(CAP_SYS_ADMIN))
1284 return -EPERM;
1285 if (copy_from_user
1286 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1287 return -EFAULT;
1288 if ((intinfo.delay == 0) && (intinfo.count == 0))
1290 // printk("cciss_ioctl: delay and count cannot be 0\n");
1291 return -EINVAL;
1293 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1294 /* Update the field, and then ring the doorbell */
1295 writel(intinfo.delay,
1296 &(host->cfgtable->HostWrite.CoalIntDelay));
1297 writel(intinfo.count,
1298 &(host->cfgtable->HostWrite.CoalIntCount));
1299 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1301 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1302 if (!(readl(host->vaddr + SA5_DOORBELL)
1303 & CFGTBL_ChangeReq))
1304 break;
1305 /* delay and try again */
1306 udelay(1000);
1308 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1309 if (i >= MAX_IOCTL_CONFIG_WAIT)
1310 return -EAGAIN;
1311 return 0;
1313 case CCISS_GETNODENAME:
1315 NodeName_type NodeName;
1316 int i;
1318 if (!arg)
1319 return -EINVAL;
1320 for (i = 0; i < 16; i++)
1321 NodeName[i] =
1322 readb(&host->cfgtable->ServerName[i]);
1323 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1324 return -EFAULT;
1325 return 0;
1327 case CCISS_SETNODENAME:
1329 NodeName_type NodeName;
1330 unsigned long flags;
1331 int i;
1333 if (!arg)
1334 return -EINVAL;
1335 if (!capable(CAP_SYS_ADMIN))
1336 return -EPERM;
1338 if (copy_from_user
1339 (NodeName, argp, sizeof(NodeName_type)))
1340 return -EFAULT;
1342 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1344 /* Update the field, and then ring the doorbell */
1345 for (i = 0; i < 16; i++)
1346 writeb(NodeName[i],
1347 &host->cfgtable->ServerName[i]);
1349 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1351 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1352 if (!(readl(host->vaddr + SA5_DOORBELL)
1353 & CFGTBL_ChangeReq))
1354 break;
1355 /* delay and try again */
1356 udelay(1000);
1358 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1359 if (i >= MAX_IOCTL_CONFIG_WAIT)
1360 return -EAGAIN;
1361 return 0;
1364 case CCISS_GETHEARTBEAT:
1366 Heartbeat_type heartbeat;
1368 if (!arg)
1369 return -EINVAL;
1370 heartbeat = readl(&host->cfgtable->HeartBeat);
1371 if (copy_to_user
1372 (argp, &heartbeat, sizeof(Heartbeat_type)))
1373 return -EFAULT;
1374 return 0;
1376 case CCISS_GETBUSTYPES:
1378 BusTypes_type BusTypes;
1380 if (!arg)
1381 return -EINVAL;
1382 BusTypes = readl(&host->cfgtable->BusTypes);
1383 if (copy_to_user
1384 (argp, &BusTypes, sizeof(BusTypes_type)))
1385 return -EFAULT;
1386 return 0;
1388 case CCISS_GETFIRMVER:
1390 FirmwareVer_type firmware;
1392 if (!arg)
1393 return -EINVAL;
1394 memcpy(firmware, host->firm_ver, 4);
1396 if (copy_to_user
1397 (argp, firmware, sizeof(FirmwareVer_type)))
1398 return -EFAULT;
1399 return 0;
1401 case CCISS_GETDRIVVER:
1403 DriverVer_type DriverVer = DRIVER_VERSION;
1405 if (!arg)
1406 return -EINVAL;
1408 if (copy_to_user
1409 (argp, &DriverVer, sizeof(DriverVer_type)))
1410 return -EFAULT;
1411 return 0;
1414 case CCISS_DEREGDISK:
1415 case CCISS_REGNEWD:
1416 case CCISS_REVALIDVOLS:
1417 return rebuild_lun_table(host, 0, 1);
1419 case CCISS_GETLUNINFO:{
1420 LogvolInfo_struct luninfo;
1422 memcpy(&luninfo.LunID, drv->LunID,
1423 sizeof(luninfo.LunID));
1424 luninfo.num_opens = drv->usage_count;
1425 luninfo.num_parts = 0;
1426 if (copy_to_user(argp, &luninfo,
1427 sizeof(LogvolInfo_struct)))
1428 return -EFAULT;
1429 return 0;
1431 case CCISS_PASSTHRU:
1433 IOCTL_Command_struct iocommand;
1434 CommandList_struct *c;
1435 char *buff = NULL;
1436 u64bit temp64;
1437 DECLARE_COMPLETION_ONSTACK(wait);
1439 if (!arg)
1440 return -EINVAL;
1442 if (!capable(CAP_SYS_RAWIO))
1443 return -EPERM;
1445 if (copy_from_user
1446 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1447 return -EFAULT;
1448 if ((iocommand.buf_size < 1) &&
1449 (iocommand.Request.Type.Direction != XFER_NONE)) {
1450 return -EINVAL;
1452 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1453 /* Check kmalloc limits */
1454 if (iocommand.buf_size > 128000)
1455 return -EINVAL;
1456 #endif
1457 if (iocommand.buf_size > 0) {
1458 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1459 if (buff == NULL)
1460 return -EFAULT;
1462 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1463 /* Copy the data into the buffer we created */
1464 if (copy_from_user
1465 (buff, iocommand.buf, iocommand.buf_size)) {
1466 kfree(buff);
1467 return -EFAULT;
1469 } else {
1470 memset(buff, 0, iocommand.buf_size);
1472 if ((c = cmd_alloc(host, 0)) == NULL) {
1473 kfree(buff);
1474 return -ENOMEM;
1476 /* Fill in the command type */
1477 c->cmd_type = CMD_IOCTL_PEND;
1478 /* Fill in Command Header */
1479 c->Header.ReplyQueue = 0; /* unused in simple mode */
1480 if (iocommand.buf_size > 0) /* buffer to fill */
1482 c->Header.SGList = 1;
1483 c->Header.SGTotal = 1;
1484 } else /* no buffers to fill */
1486 c->Header.SGList = 0;
1487 c->Header.SGTotal = 0;
1489 c->Header.LUN = iocommand.LUN_info;
1490 /* use the kernel address the cmd block for tag */
1491 c->Header.Tag.lower = c->busaddr;
1493 /* Fill in Request block */
1494 c->Request = iocommand.Request;
1496 /* Fill in the scatter gather information */
1497 if (iocommand.buf_size > 0) {
1498 temp64.val = pci_map_single(host->pdev, buff,
1499 iocommand.buf_size,
1500 PCI_DMA_BIDIRECTIONAL);
1501 c->SG[0].Addr.lower = temp64.val32.lower;
1502 c->SG[0].Addr.upper = temp64.val32.upper;
1503 c->SG[0].Len = iocommand.buf_size;
1504 c->SG[0].Ext = 0; /* we are not chaining */
1506 c->waiting = &wait;
1508 enqueue_cmd_and_start_io(host, c);
1509 wait_for_completion(&wait);
1511 /* unlock the buffers from DMA */
1512 temp64.val32.lower = c->SG[0].Addr.lower;
1513 temp64.val32.upper = c->SG[0].Addr.upper;
1514 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1515 iocommand.buf_size,
1516 PCI_DMA_BIDIRECTIONAL);
1518 check_ioctl_unit_attention(host, c);
1520 /* Copy the error information out */
1521 iocommand.error_info = *(c->err_info);
1522 if (copy_to_user
1523 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1524 kfree(buff);
1525 cmd_free(host, c, 0);
1526 return -EFAULT;
1529 if (iocommand.Request.Type.Direction == XFER_READ) {
1530 /* Copy the data out of the buffer we created */
1531 if (copy_to_user
1532 (iocommand.buf, buff, iocommand.buf_size)) {
1533 kfree(buff);
1534 cmd_free(host, c, 0);
1535 return -EFAULT;
1538 kfree(buff);
1539 cmd_free(host, c, 0);
1540 return 0;
1542 case CCISS_BIG_PASSTHRU:{
1543 BIG_IOCTL_Command_struct *ioc;
1544 CommandList_struct *c;
1545 unsigned char **buff = NULL;
1546 int *buff_size = NULL;
1547 u64bit temp64;
1548 BYTE sg_used = 0;
1549 int status = 0;
1550 int i;
1551 DECLARE_COMPLETION_ONSTACK(wait);
1552 __u32 left;
1553 __u32 sz;
1554 BYTE __user *data_ptr;
1556 if (!arg)
1557 return -EINVAL;
1558 if (!capable(CAP_SYS_RAWIO))
1559 return -EPERM;
1560 ioc = (BIG_IOCTL_Command_struct *)
1561 kmalloc(sizeof(*ioc), GFP_KERNEL);
1562 if (!ioc) {
1563 status = -ENOMEM;
1564 goto cleanup1;
1566 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1567 status = -EFAULT;
1568 goto cleanup1;
1570 if ((ioc->buf_size < 1) &&
1571 (ioc->Request.Type.Direction != XFER_NONE)) {
1572 status = -EINVAL;
1573 goto cleanup1;
1575 /* Check kmalloc limits using all SGs */
1576 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1577 status = -EINVAL;
1578 goto cleanup1;
1580 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1581 status = -EINVAL;
1582 goto cleanup1;
1584 buff =
1585 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1586 if (!buff) {
1587 status = -ENOMEM;
1588 goto cleanup1;
1590 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1591 GFP_KERNEL);
1592 if (!buff_size) {
1593 status = -ENOMEM;
1594 goto cleanup1;
1596 left = ioc->buf_size;
1597 data_ptr = ioc->buf;
1598 while (left) {
1599 sz = (left >
1600 ioc->malloc_size) ? ioc->
1601 malloc_size : left;
1602 buff_size[sg_used] = sz;
1603 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1604 if (buff[sg_used] == NULL) {
1605 status = -ENOMEM;
1606 goto cleanup1;
1608 if (ioc->Request.Type.Direction == XFER_WRITE) {
1609 if (copy_from_user
1610 (buff[sg_used], data_ptr, sz)) {
1611 status = -EFAULT;
1612 goto cleanup1;
1614 } else {
1615 memset(buff[sg_used], 0, sz);
1617 left -= sz;
1618 data_ptr += sz;
1619 sg_used++;
1621 if ((c = cmd_alloc(host, 0)) == NULL) {
1622 status = -ENOMEM;
1623 goto cleanup1;
1625 c->cmd_type = CMD_IOCTL_PEND;
1626 c->Header.ReplyQueue = 0;
1628 if (ioc->buf_size > 0) {
1629 c->Header.SGList = sg_used;
1630 c->Header.SGTotal = sg_used;
1631 } else {
1632 c->Header.SGList = 0;
1633 c->Header.SGTotal = 0;
1635 c->Header.LUN = ioc->LUN_info;
1636 c->Header.Tag.lower = c->busaddr;
1638 c->Request = ioc->Request;
1639 if (ioc->buf_size > 0) {
1640 for (i = 0; i < sg_used; i++) {
1641 temp64.val =
1642 pci_map_single(host->pdev, buff[i],
1643 buff_size[i],
1644 PCI_DMA_BIDIRECTIONAL);
1645 c->SG[i].Addr.lower =
1646 temp64.val32.lower;
1647 c->SG[i].Addr.upper =
1648 temp64.val32.upper;
1649 c->SG[i].Len = buff_size[i];
1650 c->SG[i].Ext = 0; /* we are not chaining */
1653 c->waiting = &wait;
1654 enqueue_cmd_and_start_io(host, c);
1655 wait_for_completion(&wait);
1656 /* unlock the buffers from DMA */
1657 for (i = 0; i < sg_used; i++) {
1658 temp64.val32.lower = c->SG[i].Addr.lower;
1659 temp64.val32.upper = c->SG[i].Addr.upper;
1660 pci_unmap_single(host->pdev,
1661 (dma_addr_t) temp64.val, buff_size[i],
1662 PCI_DMA_BIDIRECTIONAL);
1664 check_ioctl_unit_attention(host, c);
1665 /* Copy the error information out */
1666 ioc->error_info = *(c->err_info);
1667 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1668 cmd_free(host, c, 0);
1669 status = -EFAULT;
1670 goto cleanup1;
1672 if (ioc->Request.Type.Direction == XFER_READ) {
1673 /* Copy the data out of the buffer we created */
1674 BYTE __user *ptr = ioc->buf;
1675 for (i = 0; i < sg_used; i++) {
1676 if (copy_to_user
1677 (ptr, buff[i], buff_size[i])) {
1678 cmd_free(host, c, 0);
1679 status = -EFAULT;
1680 goto cleanup1;
1682 ptr += buff_size[i];
1685 cmd_free(host, c, 0);
1686 status = 0;
1687 cleanup1:
1688 if (buff) {
1689 for (i = 0; i < sg_used; i++)
1690 kfree(buff[i]);
1691 kfree(buff);
1693 kfree(buff_size);
1694 kfree(ioc);
1695 return status;
1698 /* scsi_cmd_ioctl handles these, below, though some are not */
1699 /* very meaningful for cciss. SG_IO is the main one people want. */
1701 case SG_GET_VERSION_NUM:
1702 case SG_SET_TIMEOUT:
1703 case SG_GET_TIMEOUT:
1704 case SG_GET_RESERVED_SIZE:
1705 case SG_SET_RESERVED_SIZE:
1706 case SG_EMULATED_HOST:
1707 case SG_IO:
1708 case SCSI_IOCTL_SEND_COMMAND:
1709 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1711 /* scsi_cmd_ioctl would normally handle these, below, but */
1712 /* they aren't a good fit for cciss, as CD-ROMs are */
1713 /* not supported, and we don't have any bus/target/lun */
1714 /* which we present to the kernel. */
1716 case CDROM_SEND_PACKET:
1717 case CDROMCLOSETRAY:
1718 case CDROMEJECT:
1719 case SCSI_IOCTL_GET_IDLUN:
1720 case SCSI_IOCTL_GET_BUS_NUMBER:
1721 default:
1722 return -ENOTTY;
1726 static void cciss_check_queues(ctlr_info_t *h)
1728 int start_queue = h->next_to_run;
1729 int i;
1731 /* check to see if we have maxed out the number of commands that can
1732 * be placed on the queue. If so then exit. We do this check here
1733 * in case the interrupt we serviced was from an ioctl and did not
1734 * free any new commands.
1736 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1737 return;
1739 /* We have room on the queue for more commands. Now we need to queue
1740 * them up. We will also keep track of the next queue to run so
1741 * that every queue gets a chance to be started first.
1743 for (i = 0; i < h->highest_lun + 1; i++) {
1744 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1745 /* make sure the disk has been added and the drive is real
1746 * because this can be called from the middle of init_one.
1748 if (!h->drv[curr_queue])
1749 continue;
1750 if (!(h->drv[curr_queue]->queue) ||
1751 !(h->drv[curr_queue]->heads))
1752 continue;
1753 blk_start_queue(h->gendisk[curr_queue]->queue);
1755 /* check to see if we have maxed out the number of commands
1756 * that can be placed on the queue.
1758 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1759 if (curr_queue == start_queue) {
1760 h->next_to_run =
1761 (start_queue + 1) % (h->highest_lun + 1);
1762 break;
1763 } else {
1764 h->next_to_run = curr_queue;
1765 break;
1771 static void cciss_softirq_done(struct request *rq)
1773 CommandList_struct *cmd = rq->completion_data;
1774 ctlr_info_t *h = hba[cmd->ctlr];
1775 SGDescriptor_struct *curr_sg = cmd->SG;
1776 u64bit temp64;
1777 unsigned long flags;
1778 int i, ddir;
1779 int sg_index = 0;
1781 if (cmd->Request.Type.Direction == XFER_READ)
1782 ddir = PCI_DMA_FROMDEVICE;
1783 else
1784 ddir = PCI_DMA_TODEVICE;
1786 /* command did not need to be retried */
1787 /* unmap the DMA mapping for all the scatter gather elements */
1788 for (i = 0; i < cmd->Header.SGList; i++) {
1789 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1790 cciss_unmap_sg_chain_block(h, cmd);
1791 /* Point to the next block */
1792 curr_sg = h->cmd_sg_list[cmd->cmdindex];
1793 sg_index = 0;
1795 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1796 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1797 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1798 ddir);
1799 ++sg_index;
1802 #ifdef CCISS_DEBUG
1803 printk("Done with %p\n", rq);
1804 #endif /* CCISS_DEBUG */
1806 /* set the residual count for pc requests */
1807 if (blk_pc_request(rq))
1808 rq->resid_len = cmd->err_info->ResidualCnt;
1810 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1812 spin_lock_irqsave(&h->lock, flags);
1813 cmd_free(h, cmd, 1);
1814 cciss_check_queues(h);
1815 spin_unlock_irqrestore(&h->lock, flags);
1818 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1819 unsigned char scsi3addr[], uint32_t log_unit)
1821 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1822 sizeof(h->drv[log_unit]->LunID));
1825 /* This function gets the SCSI vendor, model, and revision of a logical drive
1826 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1827 * they cannot be read.
1829 static void cciss_get_device_descr(int ctlr, int logvol,
1830 char *vendor, char *model, char *rev)
1832 int rc;
1833 InquiryData_struct *inq_buf;
1834 unsigned char scsi3addr[8];
1836 *vendor = '\0';
1837 *model = '\0';
1838 *rev = '\0';
1840 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1841 if (!inq_buf)
1842 return;
1844 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1845 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1846 scsi3addr, TYPE_CMD);
1847 if (rc == IO_OK) {
1848 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1849 vendor[VENDOR_LEN] = '\0';
1850 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1851 model[MODEL_LEN] = '\0';
1852 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1853 rev[REV_LEN] = '\0';
1856 kfree(inq_buf);
1857 return;
1860 /* This function gets the serial number of a logical drive via
1861 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1862 * number cannot be had, for whatever reason, 16 bytes of 0xff
1863 * are returned instead.
1865 static void cciss_get_serial_no(int ctlr, int logvol,
1866 unsigned char *serial_no, int buflen)
1868 #define PAGE_83_INQ_BYTES 64
1869 int rc;
1870 unsigned char *buf;
1871 unsigned char scsi3addr[8];
1873 if (buflen > 16)
1874 buflen = 16;
1875 memset(serial_no, 0xff, buflen);
1876 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1877 if (!buf)
1878 return;
1879 memset(serial_no, 0, buflen);
1880 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1881 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1882 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1883 if (rc == IO_OK)
1884 memcpy(serial_no, &buf[8], buflen);
1885 kfree(buf);
1886 return;
1890 * cciss_add_disk sets up the block device queue for a logical drive
1892 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1893 int drv_index)
1895 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1896 if (!disk->queue)
1897 goto init_queue_failure;
1898 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1899 disk->major = h->major;
1900 disk->first_minor = drv_index << NWD_SHIFT;
1901 disk->fops = &cciss_fops;
1902 if (cciss_create_ld_sysfs_entry(h, drv_index))
1903 goto cleanup_queue;
1904 disk->private_data = h->drv[drv_index];
1905 disk->driverfs_dev = &h->drv[drv_index]->dev;
1907 /* Set up queue information */
1908 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1910 /* This is a hardware imposed limit. */
1911 blk_queue_max_segments(disk->queue, h->maxsgentries);
1913 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1915 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1917 disk->queue->queuedata = h;
1919 blk_queue_logical_block_size(disk->queue,
1920 h->drv[drv_index]->block_size);
1922 /* Make sure all queue data is written out before */
1923 /* setting h->drv[drv_index]->queue, as setting this */
1924 /* allows the interrupt handler to start the queue */
1925 wmb();
1926 h->drv[drv_index]->queue = disk->queue;
1927 add_disk(disk);
1928 return 0;
1930 cleanup_queue:
1931 blk_cleanup_queue(disk->queue);
1932 disk->queue = NULL;
1933 init_queue_failure:
1934 return -1;
1937 /* This function will check the usage_count of the drive to be updated/added.
1938 * If the usage_count is zero and it is a heretofore unknown drive, or,
1939 * the drive's capacity, geometry, or serial number has changed,
1940 * then the drive information will be updated and the disk will be
1941 * re-registered with the kernel. If these conditions don't hold,
1942 * then it will be left alone for the next reboot. The exception to this
1943 * is disk 0 which will always be left registered with the kernel since it
1944 * is also the controller node. Any changes to disk 0 will show up on
1945 * the next reboot.
1947 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1948 int via_ioctl)
1950 ctlr_info_t *h = hba[ctlr];
1951 struct gendisk *disk;
1952 InquiryData_struct *inq_buff = NULL;
1953 unsigned int block_size;
1954 sector_t total_size;
1955 unsigned long flags = 0;
1956 int ret = 0;
1957 drive_info_struct *drvinfo;
1959 /* Get information about the disk and modify the driver structure */
1960 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1961 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1962 if (inq_buff == NULL || drvinfo == NULL)
1963 goto mem_msg;
1965 /* testing to see if 16-byte CDBs are already being used */
1966 if (h->cciss_read == CCISS_READ_16) {
1967 cciss_read_capacity_16(h->ctlr, drv_index,
1968 &total_size, &block_size);
1970 } else {
1971 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1972 /* if read_capacity returns all F's this volume is >2TB */
1973 /* in size so we switch to 16-byte CDB's for all */
1974 /* read/write ops */
1975 if (total_size == 0xFFFFFFFFULL) {
1976 cciss_read_capacity_16(ctlr, drv_index,
1977 &total_size, &block_size);
1978 h->cciss_read = CCISS_READ_16;
1979 h->cciss_write = CCISS_WRITE_16;
1980 } else {
1981 h->cciss_read = CCISS_READ_10;
1982 h->cciss_write = CCISS_WRITE_10;
1986 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1987 inq_buff, drvinfo);
1988 drvinfo->block_size = block_size;
1989 drvinfo->nr_blocks = total_size + 1;
1991 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1992 drvinfo->model, drvinfo->rev);
1993 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1994 sizeof(drvinfo->serial_no));
1995 /* Save the lunid in case we deregister the disk, below. */
1996 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1997 sizeof(drvinfo->LunID));
1999 /* Is it the same disk we already know, and nothing's changed? */
2000 if (h->drv[drv_index]->raid_level != -1 &&
2001 ((memcmp(drvinfo->serial_no,
2002 h->drv[drv_index]->serial_no, 16) == 0) &&
2003 drvinfo->block_size == h->drv[drv_index]->block_size &&
2004 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2005 drvinfo->heads == h->drv[drv_index]->heads &&
2006 drvinfo->sectors == h->drv[drv_index]->sectors &&
2007 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2008 /* The disk is unchanged, nothing to update */
2009 goto freeret;
2011 /* If we get here it's not the same disk, or something's changed,
2012 * so we need to * deregister it, and re-register it, if it's not
2013 * in use.
2014 * If the disk already exists then deregister it before proceeding
2015 * (unless it's the first disk (for the controller node).
2017 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2018 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
2019 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2020 h->drv[drv_index]->busy_configuring = 1;
2021 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2023 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2024 * which keeps the interrupt handler from starting
2025 * the queue.
2027 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2030 /* If the disk is in use return */
2031 if (ret)
2032 goto freeret;
2034 /* Save the new information from cciss_geometry_inquiry
2035 * and serial number inquiry. If the disk was deregistered
2036 * above, then h->drv[drv_index] will be NULL.
2038 if (h->drv[drv_index] == NULL) {
2039 drvinfo->device_initialized = 0;
2040 h->drv[drv_index] = drvinfo;
2041 drvinfo = NULL; /* so it won't be freed below. */
2042 } else {
2043 /* special case for cxd0 */
2044 h->drv[drv_index]->block_size = drvinfo->block_size;
2045 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2046 h->drv[drv_index]->heads = drvinfo->heads;
2047 h->drv[drv_index]->sectors = drvinfo->sectors;
2048 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2049 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2050 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2051 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2052 VENDOR_LEN + 1);
2053 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2054 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2057 ++h->num_luns;
2058 disk = h->gendisk[drv_index];
2059 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2061 /* If it's not disk 0 (drv_index != 0)
2062 * or if it was disk 0, but there was previously
2063 * no actual corresponding configured logical drive
2064 * (raid_leve == -1) then we want to update the
2065 * logical drive's information.
2067 if (drv_index || first_time) {
2068 if (cciss_add_disk(h, disk, drv_index) != 0) {
2069 cciss_free_gendisk(h, drv_index);
2070 cciss_free_drive_info(h, drv_index);
2071 printk(KERN_WARNING "cciss:%d could not update "
2072 "disk %d\n", h->ctlr, drv_index);
2073 --h->num_luns;
2077 freeret:
2078 kfree(inq_buff);
2079 kfree(drvinfo);
2080 return;
2081 mem_msg:
2082 printk(KERN_ERR "cciss: out of memory\n");
2083 goto freeret;
2086 /* This function will find the first index of the controllers drive array
2087 * that has a null drv pointer and allocate the drive info struct and
2088 * will return that index This is where new drives will be added.
2089 * If the index to be returned is greater than the highest_lun index for
2090 * the controller then highest_lun is set * to this new index.
2091 * If there are no available indexes or if tha allocation fails, then -1
2092 * is returned. * "controller_node" is used to know if this is a real
2093 * logical drive, or just the controller node, which determines if this
2094 * counts towards highest_lun.
2096 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2098 int i;
2099 drive_info_struct *drv;
2101 /* Search for an empty slot for our drive info */
2102 for (i = 0; i < CISS_MAX_LUN; i++) {
2104 /* if not cxd0 case, and it's occupied, skip it. */
2105 if (h->drv[i] && i != 0)
2106 continue;
2108 * If it's cxd0 case, and drv is alloc'ed already, and a
2109 * disk is configured there, skip it.
2111 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2112 continue;
2115 * We've found an empty slot. Update highest_lun
2116 * provided this isn't just the fake cxd0 controller node.
2118 if (i > h->highest_lun && !controller_node)
2119 h->highest_lun = i;
2121 /* If adding a real disk at cxd0, and it's already alloc'ed */
2122 if (i == 0 && h->drv[i] != NULL)
2123 return i;
2126 * Found an empty slot, not already alloc'ed. Allocate it.
2127 * Mark it with raid_level == -1, so we know it's new later on.
2129 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2130 if (!drv)
2131 return -1;
2132 drv->raid_level = -1; /* so we know it's new */
2133 h->drv[i] = drv;
2134 return i;
2136 return -1;
2139 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2141 kfree(h->drv[drv_index]);
2142 h->drv[drv_index] = NULL;
2145 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2147 put_disk(h->gendisk[drv_index]);
2148 h->gendisk[drv_index] = NULL;
2151 /* cciss_add_gendisk finds a free hba[]->drv structure
2152 * and allocates a gendisk if needed, and sets the lunid
2153 * in the drvinfo structure. It returns the index into
2154 * the ->drv[] array, or -1 if none are free.
2155 * is_controller_node indicates whether highest_lun should
2156 * count this disk, or if it's only being added to provide
2157 * a means to talk to the controller in case no logical
2158 * drives have yet been configured.
2160 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2161 int controller_node)
2163 int drv_index;
2165 drv_index = cciss_alloc_drive_info(h, controller_node);
2166 if (drv_index == -1)
2167 return -1;
2169 /*Check if the gendisk needs to be allocated */
2170 if (!h->gendisk[drv_index]) {
2171 h->gendisk[drv_index] =
2172 alloc_disk(1 << NWD_SHIFT);
2173 if (!h->gendisk[drv_index]) {
2174 printk(KERN_ERR "cciss%d: could not "
2175 "allocate a new disk %d\n",
2176 h->ctlr, drv_index);
2177 goto err_free_drive_info;
2180 memcpy(h->drv[drv_index]->LunID, lunid,
2181 sizeof(h->drv[drv_index]->LunID));
2182 if (cciss_create_ld_sysfs_entry(h, drv_index))
2183 goto err_free_disk;
2184 /* Don't need to mark this busy because nobody */
2185 /* else knows about this disk yet to contend */
2186 /* for access to it. */
2187 h->drv[drv_index]->busy_configuring = 0;
2188 wmb();
2189 return drv_index;
2191 err_free_disk:
2192 cciss_free_gendisk(h, drv_index);
2193 err_free_drive_info:
2194 cciss_free_drive_info(h, drv_index);
2195 return -1;
2198 /* This is for the special case of a controller which
2199 * has no logical drives. In this case, we still need
2200 * to register a disk so the controller can be accessed
2201 * by the Array Config Utility.
2203 static void cciss_add_controller_node(ctlr_info_t *h)
2205 struct gendisk *disk;
2206 int drv_index;
2208 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2209 return;
2211 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2212 if (drv_index == -1)
2213 goto error;
2214 h->drv[drv_index]->block_size = 512;
2215 h->drv[drv_index]->nr_blocks = 0;
2216 h->drv[drv_index]->heads = 0;
2217 h->drv[drv_index]->sectors = 0;
2218 h->drv[drv_index]->cylinders = 0;
2219 h->drv[drv_index]->raid_level = -1;
2220 memset(h->drv[drv_index]->serial_no, 0, 16);
2221 disk = h->gendisk[drv_index];
2222 if (cciss_add_disk(h, disk, drv_index) == 0)
2223 return;
2224 cciss_free_gendisk(h, drv_index);
2225 cciss_free_drive_info(h, drv_index);
2226 error:
2227 printk(KERN_WARNING "cciss%d: could not "
2228 "add disk 0.\n", h->ctlr);
2229 return;
2232 /* This function will add and remove logical drives from the Logical
2233 * drive array of the controller and maintain persistency of ordering
2234 * so that mount points are preserved until the next reboot. This allows
2235 * for the removal of logical drives in the middle of the drive array
2236 * without a re-ordering of those drives.
2237 * INPUT
2238 * h = The controller to perform the operations on
2240 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2241 int via_ioctl)
2243 int ctlr = h->ctlr;
2244 int num_luns;
2245 ReportLunData_struct *ld_buff = NULL;
2246 int return_code;
2247 int listlength = 0;
2248 int i;
2249 int drv_found;
2250 int drv_index = 0;
2251 unsigned char lunid[8] = CTLR_LUNID;
2252 unsigned long flags;
2254 if (!capable(CAP_SYS_RAWIO))
2255 return -EPERM;
2257 /* Set busy_configuring flag for this operation */
2258 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2259 if (h->busy_configuring) {
2260 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2261 return -EBUSY;
2263 h->busy_configuring = 1;
2264 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2266 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2267 if (ld_buff == NULL)
2268 goto mem_msg;
2270 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2271 sizeof(ReportLunData_struct),
2272 0, CTLR_LUNID, TYPE_CMD);
2274 if (return_code == IO_OK)
2275 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2276 else { /* reading number of logical volumes failed */
2277 printk(KERN_WARNING "cciss: report logical volume"
2278 " command failed\n");
2279 listlength = 0;
2280 goto freeret;
2283 num_luns = listlength / 8; /* 8 bytes per entry */
2284 if (num_luns > CISS_MAX_LUN) {
2285 num_luns = CISS_MAX_LUN;
2286 printk(KERN_WARNING "cciss: more luns configured"
2287 " on controller than can be handled by"
2288 " this driver.\n");
2291 if (num_luns == 0)
2292 cciss_add_controller_node(h);
2294 /* Compare controller drive array to driver's drive array
2295 * to see if any drives are missing on the controller due
2296 * to action of Array Config Utility (user deletes drive)
2297 * and deregister logical drives which have disappeared.
2299 for (i = 0; i <= h->highest_lun; i++) {
2300 int j;
2301 drv_found = 0;
2303 /* skip holes in the array from already deleted drives */
2304 if (h->drv[i] == NULL)
2305 continue;
2307 for (j = 0; j < num_luns; j++) {
2308 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2309 if (memcmp(h->drv[i]->LunID, lunid,
2310 sizeof(lunid)) == 0) {
2311 drv_found = 1;
2312 break;
2315 if (!drv_found) {
2316 /* Deregister it from the OS, it's gone. */
2317 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2318 h->drv[i]->busy_configuring = 1;
2319 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2320 return_code = deregister_disk(h, i, 1, via_ioctl);
2321 if (h->drv[i] != NULL)
2322 h->drv[i]->busy_configuring = 0;
2326 /* Compare controller drive array to driver's drive array.
2327 * Check for updates in the drive information and any new drives
2328 * on the controller due to ACU adding logical drives, or changing
2329 * a logical drive's size, etc. Reregister any new/changed drives
2331 for (i = 0; i < num_luns; i++) {
2332 int j;
2334 drv_found = 0;
2336 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2337 /* Find if the LUN is already in the drive array
2338 * of the driver. If so then update its info
2339 * if not in use. If it does not exist then find
2340 * the first free index and add it.
2342 for (j = 0; j <= h->highest_lun; j++) {
2343 if (h->drv[j] != NULL &&
2344 memcmp(h->drv[j]->LunID, lunid,
2345 sizeof(h->drv[j]->LunID)) == 0) {
2346 drv_index = j;
2347 drv_found = 1;
2348 break;
2352 /* check if the drive was found already in the array */
2353 if (!drv_found) {
2354 drv_index = cciss_add_gendisk(h, lunid, 0);
2355 if (drv_index == -1)
2356 goto freeret;
2358 cciss_update_drive_info(ctlr, drv_index, first_time,
2359 via_ioctl);
2360 } /* end for */
2362 freeret:
2363 kfree(ld_buff);
2364 h->busy_configuring = 0;
2365 /* We return -1 here to tell the ACU that we have registered/updated
2366 * all of the drives that we can and to keep it from calling us
2367 * additional times.
2369 return -1;
2370 mem_msg:
2371 printk(KERN_ERR "cciss: out of memory\n");
2372 h->busy_configuring = 0;
2373 goto freeret;
2376 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2378 /* zero out the disk size info */
2379 drive_info->nr_blocks = 0;
2380 drive_info->block_size = 0;
2381 drive_info->heads = 0;
2382 drive_info->sectors = 0;
2383 drive_info->cylinders = 0;
2384 drive_info->raid_level = -1;
2385 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2386 memset(drive_info->model, 0, sizeof(drive_info->model));
2387 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2388 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2390 * don't clear the LUNID though, we need to remember which
2391 * one this one is.
2395 /* This function will deregister the disk and it's queue from the
2396 * kernel. It must be called with the controller lock held and the
2397 * drv structures busy_configuring flag set. It's parameters are:
2399 * disk = This is the disk to be deregistered
2400 * drv = This is the drive_info_struct associated with the disk to be
2401 * deregistered. It contains information about the disk used
2402 * by the driver.
2403 * clear_all = This flag determines whether or not the disk information
2404 * is going to be completely cleared out and the highest_lun
2405 * reset. Sometimes we want to clear out information about
2406 * the disk in preparation for re-adding it. In this case
2407 * the highest_lun should be left unchanged and the LunID
2408 * should not be cleared.
2409 * via_ioctl
2410 * This indicates whether we've reached this path via ioctl.
2411 * This affects the maximum usage count allowed for c0d0 to be messed with.
2412 * If this path is reached via ioctl(), then the max_usage_count will
2413 * be 1, as the process calling ioctl() has got to have the device open.
2414 * If we get here via sysfs, then the max usage count will be zero.
2416 static int deregister_disk(ctlr_info_t *h, int drv_index,
2417 int clear_all, int via_ioctl)
2419 int i;
2420 struct gendisk *disk;
2421 drive_info_struct *drv;
2422 int recalculate_highest_lun;
2424 if (!capable(CAP_SYS_RAWIO))
2425 return -EPERM;
2427 drv = h->drv[drv_index];
2428 disk = h->gendisk[drv_index];
2430 /* make sure logical volume is NOT is use */
2431 if (clear_all || (h->gendisk[0] == disk)) {
2432 if (drv->usage_count > via_ioctl)
2433 return -EBUSY;
2434 } else if (drv->usage_count > 0)
2435 return -EBUSY;
2437 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2439 /* invalidate the devices and deregister the disk. If it is disk
2440 * zero do not deregister it but just zero out it's values. This
2441 * allows us to delete disk zero but keep the controller registered.
2443 if (h->gendisk[0] != disk) {
2444 struct request_queue *q = disk->queue;
2445 if (disk->flags & GENHD_FL_UP) {
2446 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2447 del_gendisk(disk);
2449 if (q)
2450 blk_cleanup_queue(q);
2451 /* If clear_all is set then we are deleting the logical
2452 * drive, not just refreshing its info. For drives
2453 * other than disk 0 we will call put_disk. We do not
2454 * do this for disk 0 as we need it to be able to
2455 * configure the controller.
2457 if (clear_all){
2458 /* This isn't pretty, but we need to find the
2459 * disk in our array and NULL our the pointer.
2460 * This is so that we will call alloc_disk if
2461 * this index is used again later.
2463 for (i=0; i < CISS_MAX_LUN; i++){
2464 if (h->gendisk[i] == disk) {
2465 h->gendisk[i] = NULL;
2466 break;
2469 put_disk(disk);
2471 } else {
2472 set_capacity(disk, 0);
2473 cciss_clear_drive_info(drv);
2476 --h->num_luns;
2478 /* if it was the last disk, find the new hightest lun */
2479 if (clear_all && recalculate_highest_lun) {
2480 int newhighest = -1;
2481 for (i = 0; i <= h->highest_lun; i++) {
2482 /* if the disk has size > 0, it is available */
2483 if (h->drv[i] && h->drv[i]->heads)
2484 newhighest = i;
2486 h->highest_lun = newhighest;
2488 return 0;
2491 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2492 size_t size, __u8 page_code, unsigned char *scsi3addr,
2493 int cmd_type)
2495 ctlr_info_t *h = hba[ctlr];
2496 u64bit buff_dma_handle;
2497 int status = IO_OK;
2499 c->cmd_type = CMD_IOCTL_PEND;
2500 c->Header.ReplyQueue = 0;
2501 if (buff != NULL) {
2502 c->Header.SGList = 1;
2503 c->Header.SGTotal = 1;
2504 } else {
2505 c->Header.SGList = 0;
2506 c->Header.SGTotal = 0;
2508 c->Header.Tag.lower = c->busaddr;
2509 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2511 c->Request.Type.Type = cmd_type;
2512 if (cmd_type == TYPE_CMD) {
2513 switch (cmd) {
2514 case CISS_INQUIRY:
2515 /* are we trying to read a vital product page */
2516 if (page_code != 0) {
2517 c->Request.CDB[1] = 0x01;
2518 c->Request.CDB[2] = page_code;
2520 c->Request.CDBLen = 6;
2521 c->Request.Type.Attribute = ATTR_SIMPLE;
2522 c->Request.Type.Direction = XFER_READ;
2523 c->Request.Timeout = 0;
2524 c->Request.CDB[0] = CISS_INQUIRY;
2525 c->Request.CDB[4] = size & 0xFF;
2526 break;
2527 case CISS_REPORT_LOG:
2528 case CISS_REPORT_PHYS:
2529 /* Talking to controller so It's a physical command
2530 mode = 00 target = 0. Nothing to write.
2532 c->Request.CDBLen = 12;
2533 c->Request.Type.Attribute = ATTR_SIMPLE;
2534 c->Request.Type.Direction = XFER_READ;
2535 c->Request.Timeout = 0;
2536 c->Request.CDB[0] = cmd;
2537 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2538 c->Request.CDB[7] = (size >> 16) & 0xFF;
2539 c->Request.CDB[8] = (size >> 8) & 0xFF;
2540 c->Request.CDB[9] = size & 0xFF;
2541 break;
2543 case CCISS_READ_CAPACITY:
2544 c->Request.CDBLen = 10;
2545 c->Request.Type.Attribute = ATTR_SIMPLE;
2546 c->Request.Type.Direction = XFER_READ;
2547 c->Request.Timeout = 0;
2548 c->Request.CDB[0] = cmd;
2549 break;
2550 case CCISS_READ_CAPACITY_16:
2551 c->Request.CDBLen = 16;
2552 c->Request.Type.Attribute = ATTR_SIMPLE;
2553 c->Request.Type.Direction = XFER_READ;
2554 c->Request.Timeout = 0;
2555 c->Request.CDB[0] = cmd;
2556 c->Request.CDB[1] = 0x10;
2557 c->Request.CDB[10] = (size >> 24) & 0xFF;
2558 c->Request.CDB[11] = (size >> 16) & 0xFF;
2559 c->Request.CDB[12] = (size >> 8) & 0xFF;
2560 c->Request.CDB[13] = size & 0xFF;
2561 c->Request.Timeout = 0;
2562 c->Request.CDB[0] = cmd;
2563 break;
2564 case CCISS_CACHE_FLUSH:
2565 c->Request.CDBLen = 12;
2566 c->Request.Type.Attribute = ATTR_SIMPLE;
2567 c->Request.Type.Direction = XFER_WRITE;
2568 c->Request.Timeout = 0;
2569 c->Request.CDB[0] = BMIC_WRITE;
2570 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2571 break;
2572 case TEST_UNIT_READY:
2573 c->Request.CDBLen = 6;
2574 c->Request.Type.Attribute = ATTR_SIMPLE;
2575 c->Request.Type.Direction = XFER_NONE;
2576 c->Request.Timeout = 0;
2577 break;
2578 default:
2579 printk(KERN_WARNING
2580 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2581 return IO_ERROR;
2583 } else if (cmd_type == TYPE_MSG) {
2584 switch (cmd) {
2585 case 0: /* ABORT message */
2586 c->Request.CDBLen = 12;
2587 c->Request.Type.Attribute = ATTR_SIMPLE;
2588 c->Request.Type.Direction = XFER_WRITE;
2589 c->Request.Timeout = 0;
2590 c->Request.CDB[0] = cmd; /* abort */
2591 c->Request.CDB[1] = 0; /* abort a command */
2592 /* buff contains the tag of the command to abort */
2593 memcpy(&c->Request.CDB[4], buff, 8);
2594 break;
2595 case 1: /* RESET message */
2596 c->Request.CDBLen = 16;
2597 c->Request.Type.Attribute = ATTR_SIMPLE;
2598 c->Request.Type.Direction = XFER_NONE;
2599 c->Request.Timeout = 0;
2600 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2601 c->Request.CDB[0] = cmd; /* reset */
2602 c->Request.CDB[1] = 0x03; /* reset a target */
2603 break;
2604 case 3: /* No-Op message */
2605 c->Request.CDBLen = 1;
2606 c->Request.Type.Attribute = ATTR_SIMPLE;
2607 c->Request.Type.Direction = XFER_WRITE;
2608 c->Request.Timeout = 0;
2609 c->Request.CDB[0] = cmd;
2610 break;
2611 default:
2612 printk(KERN_WARNING
2613 "cciss%d: unknown message type %d\n", ctlr, cmd);
2614 return IO_ERROR;
2616 } else {
2617 printk(KERN_WARNING
2618 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2619 return IO_ERROR;
2621 /* Fill in the scatter gather information */
2622 if (size > 0) {
2623 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2624 buff, size,
2625 PCI_DMA_BIDIRECTIONAL);
2626 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2627 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2628 c->SG[0].Len = size;
2629 c->SG[0].Ext = 0; /* we are not chaining */
2631 return status;
2634 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2636 switch (c->err_info->ScsiStatus) {
2637 case SAM_STAT_GOOD:
2638 return IO_OK;
2639 case SAM_STAT_CHECK_CONDITION:
2640 switch (0xf & c->err_info->SenseInfo[2]) {
2641 case 0: return IO_OK; /* no sense */
2642 case 1: return IO_OK; /* recovered error */
2643 default:
2644 if (check_for_unit_attention(h, c))
2645 return IO_NEEDS_RETRY;
2646 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2647 "check condition, sense key = 0x%02x\n",
2648 h->ctlr, c->Request.CDB[0],
2649 c->err_info->SenseInfo[2]);
2651 break;
2652 default:
2653 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2654 "scsi status = 0x%02x\n", h->ctlr,
2655 c->Request.CDB[0], c->err_info->ScsiStatus);
2656 break;
2658 return IO_ERROR;
2661 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2663 int return_status = IO_OK;
2665 if (c->err_info->CommandStatus == CMD_SUCCESS)
2666 return IO_OK;
2668 switch (c->err_info->CommandStatus) {
2669 case CMD_TARGET_STATUS:
2670 return_status = check_target_status(h, c);
2671 break;
2672 case CMD_DATA_UNDERRUN:
2673 case CMD_DATA_OVERRUN:
2674 /* expected for inquiry and report lun commands */
2675 break;
2676 case CMD_INVALID:
2677 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2678 "reported invalid\n", c->Request.CDB[0]);
2679 return_status = IO_ERROR;
2680 break;
2681 case CMD_PROTOCOL_ERR:
2682 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2683 "protocol error \n", c->Request.CDB[0]);
2684 return_status = IO_ERROR;
2685 break;
2686 case CMD_HARDWARE_ERR:
2687 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2688 " hardware error\n", c->Request.CDB[0]);
2689 return_status = IO_ERROR;
2690 break;
2691 case CMD_CONNECTION_LOST:
2692 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2693 "connection lost\n", c->Request.CDB[0]);
2694 return_status = IO_ERROR;
2695 break;
2696 case CMD_ABORTED:
2697 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2698 "aborted\n", c->Request.CDB[0]);
2699 return_status = IO_ERROR;
2700 break;
2701 case CMD_ABORT_FAILED:
2702 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2703 "abort failed\n", c->Request.CDB[0]);
2704 return_status = IO_ERROR;
2705 break;
2706 case CMD_UNSOLICITED_ABORT:
2707 printk(KERN_WARNING
2708 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2709 c->Request.CDB[0]);
2710 return_status = IO_NEEDS_RETRY;
2711 break;
2712 default:
2713 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2714 "unknown status %x\n", c->Request.CDB[0],
2715 c->err_info->CommandStatus);
2716 return_status = IO_ERROR;
2718 return return_status;
2721 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2722 int attempt_retry)
2724 DECLARE_COMPLETION_ONSTACK(wait);
2725 u64bit buff_dma_handle;
2726 int return_status = IO_OK;
2728 resend_cmd2:
2729 c->waiting = &wait;
2730 enqueue_cmd_and_start_io(h, c);
2732 wait_for_completion(&wait);
2734 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2735 goto command_done;
2737 return_status = process_sendcmd_error(h, c);
2739 if (return_status == IO_NEEDS_RETRY &&
2740 c->retry_count < MAX_CMD_RETRIES) {
2741 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2742 c->Request.CDB[0]);
2743 c->retry_count++;
2744 /* erase the old error information */
2745 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2746 return_status = IO_OK;
2747 INIT_COMPLETION(wait);
2748 goto resend_cmd2;
2751 command_done:
2752 /* unlock the buffers from DMA */
2753 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2754 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2755 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2756 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2757 return return_status;
2760 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2761 __u8 page_code, unsigned char scsi3addr[],
2762 int cmd_type)
2764 ctlr_info_t *h = hba[ctlr];
2765 CommandList_struct *c;
2766 int return_status;
2768 c = cmd_alloc(h, 0);
2769 if (!c)
2770 return -ENOMEM;
2771 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2772 scsi3addr, cmd_type);
2773 if (return_status == IO_OK)
2774 return_status = sendcmd_withirq_core(h, c, 1);
2776 cmd_free(h, c, 0);
2777 return return_status;
2780 static void cciss_geometry_inquiry(int ctlr, int logvol,
2781 sector_t total_size,
2782 unsigned int block_size,
2783 InquiryData_struct *inq_buff,
2784 drive_info_struct *drv)
2786 int return_code;
2787 unsigned long t;
2788 unsigned char scsi3addr[8];
2790 memset(inq_buff, 0, sizeof(InquiryData_struct));
2791 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2792 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2793 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2794 if (return_code == IO_OK) {
2795 if (inq_buff->data_byte[8] == 0xFF) {
2796 printk(KERN_WARNING
2797 "cciss: reading geometry failed, volume "
2798 "does not support reading geometry\n");
2799 drv->heads = 255;
2800 drv->sectors = 32; /* Sectors per track */
2801 drv->cylinders = total_size + 1;
2802 drv->raid_level = RAID_UNKNOWN;
2803 } else {
2804 drv->heads = inq_buff->data_byte[6];
2805 drv->sectors = inq_buff->data_byte[7];
2806 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2807 drv->cylinders += inq_buff->data_byte[5];
2808 drv->raid_level = inq_buff->data_byte[8];
2810 drv->block_size = block_size;
2811 drv->nr_blocks = total_size + 1;
2812 t = drv->heads * drv->sectors;
2813 if (t > 1) {
2814 sector_t real_size = total_size + 1;
2815 unsigned long rem = sector_div(real_size, t);
2816 if (rem)
2817 real_size++;
2818 drv->cylinders = real_size;
2820 } else { /* Get geometry failed */
2821 printk(KERN_WARNING "cciss: reading geometry failed\n");
2825 static void
2826 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2827 unsigned int *block_size)
2829 ReadCapdata_struct *buf;
2830 int return_code;
2831 unsigned char scsi3addr[8];
2833 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2834 if (!buf) {
2835 printk(KERN_WARNING "cciss: out of memory\n");
2836 return;
2839 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2840 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2841 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2842 if (return_code == IO_OK) {
2843 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2844 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2845 } else { /* read capacity command failed */
2846 printk(KERN_WARNING "cciss: read capacity failed\n");
2847 *total_size = 0;
2848 *block_size = BLOCK_SIZE;
2850 kfree(buf);
2853 static void cciss_read_capacity_16(int ctlr, int logvol,
2854 sector_t *total_size, unsigned int *block_size)
2856 ReadCapdata_struct_16 *buf;
2857 int return_code;
2858 unsigned char scsi3addr[8];
2860 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2861 if (!buf) {
2862 printk(KERN_WARNING "cciss: out of memory\n");
2863 return;
2866 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2867 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2868 ctlr, buf, sizeof(ReadCapdata_struct_16),
2869 0, scsi3addr, TYPE_CMD);
2870 if (return_code == IO_OK) {
2871 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2872 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2873 } else { /* read capacity command failed */
2874 printk(KERN_WARNING "cciss: read capacity failed\n");
2875 *total_size = 0;
2876 *block_size = BLOCK_SIZE;
2878 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2879 (unsigned long long)*total_size+1, *block_size);
2880 kfree(buf);
2883 static int cciss_revalidate(struct gendisk *disk)
2885 ctlr_info_t *h = get_host(disk);
2886 drive_info_struct *drv = get_drv(disk);
2887 int logvol;
2888 int FOUND = 0;
2889 unsigned int block_size;
2890 sector_t total_size;
2891 InquiryData_struct *inq_buff = NULL;
2893 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2894 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2895 sizeof(drv->LunID)) == 0) {
2896 FOUND = 1;
2897 break;
2901 if (!FOUND)
2902 return 1;
2904 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2905 if (inq_buff == NULL) {
2906 printk(KERN_WARNING "cciss: out of memory\n");
2907 return 1;
2909 if (h->cciss_read == CCISS_READ_10) {
2910 cciss_read_capacity(h->ctlr, logvol,
2911 &total_size, &block_size);
2912 } else {
2913 cciss_read_capacity_16(h->ctlr, logvol,
2914 &total_size, &block_size);
2916 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2917 inq_buff, drv);
2919 blk_queue_logical_block_size(drv->queue, drv->block_size);
2920 set_capacity(disk, drv->nr_blocks);
2922 kfree(inq_buff);
2923 return 0;
2927 * Map (physical) PCI mem into (virtual) kernel space
2929 static void __iomem *remap_pci_mem(ulong base, ulong size)
2931 ulong page_base = ((ulong) base) & PAGE_MASK;
2932 ulong page_offs = ((ulong) base) - page_base;
2933 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2935 return page_remapped ? (page_remapped + page_offs) : NULL;
2939 * Takes jobs of the Q and sends them to the hardware, then puts it on
2940 * the Q to wait for completion.
2942 static void start_io(ctlr_info_t *h)
2944 CommandList_struct *c;
2946 while (!hlist_empty(&h->reqQ)) {
2947 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2948 /* can't do anything if fifo is full */
2949 if ((h->access.fifo_full(h))) {
2950 printk(KERN_WARNING "cciss: fifo full\n");
2951 break;
2954 /* Get the first entry from the Request Q */
2955 removeQ(c);
2956 h->Qdepth--;
2958 /* Tell the controller execute command */
2959 h->access.submit_command(h, c);
2961 /* Put job onto the completed Q */
2962 addQ(&h->cmpQ, c);
2966 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2967 /* Zeros out the error record and then resends the command back */
2968 /* to the controller */
2969 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2971 /* erase the old error information */
2972 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2974 /* add it to software queue and then send it to the controller */
2975 addQ(&h->reqQ, c);
2976 h->Qdepth++;
2977 if (h->Qdepth > h->maxQsinceinit)
2978 h->maxQsinceinit = h->Qdepth;
2980 start_io(h);
2983 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2984 unsigned int msg_byte, unsigned int host_byte,
2985 unsigned int driver_byte)
2987 /* inverse of macros in scsi.h */
2988 return (scsi_status_byte & 0xff) |
2989 ((msg_byte & 0xff) << 8) |
2990 ((host_byte & 0xff) << 16) |
2991 ((driver_byte & 0xff) << 24);
2994 static inline int evaluate_target_status(ctlr_info_t *h,
2995 CommandList_struct *cmd, int *retry_cmd)
2997 unsigned char sense_key;
2998 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2999 int error_value;
3001 *retry_cmd = 0;
3002 /* If we get in here, it means we got "target status", that is, scsi status */
3003 status_byte = cmd->err_info->ScsiStatus;
3004 driver_byte = DRIVER_OK;
3005 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3007 if (blk_pc_request(cmd->rq))
3008 host_byte = DID_PASSTHROUGH;
3009 else
3010 host_byte = DID_OK;
3012 error_value = make_status_bytes(status_byte, msg_byte,
3013 host_byte, driver_byte);
3015 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3016 if (!blk_pc_request(cmd->rq))
3017 printk(KERN_WARNING "cciss: cmd %p "
3018 "has SCSI Status 0x%x\n",
3019 cmd, cmd->err_info->ScsiStatus);
3020 return error_value;
3023 /* check the sense key */
3024 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3025 /* no status or recovered error */
3026 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3027 error_value = 0;
3029 if (check_for_unit_attention(h, cmd)) {
3030 *retry_cmd = !blk_pc_request(cmd->rq);
3031 return 0;
3034 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3035 if (error_value != 0)
3036 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3037 " sense key = 0x%x\n", cmd, sense_key);
3038 return error_value;
3041 /* SG_IO or similar, copy sense data back */
3042 if (cmd->rq->sense) {
3043 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3044 cmd->rq->sense_len = cmd->err_info->SenseLen;
3045 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3046 cmd->rq->sense_len);
3047 } else
3048 cmd->rq->sense_len = 0;
3050 return error_value;
3053 /* checks the status of the job and calls complete buffers to mark all
3054 * buffers for the completed job. Note that this function does not need
3055 * to hold the hba/queue lock.
3057 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3058 int timeout)
3060 int retry_cmd = 0;
3061 struct request *rq = cmd->rq;
3063 rq->errors = 0;
3065 if (timeout)
3066 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3068 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3069 goto after_error_processing;
3071 switch (cmd->err_info->CommandStatus) {
3072 case CMD_TARGET_STATUS:
3073 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3074 break;
3075 case CMD_DATA_UNDERRUN:
3076 if (blk_fs_request(cmd->rq)) {
3077 printk(KERN_WARNING "cciss: cmd %p has"
3078 " completed with data underrun "
3079 "reported\n", cmd);
3080 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3082 break;
3083 case CMD_DATA_OVERRUN:
3084 if (blk_fs_request(cmd->rq))
3085 printk(KERN_WARNING "cciss: cmd %p has"
3086 " completed with data overrun "
3087 "reported\n", cmd);
3088 break;
3089 case CMD_INVALID:
3090 printk(KERN_WARNING "cciss: cmd %p is "
3091 "reported invalid\n", cmd);
3092 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3093 cmd->err_info->CommandStatus, DRIVER_OK,
3094 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3095 break;
3096 case CMD_PROTOCOL_ERR:
3097 printk(KERN_WARNING "cciss: cmd %p has "
3098 "protocol error \n", cmd);
3099 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3100 cmd->err_info->CommandStatus, DRIVER_OK,
3101 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3102 break;
3103 case CMD_HARDWARE_ERR:
3104 printk(KERN_WARNING "cciss: cmd %p had "
3105 " hardware error\n", cmd);
3106 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3107 cmd->err_info->CommandStatus, DRIVER_OK,
3108 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3109 break;
3110 case CMD_CONNECTION_LOST:
3111 printk(KERN_WARNING "cciss: cmd %p had "
3112 "connection lost\n", cmd);
3113 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3114 cmd->err_info->CommandStatus, DRIVER_OK,
3115 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3116 break;
3117 case CMD_ABORTED:
3118 printk(KERN_WARNING "cciss: cmd %p was "
3119 "aborted\n", cmd);
3120 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3121 cmd->err_info->CommandStatus, DRIVER_OK,
3122 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3123 break;
3124 case CMD_ABORT_FAILED:
3125 printk(KERN_WARNING "cciss: cmd %p reports "
3126 "abort failed\n", cmd);
3127 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3128 cmd->err_info->CommandStatus, DRIVER_OK,
3129 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3130 break;
3131 case CMD_UNSOLICITED_ABORT:
3132 printk(KERN_WARNING "cciss%d: unsolicited "
3133 "abort %p\n", h->ctlr, cmd);
3134 if (cmd->retry_count < MAX_CMD_RETRIES) {
3135 retry_cmd = 1;
3136 printk(KERN_WARNING
3137 "cciss%d: retrying %p\n", h->ctlr, cmd);
3138 cmd->retry_count++;
3139 } else
3140 printk(KERN_WARNING
3141 "cciss%d: %p retried too "
3142 "many times\n", h->ctlr, cmd);
3143 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3144 cmd->err_info->CommandStatus, DRIVER_OK,
3145 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3146 break;
3147 case CMD_TIMEOUT:
3148 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3149 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3150 cmd->err_info->CommandStatus, DRIVER_OK,
3151 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3152 break;
3153 default:
3154 printk(KERN_WARNING "cciss: cmd %p returned "
3155 "unknown status %x\n", cmd,
3156 cmd->err_info->CommandStatus);
3157 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3158 cmd->err_info->CommandStatus, DRIVER_OK,
3159 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3162 after_error_processing:
3164 /* We need to return this command */
3165 if (retry_cmd) {
3166 resend_cciss_cmd(h, cmd);
3167 return;
3169 cmd->rq->completion_data = cmd;
3170 blk_complete_request(cmd->rq);
3173 static inline u32 cciss_tag_contains_index(u32 tag)
3175 #define DIRECT_LOOKUP_BIT 0x10
3176 return tag & DIRECT_LOOKUP_BIT;
3179 static inline u32 cciss_tag_to_index(u32 tag)
3181 #define DIRECT_LOOKUP_SHIFT 5
3182 return tag >> DIRECT_LOOKUP_SHIFT;
3185 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3187 #define CCISS_ERROR_BITS 0x03
3188 return tag & ~CCISS_ERROR_BITS;
3191 static inline void cciss_mark_tag_indexed(u32 *tag)
3193 *tag |= DIRECT_LOOKUP_BIT;
3196 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3198 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3202 * Get a request and submit it to the controller.
3204 static void do_cciss_request(struct request_queue *q)
3206 ctlr_info_t *h = q->queuedata;
3207 CommandList_struct *c;
3208 sector_t start_blk;
3209 int seg;
3210 struct request *creq;
3211 u64bit temp64;
3212 struct scatterlist *tmp_sg;
3213 SGDescriptor_struct *curr_sg;
3214 drive_info_struct *drv;
3215 int i, dir;
3216 int sg_index = 0;
3217 int chained = 0;
3219 /* We call start_io here in case there is a command waiting on the
3220 * queue that has not been sent.
3222 if (blk_queue_plugged(q))
3223 goto startio;
3225 queue:
3226 creq = blk_peek_request(q);
3227 if (!creq)
3228 goto startio;
3230 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3232 if ((c = cmd_alloc(h, 1)) == NULL)
3233 goto full;
3235 blk_start_request(creq);
3237 tmp_sg = h->scatter_list[c->cmdindex];
3238 spin_unlock_irq(q->queue_lock);
3240 c->cmd_type = CMD_RWREQ;
3241 c->rq = creq;
3243 /* fill in the request */
3244 drv = creq->rq_disk->private_data;
3245 c->Header.ReplyQueue = 0; /* unused in simple mode */
3246 /* got command from pool, so use the command block index instead */
3247 /* for direct lookups. */
3248 /* The first 2 bits are reserved for controller error reporting. */
3249 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3250 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3251 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3252 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3253 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3254 c->Request.Type.Attribute = ATTR_SIMPLE;
3255 c->Request.Type.Direction =
3256 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3257 c->Request.Timeout = 0; /* Don't time out */
3258 c->Request.CDB[0] =
3259 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3260 start_blk = blk_rq_pos(creq);
3261 #ifdef CCISS_DEBUG
3262 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3263 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3264 #endif /* CCISS_DEBUG */
3266 sg_init_table(tmp_sg, h->maxsgentries);
3267 seg = blk_rq_map_sg(q, creq, tmp_sg);
3269 /* get the DMA records for the setup */
3270 if (c->Request.Type.Direction == XFER_READ)
3271 dir = PCI_DMA_FROMDEVICE;
3272 else
3273 dir = PCI_DMA_TODEVICE;
3275 curr_sg = c->SG;
3276 sg_index = 0;
3277 chained = 0;
3279 for (i = 0; i < seg; i++) {
3280 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3281 !chained && ((seg - i) > 1)) {
3282 /* Point to next chain block. */
3283 curr_sg = h->cmd_sg_list[c->cmdindex];
3284 sg_index = 0;
3285 chained = 1;
3287 curr_sg[sg_index].Len = tmp_sg[i].length;
3288 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3289 tmp_sg[i].offset,
3290 tmp_sg[i].length, dir);
3291 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3292 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3293 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3294 ++sg_index;
3296 if (chained)
3297 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3298 (seg - (h->max_cmd_sgentries - 1)) *
3299 sizeof(SGDescriptor_struct));
3301 /* track how many SG entries we are using */
3302 if (seg > h->maxSG)
3303 h->maxSG = seg;
3305 #ifdef CCISS_DEBUG
3306 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3307 "chained[%d]\n",
3308 blk_rq_sectors(creq), seg, chained);
3309 #endif /* CCISS_DEBUG */
3311 c->Header.SGTotal = seg + chained;
3312 if (seg <= h->max_cmd_sgentries)
3313 c->Header.SGList = c->Header.SGTotal;
3314 else
3315 c->Header.SGList = h->max_cmd_sgentries;
3316 set_performant_mode(h, c);
3318 if (likely(blk_fs_request(creq))) {
3319 if(h->cciss_read == CCISS_READ_10) {
3320 c->Request.CDB[1] = 0;
3321 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3322 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3323 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3324 c->Request.CDB[5] = start_blk & 0xff;
3325 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3326 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3327 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3328 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3329 } else {
3330 u32 upper32 = upper_32_bits(start_blk);
3332 c->Request.CDBLen = 16;
3333 c->Request.CDB[1]= 0;
3334 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3335 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3336 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3337 c->Request.CDB[5]= upper32 & 0xff;
3338 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3339 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3340 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3341 c->Request.CDB[9]= start_blk & 0xff;
3342 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3343 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3344 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3345 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3346 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3348 } else if (blk_pc_request(creq)) {
3349 c->Request.CDBLen = creq->cmd_len;
3350 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3351 } else {
3352 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3353 BUG();
3356 spin_lock_irq(q->queue_lock);
3358 addQ(&h->reqQ, c);
3359 h->Qdepth++;
3360 if (h->Qdepth > h->maxQsinceinit)
3361 h->maxQsinceinit = h->Qdepth;
3363 goto queue;
3364 full:
3365 blk_stop_queue(q);
3366 startio:
3367 /* We will already have the driver lock here so not need
3368 * to lock it.
3370 start_io(h);
3373 static inline unsigned long get_next_completion(ctlr_info_t *h)
3375 return h->access.command_completed(h);
3378 static inline int interrupt_pending(ctlr_info_t *h)
3380 return h->access.intr_pending(h);
3383 static inline long interrupt_not_for_us(ctlr_info_t *h)
3385 return !(h->msi_vector || h->msix_vector) &&
3386 ((h->access.intr_pending(h) == 0) ||
3387 (h->interrupts_enabled == 0));
3390 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3391 u32 raw_tag)
3393 if (unlikely(tag_index >= h->nr_cmds)) {
3394 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3395 return 1;
3397 return 0;
3400 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3401 u32 raw_tag)
3403 removeQ(c);
3404 if (likely(c->cmd_type == CMD_RWREQ))
3405 complete_command(h, c, 0);
3406 else if (c->cmd_type == CMD_IOCTL_PEND)
3407 complete(c->waiting);
3408 #ifdef CONFIG_CISS_SCSI_TAPE
3409 else if (c->cmd_type == CMD_SCSI)
3410 complete_scsi_command(c, 0, raw_tag);
3411 #endif
3414 /* process completion of an indexed ("direct lookup") command */
3415 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3417 u32 tag_index;
3418 CommandList_struct *c;
3420 tag_index = cciss_tag_to_index(raw_tag);
3421 if (bad_tag(h, tag_index, raw_tag))
3422 return next_command(h);
3423 c = h->cmd_pool + tag_index;
3424 finish_cmd(h, c, raw_tag);
3425 return next_command(h);
3428 /* process completion of a non-indexed command */
3429 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3431 u32 tag;
3432 CommandList_struct *c = NULL;
3433 struct hlist_node *tmp;
3434 __u32 busaddr_masked, tag_masked;
3436 tag = cciss_tag_discard_error_bits(raw_tag);
3437 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3438 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3439 tag_masked = cciss_tag_discard_error_bits(tag);
3440 if (busaddr_masked == tag_masked) {
3441 finish_cmd(h, c, raw_tag);
3442 return next_command(h);
3445 bad_tag(h, h->nr_cmds + 1, raw_tag);
3446 return next_command(h);
3449 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3451 ctlr_info_t *h = dev_id;
3452 unsigned long flags;
3453 u32 raw_tag;
3455 if (interrupt_not_for_us(h))
3456 return IRQ_NONE;
3458 * If there are completed commands in the completion queue,
3459 * we had better do something about it.
3461 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3462 while (interrupt_pending(h)) {
3463 raw_tag = get_next_completion(h);
3464 while (raw_tag != FIFO_EMPTY) {
3465 if (cciss_tag_contains_index(raw_tag))
3466 raw_tag = process_indexed_cmd(h, raw_tag);
3467 else
3468 raw_tag = process_nonindexed_cmd(h, raw_tag);
3472 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3473 return IRQ_HANDLED;
3476 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3477 * check the interrupt pending register because it is not set.
3479 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3481 ctlr_info_t *h = dev_id;
3482 unsigned long flags;
3483 u32 raw_tag;
3485 if (interrupt_not_for_us(h))
3486 return IRQ_NONE;
3488 * If there are completed commands in the completion queue,
3489 * we had better do something about it.
3491 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3492 raw_tag = get_next_completion(h);
3493 while (raw_tag != FIFO_EMPTY) {
3494 if (cciss_tag_contains_index(raw_tag))
3495 raw_tag = process_indexed_cmd(h, raw_tag);
3496 else
3497 raw_tag = process_nonindexed_cmd(h, raw_tag);
3500 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3501 return IRQ_HANDLED;
3505 * add_to_scan_list() - add controller to rescan queue
3506 * @h: Pointer to the controller.
3508 * Adds the controller to the rescan queue if not already on the queue.
3510 * returns 1 if added to the queue, 0 if skipped (could be on the
3511 * queue already, or the controller could be initializing or shutting
3512 * down).
3514 static int add_to_scan_list(struct ctlr_info *h)
3516 struct ctlr_info *test_h;
3517 int found = 0;
3518 int ret = 0;
3520 if (h->busy_initializing)
3521 return 0;
3523 if (!mutex_trylock(&h->busy_shutting_down))
3524 return 0;
3526 mutex_lock(&scan_mutex);
3527 list_for_each_entry(test_h, &scan_q, scan_list) {
3528 if (test_h == h) {
3529 found = 1;
3530 break;
3533 if (!found && !h->busy_scanning) {
3534 INIT_COMPLETION(h->scan_wait);
3535 list_add_tail(&h->scan_list, &scan_q);
3536 ret = 1;
3538 mutex_unlock(&scan_mutex);
3539 mutex_unlock(&h->busy_shutting_down);
3541 return ret;
3545 * remove_from_scan_list() - remove controller from rescan queue
3546 * @h: Pointer to the controller.
3548 * Removes the controller from the rescan queue if present. Blocks if
3549 * the controller is currently conducting a rescan. The controller
3550 * can be in one of three states:
3551 * 1. Doesn't need a scan
3552 * 2. On the scan list, but not scanning yet (we remove it)
3553 * 3. Busy scanning (and not on the list). In this case we want to wait for
3554 * the scan to complete to make sure the scanning thread for this
3555 * controller is completely idle.
3557 static void remove_from_scan_list(struct ctlr_info *h)
3559 struct ctlr_info *test_h, *tmp_h;
3561 mutex_lock(&scan_mutex);
3562 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3563 if (test_h == h) { /* state 2. */
3564 list_del(&h->scan_list);
3565 complete_all(&h->scan_wait);
3566 mutex_unlock(&scan_mutex);
3567 return;
3570 if (h->busy_scanning) { /* state 3. */
3571 mutex_unlock(&scan_mutex);
3572 wait_for_completion(&h->scan_wait);
3573 } else { /* state 1, nothing to do. */
3574 mutex_unlock(&scan_mutex);
3579 * scan_thread() - kernel thread used to rescan controllers
3580 * @data: Ignored.
3582 * A kernel thread used scan for drive topology changes on
3583 * controllers. The thread processes only one controller at a time
3584 * using a queue. Controllers are added to the queue using
3585 * add_to_scan_list() and removed from the queue either after done
3586 * processing or using remove_from_scan_list().
3588 * returns 0.
3590 static int scan_thread(void *data)
3592 struct ctlr_info *h;
3594 while (1) {
3595 set_current_state(TASK_INTERRUPTIBLE);
3596 schedule();
3597 if (kthread_should_stop())
3598 break;
3600 while (1) {
3601 mutex_lock(&scan_mutex);
3602 if (list_empty(&scan_q)) {
3603 mutex_unlock(&scan_mutex);
3604 break;
3607 h = list_entry(scan_q.next,
3608 struct ctlr_info,
3609 scan_list);
3610 list_del(&h->scan_list);
3611 h->busy_scanning = 1;
3612 mutex_unlock(&scan_mutex);
3614 rebuild_lun_table(h, 0, 0);
3615 complete_all(&h->scan_wait);
3616 mutex_lock(&scan_mutex);
3617 h->busy_scanning = 0;
3618 mutex_unlock(&scan_mutex);
3622 return 0;
3625 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3627 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3628 return 0;
3630 switch (c->err_info->SenseInfo[12]) {
3631 case STATE_CHANGED:
3632 printk(KERN_WARNING "cciss%d: a state change "
3633 "detected, command retried\n", h->ctlr);
3634 return 1;
3635 break;
3636 case LUN_FAILED:
3637 printk(KERN_WARNING "cciss%d: LUN failure "
3638 "detected, action required\n", h->ctlr);
3639 return 1;
3640 break;
3641 case REPORT_LUNS_CHANGED:
3642 printk(KERN_WARNING "cciss%d: report LUN data "
3643 "changed\n", h->ctlr);
3645 * Here, we could call add_to_scan_list and wake up the scan thread,
3646 * except that it's quite likely that we will get more than one
3647 * REPORT_LUNS_CHANGED condition in quick succession, which means
3648 * that those which occur after the first one will likely happen
3649 * *during* the scan_thread's rescan. And the rescan code is not
3650 * robust enough to restart in the middle, undoing what it has already
3651 * done, and it's not clear that it's even possible to do this, since
3652 * part of what it does is notify the block layer, which starts
3653 * doing it's own i/o to read partition tables and so on, and the
3654 * driver doesn't have visibility to know what might need undoing.
3655 * In any event, if possible, it is horribly complicated to get right
3656 * so we just don't do it for now.
3658 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3660 return 1;
3661 break;
3662 case POWER_OR_RESET:
3663 printk(KERN_WARNING "cciss%d: a power on "
3664 "or device reset detected\n", h->ctlr);
3665 return 1;
3666 break;
3667 case UNIT_ATTENTION_CLEARED:
3668 printk(KERN_WARNING "cciss%d: unit attention "
3669 "cleared by another initiator\n", h->ctlr);
3670 return 1;
3671 break;
3672 default:
3673 printk(KERN_WARNING "cciss%d: unknown "
3674 "unit attention detected\n", h->ctlr);
3675 return 1;
3680 * We cannot read the structure directly, for portability we must use
3681 * the io functions.
3682 * This is for debug only.
3684 #ifdef CCISS_DEBUG
3685 static void print_cfg_table(CfgTable_struct *tb)
3687 int i;
3688 char temp_name[17];
3690 printk("Controller Configuration information\n");
3691 printk("------------------------------------\n");
3692 for (i = 0; i < 4; i++)
3693 temp_name[i] = readb(&(tb->Signature[i]));
3694 temp_name[4] = '\0';
3695 printk(" Signature = %s\n", temp_name);
3696 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3697 printk(" Transport methods supported = 0x%x\n",
3698 readl(&(tb->TransportSupport)));
3699 printk(" Transport methods active = 0x%x\n",
3700 readl(&(tb->TransportActive)));
3701 printk(" Requested transport Method = 0x%x\n",
3702 readl(&(tb->HostWrite.TransportRequest)));
3703 printk(" Coalesce Interrupt Delay = 0x%x\n",
3704 readl(&(tb->HostWrite.CoalIntDelay)));
3705 printk(" Coalesce Interrupt Count = 0x%x\n",
3706 readl(&(tb->HostWrite.CoalIntCount)));
3707 printk(" Max outstanding commands = 0x%d\n",
3708 readl(&(tb->CmdsOutMax)));
3709 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3710 for (i = 0; i < 16; i++)
3711 temp_name[i] = readb(&(tb->ServerName[i]));
3712 temp_name[16] = '\0';
3713 printk(" Server Name = %s\n", temp_name);
3714 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3716 #endif /* CCISS_DEBUG */
3718 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3720 int i, offset, mem_type, bar_type;
3721 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3722 return 0;
3723 offset = 0;
3724 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3725 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3726 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3727 offset += 4;
3728 else {
3729 mem_type = pci_resource_flags(pdev, i) &
3730 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3731 switch (mem_type) {
3732 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3733 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3734 offset += 4; /* 32 bit */
3735 break;
3736 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3737 offset += 8;
3738 break;
3739 default: /* reserved in PCI 2.2 */
3740 printk(KERN_WARNING
3741 "Base address is invalid\n");
3742 return -1;
3743 break;
3746 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3747 return i + 1;
3749 return -1;
3752 /* Fill in bucket_map[], given nsgs (the max number of
3753 * scatter gather elements supported) and bucket[],
3754 * which is an array of 8 integers. The bucket[] array
3755 * contains 8 different DMA transfer sizes (in 16
3756 * byte increments) which the controller uses to fetch
3757 * commands. This function fills in bucket_map[], which
3758 * maps a given number of scatter gather elements to one of
3759 * the 8 DMA transfer sizes. The point of it is to allow the
3760 * controller to only do as much DMA as needed to fetch the
3761 * command, with the DMA transfer size encoded in the lower
3762 * bits of the command address.
3764 static void calc_bucket_map(int bucket[], int num_buckets,
3765 int nsgs, int *bucket_map)
3767 int i, j, b, size;
3769 /* even a command with 0 SGs requires 4 blocks */
3770 #define MINIMUM_TRANSFER_BLOCKS 4
3771 #define NUM_BUCKETS 8
3772 /* Note, bucket_map must have nsgs+1 entries. */
3773 for (i = 0; i <= nsgs; i++) {
3774 /* Compute size of a command with i SG entries */
3775 size = i + MINIMUM_TRANSFER_BLOCKS;
3776 b = num_buckets; /* Assume the biggest bucket */
3777 /* Find the bucket that is just big enough */
3778 for (j = 0; j < 8; j++) {
3779 if (bucket[j] >= size) {
3780 b = j;
3781 break;
3784 /* for a command with i SG entries, use bucket b. */
3785 bucket_map[i] = b;
3789 static void
3790 cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3792 int l = 0;
3793 __u32 trans_support;
3794 __u32 trans_offset;
3796 * 5 = 1 s/g entry or 4k
3797 * 6 = 2 s/g entry or 8k
3798 * 8 = 4 s/g entry or 16k
3799 * 10 = 6 s/g entry or 24k
3801 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3802 unsigned long register_value;
3804 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3806 /* Attempt to put controller into performant mode if supported */
3807 /* Does board support performant mode? */
3808 trans_support = readl(&(h->cfgtable->TransportSupport));
3809 if (!(trans_support & PERFORMANT_MODE))
3810 return;
3812 printk(KERN_WARNING "cciss%d: Placing controller into "
3813 "performant mode\n", h->ctlr);
3814 /* Performant mode demands commands on a 32 byte boundary
3815 * pci_alloc_consistent aligns on page boundarys already.
3816 * Just need to check if divisible by 32
3818 if ((sizeof(CommandList_struct) % 32) != 0) {
3819 printk(KERN_WARNING "%s %d %s\n",
3820 "cciss info: command size[",
3821 (int)sizeof(CommandList_struct),
3822 "] not divisible by 32, no performant mode..\n");
3823 return;
3826 /* Performant mode ring buffer and supporting data structures */
3827 h->reply_pool = (__u64 *)pci_alloc_consistent(
3828 h->pdev, h->max_commands * sizeof(__u64),
3829 &(h->reply_pool_dhandle));
3831 /* Need a block fetch table for performant mode */
3832 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3833 sizeof(__u32)), GFP_KERNEL);
3835 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3836 goto clean_up;
3838 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3840 /* Controller spec: zero out this buffer. */
3841 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3842 h->reply_pool_head = h->reply_pool;
3844 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3845 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3846 h->blockFetchTable);
3847 writel(bft[0], &h->transtable->BlockFetch0);
3848 writel(bft[1], &h->transtable->BlockFetch1);
3849 writel(bft[2], &h->transtable->BlockFetch2);
3850 writel(bft[3], &h->transtable->BlockFetch3);
3851 writel(bft[4], &h->transtable->BlockFetch4);
3852 writel(bft[5], &h->transtable->BlockFetch5);
3853 writel(bft[6], &h->transtable->BlockFetch6);
3854 writel(bft[7], &h->transtable->BlockFetch7);
3856 /* size of controller ring buffer */
3857 writel(h->max_commands, &h->transtable->RepQSize);
3858 writel(1, &h->transtable->RepQCount);
3859 writel(0, &h->transtable->RepQCtrAddrLow32);
3860 writel(0, &h->transtable->RepQCtrAddrHigh32);
3861 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3862 writel(0, &h->transtable->RepQAddr0High32);
3863 writel(CFGTBL_Trans_Performant,
3864 &(h->cfgtable->HostWrite.TransportRequest));
3866 h->transMethod = CFGTBL_Trans_Performant;
3867 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3868 /* under certain very rare conditions, this can take awhile.
3869 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3870 * as we enter this code.) */
3871 for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3872 register_value = readl(h->vaddr + SA5_DOORBELL);
3873 if (!(register_value & CFGTBL_ChangeReq))
3874 break;
3875 /* delay and try again */
3876 set_current_state(TASK_INTERRUPTIBLE);
3877 schedule_timeout(10);
3879 register_value = readl(&(h->cfgtable->TransportActive));
3880 if (!(register_value & CFGTBL_Trans_Performant)) {
3881 printk(KERN_WARNING "cciss: unable to get board into"
3882 " performant mode\n");
3883 return;
3886 /* Change the access methods to the performant access methods */
3887 h->access = SA5_performant_access;
3889 return;
3890 clean_up:
3891 kfree(h->blockFetchTable);
3892 if (h->reply_pool)
3893 pci_free_consistent(h->pdev,
3894 h->max_commands * sizeof(__u64),
3895 h->reply_pool,
3896 h->reply_pool_dhandle);
3897 return;
3899 } /* cciss_put_controller_into_performant_mode */
3901 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3902 * controllers that are capable. If not, we use IO-APIC mode.
3905 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3906 struct pci_dev *pdev, __u32 board_id)
3908 #ifdef CONFIG_PCI_MSI
3909 int err;
3910 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3911 {0, 2}, {0, 3}
3914 /* Some boards advertise MSI but don't really support it */
3915 if ((board_id == 0x40700E11) ||
3916 (board_id == 0x40800E11) ||
3917 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3918 goto default_int_mode;
3920 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3921 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3922 if (!err) {
3923 c->intr[0] = cciss_msix_entries[0].vector;
3924 c->intr[1] = cciss_msix_entries[1].vector;
3925 c->intr[2] = cciss_msix_entries[2].vector;
3926 c->intr[3] = cciss_msix_entries[3].vector;
3927 c->msix_vector = 1;
3928 return;
3930 if (err > 0) {
3931 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3932 "available\n", err);
3933 goto default_int_mode;
3934 } else {
3935 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3936 err);
3937 goto default_int_mode;
3940 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3941 if (!pci_enable_msi(pdev)) {
3942 c->msi_vector = 1;
3943 } else {
3944 printk(KERN_WARNING "cciss: MSI init failed\n");
3947 default_int_mode:
3948 #endif /* CONFIG_PCI_MSI */
3949 /* if we get here we're going to use the default interrupt mode */
3950 c->intr[PERF_MODE_INT] = pdev->irq;
3951 return;
3954 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3956 ushort subsystem_vendor_id, subsystem_device_id, command;
3957 __u32 board_id, scratchpad = 0;
3958 __u64 cfg_offset;
3959 __u32 cfg_base_addr;
3960 __u64 cfg_base_addr_index;
3961 int i, prod_index, err;
3962 __u32 trans_offset;
3964 subsystem_vendor_id = pdev->subsystem_vendor;
3965 subsystem_device_id = pdev->subsystem_device;
3966 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3967 subsystem_vendor_id);
3969 for (i = 0; i < ARRAY_SIZE(products); i++) {
3970 /* Stand aside for hpsa driver on request */
3971 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3972 return -ENODEV;
3973 if (board_id == products[i].board_id)
3974 break;
3976 prod_index = i;
3977 if (prod_index == ARRAY_SIZE(products)) {
3978 dev_warn(&pdev->dev,
3979 "unrecognized board ID: 0x%08lx, ignoring.\n",
3980 (unsigned long) board_id);
3981 return -ENODEV;
3984 /* check to see if controller has been disabled */
3985 /* BEFORE trying to enable it */
3986 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3987 if (!(command & 0x02)) {
3988 printk(KERN_WARNING
3989 "cciss: controller appears to be disabled\n");
3990 return -ENODEV;
3993 err = pci_enable_device(pdev);
3994 if (err) {
3995 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3996 return err;
3999 err = pci_request_regions(pdev, "cciss");
4000 if (err) {
4001 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
4002 "aborting\n");
4003 return err;
4006 #ifdef CCISS_DEBUG
4007 printk("command = %x\n", command);
4008 printk("irq = %x\n", pdev->irq);
4009 printk("board_id = %x\n", board_id);
4010 #endif /* CCISS_DEBUG */
4012 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4013 * else we use the IO-APIC interrupt assigned to us by system ROM.
4015 cciss_interrupt_mode(c, pdev, board_id);
4017 /* find the memory BAR */
4018 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4019 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
4020 break;
4022 if (i == DEVICE_COUNT_RESOURCE) {
4023 printk(KERN_WARNING "cciss: No memory BAR found\n");
4024 err = -ENODEV;
4025 goto err_out_free_res;
4028 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
4029 * already removed
4032 #ifdef CCISS_DEBUG
4033 printk("address 0 = %lx\n", c->paddr);
4034 #endif /* CCISS_DEBUG */
4035 c->vaddr = remap_pci_mem(c->paddr, 0x250);
4037 /* Wait for the board to become ready. (PCI hotplug needs this.)
4038 * We poll for up to 120 secs, once per 100ms. */
4039 for (i = 0; i < 1200; i++) {
4040 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
4041 if (scratchpad == CCISS_FIRMWARE_READY)
4042 break;
4043 set_current_state(TASK_INTERRUPTIBLE);
4044 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
4046 if (scratchpad != CCISS_FIRMWARE_READY) {
4047 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
4048 err = -ENODEV;
4049 goto err_out_free_res;
4052 /* get the address index number */
4053 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
4054 cfg_base_addr &= (__u32) 0x0000ffff;
4055 #ifdef CCISS_DEBUG
4056 printk("cfg base address = %x\n", cfg_base_addr);
4057 #endif /* CCISS_DEBUG */
4058 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
4059 #ifdef CCISS_DEBUG
4060 printk("cfg base address index = %llx\n",
4061 (unsigned long long)cfg_base_addr_index);
4062 #endif /* CCISS_DEBUG */
4063 if (cfg_base_addr_index == -1) {
4064 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
4065 err = -ENODEV;
4066 goto err_out_free_res;
4069 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
4070 #ifdef CCISS_DEBUG
4071 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
4072 #endif /* CCISS_DEBUG */
4073 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
4074 cfg_base_addr_index) +
4075 cfg_offset, sizeof(CfgTable_struct));
4076 /* Find performant mode table. */
4077 trans_offset = readl(&(c->cfgtable->TransMethodOffset));
4078 c->transtable = remap_pci_mem(pci_resource_start(pdev,
4079 cfg_base_addr_index) + cfg_offset+trans_offset,
4080 sizeof(*c->transtable));
4081 c->board_id = board_id;
4083 #ifdef CCISS_DEBUG
4084 print_cfg_table(c->cfgtable);
4085 #endif /* CCISS_DEBUG */
4087 /* Some controllers support Zero Memory Raid (ZMR).
4088 * When configured in ZMR mode the number of supported
4089 * commands drops to 64. So instead of just setting an
4090 * arbitrary value we make the driver a little smarter.
4091 * We read the config table to tell us how many commands
4092 * are supported on the controller then subtract 4 to
4093 * leave a little room for ioctl calls.
4095 c->max_commands = readl(&(c->cfgtable->MaxPerformantModeCommands));
4096 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
4099 * Limit native command to 32 s/g elements to save dma'able memory.
4100 * Howvever spec says if 0, use 31
4103 c->max_cmd_sgentries = 31;
4104 if (c->maxsgentries > 512) {
4105 c->max_cmd_sgentries = 32;
4106 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
4107 c->maxsgentries -= 1; /* account for chain pointer */
4108 } else {
4109 c->maxsgentries = 31; /* Default to traditional value */
4110 c->chainsize = 0; /* traditional */
4113 c->product_name = products[prod_index].product_name;
4114 c->access = *(products[prod_index].access);
4115 c->nr_cmds = c->max_commands - 4;
4116 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
4117 (readb(&c->cfgtable->Signature[1]) != 'I') ||
4118 (readb(&c->cfgtable->Signature[2]) != 'S') ||
4119 (readb(&c->cfgtable->Signature[3]) != 'S')) {
4120 printk("Does not appear to be a valid CISS config table\n");
4121 err = -ENODEV;
4122 goto err_out_free_res;
4124 #ifdef CONFIG_X86
4126 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4127 __u32 prefetch;
4128 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
4129 prefetch |= 0x100;
4130 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
4132 #endif
4134 /* Disabling DMA prefetch and refetch for the P600.
4135 * An ASIC bug may result in accesses to invalid memory addresses.
4136 * We've disabled prefetch for some time now. Testing with XEN
4137 * kernels revealed a bug in the refetch if dom0 resides on a P600.
4139 if(board_id == 0x3225103C) {
4140 __u32 dma_prefetch;
4141 __u32 dma_refetch;
4142 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
4143 dma_prefetch |= 0x8000;
4144 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
4145 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
4146 dma_refetch |= 0x1;
4147 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
4150 #ifdef CCISS_DEBUG
4151 printk(KERN_WARNING "Trying to put board into Performant mode\n");
4152 #endif /* CCISS_DEBUG */
4153 return 0;
4155 err_out_free_res:
4157 * Deliberately omit pci_disable_device(): it does something nasty to
4158 * Smart Array controllers that pci_enable_device does not undo
4160 pci_release_regions(pdev);
4161 cciss_put_controller_into_performant_mode(c);
4162 return err;
4165 /* Function to find the first free pointer into our hba[] array
4166 * Returns -1 if no free entries are left.
4168 static int alloc_cciss_hba(void)
4170 int i;
4172 for (i = 0; i < MAX_CTLR; i++) {
4173 if (!hba[i]) {
4174 ctlr_info_t *p;
4176 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4177 if (!p)
4178 goto Enomem;
4179 hba[i] = p;
4180 return i;
4183 printk(KERN_WARNING "cciss: This driver supports a maximum"
4184 " of %d controllers.\n", MAX_CTLR);
4185 return -1;
4186 Enomem:
4187 printk(KERN_ERR "cciss: out of memory.\n");
4188 return -1;
4191 static void free_hba(int n)
4193 ctlr_info_t *h = hba[n];
4194 int i;
4196 hba[n] = NULL;
4197 for (i = 0; i < h->highest_lun + 1; i++)
4198 if (h->gendisk[i] != NULL)
4199 put_disk(h->gendisk[i]);
4200 kfree(h);
4203 /* Send a message CDB to the firmware. */
4204 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4206 typedef struct {
4207 CommandListHeader_struct CommandHeader;
4208 RequestBlock_struct Request;
4209 ErrDescriptor_struct ErrorDescriptor;
4210 } Command;
4211 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4212 Command *cmd;
4213 dma_addr_t paddr64;
4214 uint32_t paddr32, tag;
4215 void __iomem *vaddr;
4216 int i, err;
4218 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4219 if (vaddr == NULL)
4220 return -ENOMEM;
4222 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4223 CCISS commands, so they must be allocated from the lower 4GiB of
4224 memory. */
4225 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4226 if (err) {
4227 iounmap(vaddr);
4228 return -ENOMEM;
4231 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4232 if (cmd == NULL) {
4233 iounmap(vaddr);
4234 return -ENOMEM;
4237 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4238 although there's no guarantee, we assume that the address is at
4239 least 4-byte aligned (most likely, it's page-aligned). */
4240 paddr32 = paddr64;
4242 cmd->CommandHeader.ReplyQueue = 0;
4243 cmd->CommandHeader.SGList = 0;
4244 cmd->CommandHeader.SGTotal = 0;
4245 cmd->CommandHeader.Tag.lower = paddr32;
4246 cmd->CommandHeader.Tag.upper = 0;
4247 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4249 cmd->Request.CDBLen = 16;
4250 cmd->Request.Type.Type = TYPE_MSG;
4251 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4252 cmd->Request.Type.Direction = XFER_NONE;
4253 cmd->Request.Timeout = 0; /* Don't time out */
4254 cmd->Request.CDB[0] = opcode;
4255 cmd->Request.CDB[1] = type;
4256 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4258 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4259 cmd->ErrorDescriptor.Addr.upper = 0;
4260 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4262 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4264 for (i = 0; i < 10; i++) {
4265 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4266 if ((tag & ~3) == paddr32)
4267 break;
4268 schedule_timeout_uninterruptible(HZ);
4271 iounmap(vaddr);
4273 /* we leak the DMA buffer here ... no choice since the controller could
4274 still complete the command. */
4275 if (i == 10) {
4276 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4277 opcode, type);
4278 return -ETIMEDOUT;
4281 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4283 if (tag & 2) {
4284 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4285 opcode, type);
4286 return -EIO;
4289 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4290 opcode, type);
4291 return 0;
4294 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4295 #define cciss_noop(p) cciss_message(p, 3, 0)
4297 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4299 /* the #defines are stolen from drivers/pci/msi.h. */
4300 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4301 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4303 int pos;
4304 u16 control = 0;
4306 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4307 if (pos) {
4308 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4309 if (control & PCI_MSI_FLAGS_ENABLE) {
4310 printk(KERN_INFO "cciss: resetting MSI\n");
4311 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4315 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4316 if (pos) {
4317 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4318 if (control & PCI_MSIX_FLAGS_ENABLE) {
4319 printk(KERN_INFO "cciss: resetting MSI-X\n");
4320 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4324 return 0;
4327 /* This does a hard reset of the controller using PCI power management
4328 * states. */
4329 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4331 u16 pmcsr, saved_config_space[32];
4332 int i, pos;
4334 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4336 /* This is very nearly the same thing as
4338 pci_save_state(pci_dev);
4339 pci_set_power_state(pci_dev, PCI_D3hot);
4340 pci_set_power_state(pci_dev, PCI_D0);
4341 pci_restore_state(pci_dev);
4343 but we can't use these nice canned kernel routines on
4344 kexec, because they also check the MSI/MSI-X state in PCI
4345 configuration space and do the wrong thing when it is
4346 set/cleared. Also, the pci_save/restore_state functions
4347 violate the ordering requirements for restoring the
4348 configuration space from the CCISS document (see the
4349 comment below). So we roll our own .... */
4351 for (i = 0; i < 32; i++)
4352 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4354 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4355 if (pos == 0) {
4356 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4357 return -ENODEV;
4360 /* Quoting from the Open CISS Specification: "The Power
4361 * Management Control/Status Register (CSR) controls the power
4362 * state of the device. The normal operating state is D0,
4363 * CSR=00h. The software off state is D3, CSR=03h. To reset
4364 * the controller, place the interface device in D3 then to
4365 * D0, this causes a secondary PCI reset which will reset the
4366 * controller." */
4368 /* enter the D3hot power management state */
4369 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4370 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4371 pmcsr |= PCI_D3hot;
4372 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4374 schedule_timeout_uninterruptible(HZ >> 1);
4376 /* enter the D0 power management state */
4377 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4378 pmcsr |= PCI_D0;
4379 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4381 schedule_timeout_uninterruptible(HZ >> 1);
4383 /* Restore the PCI configuration space. The Open CISS
4384 * Specification says, "Restore the PCI Configuration
4385 * Registers, offsets 00h through 60h. It is important to
4386 * restore the command register, 16-bits at offset 04h,
4387 * last. Do not restore the configuration status register,
4388 * 16-bits at offset 06h." Note that the offset is 2*i. */
4389 for (i = 0; i < 32; i++) {
4390 if (i == 2 || i == 3)
4391 continue;
4392 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4394 wmb();
4395 pci_write_config_word(pdev, 4, saved_config_space[2]);
4397 return 0;
4401 * This is it. Find all the controllers and register them. I really hate
4402 * stealing all these major device numbers.
4403 * returns the number of block devices registered.
4405 static int __devinit cciss_init_one(struct pci_dev *pdev,
4406 const struct pci_device_id *ent)
4408 int i;
4409 int j = 0;
4410 int k = 0;
4411 int rc;
4412 int dac, return_code;
4413 InquiryData_struct *inq_buff;
4415 if (reset_devices) {
4416 /* Reset the controller with a PCI power-cycle */
4417 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4418 return -ENODEV;
4420 /* Now try to get the controller to respond to a no-op. Some
4421 devices (notably the HP Smart Array 5i Controller) need
4422 up to 30 seconds to respond. */
4423 for (i=0; i<30; i++) {
4424 if (cciss_noop(pdev) == 0)
4425 break;
4427 schedule_timeout_uninterruptible(HZ);
4429 if (i == 30) {
4430 printk(KERN_ERR "cciss: controller seems dead\n");
4431 return -EBUSY;
4435 i = alloc_cciss_hba();
4436 if (i < 0)
4437 return -1;
4438 hba[i]->busy_initializing = 1;
4439 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4440 INIT_HLIST_HEAD(&hba[i]->reqQ);
4441 mutex_init(&hba[i]->busy_shutting_down);
4443 if (cciss_pci_init(hba[i], pdev) != 0)
4444 goto clean_no_release_regions;
4446 sprintf(hba[i]->devname, "cciss%d", i);
4447 hba[i]->ctlr = i;
4448 hba[i]->pdev = pdev;
4450 init_completion(&hba[i]->scan_wait);
4452 if (cciss_create_hba_sysfs_entry(hba[i]))
4453 goto clean0;
4455 /* configure PCI DMA stuff */
4456 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4457 dac = 1;
4458 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4459 dac = 0;
4460 else {
4461 printk(KERN_ERR "cciss: no suitable DMA available\n");
4462 goto clean1;
4466 * register with the major number, or get a dynamic major number
4467 * by passing 0 as argument. This is done for greater than
4468 * 8 controller support.
4470 if (i < MAX_CTLR_ORIG)
4471 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4472 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4473 if (rc == -EBUSY || rc == -EINVAL) {
4474 printk(KERN_ERR
4475 "cciss: Unable to get major number %d for %s "
4476 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4477 goto clean1;
4478 } else {
4479 if (i >= MAX_CTLR_ORIG)
4480 hba[i]->major = rc;
4483 /* make sure the board interrupts are off */
4484 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4485 if (hba[i]->msi_vector || hba[i]->msix_vector) {
4486 if (request_irq(hba[i]->intr[PERF_MODE_INT],
4487 do_cciss_msix_intr,
4488 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4489 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4490 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4491 goto clean2;
4493 } else {
4494 if (request_irq(hba[i]->intr[PERF_MODE_INT], do_cciss_intx,
4495 IRQF_DISABLED, hba[i]->devname, hba[i])) {
4496 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4497 hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4498 goto clean2;
4502 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4503 hba[i]->devname, pdev->device, pci_name(pdev),
4504 hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
4506 hba[i]->cmd_pool_bits =
4507 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4508 * sizeof(unsigned long), GFP_KERNEL);
4509 hba[i]->cmd_pool = (CommandList_struct *)
4510 pci_alloc_consistent(hba[i]->pdev,
4511 hba[i]->nr_cmds * sizeof(CommandList_struct),
4512 &(hba[i]->cmd_pool_dhandle));
4513 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4514 pci_alloc_consistent(hba[i]->pdev,
4515 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4516 &(hba[i]->errinfo_pool_dhandle));
4517 if ((hba[i]->cmd_pool_bits == NULL)
4518 || (hba[i]->cmd_pool == NULL)
4519 || (hba[i]->errinfo_pool == NULL)) {
4520 printk(KERN_ERR "cciss: out of memory");
4521 goto clean4;
4524 /* Need space for temp scatter list */
4525 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4526 sizeof(struct scatterlist *),
4527 GFP_KERNEL);
4528 for (k = 0; k < hba[i]->nr_cmds; k++) {
4529 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4530 hba[i]->maxsgentries,
4531 GFP_KERNEL);
4532 if (hba[i]->scatter_list[k] == NULL) {
4533 printk(KERN_ERR "cciss%d: could not allocate "
4534 "s/g lists\n", i);
4535 goto clean4;
4538 hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4539 hba[i]->chainsize, hba[i]->nr_cmds);
4540 if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4541 goto clean4;
4543 spin_lock_init(&hba[i]->lock);
4545 /* Initialize the pdev driver private data.
4546 have it point to hba[i]. */
4547 pci_set_drvdata(pdev, hba[i]);
4548 /* command and error info recs zeroed out before
4549 they are used */
4550 memset(hba[i]->cmd_pool_bits, 0,
4551 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4552 * sizeof(unsigned long));
4554 hba[i]->num_luns = 0;
4555 hba[i]->highest_lun = -1;
4556 for (j = 0; j < CISS_MAX_LUN; j++) {
4557 hba[i]->drv[j] = NULL;
4558 hba[i]->gendisk[j] = NULL;
4561 cciss_scsi_setup(i);
4563 /* Turn the interrupts on so we can service requests */
4564 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4566 /* Get the firmware version */
4567 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4568 if (inq_buff == NULL) {
4569 printk(KERN_ERR "cciss: out of memory\n");
4570 goto clean4;
4573 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4574 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4575 if (return_code == IO_OK) {
4576 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4577 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4578 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4579 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4580 } else { /* send command failed */
4581 printk(KERN_WARNING "cciss: unable to determine firmware"
4582 " version of controller\n");
4584 kfree(inq_buff);
4586 cciss_procinit(i);
4588 hba[i]->cciss_max_sectors = 8192;
4590 rebuild_lun_table(hba[i], 1, 0);
4591 hba[i]->busy_initializing = 0;
4592 return 1;
4594 clean4:
4595 kfree(hba[i]->cmd_pool_bits);
4596 /* Free up sg elements */
4597 for (k = 0; k < hba[i]->nr_cmds; k++)
4598 kfree(hba[i]->scatter_list[k]);
4599 kfree(hba[i]->scatter_list);
4600 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4601 if (hba[i]->cmd_pool)
4602 pci_free_consistent(hba[i]->pdev,
4603 hba[i]->nr_cmds * sizeof(CommandList_struct),
4604 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4605 if (hba[i]->errinfo_pool)
4606 pci_free_consistent(hba[i]->pdev,
4607 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4608 hba[i]->errinfo_pool,
4609 hba[i]->errinfo_pool_dhandle);
4610 free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
4611 clean2:
4612 unregister_blkdev(hba[i]->major, hba[i]->devname);
4613 clean1:
4614 cciss_destroy_hba_sysfs_entry(hba[i]);
4615 clean0:
4616 pci_release_regions(pdev);
4617 clean_no_release_regions:
4618 hba[i]->busy_initializing = 0;
4621 * Deliberately omit pci_disable_device(): it does something nasty to
4622 * Smart Array controllers that pci_enable_device does not undo
4624 pci_set_drvdata(pdev, NULL);
4625 free_hba(i);
4626 return -1;
4629 static void cciss_shutdown(struct pci_dev *pdev)
4631 ctlr_info_t *h;
4632 char *flush_buf;
4633 int return_code;
4635 h = pci_get_drvdata(pdev);
4636 flush_buf = kzalloc(4, GFP_KERNEL);
4637 if (!flush_buf) {
4638 printk(KERN_WARNING
4639 "cciss:%d cache not flushed, out of memory.\n",
4640 h->ctlr);
4641 return;
4643 /* write all data in the battery backed cache to disk */
4644 memset(flush_buf, 0, 4);
4645 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4646 4, 0, CTLR_LUNID, TYPE_CMD);
4647 kfree(flush_buf);
4648 if (return_code != IO_OK)
4649 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4650 h->ctlr);
4651 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4652 free_irq(h->intr[PERF_MODE_INT], h);
4655 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4657 ctlr_info_t *tmp_ptr;
4658 int i, j;
4660 if (pci_get_drvdata(pdev) == NULL) {
4661 printk(KERN_ERR "cciss: Unable to remove device \n");
4662 return;
4665 tmp_ptr = pci_get_drvdata(pdev);
4666 i = tmp_ptr->ctlr;
4667 if (hba[i] == NULL) {
4668 printk(KERN_ERR "cciss: device appears to "
4669 "already be removed \n");
4670 return;
4673 mutex_lock(&hba[i]->busy_shutting_down);
4675 remove_from_scan_list(hba[i]);
4676 remove_proc_entry(hba[i]->devname, proc_cciss);
4677 unregister_blkdev(hba[i]->major, hba[i]->devname);
4679 /* remove it from the disk list */
4680 for (j = 0; j < CISS_MAX_LUN; j++) {
4681 struct gendisk *disk = hba[i]->gendisk[j];
4682 if (disk) {
4683 struct request_queue *q = disk->queue;
4685 if (disk->flags & GENHD_FL_UP) {
4686 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4687 del_gendisk(disk);
4689 if (q)
4690 blk_cleanup_queue(q);
4694 #ifdef CONFIG_CISS_SCSI_TAPE
4695 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4696 #endif
4698 cciss_shutdown(pdev);
4700 #ifdef CONFIG_PCI_MSI
4701 if (hba[i]->msix_vector)
4702 pci_disable_msix(hba[i]->pdev);
4703 else if (hba[i]->msi_vector)
4704 pci_disable_msi(hba[i]->pdev);
4705 #endif /* CONFIG_PCI_MSI */
4707 iounmap(hba[i]->vaddr);
4709 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4710 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4711 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4712 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4713 kfree(hba[i]->cmd_pool_bits);
4714 /* Free up sg elements */
4715 for (j = 0; j < hba[i]->nr_cmds; j++)
4716 kfree(hba[i]->scatter_list[j]);
4717 kfree(hba[i]->scatter_list);
4718 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4720 * Deliberately omit pci_disable_device(): it does something nasty to
4721 * Smart Array controllers that pci_enable_device does not undo
4723 pci_release_regions(pdev);
4724 pci_set_drvdata(pdev, NULL);
4725 cciss_destroy_hba_sysfs_entry(hba[i]);
4726 mutex_unlock(&hba[i]->busy_shutting_down);
4727 free_hba(i);
4730 static struct pci_driver cciss_pci_driver = {
4731 .name = "cciss",
4732 .probe = cciss_init_one,
4733 .remove = __devexit_p(cciss_remove_one),
4734 .id_table = cciss_pci_device_id, /* id_table */
4735 .shutdown = cciss_shutdown,
4739 * This is it. Register the PCI driver information for the cards we control
4740 * the OS will call our registered routines when it finds one of our cards.
4742 static int __init cciss_init(void)
4744 int err;
4747 * The hardware requires that commands are aligned on a 64-bit
4748 * boundary. Given that we use pci_alloc_consistent() to allocate an
4749 * array of them, the size must be a multiple of 8 bytes.
4751 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4752 printk(KERN_INFO DRIVER_NAME "\n");
4754 err = bus_register(&cciss_bus_type);
4755 if (err)
4756 return err;
4758 /* Start the scan thread */
4759 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4760 if (IS_ERR(cciss_scan_thread)) {
4761 err = PTR_ERR(cciss_scan_thread);
4762 goto err_bus_unregister;
4765 /* Register for our PCI devices */
4766 err = pci_register_driver(&cciss_pci_driver);
4767 if (err)
4768 goto err_thread_stop;
4770 return err;
4772 err_thread_stop:
4773 kthread_stop(cciss_scan_thread);
4774 err_bus_unregister:
4775 bus_unregister(&cciss_bus_type);
4777 return err;
4780 static void __exit cciss_cleanup(void)
4782 int i;
4784 pci_unregister_driver(&cciss_pci_driver);
4785 /* double check that all controller entrys have been removed */
4786 for (i = 0; i < MAX_CTLR; i++) {
4787 if (hba[i] != NULL) {
4788 printk(KERN_WARNING "cciss: had to remove"
4789 " controller %d\n", i);
4790 cciss_remove_one(hba[i]->pdev);
4793 kthread_stop(cciss_scan_thread);
4794 remove_proc_entry("driver/cciss", NULL);
4795 bus_unregister(&cciss_bus_type);
4798 module_init(cciss_init);
4799 module_exit(cciss_cleanup);