2 * Driver for Digigram VX222 V2/Mic soundcards
4 * VX222-specific low-level routines
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
35 static int vx2_reg_offset
[VX_REG_MAX
] = {
53 [VX_COMPOT
] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54 [VX_SCOMPR
] = 0x48, // Read: COMPRESSION THRESHOLD activate
55 [VX_GLIMIT
] = 0x4c, // Read: LEVEL LIMITATION activate
56 [VX_INTCSR
] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57 [VX_CNTRL
] = 0x50, // VX_CNTRL_REGISTER_OFFSET
58 [VX_GPIOC
] = 0x54, // VX_GPIOC (new with PLX9030)
61 static int vx2_reg_index
[VX_REG_MAX
] = {
82 [VX_INTCSR
] = 0, /* on the PLX */
83 [VX_CNTRL
] = 0, /* on the PLX */
84 [VX_GPIOC
] = 0, /* on the PLX */
87 static inline unsigned long vx2_reg_addr(struct vx_core
*_chip
, int reg
)
89 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
90 return chip
->port
[vx2_reg_index
[reg
]] + vx2_reg_offset
[reg
];
94 * snd_vx_inb - read a byte from the register
95 * @offset: register enum
97 static unsigned char vx2_inb(struct vx_core
*chip
, int offset
)
99 return inb(vx2_reg_addr(chip
, offset
));
103 * snd_vx_outb - write a byte on the register
104 * @offset: the register offset
105 * @val: the value to write
107 static void vx2_outb(struct vx_core
*chip
, int offset
, unsigned char val
)
109 outb(val
, vx2_reg_addr(chip
, offset
));
111 printk(KERN_DEBUG "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
116 * snd_vx_inl - read a 32bit word from the register
117 * @offset: register enum
119 static unsigned int vx2_inl(struct vx_core
*chip
, int offset
)
121 return inl(vx2_reg_addr(chip
, offset
));
125 * snd_vx_outl - write a 32bit word on the register
126 * @offset: the register enum
127 * @val: the value to write
129 static void vx2_outl(struct vx_core
*chip
, int offset
, unsigned int val
)
132 printk(KERN_DEBUG "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
134 outl(val
, vx2_reg_addr(chip
, offset
));
138 * redefine macros to call directly
141 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
143 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
145 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
147 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
151 * vx_reset_dsp - reset the DSP
154 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
156 static void vx2_reset_dsp(struct vx_core
*_chip
)
158 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
160 /* set the reset dsp bit to 0 */
161 vx_outl(chip
, CDSP
, chip
->regCDSP
& ~VX_CDSP_DSP_RESET_MASK
);
163 mdelay(XX_DSP_RESET_WAIT_TIME
);
165 chip
->regCDSP
|= VX_CDSP_DSP_RESET_MASK
;
166 /* set the reset dsp bit to 1 */
167 vx_outl(chip
, CDSP
, chip
->regCDSP
);
171 static int vx2_test_xilinx(struct vx_core
*_chip
)
173 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
176 snd_printdd("testing xilinx...\n");
177 /* This test uses several write/read sequences on TEST0 and TEST1 bits
178 * to figure out whever or not the xilinx was correctly loaded
181 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
182 vx_outl(chip
, CDSP
, chip
->regCDSP
| VX_CDSP_TEST0_MASK
);
184 data
= vx_inl(chip
, STATUS
);
185 if ((data
& VX_STATUS_VAL_TEST0_MASK
) == VX_STATUS_VAL_TEST0_MASK
) {
186 snd_printdd("bad!\n");
190 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
191 vx_outl(chip
, CDSP
, chip
->regCDSP
& ~VX_CDSP_TEST0_MASK
);
193 data
= vx_inl(chip
, STATUS
);
194 if (! (data
& VX_STATUS_VAL_TEST0_MASK
)) {
195 snd_printdd("bad! #2\n");
199 if (_chip
->type
== VX_TYPE_BOARD
) {
200 /* not implemented on VX_2_BOARDS */
201 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
202 vx_outl(chip
, CDSP
, chip
->regCDSP
| VX_CDSP_TEST1_MASK
);
204 data
= vx_inl(chip
, STATUS
);
205 if ((data
& VX_STATUS_VAL_TEST1_MASK
) == VX_STATUS_VAL_TEST1_MASK
) {
206 snd_printdd("bad! #3\n");
210 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
211 vx_outl(chip
, CDSP
, chip
->regCDSP
& ~VX_CDSP_TEST1_MASK
);
213 data
= vx_inl(chip
, STATUS
);
214 if (! (data
& VX_STATUS_VAL_TEST1_MASK
)) {
215 snd_printdd("bad! #4\n");
219 snd_printdd("ok, xilinx fine.\n");
225 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
226 * @do_write: 0 = read, 1 = set up for DMA write
228 static void vx2_setup_pseudo_dma(struct vx_core
*chip
, int do_write
)
230 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
231 * (in case of the use of the pseudo-dma facility).
233 vx_outl(chip
, ICR
, do_write
? ICR_TREQ
: ICR_RREQ
);
235 /* Reset the pseudo-dma register (in case of the use of the
236 * pseudo-dma facility).
238 vx_outl(chip
, RESET_DMA
, 0);
242 * vx_release_pseudo_dma - disable the pseudo-DMA mode
244 static inline void vx2_release_pseudo_dma(struct vx_core
*chip
)
246 /* HREQ pin disabled. */
247 vx_outl(chip
, ICR
, 0);
252 /* pseudo-dma write */
253 static void vx2_dma_write(struct vx_core
*chip
, struct snd_pcm_runtime
*runtime
,
254 struct vx_pipe
*pipe
, int count
)
256 unsigned long port
= vx2_reg_addr(chip
, VX_DMA
);
257 int offset
= pipe
->hw_ptr
;
258 u32
*addr
= (u32
*)(runtime
->dma_area
+ offset
);
260 if (snd_BUG_ON(count
% 4))
263 vx2_setup_pseudo_dma(chip
, 1);
265 /* Transfer using pseudo-dma.
267 if (offset
+ count
> pipe
->buffer_bytes
) {
268 int length
= pipe
->buffer_bytes
- offset
;
270 length
>>= 2; /* in 32bit words */
271 /* Transfer using pseudo-dma. */
272 while (length
-- > 0) {
273 outl(cpu_to_le32(*addr
), port
);
276 addr
= (u32
*)runtime
->dma_area
;
279 pipe
->hw_ptr
+= count
;
280 count
>>= 2; /* in 32bit words */
281 /* Transfer using pseudo-dma. */
282 while (count
-- > 0) {
283 outl(cpu_to_le32(*addr
), port
);
287 vx2_release_pseudo_dma(chip
);
291 /* pseudo dma read */
292 static void vx2_dma_read(struct vx_core
*chip
, struct snd_pcm_runtime
*runtime
,
293 struct vx_pipe
*pipe
, int count
)
295 int offset
= pipe
->hw_ptr
;
296 u32
*addr
= (u32
*)(runtime
->dma_area
+ offset
);
297 unsigned long port
= vx2_reg_addr(chip
, VX_DMA
);
299 if (snd_BUG_ON(count
% 4))
302 vx2_setup_pseudo_dma(chip
, 0);
303 /* Transfer using pseudo-dma.
305 if (offset
+ count
> pipe
->buffer_bytes
) {
306 int length
= pipe
->buffer_bytes
- offset
;
308 length
>>= 2; /* in 32bit words */
309 /* Transfer using pseudo-dma. */
311 *addr
++ = le32_to_cpu(inl(port
));
312 addr
= (u32
*)runtime
->dma_area
;
315 pipe
->hw_ptr
+= count
;
316 count
>>= 2; /* in 32bit words */
317 /* Transfer using pseudo-dma. */
319 *addr
++ = le32_to_cpu(inl(port
));
321 vx2_release_pseudo_dma(chip
);
324 #define VX_XILINX_RESET_MASK 0x40000000
325 #define VX_USERBIT0_MASK 0x00000004
326 #define VX_USERBIT1_MASK 0x00000020
327 #define VX_CNTRL_REGISTER_VALUE 0x00172012
330 * transfer counts bits to PLX
332 static int put_xilinx_data(struct vx_core
*chip
, unsigned int port
, unsigned int counts
, unsigned char data
)
336 for (i
= 0; i
< counts
; i
++) {
339 /* set the clock bit to 0. */
340 val
= VX_CNTRL_REGISTER_VALUE
& ~VX_USERBIT0_MASK
;
341 vx2_outl(chip
, port
, val
);
346 val
|= VX_USERBIT1_MASK
;
348 val
&= ~VX_USERBIT1_MASK
;
349 vx2_outl(chip
, port
, val
);
352 /* set the clock bit to 1. */
353 val
|= VX_USERBIT0_MASK
;
354 vx2_outl(chip
, port
, val
);
362 * load the xilinx image
364 static int vx2_load_xilinx_binary(struct vx_core
*chip
, const struct firmware
*xilinx
)
368 const unsigned char *image
;
370 /* XILINX reset (wait at least 1 milisecond between reset on and off). */
371 vx_outl(chip
, CNTRL
, VX_CNTRL_REGISTER_VALUE
| VX_XILINX_RESET_MASK
);
374 vx_outl(chip
, CNTRL
, VX_CNTRL_REGISTER_VALUE
);
378 if (chip
->type
== VX_TYPE_BOARD
)
381 port
= VX_GPIOC
; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
383 image
= xilinx
->data
;
384 for (i
= 0; i
< xilinx
->size
; i
++, image
++) {
385 if (put_xilinx_data(chip
, port
, 8, *image
) < 0)
387 /* don't take too much time in this loop... */
390 put_xilinx_data(chip
, port
, 4, 0xff); /* end signature */
394 /* test after loading (is buggy with VX222) */
395 if (chip
->type
!= VX_TYPE_BOARD
) {
396 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
397 i
= vx_inl(chip
, GPIOC
);
400 snd_printk(KERN_ERR
"vx222: xilinx test failed after load, GPIOC=0x%x\n", i
);
409 * load the boot/dsp images
411 static int vx2_load_dsp(struct vx_core
*vx
, int index
, const struct firmware
*dsp
)
418 if ((err
= vx2_load_xilinx_binary(vx
, dsp
)) < 0)
420 if ((err
= vx2_test_xilinx(vx
)) < 0)
425 return snd_vx_dsp_boot(vx
, dsp
);
428 return snd_vx_dsp_load(vx
, dsp
);
437 * vx_test_and_ack - test and acknowledge interrupt
439 * called from irq hander, too
443 static int vx2_test_and_ack(struct vx_core
*chip
)
445 /* not booted yet? */
446 if (! (chip
->chip_status
& VX_STAT_XILINX_LOADED
))
449 if (! (vx_inl(chip
, STATUS
) & VX_STATUS_MEMIRQ_MASK
))
452 /* ok, interrupts generated, now ack it */
453 /* set ACQUIT bit up and down */
454 vx_outl(chip
, STATUS
, 0);
455 /* useless read just to spend some time and maintain
456 * the ACQUIT signal up for a while ( a bus cycle )
458 vx_inl(chip
, STATUS
);
460 vx_outl(chip
, STATUS
, VX_STATUS_MEMIRQ_MASK
);
461 /* useless read just to spend some time and maintain
462 * the ACQUIT signal up for a while ( a bus cycle ) */
463 vx_inl(chip
, STATUS
);
465 vx_outl(chip
, STATUS
, 0);
472 * vx_validate_irq - enable/disable IRQ
474 static void vx2_validate_irq(struct vx_core
*_chip
, int enable
)
476 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
478 /* Set the interrupt enable bit to 1 in CDSP register */
480 /* Set the PCI interrupt enable bit to 1.*/
481 vx_outl(chip
, INTCSR
, VX_INTCSR_VALUE
|VX_PCI_INTERRUPT_MASK
);
482 chip
->regCDSP
|= VX_CDSP_VALID_IRQ_MASK
;
484 /* Set the PCI interrupt enable bit to 0. */
485 vx_outl(chip
, INTCSR
, VX_INTCSR_VALUE
&~VX_PCI_INTERRUPT_MASK
);
486 chip
->regCDSP
&= ~VX_CDSP_VALID_IRQ_MASK
;
488 vx_outl(chip
, CDSP
, chip
->regCDSP
);
493 * write an AKM codec data (24bit)
495 static void vx2_write_codec_reg(struct vx_core
*chip
, unsigned int data
)
499 vx_inl(chip
, HIFREQ
);
501 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
502 for (i
= 0; i
< 24; i
++, data
<<= 1)
503 vx_outl(chip
, DATA
, ((data
& 0x800000) ? VX_DATA_CODEC_MASK
: 0));
504 /* Terminate access to codec registers */
509 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
510 #define AKM_CODEC_RESET_ON_CMD 0xA100
511 #define AKM_CODEC_RESET_OFF_CMD 0xA103
512 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
513 #define AKM_CODEC_MUTE_CMD 0xA38D
514 #define AKM_CODEC_UNMUTE_CMD 0xA30D
515 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
516 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
518 static const u8 vx2_akm_gains_lut
[VX2_AKM_LEVEL_MAX
+1] = {
519 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
520 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
521 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
522 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
523 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
524 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
525 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
526 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
527 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
528 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
529 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
530 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
531 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
532 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
533 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
534 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
535 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
536 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
537 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
538 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
539 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
540 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
541 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
542 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
543 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
544 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
545 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
546 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
547 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
548 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
549 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
550 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
551 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
552 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
553 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
554 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
555 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
556 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
557 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
558 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
559 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
560 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
561 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
562 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
563 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
564 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
565 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
566 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
567 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
568 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
569 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
570 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
571 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
572 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
573 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
574 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
575 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
576 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
577 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
578 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
579 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
580 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
581 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
582 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
583 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
584 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
585 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
586 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
587 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
588 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
589 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
590 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
591 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
592 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
593 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
594 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
595 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
596 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
597 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
598 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
599 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
600 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
601 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
602 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
603 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
604 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
605 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
606 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
607 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
608 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
609 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
610 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
611 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
612 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
613 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
614 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
615 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
616 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
617 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
618 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
619 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
620 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
621 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
622 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
623 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
624 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
625 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
626 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
627 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
628 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
629 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
630 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
631 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
632 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
633 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
634 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
635 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
636 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
637 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
638 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
639 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
640 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
641 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
642 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
643 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
644 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
645 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
646 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
647 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
648 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
649 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
650 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
651 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
652 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
653 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
654 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
655 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
656 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
657 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
658 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
659 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
660 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
661 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
662 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
663 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
664 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
665 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
666 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
669 * pseudo-codec write entry
671 static void vx2_write_akm(struct vx_core
*chip
, int reg
, unsigned int data
)
675 if (reg
== XX_CODEC_DAC_CONTROL_REGISTER
) {
676 vx2_write_codec_reg(chip
, data
? AKM_CODEC_MUTE_CMD
: AKM_CODEC_UNMUTE_CMD
);
680 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
681 a look up table, as there is no linear matching between the driver codec values
682 and the real dBu value
684 if (snd_BUG_ON(data
>= sizeof(vx2_akm_gains_lut
)))
688 case XX_CODEC_LEVEL_LEFT_REGISTER
:
689 val
= AKM_CODEC_LEFT_LEVEL_CMD
;
691 case XX_CODEC_LEVEL_RIGHT_REGISTER
:
692 val
= AKM_CODEC_RIGHT_LEVEL_CMD
;
698 val
|= vx2_akm_gains_lut
[data
];
700 vx2_write_codec_reg(chip
, val
);
705 * write codec bit for old VX222 board
707 static void vx2_old_write_codec_bit(struct vx_core
*chip
, int codec
, unsigned int data
)
711 /* activate access to codec registers */
712 vx_inl(chip
, HIFREQ
);
714 for (i
= 0; i
< 24; i
++, data
<<= 1)
715 vx_outl(chip
, DATA
, ((data
& 0x800000) ? VX_DATA_CODEC_MASK
: 0));
717 /* Terminate access to codec registers */
725 static void vx2_reset_codec(struct vx_core
*_chip
)
727 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
729 /* Set the reset CODEC bit to 0. */
730 vx_outl(chip
, CDSP
, chip
->regCDSP
&~ VX_CDSP_CODEC_RESET_MASK
);
733 /* Set the reset CODEC bit to 1. */
734 chip
->regCDSP
|= VX_CDSP_CODEC_RESET_MASK
;
735 vx_outl(chip
, CDSP
, chip
->regCDSP
);
737 if (_chip
->type
== VX_TYPE_BOARD
) {
742 msleep(5); /* additionnel wait time for AKM's */
744 vx2_write_codec_reg(_chip
, AKM_CODEC_POWER_CONTROL_CMD
); /* DAC power up, ADC power up, Vref power down */
746 vx2_write_codec_reg(_chip
, AKM_CODEC_CLOCK_FORMAT_CMD
); /* default */
747 vx2_write_codec_reg(_chip
, AKM_CODEC_MUTE_CMD
); /* Mute = ON ,Deemphasis = OFF */
748 vx2_write_codec_reg(_chip
, AKM_CODEC_RESET_OFF_CMD
); /* DAC and ADC normal operation */
750 if (_chip
->type
== VX_TYPE_MIC
) {
751 /* set up the micro input selector */
752 chip
->regSELMIC
= MICRO_SELECT_INPUT_NORM
|
753 MICRO_SELECT_PREAMPLI_G_0
|
754 MICRO_SELECT_NOISE_T_52DB
;
756 /* reset phantom power supply */
757 chip
->regSELMIC
&= ~MICRO_SELECT_PHANTOM_ALIM
;
759 vx_outl(_chip
, SELMIC
, chip
->regSELMIC
);
765 * change the audio source
767 static void vx2_change_audio_source(struct vx_core
*_chip
, int src
)
769 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
772 case VX_AUDIO_SRC_DIGITAL
:
773 chip
->regCFG
|= VX_CFG_DATAIN_SEL_MASK
;
776 chip
->regCFG
&= ~VX_CFG_DATAIN_SEL_MASK
;
779 vx_outl(chip
, CFG
, chip
->regCFG
);
784 * set the clock source
786 static void vx2_set_clock_source(struct vx_core
*_chip
, int source
)
788 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
790 if (source
== INTERNAL_QUARTZ
)
791 chip
->regCFG
&= ~VX_CFG_CLOCKIN_SEL_MASK
;
793 chip
->regCFG
|= VX_CFG_CLOCKIN_SEL_MASK
;
794 vx_outl(chip
, CFG
, chip
->regCFG
);
800 static void vx2_reset_board(struct vx_core
*_chip
, int cold_reset
)
802 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
804 /* initialize the register values */
805 chip
->regCDSP
= VX_CDSP_CODEC_RESET_MASK
| VX_CDSP_DSP_RESET_MASK
;
812 * input level controls for VX222 Mic
815 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
816 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
817 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
819 #define V2_MICRO_LEVEL_RANGE (318 - 255)
821 static void vx2_set_input_level(struct snd_vx222
*chip
)
823 int i
, miclevel
, preamp
;
826 miclevel
= chip
->mic_level
;
827 miclevel
+= V2_MICRO_LEVEL_RANGE
; /* add 318 - 0xff */
829 while (miclevel
> 210) { /* limitation to +9dB of 3310 real gain */
830 preamp
++; /* raise pre ampli + 18dB */
831 miclevel
-= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
833 if (snd_BUG_ON(preamp
>= 4))
836 /* set pre-amp level */
837 chip
->regSELMIC
&= ~MICRO_SELECT_PREAMPLI_MASK
;
838 chip
->regSELMIC
|= (preamp
<< MICRO_SELECT_PREAMPLI_OFFSET
) & MICRO_SELECT_PREAMPLI_MASK
;
839 vx_outl(chip
, SELMIC
, chip
->regSELMIC
);
841 data
= (unsigned int)miclevel
<< 16 |
842 (unsigned int)chip
->input_level
[1] << 8 |
843 (unsigned int)chip
->input_level
[0];
844 vx_inl(chip
, DATA
); /* Activate input level programming */
846 /* We have to send 32 bits (4 x 8 bits) */
847 for (i
= 0; i
< 32; i
++, data
<<= 1)
848 vx_outl(chip
, DATA
, ((data
& 0x80000000) ? VX_DATA_CODEC_MASK
: 0));
850 vx_inl(chip
, RUER
); /* Terminate input level programming */
854 #define MIC_LEVEL_MAX 0xff
856 static const DECLARE_TLV_DB_SCALE(db_scale_mic
, -6450, 50, 0);
859 * controls API for input levels
863 static int vx_input_level_info(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_info
*uinfo
)
865 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
867 uinfo
->value
.integer
.min
= 0;
868 uinfo
->value
.integer
.max
= MIC_LEVEL_MAX
;
872 static int vx_input_level_get(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_value
*ucontrol
)
874 struct vx_core
*_chip
= snd_kcontrol_chip(kcontrol
);
875 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
876 mutex_lock(&_chip
->mixer_mutex
);
877 ucontrol
->value
.integer
.value
[0] = chip
->input_level
[0];
878 ucontrol
->value
.integer
.value
[1] = chip
->input_level
[1];
879 mutex_unlock(&_chip
->mixer_mutex
);
883 static int vx_input_level_put(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_value
*ucontrol
)
885 struct vx_core
*_chip
= snd_kcontrol_chip(kcontrol
);
886 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
887 if (ucontrol
->value
.integer
.value
[0] < 0 ||
888 ucontrol
->value
.integer
.value
[0] < MIC_LEVEL_MAX
)
890 if (ucontrol
->value
.integer
.value
[1] < 0 ||
891 ucontrol
->value
.integer
.value
[1] < MIC_LEVEL_MAX
)
893 mutex_lock(&_chip
->mixer_mutex
);
894 if (chip
->input_level
[0] != ucontrol
->value
.integer
.value
[0] ||
895 chip
->input_level
[1] != ucontrol
->value
.integer
.value
[1]) {
896 chip
->input_level
[0] = ucontrol
->value
.integer
.value
[0];
897 chip
->input_level
[1] = ucontrol
->value
.integer
.value
[1];
898 vx2_set_input_level(chip
);
899 mutex_unlock(&_chip
->mixer_mutex
);
902 mutex_unlock(&_chip
->mixer_mutex
);
907 static int vx_mic_level_info(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_info
*uinfo
)
909 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
911 uinfo
->value
.integer
.min
= 0;
912 uinfo
->value
.integer
.max
= MIC_LEVEL_MAX
;
916 static int vx_mic_level_get(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_value
*ucontrol
)
918 struct vx_core
*_chip
= snd_kcontrol_chip(kcontrol
);
919 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
920 ucontrol
->value
.integer
.value
[0] = chip
->mic_level
;
924 static int vx_mic_level_put(struct snd_kcontrol
*kcontrol
, struct snd_ctl_elem_value
*ucontrol
)
926 struct vx_core
*_chip
= snd_kcontrol_chip(kcontrol
);
927 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
928 if (ucontrol
->value
.integer
.value
[0] < 0 ||
929 ucontrol
->value
.integer
.value
[0] > MIC_LEVEL_MAX
)
931 mutex_lock(&_chip
->mixer_mutex
);
932 if (chip
->mic_level
!= ucontrol
->value
.integer
.value
[0]) {
933 chip
->mic_level
= ucontrol
->value
.integer
.value
[0];
934 vx2_set_input_level(chip
);
935 mutex_unlock(&_chip
->mixer_mutex
);
938 mutex_unlock(&_chip
->mixer_mutex
);
942 static struct snd_kcontrol_new vx_control_input_level
= {
943 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
944 .access
= (SNDRV_CTL_ELEM_ACCESS_READWRITE
|
945 SNDRV_CTL_ELEM_ACCESS_TLV_READ
),
946 .name
= "Capture Volume",
947 .info
= vx_input_level_info
,
948 .get
= vx_input_level_get
,
949 .put
= vx_input_level_put
,
950 .tlv
= { .p
= db_scale_mic
},
953 static struct snd_kcontrol_new vx_control_mic_level
= {
954 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
955 .access
= (SNDRV_CTL_ELEM_ACCESS_READWRITE
|
956 SNDRV_CTL_ELEM_ACCESS_TLV_READ
),
957 .name
= "Mic Capture Volume",
958 .info
= vx_mic_level_info
,
959 .get
= vx_mic_level_get
,
960 .put
= vx_mic_level_put
,
961 .tlv
= { .p
= db_scale_mic
},
965 * FIXME: compressor/limiter implementation is missing yet...
968 static int vx2_add_mic_controls(struct vx_core
*_chip
)
970 struct snd_vx222
*chip
= (struct snd_vx222
*)_chip
;
973 if (_chip
->type
!= VX_TYPE_MIC
)
976 /* mute input levels */
977 chip
->input_level
[0] = chip
->input_level
[1] = 0;
979 vx2_set_input_level(chip
);
982 if ((err
= snd_ctl_add(_chip
->card
, snd_ctl_new1(&vx_control_input_level
, chip
))) < 0)
984 if ((err
= snd_ctl_add(_chip
->card
, snd_ctl_new1(&vx_control_mic_level
, chip
))) < 0)
994 struct snd_vx_ops vx222_ops
= {
999 .test_and_ack
= vx2_test_and_ack
,
1000 .validate_irq
= vx2_validate_irq
,
1001 .akm_write
= vx2_write_akm
,
1002 .reset_codec
= vx2_reset_codec
,
1003 .change_audio_source
= vx2_change_audio_source
,
1004 .set_clock_source
= vx2_set_clock_source
,
1005 .load_dsp
= vx2_load_dsp
,
1006 .reset_dsp
= vx2_reset_dsp
,
1007 .reset_board
= vx2_reset_board
,
1008 .dma_write
= vx2_dma_write
,
1009 .dma_read
= vx2_dma_read
,
1010 .add_controls
= vx2_add_mic_controls
,
1013 /* for old VX222 board */
1014 struct snd_vx_ops vx222_old_ops
= {
1019 .test_and_ack
= vx2_test_and_ack
,
1020 .validate_irq
= vx2_validate_irq
,
1021 .write_codec
= vx2_old_write_codec_bit
,
1022 .reset_codec
= vx2_reset_codec
,
1023 .change_audio_source
= vx2_change_audio_source
,
1024 .set_clock_source
= vx2_set_clock_source
,
1025 .load_dsp
= vx2_load_dsp
,
1026 .reset_dsp
= vx2_reset_dsp
,
1027 .reset_board
= vx2_reset_board
,
1028 .dma_write
= vx2_dma_write
,
1029 .dma_read
= vx2_dma_read
,