drm/i915: Avoid vmallocing a buffer for the relocations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob67998e8a2d7010928ce688fd9049f7133d5fcfc7
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
178 drm_i915_private_t *dev_priv = dev->dev_private;
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
189 dev_priv->mm.gtt_total = end - start;
191 return 0;
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
198 struct drm_i915_gem_init *args = data;
199 int ret;
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
205 return ret;
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
223 return 0;
228 * Creates a new mm object and returns a handle to it.
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
239 args->size = roundup(args->size, PAGE_SIZE);
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 /* drop reference from allocate - handle holds it now */
248 drm_gem_object_unreference_unlocked(obj);
249 if (ret) {
250 return ret;
253 args->handle = handle;
254 return 0;
257 static inline int
258 fast_shmem_read(struct page **pages,
259 loff_t page_base, int page_offset,
260 char __user *data,
261 int length)
263 char __iomem *vaddr;
264 int unwritten;
266 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
267 if (vaddr == NULL)
268 return -ENOMEM;
269 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
270 kunmap_atomic(vaddr, KM_USER0);
272 if (unwritten)
273 return -EFAULT;
275 return 0;
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
294 char *dst_vaddr, *src_vaddr;
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
301 kunmap(src_page);
302 kunmap(dst_page);
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
313 char *gpu_vaddr, *cpu_vaddr;
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
350 kunmap(cpu_page);
351 kunmap(gpu_page);
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369 int ret;
371 user_data = (char __user *) (uintptr_t) args->data_ptr;
372 remain = args->size;
374 ret = i915_mutex_lock_interruptible(dev);
375 if (ret)
376 return ret;
378 ret = i915_gem_object_get_pages(obj, 0);
379 if (ret != 0)
380 goto fail_unlock;
382 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
383 args->size);
384 if (ret != 0)
385 goto fail_put_pages;
387 obj_priv = to_intel_bo(obj);
388 offset = args->offset;
390 while (remain > 0) {
391 /* Operation in this page
393 * page_base = page offset within aperture
394 * page_offset = offset within page
395 * page_length = bytes to copy for this page
397 page_base = (offset & ~(PAGE_SIZE-1));
398 page_offset = offset & (PAGE_SIZE-1);
399 page_length = remain;
400 if ((page_offset + remain) > PAGE_SIZE)
401 page_length = PAGE_SIZE - page_offset;
403 ret = fast_shmem_read(obj_priv->pages,
404 page_base, page_offset,
405 user_data, page_length);
406 if (ret)
407 goto fail_put_pages;
409 remain -= page_length;
410 user_data += page_length;
411 offset += page_length;
414 fail_put_pages:
415 i915_gem_object_put_pages(obj);
416 fail_unlock:
417 mutex_unlock(&dev->struct_mutex);
419 return ret;
422 static int
423 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
425 int ret;
427 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
429 /* If we've insufficient memory to map in the pages, attempt
430 * to make some space by throwing out some old buffers.
432 if (ret == -ENOMEM) {
433 struct drm_device *dev = obj->dev;
435 ret = i915_gem_evict_something(dev, obj->size,
436 i915_gem_get_gtt_alignment(obj));
437 if (ret)
438 return ret;
440 ret = i915_gem_object_get_pages(obj, 0);
443 return ret;
447 * This is the fallback shmem pread path, which allocates temporary storage
448 * in kernel space to copy_to_user into outside of the struct_mutex, so we
449 * can copy out of the object's backing pages while holding the struct mutex
450 * and not take page faults.
452 static int
453 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
454 struct drm_i915_gem_pread *args,
455 struct drm_file *file_priv)
457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458 struct mm_struct *mm = current->mm;
459 struct page **user_pages;
460 ssize_t remain;
461 loff_t offset, pinned_pages, i;
462 loff_t first_data_page, last_data_page, num_pages;
463 int shmem_page_index, shmem_page_offset;
464 int data_page_index, data_page_offset;
465 int page_length;
466 int ret;
467 uint64_t data_ptr = args->data_ptr;
468 int do_bit17_swizzling;
470 remain = args->size;
472 /* Pin the user pages containing the data. We can't fault while
473 * holding the struct mutex, yet we want to hold it while
474 * dereferencing the user data.
476 first_data_page = data_ptr / PAGE_SIZE;
477 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
478 num_pages = last_data_page - first_data_page + 1;
480 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
481 if (user_pages == NULL)
482 return -ENOMEM;
484 down_read(&mm->mmap_sem);
485 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
486 num_pages, 1, 0, user_pages, NULL);
487 up_read(&mm->mmap_sem);
488 if (pinned_pages < num_pages) {
489 ret = -EFAULT;
490 goto fail_put_user_pages;
493 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
495 ret = i915_mutex_lock_interruptible(dev);
496 if (ret)
497 goto fail_put_user_pages;
499 ret = i915_gem_object_get_pages_or_evict(obj);
500 if (ret)
501 goto fail_unlock;
503 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
504 args->size);
505 if (ret != 0)
506 goto fail_put_pages;
508 obj_priv = to_intel_bo(obj);
509 offset = args->offset;
511 while (remain > 0) {
512 /* Operation in this page
514 * shmem_page_index = page number within shmem file
515 * shmem_page_offset = offset within page in shmem file
516 * data_page_index = page number in get_user_pages return
517 * data_page_offset = offset with data_page_index page.
518 * page_length = bytes to copy for this page
520 shmem_page_index = offset / PAGE_SIZE;
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
531 if (do_bit17_swizzling) {
532 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
533 shmem_page_offset,
534 user_pages[data_page_index],
535 data_page_offset,
536 page_length,
538 } else {
539 slow_shmem_copy(user_pages[data_page_index],
540 data_page_offset,
541 obj_priv->pages[shmem_page_index],
542 shmem_page_offset,
543 page_length);
546 remain -= page_length;
547 data_ptr += page_length;
548 offset += page_length;
551 fail_put_pages:
552 i915_gem_object_put_pages(obj);
553 fail_unlock:
554 mutex_unlock(&dev->struct_mutex);
555 fail_put_user_pages:
556 for (i = 0; i < pinned_pages; i++) {
557 SetPageDirty(user_pages[i]);
558 page_cache_release(user_pages[i]);
560 drm_free_large(user_pages);
562 return ret;
566 * Reads data from the object referenced by handle.
568 * On error, the contents of *data are undefined.
571 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
572 struct drm_file *file_priv)
574 struct drm_i915_gem_pread *args = data;
575 struct drm_gem_object *obj;
576 struct drm_i915_gem_object *obj_priv;
577 int ret = 0;
579 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
580 if (obj == NULL)
581 return -ENOENT;
582 obj_priv = to_intel_bo(obj);
584 /* Bounds check source. */
585 if (args->offset > obj->size || args->size > obj->size - args->offset) {
586 ret = -EINVAL;
587 goto out;
590 if (args->size == 0)
591 goto out;
593 if (!access_ok(VERIFY_WRITE,
594 (char __user *)(uintptr_t)args->data_ptr,
595 args->size)) {
596 ret = -EFAULT;
597 goto out;
600 if (i915_gem_object_needs_bit17_swizzle(obj)) {
601 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
602 } else {
603 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
604 if (ret != 0)
605 ret = i915_gem_shmem_pread_slow(dev, obj, args,
606 file_priv);
609 out:
610 drm_gem_object_unreference_unlocked(obj);
611 return ret;
614 /* This is the fast write path which cannot handle
615 * page faults in the source data
618 static inline int
619 fast_user_write(struct io_mapping *mapping,
620 loff_t page_base, int page_offset,
621 char __user *user_data,
622 int length)
624 char *vaddr_atomic;
625 unsigned long unwritten;
627 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
628 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
629 user_data, length);
630 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
631 if (unwritten)
632 return -EFAULT;
633 return 0;
636 /* Here's the write path which can sleep for
637 * page faults
640 static inline void
641 slow_kernel_write(struct io_mapping *mapping,
642 loff_t gtt_base, int gtt_offset,
643 struct page *user_page, int user_offset,
644 int length)
646 char __iomem *dst_vaddr;
647 char *src_vaddr;
649 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
650 src_vaddr = kmap(user_page);
652 memcpy_toio(dst_vaddr + gtt_offset,
653 src_vaddr + user_offset,
654 length);
656 kunmap(user_page);
657 io_mapping_unmap(dst_vaddr);
660 static inline int
661 fast_shmem_write(struct page **pages,
662 loff_t page_base, int page_offset,
663 char __user *data,
664 int length)
666 char __iomem *vaddr;
667 unsigned long unwritten;
669 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
670 if (vaddr == NULL)
671 return -ENOMEM;
672 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
673 kunmap_atomic(vaddr, KM_USER0);
675 if (unwritten)
676 return -EFAULT;
677 return 0;
681 * This is the fast pwrite path, where we copy the data directly from the
682 * user into the GTT, uncached.
684 static int
685 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
686 struct drm_i915_gem_pwrite *args,
687 struct drm_file *file_priv)
689 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
690 drm_i915_private_t *dev_priv = dev->dev_private;
691 ssize_t remain;
692 loff_t offset, page_base;
693 char __user *user_data;
694 int page_offset, page_length;
695 int ret;
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
700 ret = i915_mutex_lock_interruptible(dev);
701 if (ret)
702 return ret;
704 ret = i915_gem_object_pin(obj, 0);
705 if (ret) {
706 mutex_unlock(&dev->struct_mutex);
707 return ret;
709 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
710 if (ret)
711 goto fail;
713 obj_priv = to_intel_bo(obj);
714 offset = obj_priv->gtt_offset + args->offset;
716 while (remain > 0) {
717 /* Operation in this page
719 * page_base = page offset within aperture
720 * page_offset = offset within page
721 * page_length = bytes to copy for this page
723 page_base = (offset & ~(PAGE_SIZE-1));
724 page_offset = offset & (PAGE_SIZE-1);
725 page_length = remain;
726 if ((page_offset + remain) > PAGE_SIZE)
727 page_length = PAGE_SIZE - page_offset;
729 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
730 page_offset, user_data, page_length);
732 /* If we get a fault while copying data, then (presumably) our
733 * source page isn't available. Return the error and we'll
734 * retry in the slow path.
736 if (ret)
737 goto fail;
739 remain -= page_length;
740 user_data += page_length;
741 offset += page_length;
744 fail:
745 i915_gem_object_unpin(obj);
746 mutex_unlock(&dev->struct_mutex);
748 return ret;
752 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
753 * the memory and maps it using kmap_atomic for copying.
755 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
756 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
758 static int
759 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
763 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
764 drm_i915_private_t *dev_priv = dev->dev_private;
765 ssize_t remain;
766 loff_t gtt_page_base, offset;
767 loff_t first_data_page, last_data_page, num_pages;
768 loff_t pinned_pages, i;
769 struct page **user_pages;
770 struct mm_struct *mm = current->mm;
771 int gtt_page_offset, data_page_offset, data_page_index, page_length;
772 int ret;
773 uint64_t data_ptr = args->data_ptr;
775 remain = args->size;
777 /* Pin the user pages containing the data. We can't fault while
778 * holding the struct mutex, and all of the pwrite implementations
779 * want to hold it while dereferencing the user data.
781 first_data_page = data_ptr / PAGE_SIZE;
782 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
783 num_pages = last_data_page - first_data_page + 1;
785 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
786 if (user_pages == NULL)
787 return -ENOMEM;
789 down_read(&mm->mmap_sem);
790 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
791 num_pages, 0, 0, user_pages, NULL);
792 up_read(&mm->mmap_sem);
793 if (pinned_pages < num_pages) {
794 ret = -EFAULT;
795 goto out_unpin_pages;
798 ret = i915_mutex_lock_interruptible(dev);
799 if (ret)
800 goto out_unpin_pages;
802 ret = i915_gem_object_pin(obj, 0);
803 if (ret)
804 goto out_unlock;
806 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
807 if (ret)
808 goto out_unpin_object;
810 obj_priv = to_intel_bo(obj);
811 offset = obj_priv->gtt_offset + args->offset;
813 while (remain > 0) {
814 /* Operation in this page
816 * gtt_page_base = page offset within aperture
817 * gtt_page_offset = offset within page in aperture
818 * data_page_index = page number in get_user_pages return
819 * data_page_offset = offset with data_page_index page.
820 * page_length = bytes to copy for this page
822 gtt_page_base = offset & PAGE_MASK;
823 gtt_page_offset = offset & ~PAGE_MASK;
824 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
825 data_page_offset = data_ptr & ~PAGE_MASK;
827 page_length = remain;
828 if ((gtt_page_offset + page_length) > PAGE_SIZE)
829 page_length = PAGE_SIZE - gtt_page_offset;
830 if ((data_page_offset + page_length) > PAGE_SIZE)
831 page_length = PAGE_SIZE - data_page_offset;
833 slow_kernel_write(dev_priv->mm.gtt_mapping,
834 gtt_page_base, gtt_page_offset,
835 user_pages[data_page_index],
836 data_page_offset,
837 page_length);
839 remain -= page_length;
840 offset += page_length;
841 data_ptr += page_length;
844 out_unpin_object:
845 i915_gem_object_unpin(obj);
846 out_unlock:
847 mutex_unlock(&dev->struct_mutex);
848 out_unpin_pages:
849 for (i = 0; i < pinned_pages; i++)
850 page_cache_release(user_pages[i]);
851 drm_free_large(user_pages);
853 return ret;
857 * This is the fast shmem pwrite path, which attempts to directly
858 * copy_from_user into the kmapped pages backing the object.
860 static int
861 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
862 struct drm_i915_gem_pwrite *args,
863 struct drm_file *file_priv)
865 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
866 ssize_t remain;
867 loff_t offset, page_base;
868 char __user *user_data;
869 int page_offset, page_length;
870 int ret;
872 user_data = (char __user *) (uintptr_t) args->data_ptr;
873 remain = args->size;
875 ret = i915_mutex_lock_interruptible(dev);
876 if (ret)
877 return ret;
879 ret = i915_gem_object_get_pages(obj, 0);
880 if (ret != 0)
881 goto fail_unlock;
883 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
884 if (ret != 0)
885 goto fail_put_pages;
887 obj_priv = to_intel_bo(obj);
888 offset = args->offset;
889 obj_priv->dirty = 1;
891 while (remain > 0) {
892 /* Operation in this page
894 * page_base = page offset within aperture
895 * page_offset = offset within page
896 * page_length = bytes to copy for this page
898 page_base = (offset & ~(PAGE_SIZE-1));
899 page_offset = offset & (PAGE_SIZE-1);
900 page_length = remain;
901 if ((page_offset + remain) > PAGE_SIZE)
902 page_length = PAGE_SIZE - page_offset;
904 ret = fast_shmem_write(obj_priv->pages,
905 page_base, page_offset,
906 user_data, page_length);
907 if (ret)
908 goto fail_put_pages;
910 remain -= page_length;
911 user_data += page_length;
912 offset += page_length;
915 fail_put_pages:
916 i915_gem_object_put_pages(obj);
917 fail_unlock:
918 mutex_unlock(&dev->struct_mutex);
920 return ret;
924 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
925 * the memory and maps it using kmap_atomic for copying.
927 * This avoids taking mmap_sem for faulting on the user's address while the
928 * struct_mutex is held.
930 static int
931 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
932 struct drm_i915_gem_pwrite *args,
933 struct drm_file *file_priv)
935 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
936 struct mm_struct *mm = current->mm;
937 struct page **user_pages;
938 ssize_t remain;
939 loff_t offset, pinned_pages, i;
940 loff_t first_data_page, last_data_page, num_pages;
941 int shmem_page_index, shmem_page_offset;
942 int data_page_index, data_page_offset;
943 int page_length;
944 int ret;
945 uint64_t data_ptr = args->data_ptr;
946 int do_bit17_swizzling;
948 remain = args->size;
950 /* Pin the user pages containing the data. We can't fault while
951 * holding the struct mutex, and all of the pwrite implementations
952 * want to hold it while dereferencing the user data.
954 first_data_page = data_ptr / PAGE_SIZE;
955 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
956 num_pages = last_data_page - first_data_page + 1;
958 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
959 if (user_pages == NULL)
960 return -ENOMEM;
962 down_read(&mm->mmap_sem);
963 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
964 num_pages, 0, 0, user_pages, NULL);
965 up_read(&mm->mmap_sem);
966 if (pinned_pages < num_pages) {
967 ret = -EFAULT;
968 goto fail_put_user_pages;
971 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
973 ret = i915_mutex_lock_interruptible(dev);
974 if (ret)
975 goto fail_put_user_pages;
977 ret = i915_gem_object_get_pages_or_evict(obj);
978 if (ret)
979 goto fail_unlock;
981 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
982 if (ret != 0)
983 goto fail_put_pages;
985 obj_priv = to_intel_bo(obj);
986 offset = args->offset;
987 obj_priv->dirty = 1;
989 while (remain > 0) {
990 /* Operation in this page
992 * shmem_page_index = page number within shmem file
993 * shmem_page_offset = offset within page in shmem file
994 * data_page_index = page number in get_user_pages return
995 * data_page_offset = offset with data_page_index page.
996 * page_length = bytes to copy for this page
998 shmem_page_index = offset / PAGE_SIZE;
999 shmem_page_offset = offset & ~PAGE_MASK;
1000 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1001 data_page_offset = data_ptr & ~PAGE_MASK;
1003 page_length = remain;
1004 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1005 page_length = PAGE_SIZE - shmem_page_offset;
1006 if ((data_page_offset + page_length) > PAGE_SIZE)
1007 page_length = PAGE_SIZE - data_page_offset;
1009 if (do_bit17_swizzling) {
1010 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1011 shmem_page_offset,
1012 user_pages[data_page_index],
1013 data_page_offset,
1014 page_length,
1016 } else {
1017 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1018 shmem_page_offset,
1019 user_pages[data_page_index],
1020 data_page_offset,
1021 page_length);
1024 remain -= page_length;
1025 data_ptr += page_length;
1026 offset += page_length;
1029 fail_put_pages:
1030 i915_gem_object_put_pages(obj);
1031 fail_unlock:
1032 mutex_unlock(&dev->struct_mutex);
1033 fail_put_user_pages:
1034 for (i = 0; i < pinned_pages; i++)
1035 page_cache_release(user_pages[i]);
1036 drm_free_large(user_pages);
1038 return ret;
1042 * Writes data to the object referenced by handle.
1044 * On error, the contents of the buffer that were to be modified are undefined.
1047 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1048 struct drm_file *file_priv)
1050 struct drm_i915_gem_pwrite *args = data;
1051 struct drm_gem_object *obj;
1052 struct drm_i915_gem_object *obj_priv;
1053 int ret = 0;
1055 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1056 if (obj == NULL)
1057 return -ENOENT;
1058 obj_priv = to_intel_bo(obj);
1060 /* Bounds check destination. */
1061 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1062 ret = -EINVAL;
1063 goto out;
1066 if (args->size == 0)
1067 goto out;
1069 if (!access_ok(VERIFY_READ,
1070 (char __user *)(uintptr_t)args->data_ptr,
1071 args->size)) {
1072 ret = -EFAULT;
1073 goto out;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1082 if (obj_priv->phys_obj)
1083 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1084 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1085 obj_priv->gtt_space &&
1086 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1087 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1088 if (ret == -EFAULT) {
1089 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1090 file_priv);
1092 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1093 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1094 } else {
1095 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1096 if (ret == -EFAULT) {
1097 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1098 file_priv);
1102 #if WATCH_PWRITE
1103 if (ret)
1104 DRM_INFO("pwrite failed %d\n", ret);
1105 #endif
1107 out:
1108 drm_gem_object_unreference_unlocked(obj);
1109 return ret;
1113 * Called when user space prepares to use an object with the CPU, either
1114 * through the mmap ioctl's mapping or a GTT mapping.
1117 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 struct drm_i915_gem_set_domain *args = data;
1122 struct drm_gem_object *obj;
1123 struct drm_i915_gem_object *obj_priv;
1124 uint32_t read_domains = args->read_domains;
1125 uint32_t write_domain = args->write_domain;
1126 int ret;
1128 if (!(dev->driver->driver_features & DRIVER_GEM))
1129 return -ENODEV;
1131 /* Only handle setting domains to types used by the CPU. */
1132 if (write_domain & I915_GEM_GPU_DOMAINS)
1133 return -EINVAL;
1135 if (read_domains & I915_GEM_GPU_DOMAINS)
1136 return -EINVAL;
1138 /* Having something in the write domain implies it's in the read
1139 * domain, and only that read domain. Enforce that in the request.
1141 if (write_domain != 0 && read_domains != write_domain)
1142 return -EINVAL;
1144 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1145 if (obj == NULL)
1146 return -ENOENT;
1147 obj_priv = to_intel_bo(obj);
1149 ret = i915_mutex_lock_interruptible(dev);
1150 if (ret) {
1151 drm_gem_object_unreference_unlocked(obj);
1152 return ret;
1155 intel_mark_busy(dev, obj);
1157 if (read_domains & I915_GEM_DOMAIN_GTT) {
1158 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1160 /* Update the LRU on the fence for the CPU access that's
1161 * about to occur.
1163 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1164 struct drm_i915_fence_reg *reg =
1165 &dev_priv->fence_regs[obj_priv->fence_reg];
1166 list_move_tail(&reg->lru_list,
1167 &dev_priv->mm.fence_list);
1170 /* Silently promote "you're not bound, there was nothing to do"
1171 * to success, since the client was just asking us to
1172 * make sure everything was done.
1174 if (ret == -EINVAL)
1175 ret = 0;
1176 } else {
1177 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1180 /* Maintain LRU order of "inactive" objects */
1181 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1182 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1184 drm_gem_object_unreference(obj);
1185 mutex_unlock(&dev->struct_mutex);
1186 return ret;
1190 * Called when user space has done writes to this buffer
1193 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1194 struct drm_file *file_priv)
1196 struct drm_i915_gem_sw_finish *args = data;
1197 struct drm_gem_object *obj;
1198 int ret = 0;
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret) {
1209 drm_gem_object_unreference_unlocked(obj);
1210 return ret;
1213 /* Pinned buffers may be scanout, so flush the cache */
1214 if (to_intel_bo(obj)->pin_count)
1215 i915_gem_object_flush_cpu_write_domain(obj);
1217 drm_gem_object_unreference(obj);
1218 mutex_unlock(&dev->struct_mutex);
1219 return ret;
1223 * Maps the contents of an object, returning the address it is mapped
1224 * into.
1226 * While the mapping holds a reference on the contents of the object, it doesn't
1227 * imply a ref on the object itself.
1230 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1231 struct drm_file *file_priv)
1233 struct drm_i915_gem_mmap *args = data;
1234 struct drm_gem_object *obj;
1235 loff_t offset;
1236 unsigned long addr;
1238 if (!(dev->driver->driver_features & DRIVER_GEM))
1239 return -ENODEV;
1241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242 if (obj == NULL)
1243 return -ENOENT;
1245 offset = args->offset;
1247 down_write(&current->mm->mmap_sem);
1248 addr = do_mmap(obj->filp, 0, args->size,
1249 PROT_READ | PROT_WRITE, MAP_SHARED,
1250 args->offset);
1251 up_write(&current->mm->mmap_sem);
1252 drm_gem_object_unreference_unlocked(obj);
1253 if (IS_ERR((void *)addr))
1254 return addr;
1256 args->addr_ptr = (uint64_t) addr;
1258 return 0;
1262 * i915_gem_fault - fault a page into the GTT
1263 * vma: VMA in question
1264 * vmf: fault info
1266 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1267 * from userspace. The fault handler takes care of binding the object to
1268 * the GTT (if needed), allocating and programming a fence register (again,
1269 * only if needed based on whether the old reg is still valid or the object
1270 * is tiled) and inserting a new PTE into the faulting process.
1272 * Note that the faulting process may involve evicting existing objects
1273 * from the GTT and/or fence registers to make room. So performance may
1274 * suffer if the GTT working set is large or there are few fence registers
1275 * left.
1277 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279 struct drm_gem_object *obj = vma->vm_private_data;
1280 struct drm_device *dev = obj->dev;
1281 drm_i915_private_t *dev_priv = dev->dev_private;
1282 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1283 pgoff_t page_offset;
1284 unsigned long pfn;
1285 int ret = 0;
1286 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1288 /* We don't use vmf->pgoff since that has the fake offset */
1289 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1290 PAGE_SHIFT;
1292 /* Now bind it into the GTT if needed */
1293 mutex_lock(&dev->struct_mutex);
1294 if (!obj_priv->gtt_space) {
1295 ret = i915_gem_object_bind_to_gtt(obj, 0);
1296 if (ret)
1297 goto unlock;
1299 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1300 if (ret)
1301 goto unlock;
1304 /* Need a new fence register? */
1305 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1306 ret = i915_gem_object_get_fence_reg(obj, true);
1307 if (ret)
1308 goto unlock;
1311 if (i915_gem_object_is_inactive(obj_priv))
1312 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1314 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1315 page_offset;
1317 /* Finally, remap it using the new GTT offset */
1318 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1319 unlock:
1320 mutex_unlock(&dev->struct_mutex);
1322 switch (ret) {
1323 case 0:
1324 case -ERESTARTSYS:
1325 return VM_FAULT_NOPAGE;
1326 case -ENOMEM:
1327 case -EAGAIN:
1328 return VM_FAULT_OOM;
1329 default:
1330 return VM_FAULT_SIGBUS;
1335 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1336 * @obj: obj in question
1338 * GEM memory mapping works by handing back to userspace a fake mmap offset
1339 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1340 * up the object based on the offset and sets up the various memory mapping
1341 * structures.
1343 * This routine allocates and attaches a fake offset for @obj.
1345 static int
1346 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1348 struct drm_device *dev = obj->dev;
1349 struct drm_gem_mm *mm = dev->mm_private;
1350 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351 struct drm_map_list *list;
1352 struct drm_local_map *map;
1353 int ret = 0;
1355 /* Set the object up for mmap'ing */
1356 list = &obj->map_list;
1357 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1358 if (!list->map)
1359 return -ENOMEM;
1361 map = list->map;
1362 map->type = _DRM_GEM;
1363 map->size = obj->size;
1364 map->handle = obj;
1366 /* Get a DRM GEM mmap offset allocated... */
1367 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1368 obj->size / PAGE_SIZE, 0, 0);
1369 if (!list->file_offset_node) {
1370 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1371 ret = -ENOSPC;
1372 goto out_free_list;
1375 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1376 obj->size / PAGE_SIZE, 0);
1377 if (!list->file_offset_node) {
1378 ret = -ENOMEM;
1379 goto out_free_list;
1382 list->hash.key = list->file_offset_node->start;
1383 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1384 if (ret) {
1385 DRM_ERROR("failed to add to map hash\n");
1386 goto out_free_mm;
1389 /* By now we should be all set, any drm_mmap request on the offset
1390 * below will get to our mmap & fault handler */
1391 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1393 return 0;
1395 out_free_mm:
1396 drm_mm_put_block(list->file_offset_node);
1397 out_free_list:
1398 kfree(list->map);
1400 return ret;
1404 * i915_gem_release_mmap - remove physical page mappings
1405 * @obj: obj in question
1407 * Preserve the reservation of the mmapping with the DRM core code, but
1408 * relinquish ownership of the pages back to the system.
1410 * It is vital that we remove the page mapping if we have mapped a tiled
1411 * object through the GTT and then lose the fence register due to
1412 * resource pressure. Similarly if the object has been moved out of the
1413 * aperture, than pages mapped into userspace must be revoked. Removing the
1414 * mapping will then trigger a page fault on the next user access, allowing
1415 * fixup by i915_gem_fault().
1417 void
1418 i915_gem_release_mmap(struct drm_gem_object *obj)
1420 struct drm_device *dev = obj->dev;
1421 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1423 if (dev->dev_mapping)
1424 unmap_mapping_range(dev->dev_mapping,
1425 obj_priv->mmap_offset, obj->size, 1);
1428 static void
1429 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1431 struct drm_device *dev = obj->dev;
1432 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1433 struct drm_gem_mm *mm = dev->mm_private;
1434 struct drm_map_list *list;
1436 list = &obj->map_list;
1437 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1439 if (list->file_offset_node) {
1440 drm_mm_put_block(list->file_offset_node);
1441 list->file_offset_node = NULL;
1444 if (list->map) {
1445 kfree(list->map);
1446 list->map = NULL;
1449 obj_priv->mmap_offset = 0;
1453 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1454 * @obj: object to check
1456 * Return the required GTT alignment for an object, taking into account
1457 * potential fence register mapping if needed.
1459 static uint32_t
1460 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1462 struct drm_device *dev = obj->dev;
1463 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1464 int start, i;
1467 * Minimum alignment is 4k (GTT page size), but might be greater
1468 * if a fence register is needed for the object.
1470 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1471 return 4096;
1474 * Previous chips need to be aligned to the size of the smallest
1475 * fence register that can contain the object.
1477 if (INTEL_INFO(dev)->gen == 3)
1478 start = 1024*1024;
1479 else
1480 start = 512*1024;
1482 for (i = start; i < obj->size; i <<= 1)
1485 return i;
1489 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1490 * @dev: DRM device
1491 * @data: GTT mapping ioctl data
1492 * @file_priv: GEM object info
1494 * Simply returns the fake offset to userspace so it can mmap it.
1495 * The mmap call will end up in drm_gem_mmap(), which will set things
1496 * up so we can get faults in the handler above.
1498 * The fault handler will take care of binding the object into the GTT
1499 * (since it may have been evicted to make room for something), allocating
1500 * a fence register, and mapping the appropriate aperture address into
1501 * userspace.
1504 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1505 struct drm_file *file_priv)
1507 struct drm_i915_gem_mmap_gtt *args = data;
1508 struct drm_gem_object *obj;
1509 struct drm_i915_gem_object *obj_priv;
1510 int ret;
1512 if (!(dev->driver->driver_features & DRIVER_GEM))
1513 return -ENODEV;
1515 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1516 if (obj == NULL)
1517 return -ENOENT;
1519 ret = i915_mutex_lock_interruptible(dev);
1520 if (ret) {
1521 drm_gem_object_unreference_unlocked(obj);
1522 return ret;
1525 obj_priv = to_intel_bo(obj);
1527 if (obj_priv->madv != I915_MADV_WILLNEED) {
1528 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1529 drm_gem_object_unreference(obj);
1530 mutex_unlock(&dev->struct_mutex);
1531 return -EINVAL;
1535 if (!obj_priv->mmap_offset) {
1536 ret = i915_gem_create_mmap_offset(obj);
1537 if (ret) {
1538 drm_gem_object_unreference(obj);
1539 mutex_unlock(&dev->struct_mutex);
1540 return ret;
1544 args->offset = obj_priv->mmap_offset;
1547 * Pull it into the GTT so that we have a page list (makes the
1548 * initial fault faster and any subsequent flushing possible).
1550 if (!obj_priv->agp_mem) {
1551 ret = i915_gem_object_bind_to_gtt(obj, 0);
1552 if (ret) {
1553 drm_gem_object_unreference(obj);
1554 mutex_unlock(&dev->struct_mutex);
1555 return ret;
1559 drm_gem_object_unreference(obj);
1560 mutex_unlock(&dev->struct_mutex);
1562 return 0;
1565 static void
1566 i915_gem_object_put_pages(struct drm_gem_object *obj)
1568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569 int page_count = obj->size / PAGE_SIZE;
1570 int i;
1572 BUG_ON(obj_priv->pages_refcount == 0);
1573 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1575 if (--obj_priv->pages_refcount != 0)
1576 return;
1578 if (obj_priv->tiling_mode != I915_TILING_NONE)
1579 i915_gem_object_save_bit_17_swizzle(obj);
1581 if (obj_priv->madv == I915_MADV_DONTNEED)
1582 obj_priv->dirty = 0;
1584 for (i = 0; i < page_count; i++) {
1585 if (obj_priv->dirty)
1586 set_page_dirty(obj_priv->pages[i]);
1588 if (obj_priv->madv == I915_MADV_WILLNEED)
1589 mark_page_accessed(obj_priv->pages[i]);
1591 page_cache_release(obj_priv->pages[i]);
1593 obj_priv->dirty = 0;
1595 drm_free_large(obj_priv->pages);
1596 obj_priv->pages = NULL;
1599 static uint32_t
1600 i915_gem_next_request_seqno(struct drm_device *dev,
1601 struct intel_ring_buffer *ring)
1603 drm_i915_private_t *dev_priv = dev->dev_private;
1605 ring->outstanding_lazy_request = true;
1606 return dev_priv->next_seqno;
1609 static void
1610 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1611 struct intel_ring_buffer *ring)
1613 struct drm_device *dev = obj->dev;
1614 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1615 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1617 BUG_ON(ring == NULL);
1618 obj_priv->ring = ring;
1620 /* Add a reference if we're newly entering the active list. */
1621 if (!obj_priv->active) {
1622 drm_gem_object_reference(obj);
1623 obj_priv->active = 1;
1626 /* Move from whatever list we were on to the tail of execution. */
1627 list_move_tail(&obj_priv->list, &ring->active_list);
1628 obj_priv->last_rendering_seqno = seqno;
1631 static void
1632 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1634 struct drm_device *dev = obj->dev;
1635 drm_i915_private_t *dev_priv = dev->dev_private;
1636 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1638 BUG_ON(!obj_priv->active);
1639 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1640 obj_priv->last_rendering_seqno = 0;
1643 /* Immediately discard the backing storage */
1644 static void
1645 i915_gem_object_truncate(struct drm_gem_object *obj)
1647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1648 struct inode *inode;
1650 /* Our goal here is to return as much of the memory as
1651 * is possible back to the system as we are called from OOM.
1652 * To do this we must instruct the shmfs to drop all of its
1653 * backing pages, *now*. Here we mirror the actions taken
1654 * when by shmem_delete_inode() to release the backing store.
1656 inode = obj->filp->f_path.dentry->d_inode;
1657 truncate_inode_pages(inode->i_mapping, 0);
1658 if (inode->i_op->truncate_range)
1659 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1661 obj_priv->madv = __I915_MADV_PURGED;
1664 static inline int
1665 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1667 return obj_priv->madv == I915_MADV_DONTNEED;
1670 static void
1671 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1673 struct drm_device *dev = obj->dev;
1674 drm_i915_private_t *dev_priv = dev->dev_private;
1675 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1677 if (obj_priv->pin_count != 0)
1678 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1679 else
1680 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1682 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1684 obj_priv->last_rendering_seqno = 0;
1685 obj_priv->ring = NULL;
1686 if (obj_priv->active) {
1687 obj_priv->active = 0;
1688 drm_gem_object_unreference(obj);
1690 WARN_ON(i915_verify_lists(dev));
1693 static void
1694 i915_gem_process_flushing_list(struct drm_device *dev,
1695 uint32_t flush_domains,
1696 struct intel_ring_buffer *ring)
1698 drm_i915_private_t *dev_priv = dev->dev_private;
1699 struct drm_i915_gem_object *obj_priv, *next;
1701 list_for_each_entry_safe(obj_priv, next,
1702 &dev_priv->mm.gpu_write_list,
1703 gpu_write_list) {
1704 struct drm_gem_object *obj = &obj_priv->base;
1706 if (obj->write_domain & flush_domains &&
1707 obj_priv->ring == ring) {
1708 uint32_t old_write_domain = obj->write_domain;
1710 obj->write_domain = 0;
1711 list_del_init(&obj_priv->gpu_write_list);
1712 i915_gem_object_move_to_active(obj, ring);
1714 /* update the fence lru list */
1715 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1716 struct drm_i915_fence_reg *reg =
1717 &dev_priv->fence_regs[obj_priv->fence_reg];
1718 list_move_tail(&reg->lru_list,
1719 &dev_priv->mm.fence_list);
1722 trace_i915_gem_object_change_domain(obj,
1723 obj->read_domains,
1724 old_write_domain);
1729 uint32_t
1730 i915_add_request(struct drm_device *dev,
1731 struct drm_file *file,
1732 struct drm_i915_gem_request *request,
1733 struct intel_ring_buffer *ring)
1735 drm_i915_private_t *dev_priv = dev->dev_private;
1736 struct drm_i915_file_private *file_priv = NULL;
1737 uint32_t seqno;
1738 int was_empty;
1740 if (file != NULL)
1741 file_priv = file->driver_priv;
1743 if (request == NULL) {
1744 request = kzalloc(sizeof(*request), GFP_KERNEL);
1745 if (request == NULL)
1746 return 0;
1749 seqno = ring->add_request(dev, ring, 0);
1750 ring->outstanding_lazy_request = false;
1752 request->seqno = seqno;
1753 request->ring = ring;
1754 request->emitted_jiffies = jiffies;
1755 was_empty = list_empty(&ring->request_list);
1756 list_add_tail(&request->list, &ring->request_list);
1758 if (file_priv) {
1759 spin_lock(&file_priv->mm.lock);
1760 request->file_priv = file_priv;
1761 list_add_tail(&request->client_list,
1762 &file_priv->mm.request_list);
1763 spin_unlock(&file_priv->mm.lock);
1766 if (!dev_priv->mm.suspended) {
1767 mod_timer(&dev_priv->hangcheck_timer,
1768 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1769 if (was_empty)
1770 queue_delayed_work(dev_priv->wq,
1771 &dev_priv->mm.retire_work, HZ);
1773 return seqno;
1777 * Command execution barrier
1779 * Ensures that all commands in the ring are finished
1780 * before signalling the CPU
1782 static void
1783 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1785 uint32_t flush_domains = 0;
1787 /* The sampler always gets flushed on i965 (sigh) */
1788 if (INTEL_INFO(dev)->gen >= 4)
1789 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1791 ring->flush(dev, ring,
1792 I915_GEM_DOMAIN_COMMAND, flush_domains);
1795 static inline void
1796 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1798 struct drm_i915_file_private *file_priv = request->file_priv;
1800 if (!file_priv)
1801 return;
1803 spin_lock(&file_priv->mm.lock);
1804 list_del(&request->client_list);
1805 request->file_priv = NULL;
1806 spin_unlock(&file_priv->mm.lock);
1809 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1810 struct intel_ring_buffer *ring)
1812 while (!list_empty(&ring->request_list)) {
1813 struct drm_i915_gem_request *request;
1815 request = list_first_entry(&ring->request_list,
1816 struct drm_i915_gem_request,
1817 list);
1819 list_del(&request->list);
1820 i915_gem_request_remove_from_client(request);
1821 kfree(request);
1824 while (!list_empty(&ring->active_list)) {
1825 struct drm_i915_gem_object *obj_priv;
1827 obj_priv = list_first_entry(&ring->active_list,
1828 struct drm_i915_gem_object,
1829 list);
1831 obj_priv->base.write_domain = 0;
1832 list_del_init(&obj_priv->gpu_write_list);
1833 i915_gem_object_move_to_inactive(&obj_priv->base);
1837 void i915_gem_reset(struct drm_device *dev)
1839 struct drm_i915_private *dev_priv = dev->dev_private;
1840 struct drm_i915_gem_object *obj_priv;
1841 int i;
1843 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1844 if (HAS_BSD(dev))
1845 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1847 /* Remove anything from the flushing lists. The GPU cache is likely
1848 * to be lost on reset along with the data, so simply move the
1849 * lost bo to the inactive list.
1851 while (!list_empty(&dev_priv->mm.flushing_list)) {
1852 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1853 struct drm_i915_gem_object,
1854 list);
1856 obj_priv->base.write_domain = 0;
1857 list_del_init(&obj_priv->gpu_write_list);
1858 i915_gem_object_move_to_inactive(&obj_priv->base);
1861 /* Move everything out of the GPU domains to ensure we do any
1862 * necessary invalidation upon reuse.
1864 list_for_each_entry(obj_priv,
1865 &dev_priv->mm.inactive_list,
1866 list)
1868 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1871 /* The fence registers are invalidated so clear them out */
1872 for (i = 0; i < 16; i++) {
1873 struct drm_i915_fence_reg *reg;
1875 reg = &dev_priv->fence_regs[i];
1876 if (!reg->obj)
1877 continue;
1879 i915_gem_clear_fence_reg(reg->obj);
1884 * This function clears the request list as sequence numbers are passed.
1886 static void
1887 i915_gem_retire_requests_ring(struct drm_device *dev,
1888 struct intel_ring_buffer *ring)
1890 drm_i915_private_t *dev_priv = dev->dev_private;
1891 uint32_t seqno;
1893 if (!ring->status_page.page_addr ||
1894 list_empty(&ring->request_list))
1895 return;
1897 WARN_ON(i915_verify_lists(dev));
1899 seqno = ring->get_seqno(dev, ring);
1900 while (!list_empty(&ring->request_list)) {
1901 struct drm_i915_gem_request *request;
1903 request = list_first_entry(&ring->request_list,
1904 struct drm_i915_gem_request,
1905 list);
1907 if (!i915_seqno_passed(seqno, request->seqno))
1908 break;
1910 trace_i915_gem_request_retire(dev, request->seqno);
1912 list_del(&request->list);
1913 i915_gem_request_remove_from_client(request);
1914 kfree(request);
1917 /* Move any buffers on the active list that are no longer referenced
1918 * by the ringbuffer to the flushing/inactive lists as appropriate.
1920 while (!list_empty(&ring->active_list)) {
1921 struct drm_gem_object *obj;
1922 struct drm_i915_gem_object *obj_priv;
1924 obj_priv = list_first_entry(&ring->active_list,
1925 struct drm_i915_gem_object,
1926 list);
1928 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1929 break;
1931 obj = &obj_priv->base;
1932 if (obj->write_domain != 0)
1933 i915_gem_object_move_to_flushing(obj);
1934 else
1935 i915_gem_object_move_to_inactive(obj);
1938 if (unlikely (dev_priv->trace_irq_seqno &&
1939 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1940 ring->user_irq_put(dev, ring);
1941 dev_priv->trace_irq_seqno = 0;
1944 WARN_ON(i915_verify_lists(dev));
1947 void
1948 i915_gem_retire_requests(struct drm_device *dev)
1950 drm_i915_private_t *dev_priv = dev->dev_private;
1952 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1953 struct drm_i915_gem_object *obj_priv, *tmp;
1955 /* We must be careful that during unbind() we do not
1956 * accidentally infinitely recurse into retire requests.
1957 * Currently:
1958 * retire -> free -> unbind -> wait -> retire_ring
1960 list_for_each_entry_safe(obj_priv, tmp,
1961 &dev_priv->mm.deferred_free_list,
1962 list)
1963 i915_gem_free_object_tail(&obj_priv->base);
1966 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1967 if (HAS_BSD(dev))
1968 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1971 static void
1972 i915_gem_retire_work_handler(struct work_struct *work)
1974 drm_i915_private_t *dev_priv;
1975 struct drm_device *dev;
1977 dev_priv = container_of(work, drm_i915_private_t,
1978 mm.retire_work.work);
1979 dev = dev_priv->dev;
1981 /* Come back later if the device is busy... */
1982 if (!mutex_trylock(&dev->struct_mutex)) {
1983 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1984 return;
1987 i915_gem_retire_requests(dev);
1989 if (!dev_priv->mm.suspended &&
1990 (!list_empty(&dev_priv->render_ring.request_list) ||
1991 (HAS_BSD(dev) &&
1992 !list_empty(&dev_priv->bsd_ring.request_list))))
1993 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1994 mutex_unlock(&dev->struct_mutex);
1998 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1999 bool interruptible, struct intel_ring_buffer *ring)
2001 drm_i915_private_t *dev_priv = dev->dev_private;
2002 u32 ier;
2003 int ret = 0;
2005 BUG_ON(seqno == 0);
2007 if (atomic_read(&dev_priv->mm.wedged))
2008 return -EAGAIN;
2010 if (ring->outstanding_lazy_request) {
2011 seqno = i915_add_request(dev, NULL, NULL, ring);
2012 if (seqno == 0)
2013 return -ENOMEM;
2015 BUG_ON(seqno == dev_priv->next_seqno);
2017 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2018 if (HAS_PCH_SPLIT(dev))
2019 ier = I915_READ(DEIER) | I915_READ(GTIER);
2020 else
2021 ier = I915_READ(IER);
2022 if (!ier) {
2023 DRM_ERROR("something (likely vbetool) disabled "
2024 "interrupts, re-enabling\n");
2025 i915_driver_irq_preinstall(dev);
2026 i915_driver_irq_postinstall(dev);
2029 trace_i915_gem_request_wait_begin(dev, seqno);
2031 ring->waiting_gem_seqno = seqno;
2032 ring->user_irq_get(dev, ring);
2033 if (interruptible)
2034 ret = wait_event_interruptible(ring->irq_queue,
2035 i915_seqno_passed(
2036 ring->get_seqno(dev, ring), seqno)
2037 || atomic_read(&dev_priv->mm.wedged));
2038 else
2039 wait_event(ring->irq_queue,
2040 i915_seqno_passed(
2041 ring->get_seqno(dev, ring), seqno)
2042 || atomic_read(&dev_priv->mm.wedged));
2044 ring->user_irq_put(dev, ring);
2045 ring->waiting_gem_seqno = 0;
2047 trace_i915_gem_request_wait_end(dev, seqno);
2049 if (atomic_read(&dev_priv->mm.wedged))
2050 ret = -EAGAIN;
2052 if (ret && ret != -ERESTARTSYS)
2053 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2054 __func__, ret, seqno, ring->get_seqno(dev, ring),
2055 dev_priv->next_seqno);
2057 /* Directly dispatch request retiring. While we have the work queue
2058 * to handle this, the waiter on a request often wants an associated
2059 * buffer to have made it to the inactive list, and we would need
2060 * a separate wait queue to handle that.
2062 if (ret == 0)
2063 i915_gem_retire_requests_ring(dev, ring);
2065 return ret;
2069 * Waits for a sequence number to be signaled, and cleans up the
2070 * request and object lists appropriately for that event.
2072 static int
2073 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2074 struct intel_ring_buffer *ring)
2076 return i915_do_wait_request(dev, seqno, 1, ring);
2079 static void
2080 i915_gem_flush_ring(struct drm_device *dev,
2081 struct drm_file *file_priv,
2082 struct intel_ring_buffer *ring,
2083 uint32_t invalidate_domains,
2084 uint32_t flush_domains)
2086 ring->flush(dev, ring, invalidate_domains, flush_domains);
2087 i915_gem_process_flushing_list(dev, flush_domains, ring);
2090 static void
2091 i915_gem_flush(struct drm_device *dev,
2092 struct drm_file *file_priv,
2093 uint32_t invalidate_domains,
2094 uint32_t flush_domains,
2095 uint32_t flush_rings)
2097 drm_i915_private_t *dev_priv = dev->dev_private;
2099 if (flush_domains & I915_GEM_DOMAIN_CPU)
2100 drm_agp_chipset_flush(dev);
2102 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2103 if (flush_rings & RING_RENDER)
2104 i915_gem_flush_ring(dev, file_priv,
2105 &dev_priv->render_ring,
2106 invalidate_domains, flush_domains);
2107 if (flush_rings & RING_BSD)
2108 i915_gem_flush_ring(dev, file_priv,
2109 &dev_priv->bsd_ring,
2110 invalidate_domains, flush_domains);
2115 * Ensures that all rendering to the object has completed and the object is
2116 * safe to unbind from the GTT or access from the CPU.
2118 static int
2119 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2120 bool interruptible)
2122 struct drm_device *dev = obj->dev;
2123 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2124 int ret;
2126 /* This function only exists to support waiting for existing rendering,
2127 * not for emitting required flushes.
2129 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2131 /* If there is rendering queued on the buffer being evicted, wait for
2132 * it.
2134 if (obj_priv->active) {
2135 ret = i915_do_wait_request(dev,
2136 obj_priv->last_rendering_seqno,
2137 interruptible,
2138 obj_priv->ring);
2139 if (ret)
2140 return ret;
2143 return 0;
2147 * Unbinds an object from the GTT aperture.
2150 i915_gem_object_unbind(struct drm_gem_object *obj)
2152 struct drm_device *dev = obj->dev;
2153 struct drm_i915_private *dev_priv = dev->dev_private;
2154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2155 int ret = 0;
2157 if (obj_priv->gtt_space == NULL)
2158 return 0;
2160 if (obj_priv->pin_count != 0) {
2161 DRM_ERROR("Attempting to unbind pinned buffer\n");
2162 return -EINVAL;
2165 /* blow away mappings if mapped through GTT */
2166 i915_gem_release_mmap(obj);
2168 /* Move the object to the CPU domain to ensure that
2169 * any possible CPU writes while it's not in the GTT
2170 * are flushed when we go to remap it. This will
2171 * also ensure that all pending GPU writes are finished
2172 * before we unbind.
2174 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2175 if (ret == -ERESTARTSYS)
2176 return ret;
2177 /* Continue on if we fail due to EIO, the GPU is hung so we
2178 * should be safe and we need to cleanup or else we might
2179 * cause memory corruption through use-after-free.
2181 if (ret) {
2182 i915_gem_clflush_object(obj);
2183 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2186 /* release the fence reg _after_ flushing */
2187 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2188 i915_gem_clear_fence_reg(obj);
2190 drm_unbind_agp(obj_priv->agp_mem);
2191 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2193 i915_gem_object_put_pages(obj);
2194 BUG_ON(obj_priv->pages_refcount);
2196 i915_gem_info_remove_gtt(dev_priv, obj->size);
2197 list_del_init(&obj_priv->list);
2199 drm_mm_put_block(obj_priv->gtt_space);
2200 obj_priv->gtt_space = NULL;
2202 if (i915_gem_object_is_purgeable(obj_priv))
2203 i915_gem_object_truncate(obj);
2205 trace_i915_gem_object_unbind(obj);
2207 return ret;
2210 static int i915_ring_idle(struct drm_device *dev,
2211 struct intel_ring_buffer *ring)
2213 i915_gem_flush_ring(dev, NULL, ring,
2214 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2215 return i915_wait_request(dev,
2216 i915_gem_next_request_seqno(dev, ring),
2217 ring);
2221 i915_gpu_idle(struct drm_device *dev)
2223 drm_i915_private_t *dev_priv = dev->dev_private;
2224 bool lists_empty;
2225 int ret;
2227 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2228 list_empty(&dev_priv->render_ring.active_list) &&
2229 (!HAS_BSD(dev) ||
2230 list_empty(&dev_priv->bsd_ring.active_list)));
2231 if (lists_empty)
2232 return 0;
2234 /* Flush everything onto the inactive list. */
2235 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2236 if (ret)
2237 return ret;
2239 if (HAS_BSD(dev)) {
2240 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2241 if (ret)
2242 return ret;
2245 return 0;
2248 static int
2249 i915_gem_object_get_pages(struct drm_gem_object *obj,
2250 gfp_t gfpmask)
2252 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2253 int page_count, i;
2254 struct address_space *mapping;
2255 struct inode *inode;
2256 struct page *page;
2258 BUG_ON(obj_priv->pages_refcount
2259 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2261 if (obj_priv->pages_refcount++ != 0)
2262 return 0;
2264 /* Get the list of pages out of our struct file. They'll be pinned
2265 * at this point until we release them.
2267 page_count = obj->size / PAGE_SIZE;
2268 BUG_ON(obj_priv->pages != NULL);
2269 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2270 if (obj_priv->pages == NULL) {
2271 obj_priv->pages_refcount--;
2272 return -ENOMEM;
2275 inode = obj->filp->f_path.dentry->d_inode;
2276 mapping = inode->i_mapping;
2277 for (i = 0; i < page_count; i++) {
2278 page = read_cache_page_gfp(mapping, i,
2279 GFP_HIGHUSER |
2280 __GFP_COLD |
2281 __GFP_RECLAIMABLE |
2282 gfpmask);
2283 if (IS_ERR(page))
2284 goto err_pages;
2286 obj_priv->pages[i] = page;
2289 if (obj_priv->tiling_mode != I915_TILING_NONE)
2290 i915_gem_object_do_bit_17_swizzle(obj);
2292 return 0;
2294 err_pages:
2295 while (i--)
2296 page_cache_release(obj_priv->pages[i]);
2298 drm_free_large(obj_priv->pages);
2299 obj_priv->pages = NULL;
2300 obj_priv->pages_refcount--;
2301 return PTR_ERR(page);
2304 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2306 struct drm_gem_object *obj = reg->obj;
2307 struct drm_device *dev = obj->dev;
2308 drm_i915_private_t *dev_priv = dev->dev_private;
2309 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2310 int regnum = obj_priv->fence_reg;
2311 uint64_t val;
2313 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2314 0xfffff000) << 32;
2315 val |= obj_priv->gtt_offset & 0xfffff000;
2316 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2317 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2319 if (obj_priv->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2323 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2326 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2328 struct drm_gem_object *obj = reg->obj;
2329 struct drm_device *dev = obj->dev;
2330 drm_i915_private_t *dev_priv = dev->dev_private;
2331 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2332 int regnum = obj_priv->fence_reg;
2333 uint64_t val;
2335 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2336 0xfffff000) << 32;
2337 val |= obj_priv->gtt_offset & 0xfffff000;
2338 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2339 if (obj_priv->tiling_mode == I915_TILING_Y)
2340 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2341 val |= I965_FENCE_REG_VALID;
2343 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2346 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2348 struct drm_gem_object *obj = reg->obj;
2349 struct drm_device *dev = obj->dev;
2350 drm_i915_private_t *dev_priv = dev->dev_private;
2351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2352 int regnum = obj_priv->fence_reg;
2353 int tile_width;
2354 uint32_t fence_reg, val;
2355 uint32_t pitch_val;
2357 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2358 (obj_priv->gtt_offset & (obj->size - 1))) {
2359 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2360 __func__, obj_priv->gtt_offset, obj->size);
2361 return;
2364 if (obj_priv->tiling_mode == I915_TILING_Y &&
2365 HAS_128_BYTE_Y_TILING(dev))
2366 tile_width = 128;
2367 else
2368 tile_width = 512;
2370 /* Note: pitch better be a power of two tile widths */
2371 pitch_val = obj_priv->stride / tile_width;
2372 pitch_val = ffs(pitch_val) - 1;
2374 if (obj_priv->tiling_mode == I915_TILING_Y &&
2375 HAS_128_BYTE_Y_TILING(dev))
2376 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2377 else
2378 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2380 val = obj_priv->gtt_offset;
2381 if (obj_priv->tiling_mode == I915_TILING_Y)
2382 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2383 val |= I915_FENCE_SIZE_BITS(obj->size);
2384 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2385 val |= I830_FENCE_REG_VALID;
2387 if (regnum < 8)
2388 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2389 else
2390 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2391 I915_WRITE(fence_reg, val);
2394 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2396 struct drm_gem_object *obj = reg->obj;
2397 struct drm_device *dev = obj->dev;
2398 drm_i915_private_t *dev_priv = dev->dev_private;
2399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2400 int regnum = obj_priv->fence_reg;
2401 uint32_t val;
2402 uint32_t pitch_val;
2403 uint32_t fence_size_bits;
2405 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2406 (obj_priv->gtt_offset & (obj->size - 1))) {
2407 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2408 __func__, obj_priv->gtt_offset);
2409 return;
2412 pitch_val = obj_priv->stride / 128;
2413 pitch_val = ffs(pitch_val) - 1;
2414 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2416 val = obj_priv->gtt_offset;
2417 if (obj_priv->tiling_mode == I915_TILING_Y)
2418 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2419 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2420 WARN_ON(fence_size_bits & ~0x00000f00);
2421 val |= fence_size_bits;
2422 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2423 val |= I830_FENCE_REG_VALID;
2425 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2428 static int i915_find_fence_reg(struct drm_device *dev,
2429 bool interruptible)
2431 struct drm_i915_fence_reg *reg = NULL;
2432 struct drm_i915_gem_object *obj_priv = NULL;
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 struct drm_gem_object *obj = NULL;
2435 int i, avail, ret;
2437 /* First try to find a free reg */
2438 avail = 0;
2439 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2440 reg = &dev_priv->fence_regs[i];
2441 if (!reg->obj)
2442 return i;
2444 obj_priv = to_intel_bo(reg->obj);
2445 if (!obj_priv->pin_count)
2446 avail++;
2449 if (avail == 0)
2450 return -ENOSPC;
2452 /* None available, try to steal one or wait for a user to finish */
2453 i = I915_FENCE_REG_NONE;
2454 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2455 lru_list) {
2456 obj = reg->obj;
2457 obj_priv = to_intel_bo(obj);
2459 if (obj_priv->pin_count)
2460 continue;
2462 /* found one! */
2463 i = obj_priv->fence_reg;
2464 break;
2467 BUG_ON(i == I915_FENCE_REG_NONE);
2469 /* We only have a reference on obj from the active list. put_fence_reg
2470 * might drop that one, causing a use-after-free in it. So hold a
2471 * private reference to obj like the other callers of put_fence_reg
2472 * (set_tiling ioctl) do. */
2473 drm_gem_object_reference(obj);
2474 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2475 drm_gem_object_unreference(obj);
2476 if (ret != 0)
2477 return ret;
2479 return i;
2483 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2484 * @obj: object to map through a fence reg
2486 * When mapping objects through the GTT, userspace wants to be able to write
2487 * to them without having to worry about swizzling if the object is tiled.
2489 * This function walks the fence regs looking for a free one for @obj,
2490 * stealing one if it can't find any.
2492 * It then sets up the reg based on the object's properties: address, pitch
2493 * and tiling format.
2496 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2497 bool interruptible)
2499 struct drm_device *dev = obj->dev;
2500 struct drm_i915_private *dev_priv = dev->dev_private;
2501 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2502 struct drm_i915_fence_reg *reg = NULL;
2503 int ret;
2505 /* Just update our place in the LRU if our fence is getting used. */
2506 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2507 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2508 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2509 return 0;
2512 switch (obj_priv->tiling_mode) {
2513 case I915_TILING_NONE:
2514 WARN(1, "allocating a fence for non-tiled object?\n");
2515 break;
2516 case I915_TILING_X:
2517 if (!obj_priv->stride)
2518 return -EINVAL;
2519 WARN((obj_priv->stride & (512 - 1)),
2520 "object 0x%08x is X tiled but has non-512B pitch\n",
2521 obj_priv->gtt_offset);
2522 break;
2523 case I915_TILING_Y:
2524 if (!obj_priv->stride)
2525 return -EINVAL;
2526 WARN((obj_priv->stride & (128 - 1)),
2527 "object 0x%08x is Y tiled but has non-128B pitch\n",
2528 obj_priv->gtt_offset);
2529 break;
2532 ret = i915_find_fence_reg(dev, interruptible);
2533 if (ret < 0)
2534 return ret;
2536 obj_priv->fence_reg = ret;
2537 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2538 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2540 reg->obj = obj;
2542 switch (INTEL_INFO(dev)->gen) {
2543 case 6:
2544 sandybridge_write_fence_reg(reg);
2545 break;
2546 case 5:
2547 case 4:
2548 i965_write_fence_reg(reg);
2549 break;
2550 case 3:
2551 i915_write_fence_reg(reg);
2552 break;
2553 case 2:
2554 i830_write_fence_reg(reg);
2555 break;
2558 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2559 obj_priv->tiling_mode);
2561 return 0;
2565 * i915_gem_clear_fence_reg - clear out fence register info
2566 * @obj: object to clear
2568 * Zeroes out the fence register itself and clears out the associated
2569 * data structures in dev_priv and obj_priv.
2571 static void
2572 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2574 struct drm_device *dev = obj->dev;
2575 drm_i915_private_t *dev_priv = dev->dev_private;
2576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2577 struct drm_i915_fence_reg *reg =
2578 &dev_priv->fence_regs[obj_priv->fence_reg];
2579 uint32_t fence_reg;
2581 switch (INTEL_INFO(dev)->gen) {
2582 case 6:
2583 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2584 (obj_priv->fence_reg * 8), 0);
2585 break;
2586 case 5:
2587 case 4:
2588 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2589 break;
2590 case 3:
2591 if (obj_priv->fence_reg >= 8)
2592 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2593 else
2594 case 2:
2595 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2597 I915_WRITE(fence_reg, 0);
2598 break;
2601 reg->obj = NULL;
2602 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2603 list_del_init(&reg->lru_list);
2607 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2608 * to the buffer to finish, and then resets the fence register.
2609 * @obj: tiled object holding a fence register.
2610 * @bool: whether the wait upon the fence is interruptible
2612 * Zeroes out the fence register itself and clears out the associated
2613 * data structures in dev_priv and obj_priv.
2616 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2617 bool interruptible)
2619 struct drm_device *dev = obj->dev;
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2622 struct drm_i915_fence_reg *reg;
2624 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2625 return 0;
2627 /* If we've changed tiling, GTT-mappings of the object
2628 * need to re-fault to ensure that the correct fence register
2629 * setup is in place.
2631 i915_gem_release_mmap(obj);
2633 /* On the i915, GPU access to tiled buffers is via a fence,
2634 * therefore we must wait for any outstanding access to complete
2635 * before clearing the fence.
2637 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2638 if (reg->gpu) {
2639 int ret;
2641 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2642 if (ret)
2643 return ret;
2645 ret = i915_gem_object_wait_rendering(obj, interruptible);
2646 if (ret)
2647 return ret;
2649 reg->gpu = false;
2652 i915_gem_object_flush_gtt_write_domain(obj);
2653 i915_gem_clear_fence_reg(obj);
2655 return 0;
2659 * Finds free space in the GTT aperture and binds the object there.
2661 static int
2662 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2664 struct drm_device *dev = obj->dev;
2665 drm_i915_private_t *dev_priv = dev->dev_private;
2666 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2667 struct drm_mm_node *free_space;
2668 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2669 int ret;
2671 if (obj_priv->madv != I915_MADV_WILLNEED) {
2672 DRM_ERROR("Attempting to bind a purgeable object\n");
2673 return -EINVAL;
2676 if (alignment == 0)
2677 alignment = i915_gem_get_gtt_alignment(obj);
2678 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2679 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2680 return -EINVAL;
2683 /* If the object is bigger than the entire aperture, reject it early
2684 * before evicting everything in a vain attempt to find space.
2686 if (obj->size > dev_priv->mm.gtt_total) {
2687 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2688 return -E2BIG;
2691 search_free:
2692 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2693 obj->size, alignment, 0);
2694 if (free_space != NULL) {
2695 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2696 alignment);
2697 if (obj_priv->gtt_space != NULL)
2698 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2700 if (obj_priv->gtt_space == NULL) {
2701 /* If the gtt is empty and we're still having trouble
2702 * fitting our object in, we're out of memory.
2704 ret = i915_gem_evict_something(dev, obj->size, alignment);
2705 if (ret)
2706 return ret;
2708 goto search_free;
2711 ret = i915_gem_object_get_pages(obj, gfpmask);
2712 if (ret) {
2713 drm_mm_put_block(obj_priv->gtt_space);
2714 obj_priv->gtt_space = NULL;
2716 if (ret == -ENOMEM) {
2717 /* first try to clear up some space from the GTT */
2718 ret = i915_gem_evict_something(dev, obj->size,
2719 alignment);
2720 if (ret) {
2721 /* now try to shrink everyone else */
2722 if (gfpmask) {
2723 gfpmask = 0;
2724 goto search_free;
2727 return ret;
2730 goto search_free;
2733 return ret;
2736 /* Create an AGP memory structure pointing at our pages, and bind it
2737 * into the GTT.
2739 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2740 obj_priv->pages,
2741 obj->size >> PAGE_SHIFT,
2742 obj_priv->gtt_offset,
2743 obj_priv->agp_type);
2744 if (obj_priv->agp_mem == NULL) {
2745 i915_gem_object_put_pages(obj);
2746 drm_mm_put_block(obj_priv->gtt_space);
2747 obj_priv->gtt_space = NULL;
2749 ret = i915_gem_evict_something(dev, obj->size, alignment);
2750 if (ret)
2751 return ret;
2753 goto search_free;
2756 /* keep track of bounds object by adding it to the inactive list */
2757 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2758 i915_gem_info_add_gtt(dev_priv, obj->size);
2760 /* Assert that the object is not currently in any GPU domain. As it
2761 * wasn't in the GTT, there shouldn't be any way it could have been in
2762 * a GPU cache
2764 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2765 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2767 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2769 return 0;
2772 void
2773 i915_gem_clflush_object(struct drm_gem_object *obj)
2775 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2777 /* If we don't have a page list set up, then we're not pinned
2778 * to GPU, and we can ignore the cache flush because it'll happen
2779 * again at bind time.
2781 if (obj_priv->pages == NULL)
2782 return;
2784 trace_i915_gem_object_clflush(obj);
2786 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2789 /** Flushes any GPU write domain for the object if it's dirty. */
2790 static int
2791 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2792 bool pipelined)
2794 struct drm_device *dev = obj->dev;
2795 uint32_t old_write_domain;
2797 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2798 return 0;
2800 /* Queue the GPU write cache flushing we need. */
2801 old_write_domain = obj->write_domain;
2802 i915_gem_flush_ring(dev, NULL,
2803 to_intel_bo(obj)->ring,
2804 0, obj->write_domain);
2805 BUG_ON(obj->write_domain);
2807 trace_i915_gem_object_change_domain(obj,
2808 obj->read_domains,
2809 old_write_domain);
2811 if (pipelined)
2812 return 0;
2814 return i915_gem_object_wait_rendering(obj, true);
2817 /** Flushes the GTT write domain for the object if it's dirty. */
2818 static void
2819 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2821 uint32_t old_write_domain;
2823 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2824 return;
2826 /* No actual flushing is required for the GTT write domain. Writes
2827 * to it immediately go to main memory as far as we know, so there's
2828 * no chipset flush. It also doesn't land in render cache.
2830 old_write_domain = obj->write_domain;
2831 obj->write_domain = 0;
2833 trace_i915_gem_object_change_domain(obj,
2834 obj->read_domains,
2835 old_write_domain);
2838 /** Flushes the CPU write domain for the object if it's dirty. */
2839 static void
2840 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2842 struct drm_device *dev = obj->dev;
2843 uint32_t old_write_domain;
2845 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2846 return;
2848 i915_gem_clflush_object(obj);
2849 drm_agp_chipset_flush(dev);
2850 old_write_domain = obj->write_domain;
2851 obj->write_domain = 0;
2853 trace_i915_gem_object_change_domain(obj,
2854 obj->read_domains,
2855 old_write_domain);
2859 * Moves a single object to the GTT read, and possibly write domain.
2861 * This function returns when the move is complete, including waiting on
2862 * flushes to occur.
2865 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2867 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2868 uint32_t old_write_domain, old_read_domains;
2869 int ret;
2871 /* Not valid to be called on unbound objects. */
2872 if (obj_priv->gtt_space == NULL)
2873 return -EINVAL;
2875 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2876 if (ret != 0)
2877 return ret;
2879 i915_gem_object_flush_cpu_write_domain(obj);
2881 if (write) {
2882 ret = i915_gem_object_wait_rendering(obj, true);
2883 if (ret)
2884 return ret;
2887 old_write_domain = obj->write_domain;
2888 old_read_domains = obj->read_domains;
2890 /* It should now be out of any other write domains, and we can update
2891 * the domain values for our changes.
2893 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2894 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2895 if (write) {
2896 obj->read_domains = I915_GEM_DOMAIN_GTT;
2897 obj->write_domain = I915_GEM_DOMAIN_GTT;
2898 obj_priv->dirty = 1;
2901 trace_i915_gem_object_change_domain(obj,
2902 old_read_domains,
2903 old_write_domain);
2905 return 0;
2909 * Prepare buffer for display plane. Use uninterruptible for possible flush
2910 * wait, as in modesetting process we're not supposed to be interrupted.
2913 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2914 bool pipelined)
2916 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2917 uint32_t old_read_domains;
2918 int ret;
2920 /* Not valid to be called on unbound objects. */
2921 if (obj_priv->gtt_space == NULL)
2922 return -EINVAL;
2924 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2925 if (ret)
2926 return ret;
2928 /* Currently, we are always called from an non-interruptible context. */
2929 if (!pipelined) {
2930 ret = i915_gem_object_wait_rendering(obj, false);
2931 if (ret)
2932 return ret;
2935 i915_gem_object_flush_cpu_write_domain(obj);
2937 old_read_domains = obj->read_domains;
2938 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2940 trace_i915_gem_object_change_domain(obj,
2941 old_read_domains,
2942 obj->write_domain);
2944 return 0;
2948 * Moves a single object to the CPU read, and possibly write domain.
2950 * This function returns when the move is complete, including waiting on
2951 * flushes to occur.
2953 static int
2954 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2956 uint32_t old_write_domain, old_read_domains;
2957 int ret;
2959 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2960 if (ret != 0)
2961 return ret;
2963 i915_gem_object_flush_gtt_write_domain(obj);
2965 /* If we have a partially-valid cache of the object in the CPU,
2966 * finish invalidating it and free the per-page flags.
2968 i915_gem_object_set_to_full_cpu_read_domain(obj);
2970 if (write) {
2971 ret = i915_gem_object_wait_rendering(obj, true);
2972 if (ret)
2973 return ret;
2976 old_write_domain = obj->write_domain;
2977 old_read_domains = obj->read_domains;
2979 /* Flush the CPU cache if it's still invalid. */
2980 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2981 i915_gem_clflush_object(obj);
2983 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2986 /* It should now be out of any other write domains, and we can update
2987 * the domain values for our changes.
2989 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2991 /* If we're writing through the CPU, then the GPU read domains will
2992 * need to be invalidated at next use.
2994 if (write) {
2995 obj->read_domains = I915_GEM_DOMAIN_CPU;
2996 obj->write_domain = I915_GEM_DOMAIN_CPU;
2999 trace_i915_gem_object_change_domain(obj,
3000 old_read_domains,
3001 old_write_domain);
3003 return 0;
3007 * Set the next domain for the specified object. This
3008 * may not actually perform the necessary flushing/invaliding though,
3009 * as that may want to be batched with other set_domain operations
3011 * This is (we hope) the only really tricky part of gem. The goal
3012 * is fairly simple -- track which caches hold bits of the object
3013 * and make sure they remain coherent. A few concrete examples may
3014 * help to explain how it works. For shorthand, we use the notation
3015 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3016 * a pair of read and write domain masks.
3018 * Case 1: the batch buffer
3020 * 1. Allocated
3021 * 2. Written by CPU
3022 * 3. Mapped to GTT
3023 * 4. Read by GPU
3024 * 5. Unmapped from GTT
3025 * 6. Freed
3027 * Let's take these a step at a time
3029 * 1. Allocated
3030 * Pages allocated from the kernel may still have
3031 * cache contents, so we set them to (CPU, CPU) always.
3032 * 2. Written by CPU (using pwrite)
3033 * The pwrite function calls set_domain (CPU, CPU) and
3034 * this function does nothing (as nothing changes)
3035 * 3. Mapped by GTT
3036 * This function asserts that the object is not
3037 * currently in any GPU-based read or write domains
3038 * 4. Read by GPU
3039 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3040 * As write_domain is zero, this function adds in the
3041 * current read domains (CPU+COMMAND, 0).
3042 * flush_domains is set to CPU.
3043 * invalidate_domains is set to COMMAND
3044 * clflush is run to get data out of the CPU caches
3045 * then i915_dev_set_domain calls i915_gem_flush to
3046 * emit an MI_FLUSH and drm_agp_chipset_flush
3047 * 5. Unmapped from GTT
3048 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3049 * flush_domains and invalidate_domains end up both zero
3050 * so no flushing/invalidating happens
3051 * 6. Freed
3052 * yay, done
3054 * Case 2: The shared render buffer
3056 * 1. Allocated
3057 * 2. Mapped to GTT
3058 * 3. Read/written by GPU
3059 * 4. set_domain to (CPU,CPU)
3060 * 5. Read/written by CPU
3061 * 6. Read/written by GPU
3063 * 1. Allocated
3064 * Same as last example, (CPU, CPU)
3065 * 2. Mapped to GTT
3066 * Nothing changes (assertions find that it is not in the GPU)
3067 * 3. Read/written by GPU
3068 * execbuffer calls set_domain (RENDER, RENDER)
3069 * flush_domains gets CPU
3070 * invalidate_domains gets GPU
3071 * clflush (obj)
3072 * MI_FLUSH and drm_agp_chipset_flush
3073 * 4. set_domain (CPU, CPU)
3074 * flush_domains gets GPU
3075 * invalidate_domains gets CPU
3076 * wait_rendering (obj) to make sure all drawing is complete.
3077 * This will include an MI_FLUSH to get the data from GPU
3078 * to memory
3079 * clflush (obj) to invalidate the CPU cache
3080 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3081 * 5. Read/written by CPU
3082 * cache lines are loaded and dirtied
3083 * 6. Read written by GPU
3084 * Same as last GPU access
3086 * Case 3: The constant buffer
3088 * 1. Allocated
3089 * 2. Written by CPU
3090 * 3. Read by GPU
3091 * 4. Updated (written) by CPU again
3092 * 5. Read by GPU
3094 * 1. Allocated
3095 * (CPU, CPU)
3096 * 2. Written by CPU
3097 * (CPU, CPU)
3098 * 3. Read by GPU
3099 * (CPU+RENDER, 0)
3100 * flush_domains = CPU
3101 * invalidate_domains = RENDER
3102 * clflush (obj)
3103 * MI_FLUSH
3104 * drm_agp_chipset_flush
3105 * 4. Updated (written) by CPU again
3106 * (CPU, CPU)
3107 * flush_domains = 0 (no previous write domain)
3108 * invalidate_domains = 0 (no new read domains)
3109 * 5. Read by GPU
3110 * (CPU+RENDER, 0)
3111 * flush_domains = CPU
3112 * invalidate_domains = RENDER
3113 * clflush (obj)
3114 * MI_FLUSH
3115 * drm_agp_chipset_flush
3117 static void
3118 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3120 struct drm_device *dev = obj->dev;
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3123 uint32_t invalidate_domains = 0;
3124 uint32_t flush_domains = 0;
3125 uint32_t old_read_domains;
3127 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3128 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3130 intel_mark_busy(dev, obj);
3133 * If the object isn't moving to a new write domain,
3134 * let the object stay in multiple read domains
3136 if (obj->pending_write_domain == 0)
3137 obj->pending_read_domains |= obj->read_domains;
3138 else
3139 obj_priv->dirty = 1;
3142 * Flush the current write domain if
3143 * the new read domains don't match. Invalidate
3144 * any read domains which differ from the old
3145 * write domain
3147 if (obj->write_domain &&
3148 obj->write_domain != obj->pending_read_domains) {
3149 flush_domains |= obj->write_domain;
3150 invalidate_domains |=
3151 obj->pending_read_domains & ~obj->write_domain;
3154 * Invalidate any read caches which may have
3155 * stale data. That is, any new read domains.
3157 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3158 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3159 i915_gem_clflush_object(obj);
3161 old_read_domains = obj->read_domains;
3163 /* The actual obj->write_domain will be updated with
3164 * pending_write_domain after we emit the accumulated flush for all
3165 * of our domain changes in execbuffers (which clears objects'
3166 * write_domains). So if we have a current write domain that we
3167 * aren't changing, set pending_write_domain to that.
3169 if (flush_domains == 0 && obj->pending_write_domain == 0)
3170 obj->pending_write_domain = obj->write_domain;
3171 obj->read_domains = obj->pending_read_domains;
3173 dev->invalidate_domains |= invalidate_domains;
3174 dev->flush_domains |= flush_domains;
3175 if (obj_priv->ring)
3176 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3178 trace_i915_gem_object_change_domain(obj,
3179 old_read_domains,
3180 obj->write_domain);
3184 * Moves the object from a partially CPU read to a full one.
3186 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3187 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3189 static void
3190 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3192 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3194 if (!obj_priv->page_cpu_valid)
3195 return;
3197 /* If we're partially in the CPU read domain, finish moving it in.
3199 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3200 int i;
3202 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3203 if (obj_priv->page_cpu_valid[i])
3204 continue;
3205 drm_clflush_pages(obj_priv->pages + i, 1);
3209 /* Free the page_cpu_valid mappings which are now stale, whether
3210 * or not we've got I915_GEM_DOMAIN_CPU.
3212 kfree(obj_priv->page_cpu_valid);
3213 obj_priv->page_cpu_valid = NULL;
3217 * Set the CPU read domain on a range of the object.
3219 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3220 * not entirely valid. The page_cpu_valid member of the object flags which
3221 * pages have been flushed, and will be respected by
3222 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3223 * of the whole object.
3225 * This function returns when the move is complete, including waiting on
3226 * flushes to occur.
3228 static int
3229 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3230 uint64_t offset, uint64_t size)
3232 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3233 uint32_t old_read_domains;
3234 int i, ret;
3236 if (offset == 0 && size == obj->size)
3237 return i915_gem_object_set_to_cpu_domain(obj, 0);
3239 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3240 if (ret != 0)
3241 return ret;
3242 i915_gem_object_flush_gtt_write_domain(obj);
3244 /* If we're already fully in the CPU read domain, we're done. */
3245 if (obj_priv->page_cpu_valid == NULL &&
3246 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3247 return 0;
3249 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3250 * newly adding I915_GEM_DOMAIN_CPU
3252 if (obj_priv->page_cpu_valid == NULL) {
3253 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3254 GFP_KERNEL);
3255 if (obj_priv->page_cpu_valid == NULL)
3256 return -ENOMEM;
3257 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3258 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3260 /* Flush the cache on any pages that are still invalid from the CPU's
3261 * perspective.
3263 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3264 i++) {
3265 if (obj_priv->page_cpu_valid[i])
3266 continue;
3268 drm_clflush_pages(obj_priv->pages + i, 1);
3270 obj_priv->page_cpu_valid[i] = 1;
3273 /* It should now be out of any other write domains, and we can update
3274 * the domain values for our changes.
3276 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3278 old_read_domains = obj->read_domains;
3279 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3281 trace_i915_gem_object_change_domain(obj,
3282 old_read_domains,
3283 obj->write_domain);
3285 return 0;
3289 * Pin an object to the GTT and evaluate the relocations landing in it.
3291 static int
3292 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3293 struct drm_file *file_priv,
3294 struct drm_i915_gem_exec_object2 *entry)
3296 struct drm_device *dev = obj->dev;
3297 drm_i915_private_t *dev_priv = dev->dev_private;
3298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3299 struct drm_i915_gem_relocation_entry __user *user_relocs;
3300 int i, ret;
3301 void __iomem *reloc_page;
3302 bool need_fence;
3304 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3305 obj_priv->tiling_mode != I915_TILING_NONE;
3307 /* Check fence reg constraints and rebind if necessary */
3308 if (need_fence &&
3309 !i915_gem_object_fence_offset_ok(obj,
3310 obj_priv->tiling_mode)) {
3311 ret = i915_gem_object_unbind(obj);
3312 if (ret)
3313 return ret;
3316 /* Choose the GTT offset for our buffer and put it there. */
3317 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3318 if (ret)
3319 return ret;
3322 * Pre-965 chips need a fence register set up in order to
3323 * properly handle blits to/from tiled surfaces.
3325 if (need_fence) {
3326 ret = i915_gem_object_get_fence_reg(obj, true);
3327 if (ret != 0) {
3328 i915_gem_object_unpin(obj);
3329 return ret;
3332 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3335 entry->offset = obj_priv->gtt_offset;
3337 /* Apply the relocations, using the GTT aperture to avoid cache
3338 * flushing requirements.
3340 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3341 for (i = 0; i < entry->relocation_count; i++) {
3342 struct drm_i915_gem_relocation_entry reloc;
3343 struct drm_gem_object *target_obj;
3344 struct drm_i915_gem_object *target_obj_priv;
3345 uint32_t reloc_val, reloc_offset;
3346 uint32_t __iomem *reloc_entry;
3348 ret = __copy_from_user_inatomic(&reloc,
3349 user_relocs+i,
3350 sizeof(reloc));
3351 if (ret) {
3352 i915_gem_object_unpin(obj);
3353 return -EFAULT;
3356 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3357 reloc.target_handle);
3358 if (target_obj == NULL) {
3359 i915_gem_object_unpin(obj);
3360 return -ENOENT;
3362 target_obj_priv = to_intel_bo(target_obj);
3364 #if WATCH_RELOC
3365 DRM_INFO("%s: obj %p offset %08x target %d "
3366 "read %08x write %08x gtt %08x "
3367 "presumed %08x delta %08x\n",
3368 __func__,
3369 obj,
3370 (int) reloc.offset,
3371 (int) reloc.target_handle,
3372 (int) reloc.read_domains,
3373 (int) reloc.write_domain,
3374 (int) target_obj_priv->gtt_offset,
3375 (int) reloc.presumed_offset,
3376 reloc.delta);
3377 #endif
3379 /* The target buffer should have appeared before us in the
3380 * exec_object list, so it should have a GTT space bound by now.
3382 if (target_obj_priv->gtt_space == NULL) {
3383 DRM_ERROR("No GTT space found for object %d\n",
3384 reloc.target_handle);
3385 drm_gem_object_unreference(target_obj);
3386 i915_gem_object_unpin(obj);
3387 return -EINVAL;
3390 /* Validate that the target is in a valid r/w GPU domain */
3391 if (reloc.write_domain & (reloc.write_domain - 1)) {
3392 DRM_ERROR("reloc with multiple write domains: "
3393 "obj %p target %d offset %d "
3394 "read %08x write %08x",
3395 obj, reloc.target_handle,
3396 (int) reloc.offset,
3397 reloc.read_domains,
3398 reloc.write_domain);
3399 drm_gem_object_unreference(target_obj);
3400 i915_gem_object_unpin(obj);
3401 return -EINVAL;
3403 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3404 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3405 DRM_ERROR("reloc with read/write CPU domains: "
3406 "obj %p target %d offset %d "
3407 "read %08x write %08x",
3408 obj, reloc.target_handle,
3409 (int) reloc.offset,
3410 reloc.read_domains,
3411 reloc.write_domain);
3412 drm_gem_object_unreference(target_obj);
3413 i915_gem_object_unpin(obj);
3414 return -EINVAL;
3416 if (reloc.write_domain && target_obj->pending_write_domain &&
3417 reloc.write_domain != target_obj->pending_write_domain) {
3418 DRM_ERROR("Write domain conflict: "
3419 "obj %p target %d offset %d "
3420 "new %08x old %08x\n",
3421 obj, reloc.target_handle,
3422 (int) reloc.offset,
3423 reloc.write_domain,
3424 target_obj->pending_write_domain);
3425 drm_gem_object_unreference(target_obj);
3426 i915_gem_object_unpin(obj);
3427 return -EINVAL;
3430 target_obj->pending_read_domains |= reloc.read_domains;
3431 target_obj->pending_write_domain |= reloc.write_domain;
3433 /* If the relocation already has the right value in it, no
3434 * more work needs to be done.
3436 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3437 drm_gem_object_unreference(target_obj);
3438 continue;
3441 /* Check that the relocation address is valid... */
3442 if (reloc.offset > obj->size - 4) {
3443 DRM_ERROR("Relocation beyond object bounds: "
3444 "obj %p target %d offset %d size %d.\n",
3445 obj, reloc.target_handle,
3446 (int) reloc.offset, (int) obj->size);
3447 drm_gem_object_unreference(target_obj);
3448 i915_gem_object_unpin(obj);
3449 return -EINVAL;
3451 if (reloc.offset & 3) {
3452 DRM_ERROR("Relocation not 4-byte aligned: "
3453 "obj %p target %d offset %d.\n",
3454 obj, reloc.target_handle,
3455 (int) reloc.offset);
3456 drm_gem_object_unreference(target_obj);
3457 i915_gem_object_unpin(obj);
3458 return -EINVAL;
3461 /* and points to somewhere within the target object. */
3462 if (reloc.delta >= target_obj->size) {
3463 DRM_ERROR("Relocation beyond target object bounds: "
3464 "obj %p target %d delta %d size %d.\n",
3465 obj, reloc.target_handle,
3466 (int) reloc.delta, (int) target_obj->size);
3467 drm_gem_object_unreference(target_obj);
3468 i915_gem_object_unpin(obj);
3469 return -EINVAL;
3472 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3473 if (ret != 0) {
3474 drm_gem_object_unreference(target_obj);
3475 i915_gem_object_unpin(obj);
3476 return ret;
3479 /* Map the page containing the relocation we're going to
3480 * perform.
3482 reloc_offset = obj_priv->gtt_offset + reloc.offset;
3483 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3484 (reloc_offset &
3485 ~(PAGE_SIZE - 1)),
3486 KM_USER0);
3487 reloc_entry = (uint32_t __iomem *)(reloc_page +
3488 (reloc_offset & (PAGE_SIZE - 1)));
3489 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
3491 writel(reloc_val, reloc_entry);
3492 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3494 drm_gem_object_unreference(target_obj);
3497 return 0;
3500 /* Throttle our rendering by waiting until the ring has completed our requests
3501 * emitted over 20 msec ago.
3503 * Note that if we were to use the current jiffies each time around the loop,
3504 * we wouldn't escape the function with any frames outstanding if the time to
3505 * render a frame was over 20ms.
3507 * This should get us reasonable parallelism between CPU and GPU but also
3508 * relatively low latency when blocking on a particular request to finish.
3510 static int
3511 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 struct drm_i915_file_private *file_priv = file->driver_priv;
3515 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3516 struct drm_i915_gem_request *request;
3517 struct intel_ring_buffer *ring = NULL;
3518 u32 seqno = 0;
3519 int ret;
3521 spin_lock(&file_priv->mm.lock);
3522 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3523 if (time_after_eq(request->emitted_jiffies, recent_enough))
3524 break;
3526 ring = request->ring;
3527 seqno = request->seqno;
3529 spin_unlock(&file_priv->mm.lock);
3531 if (seqno == 0)
3532 return 0;
3534 ret = 0;
3535 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3536 /* And wait for the seqno passing without holding any locks and
3537 * causing extra latency for others. This is safe as the irq
3538 * generation is designed to be run atomically and so is
3539 * lockless.
3541 ring->user_irq_get(dev, ring);
3542 ret = wait_event_interruptible(ring->irq_queue,
3543 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3544 || atomic_read(&dev_priv->mm.wedged));
3545 ring->user_irq_put(dev, ring);
3547 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3548 ret = -EIO;
3551 if (ret == 0)
3552 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3554 return ret;
3557 static int
3558 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3559 uint64_t exec_offset)
3561 uint32_t exec_start, exec_len;
3563 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3564 exec_len = (uint32_t) exec->batch_len;
3566 if ((exec_start | exec_len) & 0x7)
3567 return -EINVAL;
3569 if (!exec_start)
3570 return -EINVAL;
3572 return 0;
3575 static int
3576 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3577 int count)
3579 int i;
3581 for (i = 0; i < count; i++) {
3582 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3583 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3585 if (!access_ok(VERIFY_READ, ptr, length))
3586 return -EFAULT;
3588 if (fault_in_pages_readable(ptr, length))
3589 return -EFAULT;
3592 return 0;
3595 static int
3596 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3597 struct drm_file *file_priv,
3598 struct drm_i915_gem_execbuffer2 *args,
3599 struct drm_i915_gem_exec_object2 *exec_list)
3601 drm_i915_private_t *dev_priv = dev->dev_private;
3602 struct drm_gem_object **object_list = NULL;
3603 struct drm_gem_object *batch_obj;
3604 struct drm_i915_gem_object *obj_priv;
3605 struct drm_clip_rect *cliprects = NULL;
3606 struct drm_i915_gem_request *request = NULL;
3607 int ret, i, pinned = 0;
3608 uint64_t exec_offset;
3609 int pin_tries, flips;
3611 struct intel_ring_buffer *ring = NULL;
3613 ret = i915_gem_check_is_wedged(dev);
3614 if (ret)
3615 return ret;
3617 ret = validate_exec_list(exec_list, args->buffer_count);
3618 if (ret)
3619 return ret;
3621 #if WATCH_EXEC
3622 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3623 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3624 #endif
3625 if (args->flags & I915_EXEC_BSD) {
3626 if (!HAS_BSD(dev)) {
3627 DRM_ERROR("execbuf with wrong flag\n");
3628 return -EINVAL;
3630 ring = &dev_priv->bsd_ring;
3631 } else {
3632 ring = &dev_priv->render_ring;
3635 if (args->buffer_count < 1) {
3636 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3637 return -EINVAL;
3639 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3640 if (object_list == NULL) {
3641 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3642 args->buffer_count);
3643 ret = -ENOMEM;
3644 goto pre_mutex_err;
3647 if (args->num_cliprects != 0) {
3648 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3649 GFP_KERNEL);
3650 if (cliprects == NULL) {
3651 ret = -ENOMEM;
3652 goto pre_mutex_err;
3655 ret = copy_from_user(cliprects,
3656 (struct drm_clip_rect __user *)
3657 (uintptr_t) args->cliprects_ptr,
3658 sizeof(*cliprects) * args->num_cliprects);
3659 if (ret != 0) {
3660 DRM_ERROR("copy %d cliprects failed: %d\n",
3661 args->num_cliprects, ret);
3662 ret = -EFAULT;
3663 goto pre_mutex_err;
3667 request = kzalloc(sizeof(*request), GFP_KERNEL);
3668 if (request == NULL) {
3669 ret = -ENOMEM;
3670 goto pre_mutex_err;
3673 ret = i915_mutex_lock_interruptible(dev);
3674 if (ret)
3675 goto pre_mutex_err;
3677 if (dev_priv->mm.suspended) {
3678 mutex_unlock(&dev->struct_mutex);
3679 ret = -EBUSY;
3680 goto pre_mutex_err;
3683 /* Look up object handles */
3684 for (i = 0; i < args->buffer_count; i++) {
3685 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3686 exec_list[i].handle);
3687 if (object_list[i] == NULL) {
3688 DRM_ERROR("Invalid object handle %d at index %d\n",
3689 exec_list[i].handle, i);
3690 /* prevent error path from reading uninitialized data */
3691 args->buffer_count = i + 1;
3692 ret = -ENOENT;
3693 goto err;
3696 obj_priv = to_intel_bo(object_list[i]);
3697 if (obj_priv->in_execbuffer) {
3698 DRM_ERROR("Object %p appears more than once in object list\n",
3699 object_list[i]);
3700 /* prevent error path from reading uninitialized data */
3701 args->buffer_count = i + 1;
3702 ret = -EINVAL;
3703 goto err;
3705 obj_priv->in_execbuffer = true;
3708 /* Pin and relocate */
3709 for (pin_tries = 0; ; pin_tries++) {
3710 ret = 0;
3712 for (i = 0; i < args->buffer_count; i++) {
3713 object_list[i]->pending_read_domains = 0;
3714 object_list[i]->pending_write_domain = 0;
3715 ret = i915_gem_object_pin_and_relocate(object_list[i],
3716 file_priv,
3717 &exec_list[i]);
3718 if (ret)
3719 break;
3720 pinned = i + 1;
3722 /* success */
3723 if (ret == 0)
3724 break;
3726 /* error other than GTT full, or we've already tried again */
3727 if (ret != -ENOSPC || pin_tries >= 1) {
3728 if (ret != -ERESTARTSYS) {
3729 unsigned long long total_size = 0;
3730 int num_fences = 0;
3731 for (i = 0; i < args->buffer_count; i++) {
3732 obj_priv = to_intel_bo(object_list[i]);
3734 total_size += object_list[i]->size;
3735 num_fences +=
3736 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3737 obj_priv->tiling_mode != I915_TILING_NONE;
3739 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3740 pinned+1, args->buffer_count,
3741 total_size, num_fences,
3742 ret);
3743 DRM_ERROR("%u objects [%u pinned, %u GTT], "
3744 "%zu object bytes [%zu pinned], "
3745 "%zu /%zu gtt bytes\n",
3746 dev_priv->mm.object_count,
3747 dev_priv->mm.pin_count,
3748 dev_priv->mm.gtt_count,
3749 dev_priv->mm.object_memory,
3750 dev_priv->mm.pin_memory,
3751 dev_priv->mm.gtt_memory,
3752 dev_priv->mm.gtt_total);
3754 goto err;
3757 /* unpin all of our buffers */
3758 for (i = 0; i < pinned; i++)
3759 i915_gem_object_unpin(object_list[i]);
3760 pinned = 0;
3762 /* evict everyone we can from the aperture */
3763 ret = i915_gem_evict_everything(dev);
3764 if (ret && ret != -ENOSPC)
3765 goto err;
3768 /* Set the pending read domains for the batch buffer to COMMAND */
3769 batch_obj = object_list[args->buffer_count-1];
3770 if (batch_obj->pending_write_domain) {
3771 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3772 ret = -EINVAL;
3773 goto err;
3775 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3777 /* Sanity check the batch buffer, prior to moving objects */
3778 exec_offset = exec_list[args->buffer_count - 1].offset;
3779 ret = i915_gem_check_execbuffer (args, exec_offset);
3780 if (ret != 0) {
3781 DRM_ERROR("execbuf with invalid offset/length\n");
3782 goto err;
3785 /* Zero the global flush/invalidate flags. These
3786 * will be modified as new domains are computed
3787 * for each object
3789 dev->invalidate_domains = 0;
3790 dev->flush_domains = 0;
3791 dev_priv->mm.flush_rings = 0;
3793 for (i = 0; i < args->buffer_count; i++) {
3794 struct drm_gem_object *obj = object_list[i];
3796 /* Compute new gpu domains and update invalidate/flush */
3797 i915_gem_object_set_to_gpu_domain(obj);
3800 if (dev->invalidate_domains | dev->flush_domains) {
3801 #if WATCH_EXEC
3802 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3803 __func__,
3804 dev->invalidate_domains,
3805 dev->flush_domains);
3806 #endif
3807 i915_gem_flush(dev, file_priv,
3808 dev->invalidate_domains,
3809 dev->flush_domains,
3810 dev_priv->mm.flush_rings);
3813 for (i = 0; i < args->buffer_count; i++) {
3814 struct drm_gem_object *obj = object_list[i];
3815 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3816 uint32_t old_write_domain = obj->write_domain;
3818 obj->write_domain = obj->pending_write_domain;
3819 if (obj->write_domain)
3820 list_move_tail(&obj_priv->gpu_write_list,
3821 &dev_priv->mm.gpu_write_list);
3823 trace_i915_gem_object_change_domain(obj,
3824 obj->read_domains,
3825 old_write_domain);
3828 #if WATCH_COHERENCY
3829 for (i = 0; i < args->buffer_count; i++) {
3830 i915_gem_object_check_coherency(object_list[i],
3831 exec_list[i].handle);
3833 #endif
3835 #if WATCH_EXEC
3836 i915_gem_dump_object(batch_obj,
3837 args->batch_len,
3838 __func__,
3839 ~0);
3840 #endif
3842 /* Check for any pending flips. As we only maintain a flip queue depth
3843 * of 1, we can simply insert a WAIT for the next display flip prior
3844 * to executing the batch and avoid stalling the CPU.
3846 flips = 0;
3847 for (i = 0; i < args->buffer_count; i++) {
3848 if (object_list[i]->write_domain)
3849 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3851 if (flips) {
3852 int plane, flip_mask;
3854 for (plane = 0; flips >> plane; plane++) {
3855 if (((flips >> plane) & 1) == 0)
3856 continue;
3858 if (plane)
3859 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3860 else
3861 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3863 intel_ring_begin(dev, ring, 2);
3864 intel_ring_emit(dev, ring,
3865 MI_WAIT_FOR_EVENT | flip_mask);
3866 intel_ring_emit(dev, ring, MI_NOOP);
3867 intel_ring_advance(dev, ring);
3871 /* Exec the batchbuffer */
3872 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3873 cliprects, exec_offset);
3874 if (ret) {
3875 DRM_ERROR("dispatch failed %d\n", ret);
3876 goto err;
3880 * Ensure that the commands in the batch buffer are
3881 * finished before the interrupt fires
3883 i915_retire_commands(dev, ring);
3885 for (i = 0; i < args->buffer_count; i++) {
3886 struct drm_gem_object *obj = object_list[i];
3887 obj_priv = to_intel_bo(obj);
3889 i915_gem_object_move_to_active(obj, ring);
3892 i915_add_request(dev, file_priv, request, ring);
3893 request = NULL;
3895 err:
3896 for (i = 0; i < pinned; i++)
3897 i915_gem_object_unpin(object_list[i]);
3899 for (i = 0; i < args->buffer_count; i++) {
3900 if (object_list[i]) {
3901 obj_priv = to_intel_bo(object_list[i]);
3902 obj_priv->in_execbuffer = false;
3904 drm_gem_object_unreference(object_list[i]);
3907 mutex_unlock(&dev->struct_mutex);
3909 pre_mutex_err:
3910 drm_free_large(object_list);
3911 kfree(cliprects);
3912 kfree(request);
3914 return ret;
3918 * Legacy execbuffer just creates an exec2 list from the original exec object
3919 * list array and passes it to the real function.
3922 i915_gem_execbuffer(struct drm_device *dev, void *data,
3923 struct drm_file *file_priv)
3925 struct drm_i915_gem_execbuffer *args = data;
3926 struct drm_i915_gem_execbuffer2 exec2;
3927 struct drm_i915_gem_exec_object *exec_list = NULL;
3928 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3929 int ret, i;
3931 #if WATCH_EXEC
3932 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3933 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3934 #endif
3936 if (args->buffer_count < 1) {
3937 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3938 return -EINVAL;
3941 /* Copy in the exec list from userland */
3942 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3943 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3944 if (exec_list == NULL || exec2_list == NULL) {
3945 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3946 args->buffer_count);
3947 drm_free_large(exec_list);
3948 drm_free_large(exec2_list);
3949 return -ENOMEM;
3951 ret = copy_from_user(exec_list,
3952 (struct drm_i915_relocation_entry __user *)
3953 (uintptr_t) args->buffers_ptr,
3954 sizeof(*exec_list) * args->buffer_count);
3955 if (ret != 0) {
3956 DRM_ERROR("copy %d exec entries failed %d\n",
3957 args->buffer_count, ret);
3958 drm_free_large(exec_list);
3959 drm_free_large(exec2_list);
3960 return -EFAULT;
3963 for (i = 0; i < args->buffer_count; i++) {
3964 exec2_list[i].handle = exec_list[i].handle;
3965 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3966 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3967 exec2_list[i].alignment = exec_list[i].alignment;
3968 exec2_list[i].offset = exec_list[i].offset;
3969 if (INTEL_INFO(dev)->gen < 4)
3970 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3971 else
3972 exec2_list[i].flags = 0;
3975 exec2.buffers_ptr = args->buffers_ptr;
3976 exec2.buffer_count = args->buffer_count;
3977 exec2.batch_start_offset = args->batch_start_offset;
3978 exec2.batch_len = args->batch_len;
3979 exec2.DR1 = args->DR1;
3980 exec2.DR4 = args->DR4;
3981 exec2.num_cliprects = args->num_cliprects;
3982 exec2.cliprects_ptr = args->cliprects_ptr;
3983 exec2.flags = I915_EXEC_RENDER;
3985 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3986 if (!ret) {
3987 /* Copy the new buffer offsets back to the user's exec list. */
3988 for (i = 0; i < args->buffer_count; i++)
3989 exec_list[i].offset = exec2_list[i].offset;
3990 /* ... and back out to userspace */
3991 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3992 (uintptr_t) args->buffers_ptr,
3993 exec_list,
3994 sizeof(*exec_list) * args->buffer_count);
3995 if (ret) {
3996 ret = -EFAULT;
3997 DRM_ERROR("failed to copy %d exec entries "
3998 "back to user (%d)\n",
3999 args->buffer_count, ret);
4003 drm_free_large(exec_list);
4004 drm_free_large(exec2_list);
4005 return ret;
4009 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4010 struct drm_file *file_priv)
4012 struct drm_i915_gem_execbuffer2 *args = data;
4013 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4014 int ret;
4016 #if WATCH_EXEC
4017 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4018 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4019 #endif
4021 if (args->buffer_count < 1) {
4022 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4023 return -EINVAL;
4026 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4027 if (exec2_list == NULL) {
4028 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4029 args->buffer_count);
4030 return -ENOMEM;
4032 ret = copy_from_user(exec2_list,
4033 (struct drm_i915_relocation_entry __user *)
4034 (uintptr_t) args->buffers_ptr,
4035 sizeof(*exec2_list) * args->buffer_count);
4036 if (ret != 0) {
4037 DRM_ERROR("copy %d exec entries failed %d\n",
4038 args->buffer_count, ret);
4039 drm_free_large(exec2_list);
4040 return -EFAULT;
4043 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4044 if (!ret) {
4045 /* Copy the new buffer offsets back to the user's exec list. */
4046 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4047 (uintptr_t) args->buffers_ptr,
4048 exec2_list,
4049 sizeof(*exec2_list) * args->buffer_count);
4050 if (ret) {
4051 ret = -EFAULT;
4052 DRM_ERROR("failed to copy %d exec entries "
4053 "back to user (%d)\n",
4054 args->buffer_count, ret);
4058 drm_free_large(exec2_list);
4059 return ret;
4063 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4065 struct drm_device *dev = obj->dev;
4066 struct drm_i915_private *dev_priv = dev->dev_private;
4067 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4068 int ret;
4070 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4071 WARN_ON(i915_verify_lists(dev));
4073 if (obj_priv->gtt_space != NULL) {
4074 if (alignment == 0)
4075 alignment = i915_gem_get_gtt_alignment(obj);
4076 if (obj_priv->gtt_offset & (alignment - 1)) {
4077 WARN(obj_priv->pin_count,
4078 "bo is already pinned with incorrect alignment:"
4079 " offset=%x, req.alignment=%x\n",
4080 obj_priv->gtt_offset, alignment);
4081 ret = i915_gem_object_unbind(obj);
4082 if (ret)
4083 return ret;
4087 if (obj_priv->gtt_space == NULL) {
4088 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4089 if (ret)
4090 return ret;
4093 obj_priv->pin_count++;
4095 /* If the object is not active and not pending a flush,
4096 * remove it from the inactive list
4098 if (obj_priv->pin_count == 1) {
4099 i915_gem_info_add_pin(dev_priv, obj->size);
4100 if (!obj_priv->active)
4101 list_move_tail(&obj_priv->list,
4102 &dev_priv->mm.pinned_list);
4105 WARN_ON(i915_verify_lists(dev));
4106 return 0;
4109 void
4110 i915_gem_object_unpin(struct drm_gem_object *obj)
4112 struct drm_device *dev = obj->dev;
4113 drm_i915_private_t *dev_priv = dev->dev_private;
4114 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4116 WARN_ON(i915_verify_lists(dev));
4117 obj_priv->pin_count--;
4118 BUG_ON(obj_priv->pin_count < 0);
4119 BUG_ON(obj_priv->gtt_space == NULL);
4121 /* If the object is no longer pinned, and is
4122 * neither active nor being flushed, then stick it on
4123 * the inactive list
4125 if (obj_priv->pin_count == 0) {
4126 if (!obj_priv->active)
4127 list_move_tail(&obj_priv->list,
4128 &dev_priv->mm.inactive_list);
4129 i915_gem_info_remove_pin(dev_priv, obj->size);
4131 WARN_ON(i915_verify_lists(dev));
4135 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4136 struct drm_file *file_priv)
4138 struct drm_i915_gem_pin *args = data;
4139 struct drm_gem_object *obj;
4140 struct drm_i915_gem_object *obj_priv;
4141 int ret;
4143 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4144 if (obj == NULL) {
4145 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4146 args->handle);
4147 return -ENOENT;
4149 obj_priv = to_intel_bo(obj);
4151 ret = i915_mutex_lock_interruptible(dev);
4152 if (ret) {
4153 drm_gem_object_unreference_unlocked(obj);
4154 return ret;
4157 if (obj_priv->madv != I915_MADV_WILLNEED) {
4158 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4159 drm_gem_object_unreference(obj);
4160 mutex_unlock(&dev->struct_mutex);
4161 return -EINVAL;
4164 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4165 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4166 args->handle);
4167 drm_gem_object_unreference(obj);
4168 mutex_unlock(&dev->struct_mutex);
4169 return -EINVAL;
4172 obj_priv->user_pin_count++;
4173 obj_priv->pin_filp = file_priv;
4174 if (obj_priv->user_pin_count == 1) {
4175 ret = i915_gem_object_pin(obj, args->alignment);
4176 if (ret != 0) {
4177 drm_gem_object_unreference(obj);
4178 mutex_unlock(&dev->struct_mutex);
4179 return ret;
4183 /* XXX - flush the CPU caches for pinned objects
4184 * as the X server doesn't manage domains yet
4186 i915_gem_object_flush_cpu_write_domain(obj);
4187 args->offset = obj_priv->gtt_offset;
4188 drm_gem_object_unreference(obj);
4189 mutex_unlock(&dev->struct_mutex);
4191 return 0;
4195 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4196 struct drm_file *file_priv)
4198 struct drm_i915_gem_pin *args = data;
4199 struct drm_gem_object *obj;
4200 struct drm_i915_gem_object *obj_priv;
4201 int ret;
4203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4204 if (obj == NULL) {
4205 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4206 args->handle);
4207 return -ENOENT;
4210 obj_priv = to_intel_bo(obj);
4212 ret = i915_mutex_lock_interruptible(dev);
4213 if (ret) {
4214 drm_gem_object_unreference_unlocked(obj);
4215 return ret;
4218 if (obj_priv->pin_filp != file_priv) {
4219 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4220 args->handle);
4221 drm_gem_object_unreference(obj);
4222 mutex_unlock(&dev->struct_mutex);
4223 return -EINVAL;
4225 obj_priv->user_pin_count--;
4226 if (obj_priv->user_pin_count == 0) {
4227 obj_priv->pin_filp = NULL;
4228 i915_gem_object_unpin(obj);
4231 drm_gem_object_unreference(obj);
4232 mutex_unlock(&dev->struct_mutex);
4233 return 0;
4237 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4238 struct drm_file *file_priv)
4240 struct drm_i915_gem_busy *args = data;
4241 struct drm_gem_object *obj;
4242 struct drm_i915_gem_object *obj_priv;
4243 int ret;
4245 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4246 if (obj == NULL) {
4247 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4248 args->handle);
4249 return -ENOENT;
4252 ret = i915_mutex_lock_interruptible(dev);
4253 if (ret) {
4254 drm_gem_object_unreference_unlocked(obj);
4255 return ret;
4258 /* Count all active objects as busy, even if they are currently not used
4259 * by the gpu. Users of this interface expect objects to eventually
4260 * become non-busy without any further actions, therefore emit any
4261 * necessary flushes here.
4263 obj_priv = to_intel_bo(obj);
4264 args->busy = obj_priv->active;
4265 if (args->busy) {
4266 /* Unconditionally flush objects, even when the gpu still uses this
4267 * object. Userspace calling this function indicates that it wants to
4268 * use this buffer rather sooner than later, so issuing the required
4269 * flush earlier is beneficial.
4271 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4272 i915_gem_flush_ring(dev, file_priv,
4273 obj_priv->ring,
4274 0, obj->write_domain);
4276 /* Update the active list for the hardware's current position.
4277 * Otherwise this only updates on a delayed timer or when irqs
4278 * are actually unmasked, and our working set ends up being
4279 * larger than required.
4281 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4283 args->busy = obj_priv->active;
4286 drm_gem_object_unreference(obj);
4287 mutex_unlock(&dev->struct_mutex);
4288 return 0;
4292 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4293 struct drm_file *file_priv)
4295 return i915_gem_ring_throttle(dev, file_priv);
4299 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4300 struct drm_file *file_priv)
4302 struct drm_i915_gem_madvise *args = data;
4303 struct drm_gem_object *obj;
4304 struct drm_i915_gem_object *obj_priv;
4305 int ret;
4307 switch (args->madv) {
4308 case I915_MADV_DONTNEED:
4309 case I915_MADV_WILLNEED:
4310 break;
4311 default:
4312 return -EINVAL;
4315 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4316 if (obj == NULL) {
4317 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4318 args->handle);
4319 return -ENOENT;
4321 obj_priv = to_intel_bo(obj);
4323 ret = i915_mutex_lock_interruptible(dev);
4324 if (ret) {
4325 drm_gem_object_unreference_unlocked(obj);
4326 return ret;
4329 if (obj_priv->pin_count) {
4330 drm_gem_object_unreference(obj);
4331 mutex_unlock(&dev->struct_mutex);
4333 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4334 return -EINVAL;
4337 if (obj_priv->madv != __I915_MADV_PURGED)
4338 obj_priv->madv = args->madv;
4340 /* if the object is no longer bound, discard its backing storage */
4341 if (i915_gem_object_is_purgeable(obj_priv) &&
4342 obj_priv->gtt_space == NULL)
4343 i915_gem_object_truncate(obj);
4345 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4347 drm_gem_object_unreference(obj);
4348 mutex_unlock(&dev->struct_mutex);
4350 return 0;
4353 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4354 size_t size)
4356 struct drm_i915_private *dev_priv = dev->dev_private;
4357 struct drm_i915_gem_object *obj;
4359 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4360 if (obj == NULL)
4361 return NULL;
4363 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4364 kfree(obj);
4365 return NULL;
4368 i915_gem_info_add_obj(dev_priv, size);
4370 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4373 obj->agp_type = AGP_USER_MEMORY;
4374 obj->base.driver_private = NULL;
4375 obj->fence_reg = I915_FENCE_REG_NONE;
4376 INIT_LIST_HEAD(&obj->list);
4377 INIT_LIST_HEAD(&obj->gpu_write_list);
4378 obj->madv = I915_MADV_WILLNEED;
4380 trace_i915_gem_object_create(&obj->base);
4382 return &obj->base;
4385 int i915_gem_init_object(struct drm_gem_object *obj)
4387 BUG();
4389 return 0;
4392 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4394 struct drm_device *dev = obj->dev;
4395 drm_i915_private_t *dev_priv = dev->dev_private;
4396 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4397 int ret;
4399 ret = i915_gem_object_unbind(obj);
4400 if (ret == -ERESTARTSYS) {
4401 list_move(&obj_priv->list,
4402 &dev_priv->mm.deferred_free_list);
4403 return;
4406 if (obj_priv->mmap_offset)
4407 i915_gem_free_mmap_offset(obj);
4409 drm_gem_object_release(obj);
4410 i915_gem_info_remove_obj(dev_priv, obj->size);
4412 kfree(obj_priv->page_cpu_valid);
4413 kfree(obj_priv->bit_17);
4414 kfree(obj_priv);
4417 void i915_gem_free_object(struct drm_gem_object *obj)
4419 struct drm_device *dev = obj->dev;
4420 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4422 trace_i915_gem_object_destroy(obj);
4424 while (obj_priv->pin_count > 0)
4425 i915_gem_object_unpin(obj);
4427 if (obj_priv->phys_obj)
4428 i915_gem_detach_phys_object(dev, obj);
4430 i915_gem_free_object_tail(obj);
4434 i915_gem_idle(struct drm_device *dev)
4436 drm_i915_private_t *dev_priv = dev->dev_private;
4437 int ret;
4439 mutex_lock(&dev->struct_mutex);
4441 if (dev_priv->mm.suspended ||
4442 (dev_priv->render_ring.gem_object == NULL) ||
4443 (HAS_BSD(dev) &&
4444 dev_priv->bsd_ring.gem_object == NULL)) {
4445 mutex_unlock(&dev->struct_mutex);
4446 return 0;
4449 ret = i915_gpu_idle(dev);
4450 if (ret) {
4451 mutex_unlock(&dev->struct_mutex);
4452 return ret;
4455 /* Under UMS, be paranoid and evict. */
4456 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4457 ret = i915_gem_evict_inactive(dev);
4458 if (ret) {
4459 mutex_unlock(&dev->struct_mutex);
4460 return ret;
4464 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4465 * We need to replace this with a semaphore, or something.
4466 * And not confound mm.suspended!
4468 dev_priv->mm.suspended = 1;
4469 del_timer_sync(&dev_priv->hangcheck_timer);
4471 i915_kernel_lost_context(dev);
4472 i915_gem_cleanup_ringbuffer(dev);
4474 mutex_unlock(&dev->struct_mutex);
4476 /* Cancel the retire work handler, which should be idle now. */
4477 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4479 return 0;
4483 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4484 * over cache flushing.
4486 static int
4487 i915_gem_init_pipe_control(struct drm_device *dev)
4489 drm_i915_private_t *dev_priv = dev->dev_private;
4490 struct drm_gem_object *obj;
4491 struct drm_i915_gem_object *obj_priv;
4492 int ret;
4494 obj = i915_gem_alloc_object(dev, 4096);
4495 if (obj == NULL) {
4496 DRM_ERROR("Failed to allocate seqno page\n");
4497 ret = -ENOMEM;
4498 goto err;
4500 obj_priv = to_intel_bo(obj);
4501 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4503 ret = i915_gem_object_pin(obj, 4096);
4504 if (ret)
4505 goto err_unref;
4507 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4508 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4509 if (dev_priv->seqno_page == NULL)
4510 goto err_unpin;
4512 dev_priv->seqno_obj = obj;
4513 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4515 return 0;
4517 err_unpin:
4518 i915_gem_object_unpin(obj);
4519 err_unref:
4520 drm_gem_object_unreference(obj);
4521 err:
4522 return ret;
4526 static void
4527 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4529 drm_i915_private_t *dev_priv = dev->dev_private;
4530 struct drm_gem_object *obj;
4531 struct drm_i915_gem_object *obj_priv;
4533 obj = dev_priv->seqno_obj;
4534 obj_priv = to_intel_bo(obj);
4535 kunmap(obj_priv->pages[0]);
4536 i915_gem_object_unpin(obj);
4537 drm_gem_object_unreference(obj);
4538 dev_priv->seqno_obj = NULL;
4540 dev_priv->seqno_page = NULL;
4544 i915_gem_init_ringbuffer(struct drm_device *dev)
4546 drm_i915_private_t *dev_priv = dev->dev_private;
4547 int ret;
4549 if (HAS_PIPE_CONTROL(dev)) {
4550 ret = i915_gem_init_pipe_control(dev);
4551 if (ret)
4552 return ret;
4555 ret = intel_init_render_ring_buffer(dev);
4556 if (ret)
4557 goto cleanup_pipe_control;
4559 if (HAS_BSD(dev)) {
4560 ret = intel_init_bsd_ring_buffer(dev);
4561 if (ret)
4562 goto cleanup_render_ring;
4565 dev_priv->next_seqno = 1;
4567 return 0;
4569 cleanup_render_ring:
4570 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4571 cleanup_pipe_control:
4572 if (HAS_PIPE_CONTROL(dev))
4573 i915_gem_cleanup_pipe_control(dev);
4574 return ret;
4577 void
4578 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4580 drm_i915_private_t *dev_priv = dev->dev_private;
4582 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4583 if (HAS_BSD(dev))
4584 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4585 if (HAS_PIPE_CONTROL(dev))
4586 i915_gem_cleanup_pipe_control(dev);
4590 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4591 struct drm_file *file_priv)
4593 drm_i915_private_t *dev_priv = dev->dev_private;
4594 int ret;
4596 if (drm_core_check_feature(dev, DRIVER_MODESET))
4597 return 0;
4599 if (atomic_read(&dev_priv->mm.wedged)) {
4600 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4601 atomic_set(&dev_priv->mm.wedged, 0);
4604 mutex_lock(&dev->struct_mutex);
4605 dev_priv->mm.suspended = 0;
4607 ret = i915_gem_init_ringbuffer(dev);
4608 if (ret != 0) {
4609 mutex_unlock(&dev->struct_mutex);
4610 return ret;
4613 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4614 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4615 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4616 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4617 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4618 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4619 mutex_unlock(&dev->struct_mutex);
4621 ret = drm_irq_install(dev);
4622 if (ret)
4623 goto cleanup_ringbuffer;
4625 return 0;
4627 cleanup_ringbuffer:
4628 mutex_lock(&dev->struct_mutex);
4629 i915_gem_cleanup_ringbuffer(dev);
4630 dev_priv->mm.suspended = 1;
4631 mutex_unlock(&dev->struct_mutex);
4633 return ret;
4637 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4638 struct drm_file *file_priv)
4640 if (drm_core_check_feature(dev, DRIVER_MODESET))
4641 return 0;
4643 drm_irq_uninstall(dev);
4644 return i915_gem_idle(dev);
4647 void
4648 i915_gem_lastclose(struct drm_device *dev)
4650 int ret;
4652 if (drm_core_check_feature(dev, DRIVER_MODESET))
4653 return;
4655 ret = i915_gem_idle(dev);
4656 if (ret)
4657 DRM_ERROR("failed to idle hardware: %d\n", ret);
4660 void
4661 i915_gem_load(struct drm_device *dev)
4663 int i;
4664 drm_i915_private_t *dev_priv = dev->dev_private;
4666 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4667 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4668 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4669 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4670 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4671 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4672 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4673 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4674 if (HAS_BSD(dev)) {
4675 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4676 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4678 for (i = 0; i < 16; i++)
4679 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4680 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4681 i915_gem_retire_work_handler);
4682 init_completion(&dev_priv->error_completion);
4683 spin_lock(&shrink_list_lock);
4684 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4685 spin_unlock(&shrink_list_lock);
4687 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4688 if (IS_GEN3(dev)) {
4689 u32 tmp = I915_READ(MI_ARB_STATE);
4690 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4691 /* arb state is a masked write, so set bit + bit in mask */
4692 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4693 I915_WRITE(MI_ARB_STATE, tmp);
4697 /* Old X drivers will take 0-2 for front, back, depth buffers */
4698 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4699 dev_priv->fence_reg_start = 3;
4701 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4702 dev_priv->num_fence_regs = 16;
4703 else
4704 dev_priv->num_fence_regs = 8;
4706 /* Initialize fence registers to zero */
4707 switch (INTEL_INFO(dev)->gen) {
4708 case 6:
4709 for (i = 0; i < 16; i++)
4710 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4711 break;
4712 case 5:
4713 case 4:
4714 for (i = 0; i < 16; i++)
4715 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4716 break;
4717 case 3:
4718 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4719 for (i = 0; i < 8; i++)
4720 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4721 case 2:
4722 for (i = 0; i < 8; i++)
4723 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4724 break;
4726 i915_gem_detect_bit_6_swizzle(dev);
4727 init_waitqueue_head(&dev_priv->pending_flip_queue);
4731 * Create a physically contiguous memory object for this object
4732 * e.g. for cursor + overlay regs
4734 static int i915_gem_init_phys_object(struct drm_device *dev,
4735 int id, int size, int align)
4737 drm_i915_private_t *dev_priv = dev->dev_private;
4738 struct drm_i915_gem_phys_object *phys_obj;
4739 int ret;
4741 if (dev_priv->mm.phys_objs[id - 1] || !size)
4742 return 0;
4744 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4745 if (!phys_obj)
4746 return -ENOMEM;
4748 phys_obj->id = id;
4750 phys_obj->handle = drm_pci_alloc(dev, size, align);
4751 if (!phys_obj->handle) {
4752 ret = -ENOMEM;
4753 goto kfree_obj;
4755 #ifdef CONFIG_X86
4756 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4757 #endif
4759 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4761 return 0;
4762 kfree_obj:
4763 kfree(phys_obj);
4764 return ret;
4767 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4769 drm_i915_private_t *dev_priv = dev->dev_private;
4770 struct drm_i915_gem_phys_object *phys_obj;
4772 if (!dev_priv->mm.phys_objs[id - 1])
4773 return;
4775 phys_obj = dev_priv->mm.phys_objs[id - 1];
4776 if (phys_obj->cur_obj) {
4777 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4780 #ifdef CONFIG_X86
4781 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4782 #endif
4783 drm_pci_free(dev, phys_obj->handle);
4784 kfree(phys_obj);
4785 dev_priv->mm.phys_objs[id - 1] = NULL;
4788 void i915_gem_free_all_phys_object(struct drm_device *dev)
4790 int i;
4792 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4793 i915_gem_free_phys_object(dev, i);
4796 void i915_gem_detach_phys_object(struct drm_device *dev,
4797 struct drm_gem_object *obj)
4799 struct drm_i915_gem_object *obj_priv;
4800 int i;
4801 int ret;
4802 int page_count;
4804 obj_priv = to_intel_bo(obj);
4805 if (!obj_priv->phys_obj)
4806 return;
4808 ret = i915_gem_object_get_pages(obj, 0);
4809 if (ret)
4810 goto out;
4812 page_count = obj->size / PAGE_SIZE;
4814 for (i = 0; i < page_count; i++) {
4815 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4816 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4818 memcpy(dst, src, PAGE_SIZE);
4819 kunmap_atomic(dst, KM_USER0);
4821 drm_clflush_pages(obj_priv->pages, page_count);
4822 drm_agp_chipset_flush(dev);
4824 i915_gem_object_put_pages(obj);
4825 out:
4826 obj_priv->phys_obj->cur_obj = NULL;
4827 obj_priv->phys_obj = NULL;
4831 i915_gem_attach_phys_object(struct drm_device *dev,
4832 struct drm_gem_object *obj,
4833 int id,
4834 int align)
4836 drm_i915_private_t *dev_priv = dev->dev_private;
4837 struct drm_i915_gem_object *obj_priv;
4838 int ret = 0;
4839 int page_count;
4840 int i;
4842 if (id > I915_MAX_PHYS_OBJECT)
4843 return -EINVAL;
4845 obj_priv = to_intel_bo(obj);
4847 if (obj_priv->phys_obj) {
4848 if (obj_priv->phys_obj->id == id)
4849 return 0;
4850 i915_gem_detach_phys_object(dev, obj);
4853 /* create a new object */
4854 if (!dev_priv->mm.phys_objs[id - 1]) {
4855 ret = i915_gem_init_phys_object(dev, id,
4856 obj->size, align);
4857 if (ret) {
4858 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4859 goto out;
4863 /* bind to the object */
4864 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4865 obj_priv->phys_obj->cur_obj = obj;
4867 ret = i915_gem_object_get_pages(obj, 0);
4868 if (ret) {
4869 DRM_ERROR("failed to get page list\n");
4870 goto out;
4873 page_count = obj->size / PAGE_SIZE;
4875 for (i = 0; i < page_count; i++) {
4876 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4877 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4879 memcpy(dst, src, PAGE_SIZE);
4880 kunmap_atomic(src, KM_USER0);
4883 i915_gem_object_put_pages(obj);
4885 return 0;
4886 out:
4887 return ret;
4890 static int
4891 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4892 struct drm_i915_gem_pwrite *args,
4893 struct drm_file *file_priv)
4895 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4896 void *obj_addr;
4897 int ret;
4898 char __user *user_data;
4900 user_data = (char __user *) (uintptr_t) args->data_ptr;
4901 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4903 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4904 ret = copy_from_user(obj_addr, user_data, args->size);
4905 if (ret)
4906 return -EFAULT;
4908 drm_agp_chipset_flush(dev);
4909 return 0;
4912 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4914 struct drm_i915_file_private *file_priv = file->driver_priv;
4916 /* Clean up our request list when the client is going away, so that
4917 * later retire_requests won't dereference our soon-to-be-gone
4918 * file_priv.
4920 spin_lock(&file_priv->mm.lock);
4921 while (!list_empty(&file_priv->mm.request_list)) {
4922 struct drm_i915_gem_request *request;
4924 request = list_first_entry(&file_priv->mm.request_list,
4925 struct drm_i915_gem_request,
4926 client_list);
4927 list_del(&request->client_list);
4928 request->file_priv = NULL;
4930 spin_unlock(&file_priv->mm.lock);
4933 static int
4934 i915_gpu_is_active(struct drm_device *dev)
4936 drm_i915_private_t *dev_priv = dev->dev_private;
4937 int lists_empty;
4939 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4940 list_empty(&dev_priv->render_ring.active_list);
4941 if (HAS_BSD(dev))
4942 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4944 return !lists_empty;
4947 static int
4948 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4950 drm_i915_private_t *dev_priv, *next_dev;
4951 struct drm_i915_gem_object *obj_priv, *next_obj;
4952 int cnt = 0;
4953 int would_deadlock = 1;
4955 /* "fast-path" to count number of available objects */
4956 if (nr_to_scan == 0) {
4957 spin_lock(&shrink_list_lock);
4958 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4959 struct drm_device *dev = dev_priv->dev;
4961 if (mutex_trylock(&dev->struct_mutex)) {
4962 list_for_each_entry(obj_priv,
4963 &dev_priv->mm.inactive_list,
4964 list)
4965 cnt++;
4966 mutex_unlock(&dev->struct_mutex);
4969 spin_unlock(&shrink_list_lock);
4971 return (cnt / 100) * sysctl_vfs_cache_pressure;
4974 spin_lock(&shrink_list_lock);
4976 rescan:
4977 /* first scan for clean buffers */
4978 list_for_each_entry_safe(dev_priv, next_dev,
4979 &shrink_list, mm.shrink_list) {
4980 struct drm_device *dev = dev_priv->dev;
4982 if (! mutex_trylock(&dev->struct_mutex))
4983 continue;
4985 spin_unlock(&shrink_list_lock);
4986 i915_gem_retire_requests(dev);
4988 list_for_each_entry_safe(obj_priv, next_obj,
4989 &dev_priv->mm.inactive_list,
4990 list) {
4991 if (i915_gem_object_is_purgeable(obj_priv)) {
4992 i915_gem_object_unbind(&obj_priv->base);
4993 if (--nr_to_scan <= 0)
4994 break;
4998 spin_lock(&shrink_list_lock);
4999 mutex_unlock(&dev->struct_mutex);
5001 would_deadlock = 0;
5003 if (nr_to_scan <= 0)
5004 break;
5007 /* second pass, evict/count anything still on the inactive list */
5008 list_for_each_entry_safe(dev_priv, next_dev,
5009 &shrink_list, mm.shrink_list) {
5010 struct drm_device *dev = dev_priv->dev;
5012 if (! mutex_trylock(&dev->struct_mutex))
5013 continue;
5015 spin_unlock(&shrink_list_lock);
5017 list_for_each_entry_safe(obj_priv, next_obj,
5018 &dev_priv->mm.inactive_list,
5019 list) {
5020 if (nr_to_scan > 0) {
5021 i915_gem_object_unbind(&obj_priv->base);
5022 nr_to_scan--;
5023 } else
5024 cnt++;
5027 spin_lock(&shrink_list_lock);
5028 mutex_unlock(&dev->struct_mutex);
5030 would_deadlock = 0;
5033 if (nr_to_scan) {
5034 int active = 0;
5037 * We are desperate for pages, so as a last resort, wait
5038 * for the GPU to finish and discard whatever we can.
5039 * This has a dramatic impact to reduce the number of
5040 * OOM-killer events whilst running the GPU aggressively.
5042 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5043 struct drm_device *dev = dev_priv->dev;
5045 if (!mutex_trylock(&dev->struct_mutex))
5046 continue;
5048 spin_unlock(&shrink_list_lock);
5050 if (i915_gpu_is_active(dev)) {
5051 i915_gpu_idle(dev);
5052 active++;
5055 spin_lock(&shrink_list_lock);
5056 mutex_unlock(&dev->struct_mutex);
5059 if (active)
5060 goto rescan;
5063 spin_unlock(&shrink_list_lock);
5065 if (would_deadlock)
5066 return -1;
5067 else if (cnt > 0)
5068 return (cnt / 100) * sysctl_vfs_cache_pressure;
5069 else
5070 return 0;
5073 static struct shrinker shrinker = {
5074 .shrink = i915_gem_shrink,
5075 .seeks = DEFAULT_SEEKS,
5078 __init void
5079 i915_gem_shrinker_init(void)
5081 register_shrinker(&shrinker);
5084 __exit void
5085 i915_gem_shrinker_exit(void)
5087 unregister_shrinker(&shrinker);