ACPI: ibm-acpi: fix initial status of backlight device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / readahead.c
blobf26cdea826b31341e65f07e506d531331b7ae6f7
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
19 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
22 EXPORT_SYMBOL(default_unplug_io_fn);
25 * Convienent macros for min/max read-ahead pages.
26 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
27 * The latter is necessary for systems with large page size(i.e. 64k).
29 #define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
30 #define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
32 struct backing_dev_info default_backing_dev_info = {
33 .ra_pages = MAX_RA_PAGES,
34 .state = 0,
35 .capabilities = BDI_CAP_MAP_COPY,
36 .unplug_io_fn = default_unplug_io_fn,
38 EXPORT_SYMBOL_GPL(default_backing_dev_info);
41 * Initialise a struct file's readahead state. Assumes that the caller has
42 * memset *ra to zero.
44 void
45 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
47 ra->ra_pages = mapping->backing_dev_info->ra_pages;
48 ra->prev_page = -1;
50 EXPORT_SYMBOL_GPL(file_ra_state_init);
53 * Return max readahead size for this inode in number-of-pages.
55 static inline unsigned long get_max_readahead(struct file_ra_state *ra)
57 return ra->ra_pages;
60 static inline unsigned long get_min_readahead(struct file_ra_state *ra)
62 return MIN_RA_PAGES;
65 static inline void reset_ahead_window(struct file_ra_state *ra)
68 * ... but preserve ahead_start + ahead_size value,
69 * see 'recheck:' label in page_cache_readahead().
70 * Note: We never use ->ahead_size as rvalue without
71 * checking ->ahead_start != 0 first.
73 ra->ahead_size += ra->ahead_start;
74 ra->ahead_start = 0;
77 static inline void ra_off(struct file_ra_state *ra)
79 ra->start = 0;
80 ra->flags = 0;
81 ra->size = 0;
82 reset_ahead_window(ra);
83 return;
87 * Set the initial window size, round to next power of 2 and square
88 * for small size, x 4 for medium, and x 2 for large
89 * for 128k (32 page) max ra
90 * 1-8 page = 32k initial, > 8 page = 128k initial
92 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
94 unsigned long newsize = roundup_pow_of_two(size);
96 if (newsize <= max / 32)
97 newsize = newsize * 4;
98 else if (newsize <= max / 4)
99 newsize = newsize * 2;
100 else
101 newsize = max;
102 return newsize;
106 * Set the new window size, this is called only when I/O is to be submitted,
107 * not for each call to readahead. If a cache miss occured, reduce next I/O
108 * size, else increase depending on how close to max we are.
110 static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
112 unsigned long max = get_max_readahead(ra);
113 unsigned long min = get_min_readahead(ra);
114 unsigned long cur = ra->size;
115 unsigned long newsize;
117 if (ra->flags & RA_FLAG_MISS) {
118 ra->flags &= ~RA_FLAG_MISS;
119 newsize = max((cur - 2), min);
120 } else if (cur < max / 16) {
121 newsize = 4 * cur;
122 } else {
123 newsize = 2 * cur;
125 return min(newsize, max);
128 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
131 * read_cache_pages - populate an address space with some pages & start reads against them
132 * @mapping: the address_space
133 * @pages: The address of a list_head which contains the target pages. These
134 * pages have their ->index populated and are otherwise uninitialised.
135 * @filler: callback routine for filling a single page.
136 * @data: private data for the callback routine.
138 * Hides the details of the LRU cache etc from the filesystems.
140 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
141 int (*filler)(void *, struct page *), void *data)
143 struct page *page;
144 struct pagevec lru_pvec;
145 int ret = 0;
147 pagevec_init(&lru_pvec, 0);
149 while (!list_empty(pages)) {
150 page = list_to_page(pages);
151 list_del(&page->lru);
152 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
153 page_cache_release(page);
154 continue;
156 ret = filler(data, page);
157 if (!pagevec_add(&lru_pvec, page))
158 __pagevec_lru_add(&lru_pvec);
159 if (ret) {
160 put_pages_list(pages);
161 break;
163 task_io_account_read(PAGE_CACHE_SIZE);
165 pagevec_lru_add(&lru_pvec);
166 return ret;
169 EXPORT_SYMBOL(read_cache_pages);
171 static int read_pages(struct address_space *mapping, struct file *filp,
172 struct list_head *pages, unsigned nr_pages)
174 unsigned page_idx;
175 struct pagevec lru_pvec;
176 int ret;
178 if (mapping->a_ops->readpages) {
179 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
180 /* Clean up the remaining pages */
181 put_pages_list(pages);
182 goto out;
185 pagevec_init(&lru_pvec, 0);
186 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
187 struct page *page = list_to_page(pages);
188 list_del(&page->lru);
189 if (!add_to_page_cache(page, mapping,
190 page->index, GFP_KERNEL)) {
191 mapping->a_ops->readpage(filp, page);
192 if (!pagevec_add(&lru_pvec, page))
193 __pagevec_lru_add(&lru_pvec);
194 } else
195 page_cache_release(page);
197 pagevec_lru_add(&lru_pvec);
198 ret = 0;
199 out:
200 return ret;
204 * Readahead design.
206 * The fields in struct file_ra_state represent the most-recently-executed
207 * readahead attempt:
209 * start: Page index at which we started the readahead
210 * size: Number of pages in that read
211 * Together, these form the "current window".
212 * Together, start and size represent the `readahead window'.
213 * prev_page: The page which the readahead algorithm most-recently inspected.
214 * It is mainly used to detect sequential file reading.
215 * If page_cache_readahead sees that it is again being called for
216 * a page which it just looked at, it can return immediately without
217 * making any state changes.
218 * ahead_start,
219 * ahead_size: Together, these form the "ahead window".
220 * ra_pages: The externally controlled max readahead for this fd.
222 * When readahead is in the off state (size == 0), readahead is disabled.
223 * In this state, prev_page is used to detect the resumption of sequential I/O.
225 * The readahead code manages two windows - the "current" and the "ahead"
226 * windows. The intent is that while the application is walking the pages
227 * in the current window, I/O is underway on the ahead window. When the
228 * current window is fully traversed, it is replaced by the ahead window
229 * and the ahead window is invalidated. When this copying happens, the
230 * new current window's pages are probably still locked. So
231 * we submit a new batch of I/O immediately, creating a new ahead window.
233 * So:
235 * ----|----------------|----------------|-----
236 * ^start ^start+size
237 * ^ahead_start ^ahead_start+ahead_size
239 * ^ When this page is read, we submit I/O for the
240 * ahead window.
242 * A `readahead hit' occurs when a read request is made against a page which is
243 * the next sequential page. Ahead window calculations are done only when it
244 * is time to submit a new IO. The code ramps up the size agressively at first,
245 * but slow down as it approaches max_readhead.
247 * Any seek/ramdom IO will result in readahead being turned off. It will resume
248 * at the first sequential access.
250 * There is a special-case: if the first page which the application tries to
251 * read happens to be the first page of the file, it is assumed that a linear
252 * read is about to happen and the window is immediately set to the initial size
253 * based on I/O request size and the max_readahead.
255 * This function is to be called for every read request, rather than when
256 * it is time to perform readahead. It is called only once for the entire I/O
257 * regardless of size unless readahead is unable to start enough I/O to satisfy
258 * the request (I/O request > max_readahead).
262 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
263 * the pages first, then submits them all for I/O. This avoids the very bad
264 * behaviour which would occur if page allocations are causing VM writeback.
265 * We really don't want to intermingle reads and writes like that.
267 * Returns the number of pages requested, or the maximum amount of I/O allowed.
269 * do_page_cache_readahead() returns -1 if it encountered request queue
270 * congestion.
272 static int
273 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
274 pgoff_t offset, unsigned long nr_to_read)
276 struct inode *inode = mapping->host;
277 struct page *page;
278 unsigned long end_index; /* The last page we want to read */
279 LIST_HEAD(page_pool);
280 int page_idx;
281 int ret = 0;
282 loff_t isize = i_size_read(inode);
284 if (isize == 0)
285 goto out;
287 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
290 * Preallocate as many pages as we will need.
292 read_lock_irq(&mapping->tree_lock);
293 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
294 pgoff_t page_offset = offset + page_idx;
296 if (page_offset > end_index)
297 break;
299 page = radix_tree_lookup(&mapping->page_tree, page_offset);
300 if (page)
301 continue;
303 read_unlock_irq(&mapping->tree_lock);
304 page = page_cache_alloc_cold(mapping);
305 read_lock_irq(&mapping->tree_lock);
306 if (!page)
307 break;
308 page->index = page_offset;
309 list_add(&page->lru, &page_pool);
310 ret++;
312 read_unlock_irq(&mapping->tree_lock);
315 * Now start the IO. We ignore I/O errors - if the page is not
316 * uptodate then the caller will launch readpage again, and
317 * will then handle the error.
319 if (ret)
320 read_pages(mapping, filp, &page_pool, ret);
321 BUG_ON(!list_empty(&page_pool));
322 out:
323 return ret;
327 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
328 * memory at once.
330 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
331 pgoff_t offset, unsigned long nr_to_read)
333 int ret = 0;
335 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
336 return -EINVAL;
338 while (nr_to_read) {
339 int err;
341 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
343 if (this_chunk > nr_to_read)
344 this_chunk = nr_to_read;
345 err = __do_page_cache_readahead(mapping, filp,
346 offset, this_chunk);
347 if (err < 0) {
348 ret = err;
349 break;
351 ret += err;
352 offset += this_chunk;
353 nr_to_read -= this_chunk;
355 return ret;
359 * Check how effective readahead is being. If the amount of started IO is
360 * less than expected then the file is partly or fully in pagecache and
361 * readahead isn't helping.
364 static inline int check_ra_success(struct file_ra_state *ra,
365 unsigned long nr_to_read, unsigned long actual)
367 if (actual == 0) {
368 ra->cache_hit += nr_to_read;
369 if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
370 ra_off(ra);
371 ra->flags |= RA_FLAG_INCACHE;
372 return 0;
374 } else {
375 ra->cache_hit=0;
377 return 1;
381 * This version skips the IO if the queue is read-congested, and will tell the
382 * block layer to abandon the readahead if request allocation would block.
384 * force_page_cache_readahead() will ignore queue congestion and will block on
385 * request queues.
387 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
388 pgoff_t offset, unsigned long nr_to_read)
390 if (bdi_read_congested(mapping->backing_dev_info))
391 return -1;
393 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
397 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
398 * is set wait till the read completes. Otherwise attempt to read without
399 * blocking.
400 * Returns 1 meaning 'success' if read is successful without switching off
401 * readahead mode. Otherwise return failure.
403 static int
404 blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
405 pgoff_t offset, unsigned long nr_to_read,
406 struct file_ra_state *ra, int block)
408 int actual;
410 if (!block && bdi_read_congested(mapping->backing_dev_info))
411 return 0;
413 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
415 return check_ra_success(ra, nr_to_read, actual);
418 static int make_ahead_window(struct address_space *mapping, struct file *filp,
419 struct file_ra_state *ra, int force)
421 int block, ret;
423 ra->ahead_size = get_next_ra_size(ra);
424 ra->ahead_start = ra->start + ra->size;
426 block = force || (ra->prev_page >= ra->ahead_start);
427 ret = blockable_page_cache_readahead(mapping, filp,
428 ra->ahead_start, ra->ahead_size, ra, block);
430 if (!ret && !force) {
431 /* A read failure in blocking mode, implies pages are
432 * all cached. So we can safely assume we have taken
433 * care of all the pages requested in this call.
434 * A read failure in non-blocking mode, implies we are
435 * reading more pages than requested in this call. So
436 * we safely assume we have taken care of all the pages
437 * requested in this call.
439 * Just reset the ahead window in case we failed due to
440 * congestion. The ahead window will any way be closed
441 * in case we failed due to excessive page cache hits.
443 reset_ahead_window(ra);
446 return ret;
450 * page_cache_readahead - generic adaptive readahead
451 * @mapping: address_space which holds the pagecache and I/O vectors
452 * @ra: file_ra_state which holds the readahead state
453 * @filp: passed on to ->readpage() and ->readpages()
454 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
455 * @req_size: hint: total size of the read which the caller is performing in
456 * PAGE_CACHE_SIZE units
458 * page_cache_readahead() is the main function. If performs the adaptive
459 * readahead window size management and submits the readahead I/O.
461 * Note that @filp is purely used for passing on to the ->readpage[s]()
462 * handler: it may refer to a different file from @mapping (so we may not use
463 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
464 * Also, @ra may not be equal to &@filp->f_ra.
467 unsigned long
468 page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
469 struct file *filp, pgoff_t offset, unsigned long req_size)
471 unsigned long max, newsize;
472 int sequential;
475 * We avoid doing extra work and bogusly perturbing the readahead
476 * window expansion logic.
478 if (offset == ra->prev_page && --req_size)
479 ++offset;
481 /* Note that prev_page == -1 if it is a first read */
482 sequential = (offset == ra->prev_page + 1);
483 ra->prev_page = offset;
485 max = get_max_readahead(ra);
486 newsize = min(req_size, max);
488 /* No readahead or sub-page sized read or file already in cache */
489 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
490 goto out;
492 ra->prev_page += newsize - 1;
495 * Special case - first read at start of file. We'll assume it's
496 * a whole-file read and grow the window fast. Or detect first
497 * sequential access
499 if (sequential && ra->size == 0) {
500 ra->size = get_init_ra_size(newsize, max);
501 ra->start = offset;
502 if (!blockable_page_cache_readahead(mapping, filp, offset,
503 ra->size, ra, 1))
504 goto out;
507 * If the request size is larger than our max readahead, we
508 * at least want to be sure that we get 2 IOs in flight and
509 * we know that we will definitly need the new I/O.
510 * once we do this, subsequent calls should be able to overlap
511 * IOs,* thus preventing stalls. so issue the ahead window
512 * immediately.
514 if (req_size >= max)
515 make_ahead_window(mapping, filp, ra, 1);
517 goto out;
521 * Now handle the random case:
522 * partial page reads and first access were handled above,
523 * so this must be the next page otherwise it is random
525 if (!sequential) {
526 ra_off(ra);
527 blockable_page_cache_readahead(mapping, filp, offset,
528 newsize, ra, 1);
529 goto out;
533 * If we get here we are doing sequential IO and this was not the first
534 * occurence (ie we have an existing window)
536 if (ra->ahead_start == 0) { /* no ahead window yet */
537 if (!make_ahead_window(mapping, filp, ra, 0))
538 goto recheck;
542 * Already have an ahead window, check if we crossed into it.
543 * If so, shift windows and issue a new ahead window.
544 * Only return the #pages that are in the current window, so that
545 * we get called back on the first page of the ahead window which
546 * will allow us to submit more IO.
548 if (ra->prev_page >= ra->ahead_start) {
549 ra->start = ra->ahead_start;
550 ra->size = ra->ahead_size;
551 make_ahead_window(mapping, filp, ra, 0);
552 recheck:
553 /* prev_page shouldn't overrun the ahead window */
554 ra->prev_page = min(ra->prev_page,
555 ra->ahead_start + ra->ahead_size - 1);
558 out:
559 return ra->prev_page + 1;
561 EXPORT_SYMBOL_GPL(page_cache_readahead);
564 * handle_ra_miss() is called when it is known that a page which should have
565 * been present in the pagecache (we just did some readahead there) was in fact
566 * not found. This will happen if it was evicted by the VM (readahead
567 * thrashing)
569 * Turn on the cache miss flag in the RA struct, this will cause the RA code
570 * to reduce the RA size on the next read.
572 void handle_ra_miss(struct address_space *mapping,
573 struct file_ra_state *ra, pgoff_t offset)
575 ra->flags |= RA_FLAG_MISS;
576 ra->flags &= ~RA_FLAG_INCACHE;
577 ra->cache_hit = 0;
581 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
582 * sensible upper limit.
584 unsigned long max_sane_readahead(unsigned long nr)
586 unsigned long active;
587 unsigned long inactive;
588 unsigned long free;
590 __get_zone_counts(&active, &inactive, &free, NODE_DATA(numa_node_id()));
591 return min(nr, (inactive + free) / 2);