x86_64: move kernel
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / time_64.c
blob6d48a4e826d9d1f27dc0cf6a76b0d98b8ba3ffbb
1 /*
2 * linux/arch/x86-64/kernel/time.c
4 * "High Precision Event Timer" based timekeeping.
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002,2006 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/time.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/sysdev.h>
26 #include <linux/bcd.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/kallsyms.h>
30 #include <linux/acpi.h>
31 #ifdef CONFIG_ACPI
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
34 #endif
35 #include <asm/8253pit.h>
36 #include <asm/i8253.h>
37 #include <asm/pgtable.h>
38 #include <asm/vsyscall.h>
39 #include <asm/timex.h>
40 #include <asm/proto.h>
41 #include <asm/hpet.h>
42 #include <asm/sections.h>
43 #include <linux/hpet.h>
44 #include <asm/apic.h>
45 #include <asm/hpet.h>
46 #include <asm/mpspec.h>
47 #include <asm/nmi.h>
48 #include <asm/vgtod.h>
50 static char *timename = NULL;
52 DEFINE_SPINLOCK(rtc_lock);
53 EXPORT_SYMBOL(rtc_lock);
54 DEFINE_SPINLOCK(i8253_lock);
55 EXPORT_SYMBOL(i8253_lock);
57 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
59 unsigned long profile_pc(struct pt_regs *regs)
61 unsigned long pc = instruction_pointer(regs);
63 /* Assume the lock function has either no stack frame or a copy
64 of eflags from PUSHF
65 Eflags always has bits 22 and up cleared unlike kernel addresses. */
66 if (!user_mode(regs) && in_lock_functions(pc)) {
67 unsigned long *sp = (unsigned long *)regs->rsp;
68 if (sp[0] >> 22)
69 return sp[0];
70 if (sp[1] >> 22)
71 return sp[1];
73 return pc;
75 EXPORT_SYMBOL(profile_pc);
78 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
79 * ms after the second nowtime has started, because when nowtime is written
80 * into the registers of the CMOS clock, it will jump to the next second
81 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
82 * sheet for details.
85 static int set_rtc_mmss(unsigned long nowtime)
87 int retval = 0;
88 int real_seconds, real_minutes, cmos_minutes;
89 unsigned char control, freq_select;
92 * IRQs are disabled when we're called from the timer interrupt,
93 * no need for spin_lock_irqsave()
96 spin_lock(&rtc_lock);
99 * Tell the clock it's being set and stop it.
102 control = CMOS_READ(RTC_CONTROL);
103 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
105 freq_select = CMOS_READ(RTC_FREQ_SELECT);
106 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
108 cmos_minutes = CMOS_READ(RTC_MINUTES);
109 BCD_TO_BIN(cmos_minutes);
112 * since we're only adjusting minutes and seconds, don't interfere with hour
113 * overflow. This avoids messing with unknown time zones but requires your RTC
114 * not to be off by more than 15 minutes. Since we're calling it only when
115 * our clock is externally synchronized using NTP, this shouldn't be a problem.
118 real_seconds = nowtime % 60;
119 real_minutes = nowtime / 60;
120 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
121 real_minutes += 30; /* correct for half hour time zone */
122 real_minutes %= 60;
124 if (abs(real_minutes - cmos_minutes) >= 30) {
125 printk(KERN_WARNING "time.c: can't update CMOS clock "
126 "from %d to %d\n", cmos_minutes, real_minutes);
127 retval = -1;
128 } else {
129 BIN_TO_BCD(real_seconds);
130 BIN_TO_BCD(real_minutes);
131 CMOS_WRITE(real_seconds, RTC_SECONDS);
132 CMOS_WRITE(real_minutes, RTC_MINUTES);
136 * The following flags have to be released exactly in this order, otherwise the
137 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
138 * not reset the oscillator and will not update precisely 500 ms later. You
139 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
140 * believes data sheets anyway ... -- Markus Kuhn
143 CMOS_WRITE(control, RTC_CONTROL);
144 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
146 spin_unlock(&rtc_lock);
148 return retval;
151 int update_persistent_clock(struct timespec now)
153 return set_rtc_mmss(now.tv_sec);
156 void main_timer_handler(void)
159 * Here we are in the timer irq handler. We have irqs locally disabled (so we
160 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
161 * on the other CPU, so we need a lock. We also need to lock the vsyscall
162 * variables, because both do_timer() and us change them -arca+vojtech
165 write_seqlock(&xtime_lock);
168 * Do the timer stuff.
171 do_timer(1);
172 #ifndef CONFIG_SMP
173 update_process_times(user_mode(get_irq_regs()));
174 #endif
177 * In the SMP case we use the local APIC timer interrupt to do the profiling,
178 * except when we simulate SMP mode on a uniprocessor system, in that case we
179 * have to call the local interrupt handler.
182 if (!using_apic_timer)
183 smp_local_timer_interrupt();
185 write_sequnlock(&xtime_lock);
188 static irqreturn_t timer_interrupt(int irq, void *dev_id)
190 if (apic_runs_main_timer > 1)
191 return IRQ_HANDLED;
192 main_timer_handler();
193 if (using_apic_timer)
194 smp_send_timer_broadcast_ipi();
195 return IRQ_HANDLED;
198 unsigned long read_persistent_clock(void)
200 unsigned int year, mon, day, hour, min, sec;
201 unsigned long flags;
202 unsigned century = 0;
204 spin_lock_irqsave(&rtc_lock, flags);
206 do {
207 sec = CMOS_READ(RTC_SECONDS);
208 min = CMOS_READ(RTC_MINUTES);
209 hour = CMOS_READ(RTC_HOURS);
210 day = CMOS_READ(RTC_DAY_OF_MONTH);
211 mon = CMOS_READ(RTC_MONTH);
212 year = CMOS_READ(RTC_YEAR);
213 #ifdef CONFIG_ACPI
214 if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
215 acpi_gbl_FADT.century)
216 century = CMOS_READ(acpi_gbl_FADT.century);
217 #endif
218 } while (sec != CMOS_READ(RTC_SECONDS));
220 spin_unlock_irqrestore(&rtc_lock, flags);
223 * We know that x86-64 always uses BCD format, no need to check the
224 * config register.
227 BCD_TO_BIN(sec);
228 BCD_TO_BIN(min);
229 BCD_TO_BIN(hour);
230 BCD_TO_BIN(day);
231 BCD_TO_BIN(mon);
232 BCD_TO_BIN(year);
234 if (century) {
235 BCD_TO_BIN(century);
236 year += century * 100;
237 printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
238 } else {
240 * x86-64 systems only exists since 2002.
241 * This will work up to Dec 31, 2100
243 year += 2000;
246 return mktime(year, mon, day, hour, min, sec);
249 /* calibrate_cpu is used on systems with fixed rate TSCs to determine
250 * processor frequency */
251 #define TICK_COUNT 100000000
252 static unsigned int __init tsc_calibrate_cpu_khz(void)
254 int tsc_start, tsc_now;
255 int i, no_ctr_free;
256 unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
257 unsigned long flags;
259 for (i = 0; i < 4; i++)
260 if (avail_to_resrv_perfctr_nmi_bit(i))
261 break;
262 no_ctr_free = (i == 4);
263 if (no_ctr_free) {
264 i = 3;
265 rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
266 wrmsrl(MSR_K7_EVNTSEL3, 0);
267 rdmsrl(MSR_K7_PERFCTR3, pmc3);
268 } else {
269 reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
270 reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
272 local_irq_save(flags);
273 /* start meauring cycles, incrementing from 0 */
274 wrmsrl(MSR_K7_PERFCTR0 + i, 0);
275 wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
276 rdtscl(tsc_start);
277 do {
278 rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
279 tsc_now = get_cycles_sync();
280 } while ((tsc_now - tsc_start) < TICK_COUNT);
282 local_irq_restore(flags);
283 if (no_ctr_free) {
284 wrmsrl(MSR_K7_EVNTSEL3, 0);
285 wrmsrl(MSR_K7_PERFCTR3, pmc3);
286 wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
287 } else {
288 release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
289 release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
292 return pmc_now * tsc_khz / (tsc_now - tsc_start);
296 * pit_calibrate_tsc() uses the speaker output (channel 2) of
297 * the PIT. This is better than using the timer interrupt output,
298 * because we can read the value of the speaker with just one inb(),
299 * where we need three i/o operations for the interrupt channel.
300 * We count how many ticks the TSC does in 50 ms.
303 static unsigned int __init pit_calibrate_tsc(void)
305 unsigned long start, end;
306 unsigned long flags;
308 spin_lock_irqsave(&i8253_lock, flags);
310 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
312 outb(0xb0, 0x43);
313 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
314 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
315 start = get_cycles_sync();
316 while ((inb(0x61) & 0x20) == 0);
317 end = get_cycles_sync();
319 spin_unlock_irqrestore(&i8253_lock, flags);
321 return (end - start) / 50;
324 #define PIT_MODE 0x43
325 #define PIT_CH0 0x40
327 static void __pit_init(int val, u8 mode)
329 unsigned long flags;
331 spin_lock_irqsave(&i8253_lock, flags);
332 outb_p(mode, PIT_MODE);
333 outb_p(val & 0xff, PIT_CH0); /* LSB */
334 outb_p(val >> 8, PIT_CH0); /* MSB */
335 spin_unlock_irqrestore(&i8253_lock, flags);
338 void __init pit_init(void)
340 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
343 void pit_stop_interrupt(void)
345 __pit_init(0, 0x30); /* mode 0 */
348 void stop_timer_interrupt(void)
350 char *name;
351 if (hpet_address) {
352 name = "HPET";
353 hpet_timer_stop_set_go(0);
354 } else {
355 name = "PIT";
356 pit_stop_interrupt();
358 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
361 static struct irqaction irq0 = {
362 .handler = timer_interrupt,
363 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
364 .mask = CPU_MASK_NONE,
365 .name = "timer"
368 void __init time_init(void)
370 if (nohpet)
371 hpet_address = 0;
373 if (hpet_arch_init())
374 hpet_address = 0;
376 if (hpet_use_timer) {
377 /* set tick_nsec to use the proper rate for HPET */
378 tick_nsec = TICK_NSEC_HPET;
379 tsc_khz = hpet_calibrate_tsc();
380 timename = "HPET";
381 } else {
382 pit_init();
383 tsc_khz = pit_calibrate_tsc();
384 timename = "PIT";
387 cpu_khz = tsc_khz;
388 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
389 boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
390 boot_cpu_data.x86 == 16)
391 cpu_khz = tsc_calibrate_cpu_khz();
393 if (unsynchronized_tsc())
394 mark_tsc_unstable("TSCs unsynchronized");
396 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
397 vgetcpu_mode = VGETCPU_RDTSCP;
398 else
399 vgetcpu_mode = VGETCPU_LSL;
401 set_cyc2ns_scale(tsc_khz);
402 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
403 cpu_khz / 1000, cpu_khz % 1000);
404 init_tsc_clocksource();
406 setup_irq(0, &irq0);
410 * sysfs support for the timer.
413 static int timer_suspend(struct sys_device *dev, pm_message_t state)
415 return 0;
418 static int timer_resume(struct sys_device *dev)
420 if (hpet_address)
421 hpet_reenable();
422 else
423 i8254_timer_resume();
424 return 0;
427 static struct sysdev_class timer_sysclass = {
428 .resume = timer_resume,
429 .suspend = timer_suspend,
430 set_kset_name("timer"),
433 /* XXX this sysfs stuff should probably go elsewhere later -john */
434 static struct sys_device device_timer = {
435 .id = 0,
436 .cls = &timer_sysclass,
439 static int time_init_device(void)
441 int error = sysdev_class_register(&timer_sysclass);
442 if (!error)
443 error = sysdev_register(&device_timer);
444 return error;
447 device_initcall(time_init_device);