hwmon: (lm73) Make detection less problematic
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libsas / sas_expander.c
blob1b831c55ec6e364f4f7001d4bd7a741e6a1d3bc2
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task)
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
53 complete(&task->completion);
56 static void smp_task_done(struct sas_task *task)
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84 task->task_done = smp_task_done;
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
138 return res;
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size)
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
151 static inline void *alloc_smp_resp(int size)
153 return kzalloc(size, GFP_KERNEL);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
202 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
203 phy->phy->identify.device_type = phy->attached_dev_type;
204 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
205 phy->phy->identify.target_port_protocols = phy->attached_tproto;
206 phy->phy->identify.phy_identifier = phy_id;
207 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
208 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
209 phy->phy->minimum_linkrate = dr->pmin_linkrate;
210 phy->phy->maximum_linkrate = dr->pmax_linkrate;
211 phy->phy->negotiated_linkrate = phy->linkrate;
213 if (!rediscover)
214 if (sas_phy_add(phy->phy)) {
215 sas_phy_free(phy->phy);
216 return;
219 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
220 SAS_ADDR(dev->sas_addr), phy->phy_id,
221 phy->routing_attr == TABLE_ROUTING ? 'T' :
222 phy->routing_attr == DIRECT_ROUTING ? 'D' :
223 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
224 SAS_ADDR(phy->attached_sas_addr));
226 return;
229 #define DISCOVER_REQ_SIZE 16
230 #define DISCOVER_RESP_SIZE 56
232 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
233 u8 *disc_resp, int single)
235 int i, res;
237 disc_req[9] = single;
238 for (i = 1 ; i < 3; i++) {
239 struct discover_resp *dr;
241 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
242 disc_resp, DISCOVER_RESP_SIZE);
243 if (res)
244 return res;
245 /* This is detecting a failure to transmit initial
246 * dev to host FIS as described in section G.5 of
247 * sas-2 r 04b */
248 dr = &((struct smp_resp *)disc_resp)->disc;
249 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
250 SAS_ADDR_SIZE) == 0) {
251 sas_printk("Found loopback topology, just ignore it!\n");
252 return 0;
254 if (!(dr->attached_dev_type == 0 &&
255 dr->attached_sata_dev))
256 break;
257 /* In order to generate the dev to host FIS, we
258 * send a link reset to the expander port */
259 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
260 /* Wait for the reset to trigger the negotiation */
261 msleep(500);
263 sas_set_ex_phy(dev, single, disc_resp);
264 return 0;
267 static int sas_ex_phy_discover(struct domain_device *dev, int single)
269 struct expander_device *ex = &dev->ex_dev;
270 int res = 0;
271 u8 *disc_req;
272 u8 *disc_resp;
274 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
275 if (!disc_req)
276 return -ENOMEM;
278 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
279 if (!disc_resp) {
280 kfree(disc_req);
281 return -ENOMEM;
284 disc_req[1] = SMP_DISCOVER;
286 if (0 <= single && single < ex->num_phys) {
287 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
288 } else {
289 int i;
291 for (i = 0; i < ex->num_phys; i++) {
292 res = sas_ex_phy_discover_helper(dev, disc_req,
293 disc_resp, i);
294 if (res)
295 goto out_err;
298 out_err:
299 kfree(disc_resp);
300 kfree(disc_req);
301 return res;
304 static int sas_expander_discover(struct domain_device *dev)
306 struct expander_device *ex = &dev->ex_dev;
307 int res = -ENOMEM;
309 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
310 if (!ex->ex_phy)
311 return -ENOMEM;
313 res = sas_ex_phy_discover(dev, -1);
314 if (res)
315 goto out_err;
317 return 0;
318 out_err:
319 kfree(ex->ex_phy);
320 ex->ex_phy = NULL;
321 return res;
324 #define MAX_EXPANDER_PHYS 128
326 static void ex_assign_report_general(struct domain_device *dev,
327 struct smp_resp *resp)
329 struct report_general_resp *rg = &resp->rg;
331 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
332 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
333 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
334 dev->ex_dev.t2t_supp = rg->t2t_supp;
335 dev->ex_dev.conf_route_table = rg->conf_route_table;
336 dev->ex_dev.configuring = rg->configuring;
337 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
340 #define RG_REQ_SIZE 8
341 #define RG_RESP_SIZE 32
343 static int sas_ex_general(struct domain_device *dev)
345 u8 *rg_req;
346 struct smp_resp *rg_resp;
347 int res;
348 int i;
350 rg_req = alloc_smp_req(RG_REQ_SIZE);
351 if (!rg_req)
352 return -ENOMEM;
354 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
355 if (!rg_resp) {
356 kfree(rg_req);
357 return -ENOMEM;
360 rg_req[1] = SMP_REPORT_GENERAL;
362 for (i = 0; i < 5; i++) {
363 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
364 RG_RESP_SIZE);
366 if (res) {
367 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
368 SAS_ADDR(dev->sas_addr), res);
369 goto out;
370 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
371 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
372 SAS_ADDR(dev->sas_addr), rg_resp->result);
373 res = rg_resp->result;
374 goto out;
377 ex_assign_report_general(dev, rg_resp);
379 if (dev->ex_dev.configuring) {
380 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
381 SAS_ADDR(dev->sas_addr));
382 schedule_timeout_interruptible(5*HZ);
383 } else
384 break;
386 out:
387 kfree(rg_req);
388 kfree(rg_resp);
389 return res;
392 static void ex_assign_manuf_info(struct domain_device *dev, void
393 *_mi_resp)
395 u8 *mi_resp = _mi_resp;
396 struct sas_rphy *rphy = dev->rphy;
397 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
399 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
400 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
401 memcpy(edev->product_rev, mi_resp + 36,
402 SAS_EXPANDER_PRODUCT_REV_LEN);
404 if (mi_resp[8] & 1) {
405 memcpy(edev->component_vendor_id, mi_resp + 40,
406 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
407 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
408 edev->component_revision_id = mi_resp[50];
412 #define MI_REQ_SIZE 8
413 #define MI_RESP_SIZE 64
415 static int sas_ex_manuf_info(struct domain_device *dev)
417 u8 *mi_req;
418 u8 *mi_resp;
419 int res;
421 mi_req = alloc_smp_req(MI_REQ_SIZE);
422 if (!mi_req)
423 return -ENOMEM;
425 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
426 if (!mi_resp) {
427 kfree(mi_req);
428 return -ENOMEM;
431 mi_req[1] = SMP_REPORT_MANUF_INFO;
433 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
434 if (res) {
435 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
436 SAS_ADDR(dev->sas_addr), res);
437 goto out;
438 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
439 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
440 SAS_ADDR(dev->sas_addr), mi_resp[2]);
441 goto out;
444 ex_assign_manuf_info(dev, mi_resp);
445 out:
446 kfree(mi_req);
447 kfree(mi_resp);
448 return res;
451 #define PC_REQ_SIZE 44
452 #define PC_RESP_SIZE 8
454 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
455 enum phy_func phy_func,
456 struct sas_phy_linkrates *rates)
458 u8 *pc_req;
459 u8 *pc_resp;
460 int res;
462 pc_req = alloc_smp_req(PC_REQ_SIZE);
463 if (!pc_req)
464 return -ENOMEM;
466 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
467 if (!pc_resp) {
468 kfree(pc_req);
469 return -ENOMEM;
472 pc_req[1] = SMP_PHY_CONTROL;
473 pc_req[9] = phy_id;
474 pc_req[10]= phy_func;
475 if (rates) {
476 pc_req[32] = rates->minimum_linkrate << 4;
477 pc_req[33] = rates->maximum_linkrate << 4;
480 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
482 kfree(pc_resp);
483 kfree(pc_req);
484 return res;
487 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
489 struct expander_device *ex = &dev->ex_dev;
490 struct ex_phy *phy = &ex->ex_phy[phy_id];
492 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
493 phy->linkrate = SAS_PHY_DISABLED;
496 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
498 struct expander_device *ex = &dev->ex_dev;
499 int i;
501 for (i = 0; i < ex->num_phys; i++) {
502 struct ex_phy *phy = &ex->ex_phy[i];
504 if (phy->phy_state == PHY_VACANT ||
505 phy->phy_state == PHY_NOT_PRESENT)
506 continue;
508 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
509 sas_ex_disable_phy(dev, i);
513 static int sas_dev_present_in_domain(struct asd_sas_port *port,
514 u8 *sas_addr)
516 struct domain_device *dev;
518 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
519 return 1;
520 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
521 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
522 return 1;
524 return 0;
527 #define RPEL_REQ_SIZE 16
528 #define RPEL_RESP_SIZE 32
529 int sas_smp_get_phy_events(struct sas_phy *phy)
531 int res;
532 u8 *req;
533 u8 *resp;
534 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
535 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
537 req = alloc_smp_req(RPEL_REQ_SIZE);
538 if (!req)
539 return -ENOMEM;
541 resp = alloc_smp_resp(RPEL_RESP_SIZE);
542 if (!resp) {
543 kfree(req);
544 return -ENOMEM;
547 req[1] = SMP_REPORT_PHY_ERR_LOG;
548 req[9] = phy->number;
550 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
551 resp, RPEL_RESP_SIZE);
553 if (!res)
554 goto out;
556 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
557 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
558 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
559 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
561 out:
562 kfree(resp);
563 return res;
567 #ifdef CONFIG_SCSI_SAS_ATA
569 #define RPS_REQ_SIZE 16
570 #define RPS_RESP_SIZE 60
572 static int sas_get_report_phy_sata(struct domain_device *dev,
573 int phy_id,
574 struct smp_resp *rps_resp)
576 int res;
577 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
578 u8 *resp = (u8 *)rps_resp;
580 if (!rps_req)
581 return -ENOMEM;
583 rps_req[1] = SMP_REPORT_PHY_SATA;
584 rps_req[9] = phy_id;
586 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
587 rps_resp, RPS_RESP_SIZE);
589 /* 0x34 is the FIS type for the D2H fis. There's a potential
590 * standards cockup here. sas-2 explicitly specifies the FIS
591 * should be encoded so that FIS type is in resp[24].
592 * However, some expanders endian reverse this. Undo the
593 * reversal here */
594 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
595 int i;
597 for (i = 0; i < 5; i++) {
598 int j = 24 + (i*4);
599 u8 a, b;
600 a = resp[j + 0];
601 b = resp[j + 1];
602 resp[j + 0] = resp[j + 3];
603 resp[j + 1] = resp[j + 2];
604 resp[j + 2] = b;
605 resp[j + 3] = a;
609 kfree(rps_req);
610 return res;
612 #endif
614 static void sas_ex_get_linkrate(struct domain_device *parent,
615 struct domain_device *child,
616 struct ex_phy *parent_phy)
618 struct expander_device *parent_ex = &parent->ex_dev;
619 struct sas_port *port;
620 int i;
622 child->pathways = 0;
624 port = parent_phy->port;
626 for (i = 0; i < parent_ex->num_phys; i++) {
627 struct ex_phy *phy = &parent_ex->ex_phy[i];
629 if (phy->phy_state == PHY_VACANT ||
630 phy->phy_state == PHY_NOT_PRESENT)
631 continue;
633 if (SAS_ADDR(phy->attached_sas_addr) ==
634 SAS_ADDR(child->sas_addr)) {
636 child->min_linkrate = min(parent->min_linkrate,
637 phy->linkrate);
638 child->max_linkrate = max(parent->max_linkrate,
639 phy->linkrate);
640 child->pathways++;
641 sas_port_add_phy(port, phy->phy);
644 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
645 child->pathways = min(child->pathways, parent->pathways);
648 static struct domain_device *sas_ex_discover_end_dev(
649 struct domain_device *parent, int phy_id)
651 struct expander_device *parent_ex = &parent->ex_dev;
652 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
653 struct domain_device *child = NULL;
654 struct sas_rphy *rphy;
655 int res;
657 if (phy->attached_sata_host || phy->attached_sata_ps)
658 return NULL;
660 child = kzalloc(sizeof(*child), GFP_KERNEL);
661 if (!child)
662 return NULL;
664 child->parent = parent;
665 child->port = parent->port;
666 child->iproto = phy->attached_iproto;
667 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
668 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
669 if (!phy->port) {
670 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
671 if (unlikely(!phy->port))
672 goto out_err;
673 if (unlikely(sas_port_add(phy->port) != 0)) {
674 sas_port_free(phy->port);
675 goto out_err;
678 sas_ex_get_linkrate(parent, child, phy);
680 #ifdef CONFIG_SCSI_SAS_ATA
681 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
682 child->dev_type = SATA_DEV;
683 if (phy->attached_tproto & SAS_PROTOCOL_STP)
684 child->tproto = phy->attached_tproto;
685 if (phy->attached_sata_dev)
686 child->tproto |= SATA_DEV;
687 res = sas_get_report_phy_sata(parent, phy_id,
688 &child->sata_dev.rps_resp);
689 if (res) {
690 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
691 "0x%x\n", SAS_ADDR(parent->sas_addr),
692 phy_id, res);
693 goto out_free;
695 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
696 sizeof(struct dev_to_host_fis));
698 rphy = sas_end_device_alloc(phy->port);
699 if (unlikely(!rphy))
700 goto out_free;
702 sas_init_dev(child);
704 child->rphy = rphy;
706 spin_lock_irq(&parent->port->dev_list_lock);
707 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
708 spin_unlock_irq(&parent->port->dev_list_lock);
710 res = sas_discover_sata(child);
711 if (res) {
712 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
713 "%016llx:0x%x returned 0x%x\n",
714 SAS_ADDR(child->sas_addr),
715 SAS_ADDR(parent->sas_addr), phy_id, res);
716 goto out_list_del;
718 } else
719 #endif
720 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
721 child->dev_type = SAS_END_DEV;
722 rphy = sas_end_device_alloc(phy->port);
723 /* FIXME: error handling */
724 if (unlikely(!rphy))
725 goto out_free;
726 child->tproto = phy->attached_tproto;
727 sas_init_dev(child);
729 child->rphy = rphy;
730 sas_fill_in_rphy(child, rphy);
732 spin_lock_irq(&parent->port->dev_list_lock);
733 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
734 spin_unlock_irq(&parent->port->dev_list_lock);
736 res = sas_discover_end_dev(child);
737 if (res) {
738 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
739 "at %016llx:0x%x returned 0x%x\n",
740 SAS_ADDR(child->sas_addr),
741 SAS_ADDR(parent->sas_addr), phy_id, res);
742 goto out_list_del;
744 } else {
745 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
746 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
747 phy_id);
748 goto out_free;
751 list_add_tail(&child->siblings, &parent_ex->children);
752 return child;
754 out_list_del:
755 sas_rphy_free(child->rphy);
756 child->rphy = NULL;
758 spin_lock_irq(&parent->port->dev_list_lock);
759 list_del(&child->dev_list_node);
760 spin_unlock_irq(&parent->port->dev_list_lock);
761 out_free:
762 sas_port_delete(phy->port);
763 out_err:
764 phy->port = NULL;
765 kfree(child);
766 return NULL;
769 /* See if this phy is part of a wide port */
770 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
772 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
773 int i;
775 for (i = 0; i < parent->ex_dev.num_phys; i++) {
776 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
778 if (ephy == phy)
779 continue;
781 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
782 SAS_ADDR_SIZE) && ephy->port) {
783 sas_port_add_phy(ephy->port, phy->phy);
784 phy->port = ephy->port;
785 phy->phy_state = PHY_DEVICE_DISCOVERED;
786 return 0;
790 return -ENODEV;
793 static struct domain_device *sas_ex_discover_expander(
794 struct domain_device *parent, int phy_id)
796 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
797 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
798 struct domain_device *child = NULL;
799 struct sas_rphy *rphy;
800 struct sas_expander_device *edev;
801 struct asd_sas_port *port;
802 int res;
804 if (phy->routing_attr == DIRECT_ROUTING) {
805 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
806 "allowed\n",
807 SAS_ADDR(parent->sas_addr), phy_id,
808 SAS_ADDR(phy->attached_sas_addr),
809 phy->attached_phy_id);
810 return NULL;
812 child = kzalloc(sizeof(*child), GFP_KERNEL);
813 if (!child)
814 return NULL;
816 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
817 /* FIXME: better error handling */
818 BUG_ON(sas_port_add(phy->port) != 0);
821 switch (phy->attached_dev_type) {
822 case EDGE_DEV:
823 rphy = sas_expander_alloc(phy->port,
824 SAS_EDGE_EXPANDER_DEVICE);
825 break;
826 case FANOUT_DEV:
827 rphy = sas_expander_alloc(phy->port,
828 SAS_FANOUT_EXPANDER_DEVICE);
829 break;
830 default:
831 rphy = NULL; /* shut gcc up */
832 BUG();
834 port = parent->port;
835 child->rphy = rphy;
836 edev = rphy_to_expander_device(rphy);
837 child->dev_type = phy->attached_dev_type;
838 child->parent = parent;
839 child->port = port;
840 child->iproto = phy->attached_iproto;
841 child->tproto = phy->attached_tproto;
842 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
843 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
844 sas_ex_get_linkrate(parent, child, phy);
845 edev->level = parent_ex->level + 1;
846 parent->port->disc.max_level = max(parent->port->disc.max_level,
847 edev->level);
848 sas_init_dev(child);
849 sas_fill_in_rphy(child, rphy);
850 sas_rphy_add(rphy);
852 spin_lock_irq(&parent->port->dev_list_lock);
853 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
854 spin_unlock_irq(&parent->port->dev_list_lock);
856 res = sas_discover_expander(child);
857 if (res) {
858 spin_lock_irq(&parent->port->dev_list_lock);
859 list_del(&child->dev_list_node);
860 spin_unlock_irq(&parent->port->dev_list_lock);
861 kfree(child);
862 return NULL;
864 list_add_tail(&child->siblings, &parent->ex_dev.children);
865 return child;
868 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
870 struct expander_device *ex = &dev->ex_dev;
871 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
872 struct domain_device *child = NULL;
873 int res = 0;
875 /* Phy state */
876 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
877 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
878 res = sas_ex_phy_discover(dev, phy_id);
879 if (res)
880 return res;
883 /* Parent and domain coherency */
884 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
885 SAS_ADDR(dev->port->sas_addr))) {
886 sas_add_parent_port(dev, phy_id);
887 return 0;
889 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
890 SAS_ADDR(dev->parent->sas_addr))) {
891 sas_add_parent_port(dev, phy_id);
892 if (ex_phy->routing_attr == TABLE_ROUTING)
893 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
894 return 0;
897 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
898 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
900 if (ex_phy->attached_dev_type == NO_DEVICE) {
901 if (ex_phy->routing_attr == DIRECT_ROUTING) {
902 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
903 sas_configure_routing(dev, ex_phy->attached_sas_addr);
905 return 0;
906 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
907 return 0;
909 if (ex_phy->attached_dev_type != SAS_END_DEV &&
910 ex_phy->attached_dev_type != FANOUT_DEV &&
911 ex_phy->attached_dev_type != EDGE_DEV) {
912 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
913 "phy 0x%x\n", ex_phy->attached_dev_type,
914 SAS_ADDR(dev->sas_addr),
915 phy_id);
916 return 0;
919 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
920 if (res) {
921 SAS_DPRINTK("configure routing for dev %016llx "
922 "reported 0x%x. Forgotten\n",
923 SAS_ADDR(ex_phy->attached_sas_addr), res);
924 sas_disable_routing(dev, ex_phy->attached_sas_addr);
925 return res;
928 res = sas_ex_join_wide_port(dev, phy_id);
929 if (!res) {
930 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
931 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
932 return res;
935 switch (ex_phy->attached_dev_type) {
936 case SAS_END_DEV:
937 child = sas_ex_discover_end_dev(dev, phy_id);
938 break;
939 case FANOUT_DEV:
940 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
941 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
942 "attached to ex %016llx phy 0x%x\n",
943 SAS_ADDR(ex_phy->attached_sas_addr),
944 ex_phy->attached_phy_id,
945 SAS_ADDR(dev->sas_addr),
946 phy_id);
947 sas_ex_disable_phy(dev, phy_id);
948 break;
949 } else
950 memcpy(dev->port->disc.fanout_sas_addr,
951 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
952 /* fallthrough */
953 case EDGE_DEV:
954 child = sas_ex_discover_expander(dev, phy_id);
955 break;
956 default:
957 break;
960 if (child) {
961 int i;
963 for (i = 0; i < ex->num_phys; i++) {
964 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
965 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
966 continue;
968 * Due to races, the phy might not get added to the
969 * wide port, so we add the phy to the wide port here.
971 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
972 SAS_ADDR(child->sas_addr)) {
973 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
974 res = sas_ex_join_wide_port(dev, i);
975 if (!res)
976 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
977 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
983 return res;
986 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
988 struct expander_device *ex = &dev->ex_dev;
989 int i;
991 for (i = 0; i < ex->num_phys; i++) {
992 struct ex_phy *phy = &ex->ex_phy[i];
994 if (phy->phy_state == PHY_VACANT ||
995 phy->phy_state == PHY_NOT_PRESENT)
996 continue;
998 if ((phy->attached_dev_type == EDGE_DEV ||
999 phy->attached_dev_type == FANOUT_DEV) &&
1000 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1002 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1004 return 1;
1007 return 0;
1010 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1012 struct expander_device *ex = &dev->ex_dev;
1013 struct domain_device *child;
1014 u8 sub_addr[8] = {0, };
1016 list_for_each_entry(child, &ex->children, siblings) {
1017 if (child->dev_type != EDGE_DEV &&
1018 child->dev_type != FANOUT_DEV)
1019 continue;
1020 if (sub_addr[0] == 0) {
1021 sas_find_sub_addr(child, sub_addr);
1022 continue;
1023 } else {
1024 u8 s2[8];
1026 if (sas_find_sub_addr(child, s2) &&
1027 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1029 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1030 "diverges from subtractive "
1031 "boundary %016llx\n",
1032 SAS_ADDR(dev->sas_addr),
1033 SAS_ADDR(child->sas_addr),
1034 SAS_ADDR(s2),
1035 SAS_ADDR(sub_addr));
1037 sas_ex_disable_port(child, s2);
1041 return 0;
1044 * sas_ex_discover_devices -- discover devices attached to this expander
1045 * dev: pointer to the expander domain device
1046 * single: if you want to do a single phy, else set to -1;
1048 * Configure this expander for use with its devices and register the
1049 * devices of this expander.
1051 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1053 struct expander_device *ex = &dev->ex_dev;
1054 int i = 0, end = ex->num_phys;
1055 int res = 0;
1057 if (0 <= single && single < end) {
1058 i = single;
1059 end = i+1;
1062 for ( ; i < end; i++) {
1063 struct ex_phy *ex_phy = &ex->ex_phy[i];
1065 if (ex_phy->phy_state == PHY_VACANT ||
1066 ex_phy->phy_state == PHY_NOT_PRESENT ||
1067 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1068 continue;
1070 switch (ex_phy->linkrate) {
1071 case SAS_PHY_DISABLED:
1072 case SAS_PHY_RESET_PROBLEM:
1073 case SAS_SATA_PORT_SELECTOR:
1074 continue;
1075 default:
1076 res = sas_ex_discover_dev(dev, i);
1077 if (res)
1078 break;
1079 continue;
1083 if (!res)
1084 sas_check_level_subtractive_boundary(dev);
1086 return res;
1089 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1091 struct expander_device *ex = &dev->ex_dev;
1092 int i;
1093 u8 *sub_sas_addr = NULL;
1095 if (dev->dev_type != EDGE_DEV)
1096 return 0;
1098 for (i = 0; i < ex->num_phys; i++) {
1099 struct ex_phy *phy = &ex->ex_phy[i];
1101 if (phy->phy_state == PHY_VACANT ||
1102 phy->phy_state == PHY_NOT_PRESENT)
1103 continue;
1105 if ((phy->attached_dev_type == FANOUT_DEV ||
1106 phy->attached_dev_type == EDGE_DEV) &&
1107 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1109 if (!sub_sas_addr)
1110 sub_sas_addr = &phy->attached_sas_addr[0];
1111 else if (SAS_ADDR(sub_sas_addr) !=
1112 SAS_ADDR(phy->attached_sas_addr)) {
1114 SAS_DPRINTK("ex %016llx phy 0x%x "
1115 "diverges(%016llx) on subtractive "
1116 "boundary(%016llx). Disabled\n",
1117 SAS_ADDR(dev->sas_addr), i,
1118 SAS_ADDR(phy->attached_sas_addr),
1119 SAS_ADDR(sub_sas_addr));
1120 sas_ex_disable_phy(dev, i);
1124 return 0;
1127 static void sas_print_parent_topology_bug(struct domain_device *child,
1128 struct ex_phy *parent_phy,
1129 struct ex_phy *child_phy)
1131 static const char ra_char[] = {
1132 [DIRECT_ROUTING] = 'D',
1133 [SUBTRACTIVE_ROUTING] = 'S',
1134 [TABLE_ROUTING] = 'T',
1136 static const char *ex_type[] = {
1137 [EDGE_DEV] = "edge",
1138 [FANOUT_DEV] = "fanout",
1140 struct domain_device *parent = child->parent;
1142 sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1143 "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1145 ex_type[parent->dev_type],
1146 SAS_ADDR(parent->sas_addr),
1147 parent->ex_dev.t2t_supp,
1148 parent_phy->phy_id,
1150 ex_type[child->dev_type],
1151 SAS_ADDR(child->sas_addr),
1152 child->ex_dev.t2t_supp,
1153 child_phy->phy_id,
1155 ra_char[parent_phy->routing_attr],
1156 ra_char[child_phy->routing_attr]);
1159 static int sas_check_eeds(struct domain_device *child,
1160 struct ex_phy *parent_phy,
1161 struct ex_phy *child_phy)
1163 int res = 0;
1164 struct domain_device *parent = child->parent;
1166 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1167 res = -ENODEV;
1168 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1169 "phy S:0x%x, while there is a fanout ex %016llx\n",
1170 SAS_ADDR(parent->sas_addr),
1171 parent_phy->phy_id,
1172 SAS_ADDR(child->sas_addr),
1173 child_phy->phy_id,
1174 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1175 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1176 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1177 SAS_ADDR_SIZE);
1178 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1179 SAS_ADDR_SIZE);
1180 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1181 SAS_ADDR(parent->sas_addr)) ||
1182 (SAS_ADDR(parent->port->disc.eeds_a) ==
1183 SAS_ADDR(child->sas_addr)))
1185 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1186 SAS_ADDR(parent->sas_addr)) ||
1187 (SAS_ADDR(parent->port->disc.eeds_b) ==
1188 SAS_ADDR(child->sas_addr))))
1190 else {
1191 res = -ENODEV;
1192 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1193 "phy 0x%x link forms a third EEDS!\n",
1194 SAS_ADDR(parent->sas_addr),
1195 parent_phy->phy_id,
1196 SAS_ADDR(child->sas_addr),
1197 child_phy->phy_id);
1200 return res;
1203 /* Here we spill over 80 columns. It is intentional.
1205 static int sas_check_parent_topology(struct domain_device *child)
1207 struct expander_device *child_ex = &child->ex_dev;
1208 struct expander_device *parent_ex;
1209 int i;
1210 int res = 0;
1212 if (!child->parent)
1213 return 0;
1215 if (child->parent->dev_type != EDGE_DEV &&
1216 child->parent->dev_type != FANOUT_DEV)
1217 return 0;
1219 parent_ex = &child->parent->ex_dev;
1221 for (i = 0; i < parent_ex->num_phys; i++) {
1222 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1223 struct ex_phy *child_phy;
1225 if (parent_phy->phy_state == PHY_VACANT ||
1226 parent_phy->phy_state == PHY_NOT_PRESENT)
1227 continue;
1229 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1230 continue;
1232 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1234 switch (child->parent->dev_type) {
1235 case EDGE_DEV:
1236 if (child->dev_type == FANOUT_DEV) {
1237 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1238 child_phy->routing_attr != TABLE_ROUTING) {
1239 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1240 res = -ENODEV;
1242 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1243 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1244 res = sas_check_eeds(child, parent_phy, child_phy);
1245 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1246 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1247 res = -ENODEV;
1249 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1250 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1251 (child_phy->routing_attr == TABLE_ROUTING &&
1252 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1253 /* All good */;
1254 } else {
1255 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1256 res = -ENODEV;
1259 break;
1260 case FANOUT_DEV:
1261 if (parent_phy->routing_attr != TABLE_ROUTING ||
1262 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1263 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1264 res = -ENODEV;
1266 break;
1267 default:
1268 break;
1272 return res;
1275 #define RRI_REQ_SIZE 16
1276 #define RRI_RESP_SIZE 44
1278 static int sas_configure_present(struct domain_device *dev, int phy_id,
1279 u8 *sas_addr, int *index, int *present)
1281 int i, res = 0;
1282 struct expander_device *ex = &dev->ex_dev;
1283 struct ex_phy *phy = &ex->ex_phy[phy_id];
1284 u8 *rri_req;
1285 u8 *rri_resp;
1287 *present = 0;
1288 *index = 0;
1290 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1291 if (!rri_req)
1292 return -ENOMEM;
1294 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1295 if (!rri_resp) {
1296 kfree(rri_req);
1297 return -ENOMEM;
1300 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1301 rri_req[9] = phy_id;
1303 for (i = 0; i < ex->max_route_indexes ; i++) {
1304 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1305 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1306 RRI_RESP_SIZE);
1307 if (res)
1308 goto out;
1309 res = rri_resp[2];
1310 if (res == SMP_RESP_NO_INDEX) {
1311 SAS_DPRINTK("overflow of indexes: dev %016llx "
1312 "phy 0x%x index 0x%x\n",
1313 SAS_ADDR(dev->sas_addr), phy_id, i);
1314 goto out;
1315 } else if (res != SMP_RESP_FUNC_ACC) {
1316 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1317 "result 0x%x\n", __func__,
1318 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1319 goto out;
1321 if (SAS_ADDR(sas_addr) != 0) {
1322 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1323 *index = i;
1324 if ((rri_resp[12] & 0x80) == 0x80)
1325 *present = 0;
1326 else
1327 *present = 1;
1328 goto out;
1329 } else if (SAS_ADDR(rri_resp+16) == 0) {
1330 *index = i;
1331 *present = 0;
1332 goto out;
1334 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1335 phy->last_da_index < i) {
1336 phy->last_da_index = i;
1337 *index = i;
1338 *present = 0;
1339 goto out;
1342 res = -1;
1343 out:
1344 kfree(rri_req);
1345 kfree(rri_resp);
1346 return res;
1349 #define CRI_REQ_SIZE 44
1350 #define CRI_RESP_SIZE 8
1352 static int sas_configure_set(struct domain_device *dev, int phy_id,
1353 u8 *sas_addr, int index, int include)
1355 int res;
1356 u8 *cri_req;
1357 u8 *cri_resp;
1359 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1360 if (!cri_req)
1361 return -ENOMEM;
1363 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1364 if (!cri_resp) {
1365 kfree(cri_req);
1366 return -ENOMEM;
1369 cri_req[1] = SMP_CONF_ROUTE_INFO;
1370 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1371 cri_req[9] = phy_id;
1372 if (SAS_ADDR(sas_addr) == 0 || !include)
1373 cri_req[12] |= 0x80;
1374 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1376 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1377 CRI_RESP_SIZE);
1378 if (res)
1379 goto out;
1380 res = cri_resp[2];
1381 if (res == SMP_RESP_NO_INDEX) {
1382 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1383 "index 0x%x\n",
1384 SAS_ADDR(dev->sas_addr), phy_id, index);
1386 out:
1387 kfree(cri_req);
1388 kfree(cri_resp);
1389 return res;
1392 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1393 u8 *sas_addr, int include)
1395 int index;
1396 int present;
1397 int res;
1399 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1400 if (res)
1401 return res;
1402 if (include ^ present)
1403 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1405 return res;
1409 * sas_configure_parent -- configure routing table of parent
1410 * parent: parent expander
1411 * child: child expander
1412 * sas_addr: SAS port identifier of device directly attached to child
1414 static int sas_configure_parent(struct domain_device *parent,
1415 struct domain_device *child,
1416 u8 *sas_addr, int include)
1418 struct expander_device *ex_parent = &parent->ex_dev;
1419 int res = 0;
1420 int i;
1422 if (parent->parent) {
1423 res = sas_configure_parent(parent->parent, parent, sas_addr,
1424 include);
1425 if (res)
1426 return res;
1429 if (ex_parent->conf_route_table == 0) {
1430 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1431 SAS_ADDR(parent->sas_addr));
1432 return 0;
1435 for (i = 0; i < ex_parent->num_phys; i++) {
1436 struct ex_phy *phy = &ex_parent->ex_phy[i];
1438 if ((phy->routing_attr == TABLE_ROUTING) &&
1439 (SAS_ADDR(phy->attached_sas_addr) ==
1440 SAS_ADDR(child->sas_addr))) {
1441 res = sas_configure_phy(parent, i, sas_addr, include);
1442 if (res)
1443 return res;
1447 return res;
1451 * sas_configure_routing -- configure routing
1452 * dev: expander device
1453 * sas_addr: port identifier of device directly attached to the expander device
1455 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1457 if (dev->parent)
1458 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1459 return 0;
1462 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1464 if (dev->parent)
1465 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1466 return 0;
1470 * sas_discover_expander -- expander discovery
1471 * @ex: pointer to expander domain device
1473 * See comment in sas_discover_sata().
1475 static int sas_discover_expander(struct domain_device *dev)
1477 int res;
1479 res = sas_notify_lldd_dev_found(dev);
1480 if (res)
1481 return res;
1483 res = sas_ex_general(dev);
1484 if (res)
1485 goto out_err;
1486 res = sas_ex_manuf_info(dev);
1487 if (res)
1488 goto out_err;
1490 res = sas_expander_discover(dev);
1491 if (res) {
1492 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1493 SAS_ADDR(dev->sas_addr), res);
1494 goto out_err;
1497 sas_check_ex_subtractive_boundary(dev);
1498 res = sas_check_parent_topology(dev);
1499 if (res)
1500 goto out_err;
1501 return 0;
1502 out_err:
1503 sas_notify_lldd_dev_gone(dev);
1504 return res;
1507 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1509 int res = 0;
1510 struct domain_device *dev;
1512 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1513 if (dev->dev_type == EDGE_DEV ||
1514 dev->dev_type == FANOUT_DEV) {
1515 struct sas_expander_device *ex =
1516 rphy_to_expander_device(dev->rphy);
1518 if (level == ex->level)
1519 res = sas_ex_discover_devices(dev, -1);
1520 else if (level > 0)
1521 res = sas_ex_discover_devices(port->port_dev, -1);
1526 return res;
1529 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1531 int res;
1532 int level;
1534 do {
1535 level = port->disc.max_level;
1536 res = sas_ex_level_discovery(port, level);
1537 mb();
1538 } while (level < port->disc.max_level);
1540 return res;
1543 int sas_discover_root_expander(struct domain_device *dev)
1545 int res;
1546 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1548 res = sas_rphy_add(dev->rphy);
1549 if (res)
1550 goto out_err;
1552 ex->level = dev->port->disc.max_level; /* 0 */
1553 res = sas_discover_expander(dev);
1554 if (res)
1555 goto out_err2;
1557 sas_ex_bfs_disc(dev->port);
1559 return res;
1561 out_err2:
1562 sas_rphy_remove(dev->rphy);
1563 out_err:
1564 return res;
1567 /* ---------- Domain revalidation ---------- */
1569 static int sas_get_phy_discover(struct domain_device *dev,
1570 int phy_id, struct smp_resp *disc_resp)
1572 int res;
1573 u8 *disc_req;
1575 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1576 if (!disc_req)
1577 return -ENOMEM;
1579 disc_req[1] = SMP_DISCOVER;
1580 disc_req[9] = phy_id;
1582 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1583 disc_resp, DISCOVER_RESP_SIZE);
1584 if (res)
1585 goto out;
1586 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1587 res = disc_resp->result;
1588 goto out;
1590 out:
1591 kfree(disc_req);
1592 return res;
1595 static int sas_get_phy_change_count(struct domain_device *dev,
1596 int phy_id, int *pcc)
1598 int res;
1599 struct smp_resp *disc_resp;
1601 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1602 if (!disc_resp)
1603 return -ENOMEM;
1605 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1606 if (!res)
1607 *pcc = disc_resp->disc.change_count;
1609 kfree(disc_resp);
1610 return res;
1613 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1614 int phy_id, u8 *attached_sas_addr)
1616 int res;
1617 struct smp_resp *disc_resp;
1618 struct discover_resp *dr;
1620 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1621 if (!disc_resp)
1622 return -ENOMEM;
1623 dr = &disc_resp->disc;
1625 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1626 if (!res) {
1627 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1628 if (dr->attached_dev_type == 0)
1629 memset(attached_sas_addr, 0, 8);
1631 kfree(disc_resp);
1632 return res;
1635 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1636 int from_phy, bool update)
1638 struct expander_device *ex = &dev->ex_dev;
1639 int res = 0;
1640 int i;
1642 for (i = from_phy; i < ex->num_phys; i++) {
1643 int phy_change_count = 0;
1645 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1646 if (res)
1647 goto out;
1648 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1649 if (update)
1650 ex->ex_phy[i].phy_change_count =
1651 phy_change_count;
1652 *phy_id = i;
1653 return 0;
1656 out:
1657 return res;
1660 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1662 int res;
1663 u8 *rg_req;
1664 struct smp_resp *rg_resp;
1666 rg_req = alloc_smp_req(RG_REQ_SIZE);
1667 if (!rg_req)
1668 return -ENOMEM;
1670 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1671 if (!rg_resp) {
1672 kfree(rg_req);
1673 return -ENOMEM;
1676 rg_req[1] = SMP_REPORT_GENERAL;
1678 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1679 RG_RESP_SIZE);
1680 if (res)
1681 goto out;
1682 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1683 res = rg_resp->result;
1684 goto out;
1687 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1688 out:
1689 kfree(rg_resp);
1690 kfree(rg_req);
1691 return res;
1694 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1695 * @dev:domain device to be detect.
1696 * @src_dev: the device which originated BROADCAST(CHANGE).
1698 * Add self-configuration expander suport. Suppose two expander cascading,
1699 * when the first level expander is self-configuring, hotplug the disks in
1700 * second level expander, BROADCAST(CHANGE) will not only be originated
1701 * in the second level expander, but also be originated in the first level
1702 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1703 * expander changed count in two level expanders will all increment at least
1704 * once, but the phy which chang count has changed is the source device which
1705 * we concerned.
1708 static int sas_find_bcast_dev(struct domain_device *dev,
1709 struct domain_device **src_dev)
1711 struct expander_device *ex = &dev->ex_dev;
1712 int ex_change_count = -1;
1713 int phy_id = -1;
1714 int res;
1715 struct domain_device *ch;
1717 res = sas_get_ex_change_count(dev, &ex_change_count);
1718 if (res)
1719 goto out;
1720 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1721 /* Just detect if this expander phys phy change count changed,
1722 * in order to determine if this expander originate BROADCAST,
1723 * and do not update phy change count field in our structure.
1725 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1726 if (phy_id != -1) {
1727 *src_dev = dev;
1728 ex->ex_change_count = ex_change_count;
1729 SAS_DPRINTK("Expander phy change count has changed\n");
1730 return res;
1731 } else
1732 SAS_DPRINTK("Expander phys DID NOT change\n");
1734 list_for_each_entry(ch, &ex->children, siblings) {
1735 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1736 res = sas_find_bcast_dev(ch, src_dev);
1737 if (*src_dev)
1738 return res;
1741 out:
1742 return res;
1745 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1747 struct expander_device *ex = &dev->ex_dev;
1748 struct domain_device *child, *n;
1750 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1751 child->gone = 1;
1752 if (child->dev_type == EDGE_DEV ||
1753 child->dev_type == FANOUT_DEV)
1754 sas_unregister_ex_tree(port, child);
1755 else
1756 sas_unregister_dev(port, child);
1758 sas_unregister_dev(port, dev);
1761 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1762 int phy_id, bool last)
1764 struct expander_device *ex_dev = &parent->ex_dev;
1765 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1766 struct domain_device *child, *n;
1767 if (last) {
1768 list_for_each_entry_safe(child, n,
1769 &ex_dev->children, siblings) {
1770 if (SAS_ADDR(child->sas_addr) ==
1771 SAS_ADDR(phy->attached_sas_addr)) {
1772 child->gone = 1;
1773 if (child->dev_type == EDGE_DEV ||
1774 child->dev_type == FANOUT_DEV)
1775 sas_unregister_ex_tree(parent->port, child);
1776 else
1777 sas_unregister_dev(parent->port, child);
1778 break;
1781 parent->gone = 1;
1782 sas_disable_routing(parent, phy->attached_sas_addr);
1784 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1785 if (phy->port) {
1786 sas_port_delete_phy(phy->port, phy->phy);
1787 if (phy->port->num_phys == 0)
1788 sas_port_delete(phy->port);
1789 phy->port = NULL;
1793 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1794 const int level)
1796 struct expander_device *ex_root = &root->ex_dev;
1797 struct domain_device *child;
1798 int res = 0;
1800 list_for_each_entry(child, &ex_root->children, siblings) {
1801 if (child->dev_type == EDGE_DEV ||
1802 child->dev_type == FANOUT_DEV) {
1803 struct sas_expander_device *ex =
1804 rphy_to_expander_device(child->rphy);
1806 if (level > ex->level)
1807 res = sas_discover_bfs_by_root_level(child,
1808 level);
1809 else if (level == ex->level)
1810 res = sas_ex_discover_devices(child, -1);
1813 return res;
1816 static int sas_discover_bfs_by_root(struct domain_device *dev)
1818 int res;
1819 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1820 int level = ex->level+1;
1822 res = sas_ex_discover_devices(dev, -1);
1823 if (res)
1824 goto out;
1825 do {
1826 res = sas_discover_bfs_by_root_level(dev, level);
1827 mb();
1828 level += 1;
1829 } while (level <= dev->port->disc.max_level);
1830 out:
1831 return res;
1834 static int sas_discover_new(struct domain_device *dev, int phy_id)
1836 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1837 struct domain_device *child;
1838 bool found = false;
1839 int res, i;
1841 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1842 SAS_ADDR(dev->sas_addr), phy_id);
1843 res = sas_ex_phy_discover(dev, phy_id);
1844 if (res)
1845 goto out;
1846 /* to support the wide port inserted */
1847 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1848 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1849 if (i == phy_id)
1850 continue;
1851 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1852 SAS_ADDR(ex_phy->attached_sas_addr)) {
1853 found = true;
1854 break;
1857 if (found) {
1858 sas_ex_join_wide_port(dev, phy_id);
1859 return 0;
1861 res = sas_ex_discover_devices(dev, phy_id);
1862 if (!res)
1863 goto out;
1864 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1865 if (SAS_ADDR(child->sas_addr) ==
1866 SAS_ADDR(ex_phy->attached_sas_addr)) {
1867 if (child->dev_type == EDGE_DEV ||
1868 child->dev_type == FANOUT_DEV)
1869 res = sas_discover_bfs_by_root(child);
1870 break;
1873 out:
1874 return res;
1877 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1879 struct expander_device *ex = &dev->ex_dev;
1880 struct ex_phy *phy = &ex->ex_phy[phy_id];
1881 u8 attached_sas_addr[8];
1882 int res;
1884 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1885 switch (res) {
1886 case SMP_RESP_NO_PHY:
1887 phy->phy_state = PHY_NOT_PRESENT;
1888 sas_unregister_devs_sas_addr(dev, phy_id, last);
1889 goto out; break;
1890 case SMP_RESP_PHY_VACANT:
1891 phy->phy_state = PHY_VACANT;
1892 sas_unregister_devs_sas_addr(dev, phy_id, last);
1893 goto out; break;
1894 case SMP_RESP_FUNC_ACC:
1895 break;
1898 if (SAS_ADDR(attached_sas_addr) == 0) {
1899 phy->phy_state = PHY_EMPTY;
1900 sas_unregister_devs_sas_addr(dev, phy_id, last);
1901 } else if (SAS_ADDR(attached_sas_addr) ==
1902 SAS_ADDR(phy->attached_sas_addr)) {
1903 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1904 SAS_ADDR(dev->sas_addr), phy_id);
1905 sas_ex_phy_discover(dev, phy_id);
1906 } else
1907 res = sas_discover_new(dev, phy_id);
1908 out:
1909 return res;
1913 * sas_rediscover - revalidate the domain.
1914 * @dev:domain device to be detect.
1915 * @phy_id: the phy id will be detected.
1917 * NOTE: this process _must_ quit (return) as soon as any connection
1918 * errors are encountered. Connection recovery is done elsewhere.
1919 * Discover process only interrogates devices in order to discover the
1920 * domain.For plugging out, we un-register the device only when it is
1921 * the last phy in the port, for other phys in this port, we just delete it
1922 * from the port.For inserting, we do discovery when it is the
1923 * first phy,for other phys in this port, we add it to the port to
1924 * forming the wide-port.
1926 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1928 struct expander_device *ex = &dev->ex_dev;
1929 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1930 int res = 0;
1931 int i;
1932 bool last = true; /* is this the last phy of the port */
1934 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1935 SAS_ADDR(dev->sas_addr), phy_id);
1937 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1938 for (i = 0; i < ex->num_phys; i++) {
1939 struct ex_phy *phy = &ex->ex_phy[i];
1941 if (i == phy_id)
1942 continue;
1943 if (SAS_ADDR(phy->attached_sas_addr) ==
1944 SAS_ADDR(changed_phy->attached_sas_addr)) {
1945 SAS_DPRINTK("phy%d part of wide port with "
1946 "phy%d\n", phy_id, i);
1947 last = false;
1948 break;
1951 res = sas_rediscover_dev(dev, phy_id, last);
1952 } else
1953 res = sas_discover_new(dev, phy_id);
1954 return res;
1958 * sas_revalidate_domain -- revalidate the domain
1959 * @port: port to the domain of interest
1961 * NOTE: this process _must_ quit (return) as soon as any connection
1962 * errors are encountered. Connection recovery is done elsewhere.
1963 * Discover process only interrogates devices in order to discover the
1964 * domain.
1966 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1968 int res;
1969 struct domain_device *dev = NULL;
1971 res = sas_find_bcast_dev(port_dev, &dev);
1972 if (res)
1973 goto out;
1974 if (dev) {
1975 struct expander_device *ex = &dev->ex_dev;
1976 int i = 0, phy_id;
1978 do {
1979 phy_id = -1;
1980 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1981 if (phy_id == -1)
1982 break;
1983 res = sas_rediscover(dev, phy_id);
1984 i = phy_id + 1;
1985 } while (i < ex->num_phys);
1987 out:
1988 return res;
1991 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1992 struct request *req)
1994 struct domain_device *dev;
1995 int ret, type;
1996 struct request *rsp = req->next_rq;
1998 if (!rsp) {
1999 printk("%s: space for a smp response is missing\n",
2000 __func__);
2001 return -EINVAL;
2004 /* no rphy means no smp target support (ie aic94xx host) */
2005 if (!rphy)
2006 return sas_smp_host_handler(shost, req, rsp);
2008 type = rphy->identify.device_type;
2010 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2011 type != SAS_FANOUT_EXPANDER_DEVICE) {
2012 printk("%s: can we send a smp request to a device?\n",
2013 __func__);
2014 return -EINVAL;
2017 dev = sas_find_dev_by_rphy(rphy);
2018 if (!dev) {
2019 printk("%s: fail to find a domain_device?\n", __func__);
2020 return -EINVAL;
2023 /* do we need to support multiple segments? */
2024 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2025 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2026 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2027 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2028 return -EINVAL;
2031 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2032 bio_data(rsp->bio), blk_rq_bytes(rsp));
2033 if (ret > 0) {
2034 /* positive number is the untransferred residual */
2035 rsp->resid_len = ret;
2036 req->resid_len = 0;
2037 ret = 0;
2038 } else if (ret == 0) {
2039 rsp->resid_len = 0;
2040 req->resid_len = 0;
2043 return ret;