4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/bitops.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/rcupdate.h>
19 #include <linux/workqueue.h>
21 struct fdtable_defer
{
23 struct work_struct wq
;
28 * We use this list to defer free fdtables that have vmalloced
29 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
30 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
31 * this per-task structure.
33 static DEFINE_PER_CPU(struct fdtable_defer
, fdtable_defer_list
);
35 static inline void * alloc_fdmem(unsigned int size
)
37 if (size
<= PAGE_SIZE
)
38 return kmalloc(size
, GFP_KERNEL
);
43 static inline void free_fdarr(struct fdtable
*fdt
)
45 if (fdt
->max_fds
<= (PAGE_SIZE
/ sizeof(struct file
*)))
51 static inline void free_fdset(struct fdtable
*fdt
)
53 if (fdt
->max_fds
<= (PAGE_SIZE
* BITS_PER_BYTE
/ 2))
59 static void free_fdtable_work(struct work_struct
*work
)
61 struct fdtable_defer
*f
=
62 container_of(work
, struct fdtable_defer
, wq
);
65 spin_lock_bh(&f
->lock
);
68 spin_unlock_bh(&f
->lock
);
70 struct fdtable
*next
= fdt
->next
;
78 void free_fdtable_rcu(struct rcu_head
*rcu
)
80 struct fdtable
*fdt
= container_of(rcu
, struct fdtable
, rcu
);
81 struct fdtable_defer
*fddef
;
85 if (fdt
->max_fds
<= NR_OPEN_DEFAULT
) {
87 * This fdtable is embedded in the files structure and that
88 * structure itself is getting destroyed.
90 kmem_cache_free(files_cachep
,
91 container_of(fdt
, struct files_struct
, fdtab
));
94 if (fdt
->max_fds
<= (PAGE_SIZE
/ sizeof(struct file
*))) {
99 fddef
= &get_cpu_var(fdtable_defer_list
);
100 spin_lock(&fddef
->lock
);
101 fdt
->next
= fddef
->next
;
103 /* vmallocs are handled from the workqueue context */
104 schedule_work(&fddef
->wq
);
105 spin_unlock(&fddef
->lock
);
106 put_cpu_var(fdtable_defer_list
);
111 * Expand the fdset in the files_struct. Called with the files spinlock
114 static void copy_fdtable(struct fdtable
*nfdt
, struct fdtable
*ofdt
)
116 unsigned int cpy
, set
;
118 BUG_ON(nfdt
->max_fds
< ofdt
->max_fds
);
119 if (ofdt
->max_fds
== 0)
122 cpy
= ofdt
->max_fds
* sizeof(struct file
*);
123 set
= (nfdt
->max_fds
- ofdt
->max_fds
) * sizeof(struct file
*);
124 memcpy(nfdt
->fd
, ofdt
->fd
, cpy
);
125 memset((char *)(nfdt
->fd
) + cpy
, 0, set
);
127 cpy
= ofdt
->max_fds
/ BITS_PER_BYTE
;
128 set
= (nfdt
->max_fds
- ofdt
->max_fds
) / BITS_PER_BYTE
;
129 memcpy(nfdt
->open_fds
, ofdt
->open_fds
, cpy
);
130 memset((char *)(nfdt
->open_fds
) + cpy
, 0, set
);
131 memcpy(nfdt
->close_on_exec
, ofdt
->close_on_exec
, cpy
);
132 memset((char *)(nfdt
->close_on_exec
) + cpy
, 0, set
);
135 static struct fdtable
* alloc_fdtable(unsigned int nr
)
141 * Figure out how many fds we actually want to support in this fdtable.
142 * Allocation steps are keyed to the size of the fdarray, since it
143 * grows far faster than any of the other dynamic data. We try to fit
144 * the fdarray into comfortable page-tuned chunks: starting at 1024B
145 * and growing in powers of two from there on.
147 nr
/= (1024 / sizeof(struct file
*));
148 nr
= roundup_pow_of_two(nr
+ 1);
149 nr
*= (1024 / sizeof(struct file
*));
153 fdt
= kmalloc(sizeof(struct fdtable
), GFP_KERNEL
);
157 data
= alloc_fdmem(nr
* sizeof(struct file
*));
160 fdt
->fd
= (struct file
**)data
;
161 data
= alloc_fdmem(max_t(unsigned int,
162 2 * nr
/ BITS_PER_BYTE
, L1_CACHE_BYTES
));
165 fdt
->open_fds
= (fd_set
*)data
;
166 data
+= nr
/ BITS_PER_BYTE
;
167 fdt
->close_on_exec
= (fd_set
*)data
;
168 INIT_RCU_HEAD(&fdt
->rcu
);
182 * Expand the file descriptor table.
183 * This function will allocate a new fdtable and both fd array and fdset, of
185 * Return <0 error code on error; 1 on successful completion.
186 * The files->file_lock should be held on entry, and will be held on exit.
188 static int expand_fdtable(struct files_struct
*files
, int nr
)
189 __releases(files
->file_lock
)
190 __acquires(files
->file_lock
)
192 struct fdtable
*new_fdt
, *cur_fdt
;
194 spin_unlock(&files
->file_lock
);
195 new_fdt
= alloc_fdtable(nr
);
196 spin_lock(&files
->file_lock
);
200 * Check again since another task may have expanded the fd table while
201 * we dropped the lock
203 cur_fdt
= files_fdtable(files
);
204 if (nr
>= cur_fdt
->max_fds
) {
205 /* Continue as planned */
206 copy_fdtable(new_fdt
, cur_fdt
);
207 rcu_assign_pointer(files
->fdt
, new_fdt
);
208 if (cur_fdt
->max_fds
> NR_OPEN_DEFAULT
)
209 free_fdtable(cur_fdt
);
211 /* Somebody else expanded, so undo our attempt */
221 * This function will expand the file structures, if the requested size exceeds
222 * the current capacity and there is room for expansion.
223 * Return <0 error code on error; 0 when nothing done; 1 when files were
224 * expanded and execution may have blocked.
225 * The files->file_lock should be held on entry, and will be held on exit.
227 int expand_files(struct files_struct
*files
, int nr
)
231 fdt
= files_fdtable(files
);
232 /* Do we need to expand? */
233 if (nr
< fdt
->max_fds
)
239 /* All good, so we try */
240 return expand_fdtable(files
, nr
);
243 static void __devinit
fdtable_defer_list_init(int cpu
)
245 struct fdtable_defer
*fddef
= &per_cpu(fdtable_defer_list
, cpu
);
246 spin_lock_init(&fddef
->lock
);
247 INIT_WORK(&fddef
->wq
, free_fdtable_work
);
251 void __init
files_defer_init(void)
254 for_each_possible_cpu(i
)
255 fdtable_defer_list_init(i
);