Driver-core: Always create class directories for classses that support namespaces.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_log_recover.c
blob9ac5cfab27b96da77ac033559229090a3c52490a
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 #if defined(DEBUG)
54 STATIC void xlog_recover_check_summary(xlog_t *);
55 #else
56 #define xlog_recover_check_summary(log)
57 #endif
60 * Sector aligned buffer routines for buffer create/read/write/access
64 * Verify the given count of basic blocks is valid number of blocks
65 * to specify for an operation involving the given XFS log buffer.
66 * Returns nonzero if the count is valid, 0 otherwise.
69 static inline int
70 xlog_buf_bbcount_valid(
71 xlog_t *log,
72 int bbcount)
74 return bbcount > 0 && bbcount <= log->l_logBBsize;
78 * Allocate a buffer to hold log data. The buffer needs to be able
79 * to map to a range of nbblks basic blocks at any valid (basic
80 * block) offset within the log.
82 STATIC xfs_buf_t *
83 xlog_get_bp(
84 xlog_t *log,
85 int nbblks)
87 if (!xlog_buf_bbcount_valid(log, nbblks)) {
88 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
89 nbblks);
90 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
91 return NULL;
95 * We do log I/O in units of log sectors (a power-of-2
96 * multiple of the basic block size), so we round up the
97 * requested size to acommodate the basic blocks required
98 * for complete log sectors.
100 * In addition, the buffer may be used for a non-sector-
101 * aligned block offset, in which case an I/O of the
102 * requested size could extend beyond the end of the
103 * buffer. If the requested size is only 1 basic block it
104 * will never straddle a sector boundary, so this won't be
105 * an issue. Nor will this be a problem if the log I/O is
106 * done in basic blocks (sector size 1). But otherwise we
107 * extend the buffer by one extra log sector to ensure
108 * there's space to accomodate this possiblility.
110 if (nbblks > 1 && log->l_sectBBsize > 1)
111 nbblks += log->l_sectBBsize;
112 nbblks = round_up(nbblks, log->l_sectBBsize);
114 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
117 STATIC void
118 xlog_put_bp(
119 xfs_buf_t *bp)
121 xfs_buf_free(bp);
125 * Return the address of the start of the given block number's data
126 * in a log buffer. The buffer covers a log sector-aligned region.
128 STATIC xfs_caddr_t
129 xlog_align(
130 xlog_t *log,
131 xfs_daddr_t blk_no,
132 int nbblks,
133 xfs_buf_t *bp)
135 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
137 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
138 return XFS_BUF_PTR(bp) + BBTOB(offset);
143 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
145 STATIC int
146 xlog_bread_noalign(
147 xlog_t *log,
148 xfs_daddr_t blk_no,
149 int nbblks,
150 xfs_buf_t *bp)
152 int error;
154 if (!xlog_buf_bbcount_valid(log, nbblks)) {
155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
156 nbblks);
157 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
158 return EFSCORRUPTED;
161 blk_no = round_down(blk_no, log->l_sectBBsize);
162 nbblks = round_up(nbblks, log->l_sectBBsize);
164 ASSERT(nbblks > 0);
165 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
167 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
168 XFS_BUF_READ(bp);
169 XFS_BUF_BUSY(bp);
170 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
171 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
173 xfsbdstrat(log->l_mp, bp);
174 error = xfs_iowait(bp);
175 if (error)
176 xfs_ioerror_alert("xlog_bread", log->l_mp,
177 bp, XFS_BUF_ADDR(bp));
178 return error;
181 STATIC int
182 xlog_bread(
183 xlog_t *log,
184 xfs_daddr_t blk_no,
185 int nbblks,
186 xfs_buf_t *bp,
187 xfs_caddr_t *offset)
189 int error;
191 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
192 if (error)
193 return error;
195 *offset = xlog_align(log, blk_no, nbblks, bp);
196 return 0;
200 * Write out the buffer at the given block for the given number of blocks.
201 * The buffer is kept locked across the write and is returned locked.
202 * This can only be used for synchronous log writes.
204 STATIC int
205 xlog_bwrite(
206 xlog_t *log,
207 xfs_daddr_t blk_no,
208 int nbblks,
209 xfs_buf_t *bp)
211 int error;
213 if (!xlog_buf_bbcount_valid(log, nbblks)) {
214 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
215 nbblks);
216 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
217 return EFSCORRUPTED;
220 blk_no = round_down(blk_no, log->l_sectBBsize);
221 nbblks = round_up(nbblks, log->l_sectBBsize);
223 ASSERT(nbblks > 0);
224 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
226 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
227 XFS_BUF_ZEROFLAGS(bp);
228 XFS_BUF_BUSY(bp);
229 XFS_BUF_HOLD(bp);
230 XFS_BUF_PSEMA(bp, PRIBIO);
231 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
232 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
234 if ((error = xfs_bwrite(log->l_mp, bp)))
235 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
236 bp, XFS_BUF_ADDR(bp));
237 return error;
240 #ifdef DEBUG
242 * dump debug superblock and log record information
244 STATIC void
245 xlog_header_check_dump(
246 xfs_mount_t *mp,
247 xlog_rec_header_t *head)
249 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
250 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
251 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
252 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
254 #else
255 #define xlog_header_check_dump(mp, head)
256 #endif
259 * check log record header for recovery
261 STATIC int
262 xlog_header_check_recover(
263 xfs_mount_t *mp,
264 xlog_rec_header_t *head)
266 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
269 * IRIX doesn't write the h_fmt field and leaves it zeroed
270 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
271 * a dirty log created in IRIX.
273 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
274 xlog_warn(
275 "XFS: dirty log written in incompatible format - can't recover");
276 xlog_header_check_dump(mp, head);
277 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
278 XFS_ERRLEVEL_HIGH, mp);
279 return XFS_ERROR(EFSCORRUPTED);
280 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
281 xlog_warn(
282 "XFS: dirty log entry has mismatched uuid - can't recover");
283 xlog_header_check_dump(mp, head);
284 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
285 XFS_ERRLEVEL_HIGH, mp);
286 return XFS_ERROR(EFSCORRUPTED);
288 return 0;
292 * read the head block of the log and check the header
294 STATIC int
295 xlog_header_check_mount(
296 xfs_mount_t *mp,
297 xlog_rec_header_t *head)
299 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
301 if (uuid_is_nil(&head->h_fs_uuid)) {
303 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
304 * h_fs_uuid is nil, we assume this log was last mounted
305 * by IRIX and continue.
307 xlog_warn("XFS: nil uuid in log - IRIX style log");
308 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
309 xlog_warn("XFS: log has mismatched uuid - can't recover");
310 xlog_header_check_dump(mp, head);
311 XFS_ERROR_REPORT("xlog_header_check_mount",
312 XFS_ERRLEVEL_HIGH, mp);
313 return XFS_ERROR(EFSCORRUPTED);
315 return 0;
318 STATIC void
319 xlog_recover_iodone(
320 struct xfs_buf *bp)
322 if (XFS_BUF_GETERROR(bp)) {
324 * We're not going to bother about retrying
325 * this during recovery. One strike!
327 xfs_ioerror_alert("xlog_recover_iodone",
328 bp->b_mount, bp, XFS_BUF_ADDR(bp));
329 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
331 bp->b_mount = NULL;
332 XFS_BUF_CLR_IODONE_FUNC(bp);
333 xfs_biodone(bp);
337 * This routine finds (to an approximation) the first block in the physical
338 * log which contains the given cycle. It uses a binary search algorithm.
339 * Note that the algorithm can not be perfect because the disk will not
340 * necessarily be perfect.
342 STATIC int
343 xlog_find_cycle_start(
344 xlog_t *log,
345 xfs_buf_t *bp,
346 xfs_daddr_t first_blk,
347 xfs_daddr_t *last_blk,
348 uint cycle)
350 xfs_caddr_t offset;
351 xfs_daddr_t mid_blk;
352 xfs_daddr_t end_blk;
353 uint mid_cycle;
354 int error;
356 end_blk = *last_blk;
357 mid_blk = BLK_AVG(first_blk, end_blk);
358 while (mid_blk != first_blk && mid_blk != end_blk) {
359 error = xlog_bread(log, mid_blk, 1, bp, &offset);
360 if (error)
361 return error;
362 mid_cycle = xlog_get_cycle(offset);
363 if (mid_cycle == cycle)
364 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
365 else
366 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
367 mid_blk = BLK_AVG(first_blk, end_blk);
369 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
370 (mid_blk == end_blk && mid_blk-1 == first_blk));
372 *last_blk = end_blk;
374 return 0;
378 * Check that a range of blocks does not contain stop_on_cycle_no.
379 * Fill in *new_blk with the block offset where such a block is
380 * found, or with -1 (an invalid block number) if there is no such
381 * block in the range. The scan needs to occur from front to back
382 * and the pointer into the region must be updated since a later
383 * routine will need to perform another test.
385 STATIC int
386 xlog_find_verify_cycle(
387 xlog_t *log,
388 xfs_daddr_t start_blk,
389 int nbblks,
390 uint stop_on_cycle_no,
391 xfs_daddr_t *new_blk)
393 xfs_daddr_t i, j;
394 uint cycle;
395 xfs_buf_t *bp;
396 xfs_daddr_t bufblks;
397 xfs_caddr_t buf = NULL;
398 int error = 0;
401 * Greedily allocate a buffer big enough to handle the full
402 * range of basic blocks we'll be examining. If that fails,
403 * try a smaller size. We need to be able to read at least
404 * a log sector, or we're out of luck.
406 bufblks = 1 << ffs(nbblks);
407 while (!(bp = xlog_get_bp(log, bufblks))) {
408 bufblks >>= 1;
409 if (bufblks < log->l_sectBBsize)
410 return ENOMEM;
413 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
414 int bcount;
416 bcount = min(bufblks, (start_blk + nbblks - i));
418 error = xlog_bread(log, i, bcount, bp, &buf);
419 if (error)
420 goto out;
422 for (j = 0; j < bcount; j++) {
423 cycle = xlog_get_cycle(buf);
424 if (cycle == stop_on_cycle_no) {
425 *new_blk = i+j;
426 goto out;
429 buf += BBSIZE;
433 *new_blk = -1;
435 out:
436 xlog_put_bp(bp);
437 return error;
441 * Potentially backup over partial log record write.
443 * In the typical case, last_blk is the number of the block directly after
444 * a good log record. Therefore, we subtract one to get the block number
445 * of the last block in the given buffer. extra_bblks contains the number
446 * of blocks we would have read on a previous read. This happens when the
447 * last log record is split over the end of the physical log.
449 * extra_bblks is the number of blocks potentially verified on a previous
450 * call to this routine.
452 STATIC int
453 xlog_find_verify_log_record(
454 xlog_t *log,
455 xfs_daddr_t start_blk,
456 xfs_daddr_t *last_blk,
457 int extra_bblks)
459 xfs_daddr_t i;
460 xfs_buf_t *bp;
461 xfs_caddr_t offset = NULL;
462 xlog_rec_header_t *head = NULL;
463 int error = 0;
464 int smallmem = 0;
465 int num_blks = *last_blk - start_blk;
466 int xhdrs;
468 ASSERT(start_blk != 0 || *last_blk != start_blk);
470 if (!(bp = xlog_get_bp(log, num_blks))) {
471 if (!(bp = xlog_get_bp(log, 1)))
472 return ENOMEM;
473 smallmem = 1;
474 } else {
475 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
476 if (error)
477 goto out;
478 offset += ((num_blks - 1) << BBSHIFT);
481 for (i = (*last_blk) - 1; i >= 0; i--) {
482 if (i < start_blk) {
483 /* valid log record not found */
484 xlog_warn(
485 "XFS: Log inconsistent (didn't find previous header)");
486 ASSERT(0);
487 error = XFS_ERROR(EIO);
488 goto out;
491 if (smallmem) {
492 error = xlog_bread(log, i, 1, bp, &offset);
493 if (error)
494 goto out;
497 head = (xlog_rec_header_t *)offset;
499 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
500 break;
502 if (!smallmem)
503 offset -= BBSIZE;
507 * We hit the beginning of the physical log & still no header. Return
508 * to caller. If caller can handle a return of -1, then this routine
509 * will be called again for the end of the physical log.
511 if (i == -1) {
512 error = -1;
513 goto out;
517 * We have the final block of the good log (the first block
518 * of the log record _before_ the head. So we check the uuid.
520 if ((error = xlog_header_check_mount(log->l_mp, head)))
521 goto out;
524 * We may have found a log record header before we expected one.
525 * last_blk will be the 1st block # with a given cycle #. We may end
526 * up reading an entire log record. In this case, we don't want to
527 * reset last_blk. Only when last_blk points in the middle of a log
528 * record do we update last_blk.
530 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
531 uint h_size = be32_to_cpu(head->h_size);
533 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
534 if (h_size % XLOG_HEADER_CYCLE_SIZE)
535 xhdrs++;
536 } else {
537 xhdrs = 1;
540 if (*last_blk - i + extra_bblks !=
541 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
542 *last_blk = i;
544 out:
545 xlog_put_bp(bp);
546 return error;
550 * Head is defined to be the point of the log where the next log write
551 * write could go. This means that incomplete LR writes at the end are
552 * eliminated when calculating the head. We aren't guaranteed that previous
553 * LR have complete transactions. We only know that a cycle number of
554 * current cycle number -1 won't be present in the log if we start writing
555 * from our current block number.
557 * last_blk contains the block number of the first block with a given
558 * cycle number.
560 * Return: zero if normal, non-zero if error.
562 STATIC int
563 xlog_find_head(
564 xlog_t *log,
565 xfs_daddr_t *return_head_blk)
567 xfs_buf_t *bp;
568 xfs_caddr_t offset;
569 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
570 int num_scan_bblks;
571 uint first_half_cycle, last_half_cycle;
572 uint stop_on_cycle;
573 int error, log_bbnum = log->l_logBBsize;
575 /* Is the end of the log device zeroed? */
576 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
577 *return_head_blk = first_blk;
579 /* Is the whole lot zeroed? */
580 if (!first_blk) {
581 /* Linux XFS shouldn't generate totally zeroed logs -
582 * mkfs etc write a dummy unmount record to a fresh
583 * log so we can store the uuid in there
585 xlog_warn("XFS: totally zeroed log");
588 return 0;
589 } else if (error) {
590 xlog_warn("XFS: empty log check failed");
591 return error;
594 first_blk = 0; /* get cycle # of 1st block */
595 bp = xlog_get_bp(log, 1);
596 if (!bp)
597 return ENOMEM;
599 error = xlog_bread(log, 0, 1, bp, &offset);
600 if (error)
601 goto bp_err;
603 first_half_cycle = xlog_get_cycle(offset);
605 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
606 error = xlog_bread(log, last_blk, 1, bp, &offset);
607 if (error)
608 goto bp_err;
610 last_half_cycle = xlog_get_cycle(offset);
611 ASSERT(last_half_cycle != 0);
614 * If the 1st half cycle number is equal to the last half cycle number,
615 * then the entire log is stamped with the same cycle number. In this
616 * case, head_blk can't be set to zero (which makes sense). The below
617 * math doesn't work out properly with head_blk equal to zero. Instead,
618 * we set it to log_bbnum which is an invalid block number, but this
619 * value makes the math correct. If head_blk doesn't changed through
620 * all the tests below, *head_blk is set to zero at the very end rather
621 * than log_bbnum. In a sense, log_bbnum and zero are the same block
622 * in a circular file.
624 if (first_half_cycle == last_half_cycle) {
626 * In this case we believe that the entire log should have
627 * cycle number last_half_cycle. We need to scan backwards
628 * from the end verifying that there are no holes still
629 * containing last_half_cycle - 1. If we find such a hole,
630 * then the start of that hole will be the new head. The
631 * simple case looks like
632 * x | x ... | x - 1 | x
633 * Another case that fits this picture would be
634 * x | x + 1 | x ... | x
635 * In this case the head really is somewhere at the end of the
636 * log, as one of the latest writes at the beginning was
637 * incomplete.
638 * One more case is
639 * x | x + 1 | x ... | x - 1 | x
640 * This is really the combination of the above two cases, and
641 * the head has to end up at the start of the x-1 hole at the
642 * end of the log.
644 * In the 256k log case, we will read from the beginning to the
645 * end of the log and search for cycle numbers equal to x-1.
646 * We don't worry about the x+1 blocks that we encounter,
647 * because we know that they cannot be the head since the log
648 * started with x.
650 head_blk = log_bbnum;
651 stop_on_cycle = last_half_cycle - 1;
652 } else {
654 * In this case we want to find the first block with cycle
655 * number matching last_half_cycle. We expect the log to be
656 * some variation on
657 * x + 1 ... | x ... | x
658 * The first block with cycle number x (last_half_cycle) will
659 * be where the new head belongs. First we do a binary search
660 * for the first occurrence of last_half_cycle. The binary
661 * search may not be totally accurate, so then we scan back
662 * from there looking for occurrences of last_half_cycle before
663 * us. If that backwards scan wraps around the beginning of
664 * the log, then we look for occurrences of last_half_cycle - 1
665 * at the end of the log. The cases we're looking for look
666 * like
667 * v binary search stopped here
668 * x + 1 ... | x | x + 1 | x ... | x
669 * ^ but we want to locate this spot
670 * or
671 * <---------> less than scan distance
672 * x + 1 ... | x ... | x - 1 | x
673 * ^ we want to locate this spot
675 stop_on_cycle = last_half_cycle;
676 if ((error = xlog_find_cycle_start(log, bp, first_blk,
677 &head_blk, last_half_cycle)))
678 goto bp_err;
682 * Now validate the answer. Scan back some number of maximum possible
683 * blocks and make sure each one has the expected cycle number. The
684 * maximum is determined by the total possible amount of buffering
685 * in the in-core log. The following number can be made tighter if
686 * we actually look at the block size of the filesystem.
688 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
689 if (head_blk >= num_scan_bblks) {
691 * We are guaranteed that the entire check can be performed
692 * in one buffer.
694 start_blk = head_blk - num_scan_bblks;
695 if ((error = xlog_find_verify_cycle(log,
696 start_blk, num_scan_bblks,
697 stop_on_cycle, &new_blk)))
698 goto bp_err;
699 if (new_blk != -1)
700 head_blk = new_blk;
701 } else { /* need to read 2 parts of log */
703 * We are going to scan backwards in the log in two parts.
704 * First we scan the physical end of the log. In this part
705 * of the log, we are looking for blocks with cycle number
706 * last_half_cycle - 1.
707 * If we find one, then we know that the log starts there, as
708 * we've found a hole that didn't get written in going around
709 * the end of the physical log. The simple case for this is
710 * x + 1 ... | x ... | x - 1 | x
711 * <---------> less than scan distance
712 * If all of the blocks at the end of the log have cycle number
713 * last_half_cycle, then we check the blocks at the start of
714 * the log looking for occurrences of last_half_cycle. If we
715 * find one, then our current estimate for the location of the
716 * first occurrence of last_half_cycle is wrong and we move
717 * back to the hole we've found. This case looks like
718 * x + 1 ... | x | x + 1 | x ...
719 * ^ binary search stopped here
720 * Another case we need to handle that only occurs in 256k
721 * logs is
722 * x + 1 ... | x ... | x+1 | x ...
723 * ^ binary search stops here
724 * In a 256k log, the scan at the end of the log will see the
725 * x + 1 blocks. We need to skip past those since that is
726 * certainly not the head of the log. By searching for
727 * last_half_cycle-1 we accomplish that.
729 ASSERT(head_blk <= INT_MAX &&
730 (xfs_daddr_t) num_scan_bblks >= head_blk);
731 start_blk = log_bbnum - (num_scan_bblks - head_blk);
732 if ((error = xlog_find_verify_cycle(log, start_blk,
733 num_scan_bblks - (int)head_blk,
734 (stop_on_cycle - 1), &new_blk)))
735 goto bp_err;
736 if (new_blk != -1) {
737 head_blk = new_blk;
738 goto validate_head;
742 * Scan beginning of log now. The last part of the physical
743 * log is good. This scan needs to verify that it doesn't find
744 * the last_half_cycle.
746 start_blk = 0;
747 ASSERT(head_blk <= INT_MAX);
748 if ((error = xlog_find_verify_cycle(log,
749 start_blk, (int)head_blk,
750 stop_on_cycle, &new_blk)))
751 goto bp_err;
752 if (new_blk != -1)
753 head_blk = new_blk;
756 validate_head:
758 * Now we need to make sure head_blk is not pointing to a block in
759 * the middle of a log record.
761 num_scan_bblks = XLOG_REC_SHIFT(log);
762 if (head_blk >= num_scan_bblks) {
763 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
765 /* start ptr at last block ptr before head_blk */
766 if ((error = xlog_find_verify_log_record(log, start_blk,
767 &head_blk, 0)) == -1) {
768 error = XFS_ERROR(EIO);
769 goto bp_err;
770 } else if (error)
771 goto bp_err;
772 } else {
773 start_blk = 0;
774 ASSERT(head_blk <= INT_MAX);
775 if ((error = xlog_find_verify_log_record(log, start_blk,
776 &head_blk, 0)) == -1) {
777 /* We hit the beginning of the log during our search */
778 start_blk = log_bbnum - (num_scan_bblks - head_blk);
779 new_blk = log_bbnum;
780 ASSERT(start_blk <= INT_MAX &&
781 (xfs_daddr_t) log_bbnum-start_blk >= 0);
782 ASSERT(head_blk <= INT_MAX);
783 if ((error = xlog_find_verify_log_record(log,
784 start_blk, &new_blk,
785 (int)head_blk)) == -1) {
786 error = XFS_ERROR(EIO);
787 goto bp_err;
788 } else if (error)
789 goto bp_err;
790 if (new_blk != log_bbnum)
791 head_blk = new_blk;
792 } else if (error)
793 goto bp_err;
796 xlog_put_bp(bp);
797 if (head_blk == log_bbnum)
798 *return_head_blk = 0;
799 else
800 *return_head_blk = head_blk;
802 * When returning here, we have a good block number. Bad block
803 * means that during a previous crash, we didn't have a clean break
804 * from cycle number N to cycle number N-1. In this case, we need
805 * to find the first block with cycle number N-1.
807 return 0;
809 bp_err:
810 xlog_put_bp(bp);
812 if (error)
813 xlog_warn("XFS: failed to find log head");
814 return error;
818 * Find the sync block number or the tail of the log.
820 * This will be the block number of the last record to have its
821 * associated buffers synced to disk. Every log record header has
822 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
823 * to get a sync block number. The only concern is to figure out which
824 * log record header to believe.
826 * The following algorithm uses the log record header with the largest
827 * lsn. The entire log record does not need to be valid. We only care
828 * that the header is valid.
830 * We could speed up search by using current head_blk buffer, but it is not
831 * available.
833 STATIC int
834 xlog_find_tail(
835 xlog_t *log,
836 xfs_daddr_t *head_blk,
837 xfs_daddr_t *tail_blk)
839 xlog_rec_header_t *rhead;
840 xlog_op_header_t *op_head;
841 xfs_caddr_t offset = NULL;
842 xfs_buf_t *bp;
843 int error, i, found;
844 xfs_daddr_t umount_data_blk;
845 xfs_daddr_t after_umount_blk;
846 xfs_lsn_t tail_lsn;
847 int hblks;
849 found = 0;
852 * Find previous log record
854 if ((error = xlog_find_head(log, head_blk)))
855 return error;
857 bp = xlog_get_bp(log, 1);
858 if (!bp)
859 return ENOMEM;
860 if (*head_blk == 0) { /* special case */
861 error = xlog_bread(log, 0, 1, bp, &offset);
862 if (error)
863 goto done;
865 if (xlog_get_cycle(offset) == 0) {
866 *tail_blk = 0;
867 /* leave all other log inited values alone */
868 goto done;
873 * Search backwards looking for log record header block
875 ASSERT(*head_blk < INT_MAX);
876 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
877 error = xlog_bread(log, i, 1, bp, &offset);
878 if (error)
879 goto done;
881 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
882 found = 1;
883 break;
887 * If we haven't found the log record header block, start looking
888 * again from the end of the physical log. XXXmiken: There should be
889 * a check here to make sure we didn't search more than N blocks in
890 * the previous code.
892 if (!found) {
893 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
894 error = xlog_bread(log, i, 1, bp, &offset);
895 if (error)
896 goto done;
898 if (XLOG_HEADER_MAGIC_NUM ==
899 be32_to_cpu(*(__be32 *)offset)) {
900 found = 2;
901 break;
905 if (!found) {
906 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
907 ASSERT(0);
908 return XFS_ERROR(EIO);
911 /* find blk_no of tail of log */
912 rhead = (xlog_rec_header_t *)offset;
913 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
916 * Reset log values according to the state of the log when we
917 * crashed. In the case where head_blk == 0, we bump curr_cycle
918 * one because the next write starts a new cycle rather than
919 * continuing the cycle of the last good log record. At this
920 * point we have guaranteed that all partial log records have been
921 * accounted for. Therefore, we know that the last good log record
922 * written was complete and ended exactly on the end boundary
923 * of the physical log.
925 log->l_prev_block = i;
926 log->l_curr_block = (int)*head_blk;
927 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
928 if (found == 2)
929 log->l_curr_cycle++;
930 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
931 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
932 log->l_grant_reserve_cycle = log->l_curr_cycle;
933 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
934 log->l_grant_write_cycle = log->l_curr_cycle;
935 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
938 * Look for unmount record. If we find it, then we know there
939 * was a clean unmount. Since 'i' could be the last block in
940 * the physical log, we convert to a log block before comparing
941 * to the head_blk.
943 * Save the current tail lsn to use to pass to
944 * xlog_clear_stale_blocks() below. We won't want to clear the
945 * unmount record if there is one, so we pass the lsn of the
946 * unmount record rather than the block after it.
948 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
949 int h_size = be32_to_cpu(rhead->h_size);
950 int h_version = be32_to_cpu(rhead->h_version);
952 if ((h_version & XLOG_VERSION_2) &&
953 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
954 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
955 if (h_size % XLOG_HEADER_CYCLE_SIZE)
956 hblks++;
957 } else {
958 hblks = 1;
960 } else {
961 hblks = 1;
963 after_umount_blk = (i + hblks + (int)
964 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
965 tail_lsn = log->l_tail_lsn;
966 if (*head_blk == after_umount_blk &&
967 be32_to_cpu(rhead->h_num_logops) == 1) {
968 umount_data_blk = (i + hblks) % log->l_logBBsize;
969 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
970 if (error)
971 goto done;
973 op_head = (xlog_op_header_t *)offset;
974 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
976 * Set tail and last sync so that newly written
977 * log records will point recovery to after the
978 * current unmount record.
980 log->l_tail_lsn =
981 xlog_assign_lsn(log->l_curr_cycle,
982 after_umount_blk);
983 log->l_last_sync_lsn =
984 xlog_assign_lsn(log->l_curr_cycle,
985 after_umount_blk);
986 *tail_blk = after_umount_blk;
989 * Note that the unmount was clean. If the unmount
990 * was not clean, we need to know this to rebuild the
991 * superblock counters from the perag headers if we
992 * have a filesystem using non-persistent counters.
994 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
999 * Make sure that there are no blocks in front of the head
1000 * with the same cycle number as the head. This can happen
1001 * because we allow multiple outstanding log writes concurrently,
1002 * and the later writes might make it out before earlier ones.
1004 * We use the lsn from before modifying it so that we'll never
1005 * overwrite the unmount record after a clean unmount.
1007 * Do this only if we are going to recover the filesystem
1009 * NOTE: This used to say "if (!readonly)"
1010 * However on Linux, we can & do recover a read-only filesystem.
1011 * We only skip recovery if NORECOVERY is specified on mount,
1012 * in which case we would not be here.
1014 * But... if the -device- itself is readonly, just skip this.
1015 * We can't recover this device anyway, so it won't matter.
1017 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1018 error = xlog_clear_stale_blocks(log, tail_lsn);
1020 done:
1021 xlog_put_bp(bp);
1023 if (error)
1024 xlog_warn("XFS: failed to locate log tail");
1025 return error;
1029 * Is the log zeroed at all?
1031 * The last binary search should be changed to perform an X block read
1032 * once X becomes small enough. You can then search linearly through
1033 * the X blocks. This will cut down on the number of reads we need to do.
1035 * If the log is partially zeroed, this routine will pass back the blkno
1036 * of the first block with cycle number 0. It won't have a complete LR
1037 * preceding it.
1039 * Return:
1040 * 0 => the log is completely written to
1041 * -1 => use *blk_no as the first block of the log
1042 * >0 => error has occurred
1044 STATIC int
1045 xlog_find_zeroed(
1046 xlog_t *log,
1047 xfs_daddr_t *blk_no)
1049 xfs_buf_t *bp;
1050 xfs_caddr_t offset;
1051 uint first_cycle, last_cycle;
1052 xfs_daddr_t new_blk, last_blk, start_blk;
1053 xfs_daddr_t num_scan_bblks;
1054 int error, log_bbnum = log->l_logBBsize;
1056 *blk_no = 0;
1058 /* check totally zeroed log */
1059 bp = xlog_get_bp(log, 1);
1060 if (!bp)
1061 return ENOMEM;
1062 error = xlog_bread(log, 0, 1, bp, &offset);
1063 if (error)
1064 goto bp_err;
1066 first_cycle = xlog_get_cycle(offset);
1067 if (first_cycle == 0) { /* completely zeroed log */
1068 *blk_no = 0;
1069 xlog_put_bp(bp);
1070 return -1;
1073 /* check partially zeroed log */
1074 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1075 if (error)
1076 goto bp_err;
1078 last_cycle = xlog_get_cycle(offset);
1079 if (last_cycle != 0) { /* log completely written to */
1080 xlog_put_bp(bp);
1081 return 0;
1082 } else if (first_cycle != 1) {
1084 * If the cycle of the last block is zero, the cycle of
1085 * the first block must be 1. If it's not, maybe we're
1086 * not looking at a log... Bail out.
1088 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1089 return XFS_ERROR(EINVAL);
1092 /* we have a partially zeroed log */
1093 last_blk = log_bbnum-1;
1094 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1095 goto bp_err;
1098 * Validate the answer. Because there is no way to guarantee that
1099 * the entire log is made up of log records which are the same size,
1100 * we scan over the defined maximum blocks. At this point, the maximum
1101 * is not chosen to mean anything special. XXXmiken
1103 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1104 ASSERT(num_scan_bblks <= INT_MAX);
1106 if (last_blk < num_scan_bblks)
1107 num_scan_bblks = last_blk;
1108 start_blk = last_blk - num_scan_bblks;
1111 * We search for any instances of cycle number 0 that occur before
1112 * our current estimate of the head. What we're trying to detect is
1113 * 1 ... | 0 | 1 | 0...
1114 * ^ binary search ends here
1116 if ((error = xlog_find_verify_cycle(log, start_blk,
1117 (int)num_scan_bblks, 0, &new_blk)))
1118 goto bp_err;
1119 if (new_blk != -1)
1120 last_blk = new_blk;
1123 * Potentially backup over partial log record write. We don't need
1124 * to search the end of the log because we know it is zero.
1126 if ((error = xlog_find_verify_log_record(log, start_blk,
1127 &last_blk, 0)) == -1) {
1128 error = XFS_ERROR(EIO);
1129 goto bp_err;
1130 } else if (error)
1131 goto bp_err;
1133 *blk_no = last_blk;
1134 bp_err:
1135 xlog_put_bp(bp);
1136 if (error)
1137 return error;
1138 return -1;
1142 * These are simple subroutines used by xlog_clear_stale_blocks() below
1143 * to initialize a buffer full of empty log record headers and write
1144 * them into the log.
1146 STATIC void
1147 xlog_add_record(
1148 xlog_t *log,
1149 xfs_caddr_t buf,
1150 int cycle,
1151 int block,
1152 int tail_cycle,
1153 int tail_block)
1155 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1157 memset(buf, 0, BBSIZE);
1158 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1159 recp->h_cycle = cpu_to_be32(cycle);
1160 recp->h_version = cpu_to_be32(
1161 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1162 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1163 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1164 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1165 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1168 STATIC int
1169 xlog_write_log_records(
1170 xlog_t *log,
1171 int cycle,
1172 int start_block,
1173 int blocks,
1174 int tail_cycle,
1175 int tail_block)
1177 xfs_caddr_t offset;
1178 xfs_buf_t *bp;
1179 int balign, ealign;
1180 int sectbb = log->l_sectBBsize;
1181 int end_block = start_block + blocks;
1182 int bufblks;
1183 int error = 0;
1184 int i, j = 0;
1187 * Greedily allocate a buffer big enough to handle the full
1188 * range of basic blocks to be written. If that fails, try
1189 * a smaller size. We need to be able to write at least a
1190 * log sector, or we're out of luck.
1192 bufblks = 1 << ffs(blocks);
1193 while (!(bp = xlog_get_bp(log, bufblks))) {
1194 bufblks >>= 1;
1195 if (bufblks < sectbb)
1196 return ENOMEM;
1199 /* We may need to do a read at the start to fill in part of
1200 * the buffer in the starting sector not covered by the first
1201 * write below.
1203 balign = round_down(start_block, sectbb);
1204 if (balign != start_block) {
1205 error = xlog_bread_noalign(log, start_block, 1, bp);
1206 if (error)
1207 goto out_put_bp;
1209 j = start_block - balign;
1212 for (i = start_block; i < end_block; i += bufblks) {
1213 int bcount, endcount;
1215 bcount = min(bufblks, end_block - start_block);
1216 endcount = bcount - j;
1218 /* We may need to do a read at the end to fill in part of
1219 * the buffer in the final sector not covered by the write.
1220 * If this is the same sector as the above read, skip it.
1222 ealign = round_down(end_block, sectbb);
1223 if (j == 0 && (start_block + endcount > ealign)) {
1224 offset = XFS_BUF_PTR(bp);
1225 balign = BBTOB(ealign - start_block);
1226 error = XFS_BUF_SET_PTR(bp, offset + balign,
1227 BBTOB(sectbb));
1228 if (error)
1229 break;
1231 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1232 if (error)
1233 break;
1235 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1236 if (error)
1237 break;
1240 offset = xlog_align(log, start_block, endcount, bp);
1241 for (; j < endcount; j++) {
1242 xlog_add_record(log, offset, cycle, i+j,
1243 tail_cycle, tail_block);
1244 offset += BBSIZE;
1246 error = xlog_bwrite(log, start_block, endcount, bp);
1247 if (error)
1248 break;
1249 start_block += endcount;
1250 j = 0;
1253 out_put_bp:
1254 xlog_put_bp(bp);
1255 return error;
1259 * This routine is called to blow away any incomplete log writes out
1260 * in front of the log head. We do this so that we won't become confused
1261 * if we come up, write only a little bit more, and then crash again.
1262 * If we leave the partial log records out there, this situation could
1263 * cause us to think those partial writes are valid blocks since they
1264 * have the current cycle number. We get rid of them by overwriting them
1265 * with empty log records with the old cycle number rather than the
1266 * current one.
1268 * The tail lsn is passed in rather than taken from
1269 * the log so that we will not write over the unmount record after a
1270 * clean unmount in a 512 block log. Doing so would leave the log without
1271 * any valid log records in it until a new one was written. If we crashed
1272 * during that time we would not be able to recover.
1274 STATIC int
1275 xlog_clear_stale_blocks(
1276 xlog_t *log,
1277 xfs_lsn_t tail_lsn)
1279 int tail_cycle, head_cycle;
1280 int tail_block, head_block;
1281 int tail_distance, max_distance;
1282 int distance;
1283 int error;
1285 tail_cycle = CYCLE_LSN(tail_lsn);
1286 tail_block = BLOCK_LSN(tail_lsn);
1287 head_cycle = log->l_curr_cycle;
1288 head_block = log->l_curr_block;
1291 * Figure out the distance between the new head of the log
1292 * and the tail. We want to write over any blocks beyond the
1293 * head that we may have written just before the crash, but
1294 * we don't want to overwrite the tail of the log.
1296 if (head_cycle == tail_cycle) {
1298 * The tail is behind the head in the physical log,
1299 * so the distance from the head to the tail is the
1300 * distance from the head to the end of the log plus
1301 * the distance from the beginning of the log to the
1302 * tail.
1304 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1305 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1306 XFS_ERRLEVEL_LOW, log->l_mp);
1307 return XFS_ERROR(EFSCORRUPTED);
1309 tail_distance = tail_block + (log->l_logBBsize - head_block);
1310 } else {
1312 * The head is behind the tail in the physical log,
1313 * so the distance from the head to the tail is just
1314 * the tail block minus the head block.
1316 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1317 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1318 XFS_ERRLEVEL_LOW, log->l_mp);
1319 return XFS_ERROR(EFSCORRUPTED);
1321 tail_distance = tail_block - head_block;
1325 * If the head is right up against the tail, we can't clear
1326 * anything.
1328 if (tail_distance <= 0) {
1329 ASSERT(tail_distance == 0);
1330 return 0;
1333 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1335 * Take the smaller of the maximum amount of outstanding I/O
1336 * we could have and the distance to the tail to clear out.
1337 * We take the smaller so that we don't overwrite the tail and
1338 * we don't waste all day writing from the head to the tail
1339 * for no reason.
1341 max_distance = MIN(max_distance, tail_distance);
1343 if ((head_block + max_distance) <= log->l_logBBsize) {
1345 * We can stomp all the blocks we need to without
1346 * wrapping around the end of the log. Just do it
1347 * in a single write. Use the cycle number of the
1348 * current cycle minus one so that the log will look like:
1349 * n ... | n - 1 ...
1351 error = xlog_write_log_records(log, (head_cycle - 1),
1352 head_block, max_distance, tail_cycle,
1353 tail_block);
1354 if (error)
1355 return error;
1356 } else {
1358 * We need to wrap around the end of the physical log in
1359 * order to clear all the blocks. Do it in two separate
1360 * I/Os. The first write should be from the head to the
1361 * end of the physical log, and it should use the current
1362 * cycle number minus one just like above.
1364 distance = log->l_logBBsize - head_block;
1365 error = xlog_write_log_records(log, (head_cycle - 1),
1366 head_block, distance, tail_cycle,
1367 tail_block);
1369 if (error)
1370 return error;
1373 * Now write the blocks at the start of the physical log.
1374 * This writes the remainder of the blocks we want to clear.
1375 * It uses the current cycle number since we're now on the
1376 * same cycle as the head so that we get:
1377 * n ... n ... | n - 1 ...
1378 * ^^^^^ blocks we're writing
1380 distance = max_distance - (log->l_logBBsize - head_block);
1381 error = xlog_write_log_records(log, head_cycle, 0, distance,
1382 tail_cycle, tail_block);
1383 if (error)
1384 return error;
1387 return 0;
1390 /******************************************************************************
1392 * Log recover routines
1394 ******************************************************************************
1397 STATIC xlog_recover_t *
1398 xlog_recover_find_tid(
1399 struct hlist_head *head,
1400 xlog_tid_t tid)
1402 xlog_recover_t *trans;
1403 struct hlist_node *n;
1405 hlist_for_each_entry(trans, n, head, r_list) {
1406 if (trans->r_log_tid == tid)
1407 return trans;
1409 return NULL;
1412 STATIC void
1413 xlog_recover_new_tid(
1414 struct hlist_head *head,
1415 xlog_tid_t tid,
1416 xfs_lsn_t lsn)
1418 xlog_recover_t *trans;
1420 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1421 trans->r_log_tid = tid;
1422 trans->r_lsn = lsn;
1423 INIT_LIST_HEAD(&trans->r_itemq);
1425 INIT_HLIST_NODE(&trans->r_list);
1426 hlist_add_head(&trans->r_list, head);
1429 STATIC void
1430 xlog_recover_add_item(
1431 struct list_head *head)
1433 xlog_recover_item_t *item;
1435 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1436 INIT_LIST_HEAD(&item->ri_list);
1437 list_add_tail(&item->ri_list, head);
1440 STATIC int
1441 xlog_recover_add_to_cont_trans(
1442 struct log *log,
1443 xlog_recover_t *trans,
1444 xfs_caddr_t dp,
1445 int len)
1447 xlog_recover_item_t *item;
1448 xfs_caddr_t ptr, old_ptr;
1449 int old_len;
1451 if (list_empty(&trans->r_itemq)) {
1452 /* finish copying rest of trans header */
1453 xlog_recover_add_item(&trans->r_itemq);
1454 ptr = (xfs_caddr_t) &trans->r_theader +
1455 sizeof(xfs_trans_header_t) - len;
1456 memcpy(ptr, dp, len); /* d, s, l */
1457 return 0;
1459 /* take the tail entry */
1460 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1462 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1463 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1465 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1466 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1467 item->ri_buf[item->ri_cnt-1].i_len += len;
1468 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1469 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1470 return 0;
1474 * The next region to add is the start of a new region. It could be
1475 * a whole region or it could be the first part of a new region. Because
1476 * of this, the assumption here is that the type and size fields of all
1477 * format structures fit into the first 32 bits of the structure.
1479 * This works because all regions must be 32 bit aligned. Therefore, we
1480 * either have both fields or we have neither field. In the case we have
1481 * neither field, the data part of the region is zero length. We only have
1482 * a log_op_header and can throw away the header since a new one will appear
1483 * later. If we have at least 4 bytes, then we can determine how many regions
1484 * will appear in the current log item.
1486 STATIC int
1487 xlog_recover_add_to_trans(
1488 struct log *log,
1489 xlog_recover_t *trans,
1490 xfs_caddr_t dp,
1491 int len)
1493 xfs_inode_log_format_t *in_f; /* any will do */
1494 xlog_recover_item_t *item;
1495 xfs_caddr_t ptr;
1497 if (!len)
1498 return 0;
1499 if (list_empty(&trans->r_itemq)) {
1500 /* we need to catch log corruptions here */
1501 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1502 xlog_warn("XFS: xlog_recover_add_to_trans: "
1503 "bad header magic number");
1504 ASSERT(0);
1505 return XFS_ERROR(EIO);
1507 if (len == sizeof(xfs_trans_header_t))
1508 xlog_recover_add_item(&trans->r_itemq);
1509 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1510 return 0;
1513 ptr = kmem_alloc(len, KM_SLEEP);
1514 memcpy(ptr, dp, len);
1515 in_f = (xfs_inode_log_format_t *)ptr;
1517 /* take the tail entry */
1518 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1519 if (item->ri_total != 0 &&
1520 item->ri_total == item->ri_cnt) {
1521 /* tail item is in use, get a new one */
1522 xlog_recover_add_item(&trans->r_itemq);
1523 item = list_entry(trans->r_itemq.prev,
1524 xlog_recover_item_t, ri_list);
1527 if (item->ri_total == 0) { /* first region to be added */
1528 if (in_f->ilf_size == 0 ||
1529 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1530 xlog_warn(
1531 "XFS: bad number of regions (%d) in inode log format",
1532 in_f->ilf_size);
1533 ASSERT(0);
1534 return XFS_ERROR(EIO);
1537 item->ri_total = in_f->ilf_size;
1538 item->ri_buf =
1539 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1540 KM_SLEEP);
1542 ASSERT(item->ri_total > item->ri_cnt);
1543 /* Description region is ri_buf[0] */
1544 item->ri_buf[item->ri_cnt].i_addr = ptr;
1545 item->ri_buf[item->ri_cnt].i_len = len;
1546 item->ri_cnt++;
1547 trace_xfs_log_recover_item_add(log, trans, item, 0);
1548 return 0;
1552 * Sort the log items in the transaction. Cancelled buffers need
1553 * to be put first so they are processed before any items that might
1554 * modify the buffers. If they are cancelled, then the modifications
1555 * don't need to be replayed.
1557 STATIC int
1558 xlog_recover_reorder_trans(
1559 struct log *log,
1560 xlog_recover_t *trans,
1561 int pass)
1563 xlog_recover_item_t *item, *n;
1564 LIST_HEAD(sort_list);
1566 list_splice_init(&trans->r_itemq, &sort_list);
1567 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1568 xfs_buf_log_format_t *buf_f;
1570 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1572 switch (ITEM_TYPE(item)) {
1573 case XFS_LI_BUF:
1574 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1575 trace_xfs_log_recover_item_reorder_head(log,
1576 trans, item, pass);
1577 list_move(&item->ri_list, &trans->r_itemq);
1578 break;
1580 case XFS_LI_INODE:
1581 case XFS_LI_DQUOT:
1582 case XFS_LI_QUOTAOFF:
1583 case XFS_LI_EFD:
1584 case XFS_LI_EFI:
1585 trace_xfs_log_recover_item_reorder_tail(log,
1586 trans, item, pass);
1587 list_move_tail(&item->ri_list, &trans->r_itemq);
1588 break;
1589 default:
1590 xlog_warn(
1591 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1592 ASSERT(0);
1593 return XFS_ERROR(EIO);
1596 ASSERT(list_empty(&sort_list));
1597 return 0;
1601 * Build up the table of buf cancel records so that we don't replay
1602 * cancelled data in the second pass. For buffer records that are
1603 * not cancel records, there is nothing to do here so we just return.
1605 * If we get a cancel record which is already in the table, this indicates
1606 * that the buffer was cancelled multiple times. In order to ensure
1607 * that during pass 2 we keep the record in the table until we reach its
1608 * last occurrence in the log, we keep a reference count in the cancel
1609 * record in the table to tell us how many times we expect to see this
1610 * record during the second pass.
1612 STATIC void
1613 xlog_recover_do_buffer_pass1(
1614 xlog_t *log,
1615 xfs_buf_log_format_t *buf_f)
1617 xfs_buf_cancel_t *bcp;
1618 xfs_buf_cancel_t *nextp;
1619 xfs_buf_cancel_t *prevp;
1620 xfs_buf_cancel_t **bucket;
1621 xfs_daddr_t blkno = 0;
1622 uint len = 0;
1623 ushort flags = 0;
1625 switch (buf_f->blf_type) {
1626 case XFS_LI_BUF:
1627 blkno = buf_f->blf_blkno;
1628 len = buf_f->blf_len;
1629 flags = buf_f->blf_flags;
1630 break;
1634 * If this isn't a cancel buffer item, then just return.
1636 if (!(flags & XFS_BLF_CANCEL)) {
1637 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1638 return;
1642 * Insert an xfs_buf_cancel record into the hash table of
1643 * them. If there is already an identical record, bump
1644 * its reference count.
1646 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1647 XLOG_BC_TABLE_SIZE];
1649 * If the hash bucket is empty then just insert a new record into
1650 * the bucket.
1652 if (*bucket == NULL) {
1653 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1654 KM_SLEEP);
1655 bcp->bc_blkno = blkno;
1656 bcp->bc_len = len;
1657 bcp->bc_refcount = 1;
1658 bcp->bc_next = NULL;
1659 *bucket = bcp;
1660 return;
1664 * The hash bucket is not empty, so search for duplicates of our
1665 * record. If we find one them just bump its refcount. If not
1666 * then add us at the end of the list.
1668 prevp = NULL;
1669 nextp = *bucket;
1670 while (nextp != NULL) {
1671 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1672 nextp->bc_refcount++;
1673 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1674 return;
1676 prevp = nextp;
1677 nextp = nextp->bc_next;
1679 ASSERT(prevp != NULL);
1680 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1681 KM_SLEEP);
1682 bcp->bc_blkno = blkno;
1683 bcp->bc_len = len;
1684 bcp->bc_refcount = 1;
1685 bcp->bc_next = NULL;
1686 prevp->bc_next = bcp;
1687 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1691 * Check to see whether the buffer being recovered has a corresponding
1692 * entry in the buffer cancel record table. If it does then return 1
1693 * so that it will be cancelled, otherwise return 0. If the buffer is
1694 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1695 * the refcount on the entry in the table and remove it from the table
1696 * if this is the last reference.
1698 * We remove the cancel record from the table when we encounter its
1699 * last occurrence in the log so that if the same buffer is re-used
1700 * again after its last cancellation we actually replay the changes
1701 * made at that point.
1703 STATIC int
1704 xlog_check_buffer_cancelled(
1705 xlog_t *log,
1706 xfs_daddr_t blkno,
1707 uint len,
1708 ushort flags)
1710 xfs_buf_cancel_t *bcp;
1711 xfs_buf_cancel_t *prevp;
1712 xfs_buf_cancel_t **bucket;
1714 if (log->l_buf_cancel_table == NULL) {
1716 * There is nothing in the table built in pass one,
1717 * so this buffer must not be cancelled.
1719 ASSERT(!(flags & XFS_BLF_CANCEL));
1720 return 0;
1723 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1724 XLOG_BC_TABLE_SIZE];
1725 bcp = *bucket;
1726 if (bcp == NULL) {
1728 * There is no corresponding entry in the table built
1729 * in pass one, so this buffer has not been cancelled.
1731 ASSERT(!(flags & XFS_BLF_CANCEL));
1732 return 0;
1736 * Search for an entry in the buffer cancel table that
1737 * matches our buffer.
1739 prevp = NULL;
1740 while (bcp != NULL) {
1741 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1743 * We've go a match, so return 1 so that the
1744 * recovery of this buffer is cancelled.
1745 * If this buffer is actually a buffer cancel
1746 * log item, then decrement the refcount on the
1747 * one in the table and remove it if this is the
1748 * last reference.
1750 if (flags & XFS_BLF_CANCEL) {
1751 bcp->bc_refcount--;
1752 if (bcp->bc_refcount == 0) {
1753 if (prevp == NULL) {
1754 *bucket = bcp->bc_next;
1755 } else {
1756 prevp->bc_next = bcp->bc_next;
1758 kmem_free(bcp);
1761 return 1;
1763 prevp = bcp;
1764 bcp = bcp->bc_next;
1767 * We didn't find a corresponding entry in the table, so
1768 * return 0 so that the buffer is NOT cancelled.
1770 ASSERT(!(flags & XFS_BLF_CANCEL));
1771 return 0;
1774 STATIC int
1775 xlog_recover_do_buffer_pass2(
1776 xlog_t *log,
1777 xfs_buf_log_format_t *buf_f)
1779 xfs_daddr_t blkno = 0;
1780 ushort flags = 0;
1781 uint len = 0;
1783 switch (buf_f->blf_type) {
1784 case XFS_LI_BUF:
1785 blkno = buf_f->blf_blkno;
1786 flags = buf_f->blf_flags;
1787 len = buf_f->blf_len;
1788 break;
1791 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1795 * Perform recovery for a buffer full of inodes. In these buffers,
1796 * the only data which should be recovered is that which corresponds
1797 * to the di_next_unlinked pointers in the on disk inode structures.
1798 * The rest of the data for the inodes is always logged through the
1799 * inodes themselves rather than the inode buffer and is recovered
1800 * in xlog_recover_do_inode_trans().
1802 * The only time when buffers full of inodes are fully recovered is
1803 * when the buffer is full of newly allocated inodes. In this case
1804 * the buffer will not be marked as an inode buffer and so will be
1805 * sent to xlog_recover_do_reg_buffer() below during recovery.
1807 STATIC int
1808 xlog_recover_do_inode_buffer(
1809 xfs_mount_t *mp,
1810 xlog_recover_item_t *item,
1811 xfs_buf_t *bp,
1812 xfs_buf_log_format_t *buf_f)
1814 int i;
1815 int item_index;
1816 int bit;
1817 int nbits;
1818 int reg_buf_offset;
1819 int reg_buf_bytes;
1820 int next_unlinked_offset;
1821 int inodes_per_buf;
1822 xfs_agino_t *logged_nextp;
1823 xfs_agino_t *buffer_nextp;
1824 unsigned int *data_map = NULL;
1825 unsigned int map_size = 0;
1827 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1829 switch (buf_f->blf_type) {
1830 case XFS_LI_BUF:
1831 data_map = buf_f->blf_data_map;
1832 map_size = buf_f->blf_map_size;
1833 break;
1836 * Set the variables corresponding to the current region to
1837 * 0 so that we'll initialize them on the first pass through
1838 * the loop.
1840 reg_buf_offset = 0;
1841 reg_buf_bytes = 0;
1842 bit = 0;
1843 nbits = 0;
1844 item_index = 0;
1845 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1846 for (i = 0; i < inodes_per_buf; i++) {
1847 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1848 offsetof(xfs_dinode_t, di_next_unlinked);
1850 while (next_unlinked_offset >=
1851 (reg_buf_offset + reg_buf_bytes)) {
1853 * The next di_next_unlinked field is beyond
1854 * the current logged region. Find the next
1855 * logged region that contains or is beyond
1856 * the current di_next_unlinked field.
1858 bit += nbits;
1859 bit = xfs_next_bit(data_map, map_size, bit);
1862 * If there are no more logged regions in the
1863 * buffer, then we're done.
1865 if (bit == -1) {
1866 return 0;
1869 nbits = xfs_contig_bits(data_map, map_size,
1870 bit);
1871 ASSERT(nbits > 0);
1872 reg_buf_offset = bit << XFS_BLF_SHIFT;
1873 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1874 item_index++;
1878 * If the current logged region starts after the current
1879 * di_next_unlinked field, then move on to the next
1880 * di_next_unlinked field.
1882 if (next_unlinked_offset < reg_buf_offset) {
1883 continue;
1886 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1887 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1888 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1891 * The current logged region contains a copy of the
1892 * current di_next_unlinked field. Extract its value
1893 * and copy it to the buffer copy.
1895 logged_nextp = (xfs_agino_t *)
1896 ((char *)(item->ri_buf[item_index].i_addr) +
1897 (next_unlinked_offset - reg_buf_offset));
1898 if (unlikely(*logged_nextp == 0)) {
1899 xfs_fs_cmn_err(CE_ALERT, mp,
1900 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1901 item, bp);
1902 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1903 XFS_ERRLEVEL_LOW, mp);
1904 return XFS_ERROR(EFSCORRUPTED);
1907 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1908 next_unlinked_offset);
1909 *buffer_nextp = *logged_nextp;
1912 return 0;
1916 * Perform a 'normal' buffer recovery. Each logged region of the
1917 * buffer should be copied over the corresponding region in the
1918 * given buffer. The bitmap in the buf log format structure indicates
1919 * where to place the logged data.
1921 /*ARGSUSED*/
1922 STATIC void
1923 xlog_recover_do_reg_buffer(
1924 struct xfs_mount *mp,
1925 xlog_recover_item_t *item,
1926 xfs_buf_t *bp,
1927 xfs_buf_log_format_t *buf_f)
1929 int i;
1930 int bit;
1931 int nbits;
1932 unsigned int *data_map = NULL;
1933 unsigned int map_size = 0;
1934 int error;
1936 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1938 switch (buf_f->blf_type) {
1939 case XFS_LI_BUF:
1940 data_map = buf_f->blf_data_map;
1941 map_size = buf_f->blf_map_size;
1942 break;
1944 bit = 0;
1945 i = 1; /* 0 is the buf format structure */
1946 while (1) {
1947 bit = xfs_next_bit(data_map, map_size, bit);
1948 if (bit == -1)
1949 break;
1950 nbits = xfs_contig_bits(data_map, map_size, bit);
1951 ASSERT(nbits > 0);
1952 ASSERT(item->ri_buf[i].i_addr != NULL);
1953 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1954 ASSERT(XFS_BUF_COUNT(bp) >=
1955 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1958 * Do a sanity check if this is a dquot buffer. Just checking
1959 * the first dquot in the buffer should do. XXXThis is
1960 * probably a good thing to do for other buf types also.
1962 error = 0;
1963 if (buf_f->blf_flags &
1964 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1965 if (item->ri_buf[i].i_addr == NULL) {
1966 cmn_err(CE_ALERT,
1967 "XFS: NULL dquot in %s.", __func__);
1968 goto next;
1970 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1971 cmn_err(CE_ALERT,
1972 "XFS: dquot too small (%d) in %s.",
1973 item->ri_buf[i].i_len, __func__);
1974 goto next;
1976 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1977 item->ri_buf[i].i_addr,
1978 -1, 0, XFS_QMOPT_DOWARN,
1979 "dquot_buf_recover");
1980 if (error)
1981 goto next;
1984 memcpy(xfs_buf_offset(bp,
1985 (uint)bit << XFS_BLF_SHIFT), /* dest */
1986 item->ri_buf[i].i_addr, /* source */
1987 nbits<<XFS_BLF_SHIFT); /* length */
1988 next:
1989 i++;
1990 bit += nbits;
1993 /* Shouldn't be any more regions */
1994 ASSERT(i == item->ri_total);
1998 * Do some primitive error checking on ondisk dquot data structures.
2001 xfs_qm_dqcheck(
2002 xfs_disk_dquot_t *ddq,
2003 xfs_dqid_t id,
2004 uint type, /* used only when IO_dorepair is true */
2005 uint flags,
2006 char *str)
2008 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2009 int errs = 0;
2012 * We can encounter an uninitialized dquot buffer for 2 reasons:
2013 * 1. If we crash while deleting the quotainode(s), and those blks got
2014 * used for user data. This is because we take the path of regular
2015 * file deletion; however, the size field of quotainodes is never
2016 * updated, so all the tricks that we play in itruncate_finish
2017 * don't quite matter.
2019 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2020 * But the allocation will be replayed so we'll end up with an
2021 * uninitialized quota block.
2023 * This is all fine; things are still consistent, and we haven't lost
2024 * any quota information. Just don't complain about bad dquot blks.
2026 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2027 if (flags & XFS_QMOPT_DOWARN)
2028 cmn_err(CE_ALERT,
2029 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2030 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2031 errs++;
2033 if (ddq->d_version != XFS_DQUOT_VERSION) {
2034 if (flags & XFS_QMOPT_DOWARN)
2035 cmn_err(CE_ALERT,
2036 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2037 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2038 errs++;
2041 if (ddq->d_flags != XFS_DQ_USER &&
2042 ddq->d_flags != XFS_DQ_PROJ &&
2043 ddq->d_flags != XFS_DQ_GROUP) {
2044 if (flags & XFS_QMOPT_DOWARN)
2045 cmn_err(CE_ALERT,
2046 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2047 str, id, ddq->d_flags);
2048 errs++;
2051 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2052 if (flags & XFS_QMOPT_DOWARN)
2053 cmn_err(CE_ALERT,
2054 "%s : ondisk-dquot 0x%p, ID mismatch: "
2055 "0x%x expected, found id 0x%x",
2056 str, ddq, id, be32_to_cpu(ddq->d_id));
2057 errs++;
2060 if (!errs && ddq->d_id) {
2061 if (ddq->d_blk_softlimit &&
2062 be64_to_cpu(ddq->d_bcount) >=
2063 be64_to_cpu(ddq->d_blk_softlimit)) {
2064 if (!ddq->d_btimer) {
2065 if (flags & XFS_QMOPT_DOWARN)
2066 cmn_err(CE_ALERT,
2067 "%s : Dquot ID 0x%x (0x%p) "
2068 "BLK TIMER NOT STARTED",
2069 str, (int)be32_to_cpu(ddq->d_id), ddq);
2070 errs++;
2073 if (ddq->d_ino_softlimit &&
2074 be64_to_cpu(ddq->d_icount) >=
2075 be64_to_cpu(ddq->d_ino_softlimit)) {
2076 if (!ddq->d_itimer) {
2077 if (flags & XFS_QMOPT_DOWARN)
2078 cmn_err(CE_ALERT,
2079 "%s : Dquot ID 0x%x (0x%p) "
2080 "INODE TIMER NOT STARTED",
2081 str, (int)be32_to_cpu(ddq->d_id), ddq);
2082 errs++;
2085 if (ddq->d_rtb_softlimit &&
2086 be64_to_cpu(ddq->d_rtbcount) >=
2087 be64_to_cpu(ddq->d_rtb_softlimit)) {
2088 if (!ddq->d_rtbtimer) {
2089 if (flags & XFS_QMOPT_DOWARN)
2090 cmn_err(CE_ALERT,
2091 "%s : Dquot ID 0x%x (0x%p) "
2092 "RTBLK TIMER NOT STARTED",
2093 str, (int)be32_to_cpu(ddq->d_id), ddq);
2094 errs++;
2099 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2100 return errs;
2102 if (flags & XFS_QMOPT_DOWARN)
2103 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2106 * Typically, a repair is only requested by quotacheck.
2108 ASSERT(id != -1);
2109 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2110 memset(d, 0, sizeof(xfs_dqblk_t));
2112 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2113 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2114 d->dd_diskdq.d_flags = type;
2115 d->dd_diskdq.d_id = cpu_to_be32(id);
2117 return errs;
2121 * Perform a dquot buffer recovery.
2122 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2123 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2124 * Else, treat it as a regular buffer and do recovery.
2126 STATIC void
2127 xlog_recover_do_dquot_buffer(
2128 xfs_mount_t *mp,
2129 xlog_t *log,
2130 xlog_recover_item_t *item,
2131 xfs_buf_t *bp,
2132 xfs_buf_log_format_t *buf_f)
2134 uint type;
2136 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2139 * Filesystems are required to send in quota flags at mount time.
2141 if (mp->m_qflags == 0) {
2142 return;
2145 type = 0;
2146 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2147 type |= XFS_DQ_USER;
2148 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2149 type |= XFS_DQ_PROJ;
2150 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2151 type |= XFS_DQ_GROUP;
2153 * This type of quotas was turned off, so ignore this buffer
2155 if (log->l_quotaoffs_flag & type)
2156 return;
2158 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2162 * This routine replays a modification made to a buffer at runtime.
2163 * There are actually two types of buffer, regular and inode, which
2164 * are handled differently. Inode buffers are handled differently
2165 * in that we only recover a specific set of data from them, namely
2166 * the inode di_next_unlinked fields. This is because all other inode
2167 * data is actually logged via inode records and any data we replay
2168 * here which overlaps that may be stale.
2170 * When meta-data buffers are freed at run time we log a buffer item
2171 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2172 * of the buffer in the log should not be replayed at recovery time.
2173 * This is so that if the blocks covered by the buffer are reused for
2174 * file data before we crash we don't end up replaying old, freed
2175 * meta-data into a user's file.
2177 * To handle the cancellation of buffer log items, we make two passes
2178 * over the log during recovery. During the first we build a table of
2179 * those buffers which have been cancelled, and during the second we
2180 * only replay those buffers which do not have corresponding cancel
2181 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2182 * for more details on the implementation of the table of cancel records.
2184 STATIC int
2185 xlog_recover_do_buffer_trans(
2186 xlog_t *log,
2187 xlog_recover_item_t *item,
2188 int pass)
2190 xfs_buf_log_format_t *buf_f;
2191 xfs_mount_t *mp;
2192 xfs_buf_t *bp;
2193 int error;
2194 int cancel;
2195 xfs_daddr_t blkno;
2196 int len;
2197 ushort flags;
2198 uint buf_flags;
2200 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2202 if (pass == XLOG_RECOVER_PASS1) {
2204 * In this pass we're only looking for buf items
2205 * with the XFS_BLF_CANCEL bit set.
2207 xlog_recover_do_buffer_pass1(log, buf_f);
2208 return 0;
2209 } else {
2211 * In this pass we want to recover all the buffers
2212 * which have not been cancelled and are not
2213 * cancellation buffers themselves. The routine
2214 * we call here will tell us whether or not to
2215 * continue with the replay of this buffer.
2217 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2218 if (cancel) {
2219 trace_xfs_log_recover_buf_cancel(log, buf_f);
2220 return 0;
2223 trace_xfs_log_recover_buf_recover(log, buf_f);
2224 switch (buf_f->blf_type) {
2225 case XFS_LI_BUF:
2226 blkno = buf_f->blf_blkno;
2227 len = buf_f->blf_len;
2228 flags = buf_f->blf_flags;
2229 break;
2230 default:
2231 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2232 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2233 buf_f->blf_type, log->l_mp->m_logname ?
2234 log->l_mp->m_logname : "internal");
2235 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2236 XFS_ERRLEVEL_LOW, log->l_mp);
2237 return XFS_ERROR(EFSCORRUPTED);
2240 mp = log->l_mp;
2241 buf_flags = XBF_LOCK;
2242 if (!(flags & XFS_BLF_INODE_BUF))
2243 buf_flags |= XBF_MAPPED;
2245 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2246 if (XFS_BUF_ISERROR(bp)) {
2247 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2248 bp, blkno);
2249 error = XFS_BUF_GETERROR(bp);
2250 xfs_buf_relse(bp);
2251 return error;
2254 error = 0;
2255 if (flags & XFS_BLF_INODE_BUF) {
2256 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2257 } else if (flags &
2258 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2259 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2260 } else {
2261 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2263 if (error)
2264 return XFS_ERROR(error);
2267 * Perform delayed write on the buffer. Asynchronous writes will be
2268 * slower when taking into account all the buffers to be flushed.
2270 * Also make sure that only inode buffers with good sizes stay in
2271 * the buffer cache. The kernel moves inodes in buffers of 1 block
2272 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2273 * buffers in the log can be a different size if the log was generated
2274 * by an older kernel using unclustered inode buffers or a newer kernel
2275 * running with a different inode cluster size. Regardless, if the
2276 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2277 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2278 * the buffer out of the buffer cache so that the buffer won't
2279 * overlap with future reads of those inodes.
2281 if (XFS_DINODE_MAGIC ==
2282 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2283 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2284 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2285 XFS_BUF_STALE(bp);
2286 error = xfs_bwrite(mp, bp);
2287 } else {
2288 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2289 bp->b_mount = mp;
2290 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2291 xfs_bdwrite(mp, bp);
2294 return (error);
2297 STATIC int
2298 xlog_recover_do_inode_trans(
2299 xlog_t *log,
2300 xlog_recover_item_t *item,
2301 int pass)
2303 xfs_inode_log_format_t *in_f;
2304 xfs_mount_t *mp;
2305 xfs_buf_t *bp;
2306 xfs_dinode_t *dip;
2307 xfs_ino_t ino;
2308 int len;
2309 xfs_caddr_t src;
2310 xfs_caddr_t dest;
2311 int error;
2312 int attr_index;
2313 uint fields;
2314 xfs_icdinode_t *dicp;
2315 int need_free = 0;
2317 if (pass == XLOG_RECOVER_PASS1) {
2318 return 0;
2321 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2322 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2323 } else {
2324 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2325 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2326 need_free = 1;
2327 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2328 if (error)
2329 goto error;
2331 ino = in_f->ilf_ino;
2332 mp = log->l_mp;
2335 * Inode buffers can be freed, look out for it,
2336 * and do not replay the inode.
2338 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2339 in_f->ilf_len, 0)) {
2340 error = 0;
2341 trace_xfs_log_recover_inode_cancel(log, in_f);
2342 goto error;
2344 trace_xfs_log_recover_inode_recover(log, in_f);
2346 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2347 XBF_LOCK);
2348 if (XFS_BUF_ISERROR(bp)) {
2349 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2350 bp, in_f->ilf_blkno);
2351 error = XFS_BUF_GETERROR(bp);
2352 xfs_buf_relse(bp);
2353 goto error;
2355 error = 0;
2356 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2357 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2360 * Make sure the place we're flushing out to really looks
2361 * like an inode!
2363 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2364 xfs_buf_relse(bp);
2365 xfs_fs_cmn_err(CE_ALERT, mp,
2366 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2367 dip, bp, ino);
2368 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2369 XFS_ERRLEVEL_LOW, mp);
2370 error = EFSCORRUPTED;
2371 goto error;
2373 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2374 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2375 xfs_buf_relse(bp);
2376 xfs_fs_cmn_err(CE_ALERT, mp,
2377 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2378 item, ino);
2379 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2380 XFS_ERRLEVEL_LOW, mp);
2381 error = EFSCORRUPTED;
2382 goto error;
2385 /* Skip replay when the on disk inode is newer than the log one */
2386 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2388 * Deal with the wrap case, DI_MAX_FLUSH is less
2389 * than smaller numbers
2391 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2392 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2393 /* do nothing */
2394 } else {
2395 xfs_buf_relse(bp);
2396 trace_xfs_log_recover_inode_skip(log, in_f);
2397 error = 0;
2398 goto error;
2401 /* Take the opportunity to reset the flush iteration count */
2402 dicp->di_flushiter = 0;
2404 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2405 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2406 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2408 XFS_ERRLEVEL_LOW, mp, dicp);
2409 xfs_buf_relse(bp);
2410 xfs_fs_cmn_err(CE_ALERT, mp,
2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2412 item, dip, bp, ino);
2413 error = EFSCORRUPTED;
2414 goto error;
2416 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2417 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2418 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2419 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2420 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2421 XFS_ERRLEVEL_LOW, mp, dicp);
2422 xfs_buf_relse(bp);
2423 xfs_fs_cmn_err(CE_ALERT, mp,
2424 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2425 item, dip, bp, ino);
2426 error = EFSCORRUPTED;
2427 goto error;
2430 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2431 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2432 XFS_ERRLEVEL_LOW, mp, dicp);
2433 xfs_buf_relse(bp);
2434 xfs_fs_cmn_err(CE_ALERT, mp,
2435 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2436 item, dip, bp, ino,
2437 dicp->di_nextents + dicp->di_anextents,
2438 dicp->di_nblocks);
2439 error = EFSCORRUPTED;
2440 goto error;
2442 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2444 XFS_ERRLEVEL_LOW, mp, dicp);
2445 xfs_buf_relse(bp);
2446 xfs_fs_cmn_err(CE_ALERT, mp,
2447 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2448 item, dip, bp, ino, dicp->di_forkoff);
2449 error = EFSCORRUPTED;
2450 goto error;
2452 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2453 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2454 XFS_ERRLEVEL_LOW, mp, dicp);
2455 xfs_buf_relse(bp);
2456 xfs_fs_cmn_err(CE_ALERT, mp,
2457 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2458 item->ri_buf[1].i_len, item);
2459 error = EFSCORRUPTED;
2460 goto error;
2463 /* The core is in in-core format */
2464 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2466 /* the rest is in on-disk format */
2467 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2468 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2469 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2470 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2473 fields = in_f->ilf_fields;
2474 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2475 case XFS_ILOG_DEV:
2476 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2477 break;
2478 case XFS_ILOG_UUID:
2479 memcpy(XFS_DFORK_DPTR(dip),
2480 &in_f->ilf_u.ilfu_uuid,
2481 sizeof(uuid_t));
2482 break;
2485 if (in_f->ilf_size == 2)
2486 goto write_inode_buffer;
2487 len = item->ri_buf[2].i_len;
2488 src = item->ri_buf[2].i_addr;
2489 ASSERT(in_f->ilf_size <= 4);
2490 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2491 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2492 (len == in_f->ilf_dsize));
2494 switch (fields & XFS_ILOG_DFORK) {
2495 case XFS_ILOG_DDATA:
2496 case XFS_ILOG_DEXT:
2497 memcpy(XFS_DFORK_DPTR(dip), src, len);
2498 break;
2500 case XFS_ILOG_DBROOT:
2501 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2502 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2503 XFS_DFORK_DSIZE(dip, mp));
2504 break;
2506 default:
2508 * There are no data fork flags set.
2510 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2511 break;
2515 * If we logged any attribute data, recover it. There may or
2516 * may not have been any other non-core data logged in this
2517 * transaction.
2519 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2521 attr_index = 3;
2522 } else {
2523 attr_index = 2;
2525 len = item->ri_buf[attr_index].i_len;
2526 src = item->ri_buf[attr_index].i_addr;
2527 ASSERT(len == in_f->ilf_asize);
2529 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2530 case XFS_ILOG_ADATA:
2531 case XFS_ILOG_AEXT:
2532 dest = XFS_DFORK_APTR(dip);
2533 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2534 memcpy(dest, src, len);
2535 break;
2537 case XFS_ILOG_ABROOT:
2538 dest = XFS_DFORK_APTR(dip);
2539 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2540 len, (xfs_bmdr_block_t*)dest,
2541 XFS_DFORK_ASIZE(dip, mp));
2542 break;
2544 default:
2545 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2546 ASSERT(0);
2547 xfs_buf_relse(bp);
2548 error = EIO;
2549 goto error;
2553 write_inode_buffer:
2554 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2555 bp->b_mount = mp;
2556 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2557 xfs_bdwrite(mp, bp);
2558 error:
2559 if (need_free)
2560 kmem_free(in_f);
2561 return XFS_ERROR(error);
2565 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2566 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2567 * of that type.
2569 STATIC int
2570 xlog_recover_do_quotaoff_trans(
2571 xlog_t *log,
2572 xlog_recover_item_t *item,
2573 int pass)
2575 xfs_qoff_logformat_t *qoff_f;
2577 if (pass == XLOG_RECOVER_PASS2) {
2578 return (0);
2581 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2582 ASSERT(qoff_f);
2585 * The logitem format's flag tells us if this was user quotaoff,
2586 * group/project quotaoff or both.
2588 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2589 log->l_quotaoffs_flag |= XFS_DQ_USER;
2590 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2591 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2592 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2593 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595 return (0);
2599 * Recover a dquot record
2601 STATIC int
2602 xlog_recover_do_dquot_trans(
2603 xlog_t *log,
2604 xlog_recover_item_t *item,
2605 int pass)
2607 xfs_mount_t *mp;
2608 xfs_buf_t *bp;
2609 struct xfs_disk_dquot *ddq, *recddq;
2610 int error;
2611 xfs_dq_logformat_t *dq_f;
2612 uint type;
2614 if (pass == XLOG_RECOVER_PASS1) {
2615 return 0;
2617 mp = log->l_mp;
2620 * Filesystems are required to send in quota flags at mount time.
2622 if (mp->m_qflags == 0)
2623 return (0);
2625 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2627 if (item->ri_buf[1].i_addr == NULL) {
2628 cmn_err(CE_ALERT,
2629 "XFS: NULL dquot in %s.", __func__);
2630 return XFS_ERROR(EIO);
2632 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2633 cmn_err(CE_ALERT,
2634 "XFS: dquot too small (%d) in %s.",
2635 item->ri_buf[1].i_len, __func__);
2636 return XFS_ERROR(EIO);
2640 * This type of quotas was turned off, so ignore this record.
2642 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2643 ASSERT(type);
2644 if (log->l_quotaoffs_flag & type)
2645 return (0);
2648 * At this point we know that quota was _not_ turned off.
2649 * Since the mount flags are not indicating to us otherwise, this
2650 * must mean that quota is on, and the dquot needs to be replayed.
2651 * Remember that we may not have fully recovered the superblock yet,
2652 * so we can't do the usual trick of looking at the SB quota bits.
2654 * The other possibility, of course, is that the quota subsystem was
2655 * removed since the last mount - ENOSYS.
2657 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2658 ASSERT(dq_f);
2659 if ((error = xfs_qm_dqcheck(recddq,
2660 dq_f->qlf_id,
2661 0, XFS_QMOPT_DOWARN,
2662 "xlog_recover_do_dquot_trans (log copy)"))) {
2663 return XFS_ERROR(EIO);
2665 ASSERT(dq_f->qlf_len == 1);
2667 error = xfs_read_buf(mp, mp->m_ddev_targp,
2668 dq_f->qlf_blkno,
2669 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2670 0, &bp);
2671 if (error) {
2672 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2673 bp, dq_f->qlf_blkno);
2674 return error;
2676 ASSERT(bp);
2677 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2680 * At least the magic num portion should be on disk because this
2681 * was among a chunk of dquots created earlier, and we did some
2682 * minimal initialization then.
2684 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2685 "xlog_recover_do_dquot_trans")) {
2686 xfs_buf_relse(bp);
2687 return XFS_ERROR(EIO);
2690 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2692 ASSERT(dq_f->qlf_size == 2);
2693 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2694 bp->b_mount = mp;
2695 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2696 xfs_bdwrite(mp, bp);
2698 return (0);
2702 * This routine is called to create an in-core extent free intent
2703 * item from the efi format structure which was logged on disk.
2704 * It allocates an in-core efi, copies the extents from the format
2705 * structure into it, and adds the efi to the AIL with the given
2706 * LSN.
2708 STATIC int
2709 xlog_recover_do_efi_trans(
2710 xlog_t *log,
2711 xlog_recover_item_t *item,
2712 xfs_lsn_t lsn,
2713 int pass)
2715 int error;
2716 xfs_mount_t *mp;
2717 xfs_efi_log_item_t *efip;
2718 xfs_efi_log_format_t *efi_formatp;
2720 if (pass == XLOG_RECOVER_PASS1) {
2721 return 0;
2724 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2726 mp = log->l_mp;
2727 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2728 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2729 &(efip->efi_format)))) {
2730 xfs_efi_item_free(efip);
2731 return error;
2733 efip->efi_next_extent = efi_formatp->efi_nextents;
2734 efip->efi_flags |= XFS_EFI_COMMITTED;
2736 spin_lock(&log->l_ailp->xa_lock);
2738 * xfs_trans_ail_update() drops the AIL lock.
2740 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2741 return 0;
2746 * This routine is called when an efd format structure is found in
2747 * a committed transaction in the log. It's purpose is to cancel
2748 * the corresponding efi if it was still in the log. To do this
2749 * it searches the AIL for the efi with an id equal to that in the
2750 * efd format structure. If we find it, we remove the efi from the
2751 * AIL and free it.
2753 STATIC void
2754 xlog_recover_do_efd_trans(
2755 xlog_t *log,
2756 xlog_recover_item_t *item,
2757 int pass)
2759 xfs_efd_log_format_t *efd_formatp;
2760 xfs_efi_log_item_t *efip = NULL;
2761 xfs_log_item_t *lip;
2762 __uint64_t efi_id;
2763 struct xfs_ail_cursor cur;
2764 struct xfs_ail *ailp = log->l_ailp;
2766 if (pass == XLOG_RECOVER_PASS1) {
2767 return;
2770 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2771 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2772 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2773 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2774 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2775 efi_id = efd_formatp->efd_efi_id;
2778 * Search for the efi with the id in the efd format structure
2779 * in the AIL.
2781 spin_lock(&ailp->xa_lock);
2782 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2783 while (lip != NULL) {
2784 if (lip->li_type == XFS_LI_EFI) {
2785 efip = (xfs_efi_log_item_t *)lip;
2786 if (efip->efi_format.efi_id == efi_id) {
2788 * xfs_trans_ail_delete() drops the
2789 * AIL lock.
2791 xfs_trans_ail_delete(ailp, lip);
2792 xfs_efi_item_free(efip);
2793 spin_lock(&ailp->xa_lock);
2794 break;
2797 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2799 xfs_trans_ail_cursor_done(ailp, &cur);
2800 spin_unlock(&ailp->xa_lock);
2804 * Perform the transaction
2806 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2807 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2809 STATIC int
2810 xlog_recover_do_trans(
2811 xlog_t *log,
2812 xlog_recover_t *trans,
2813 int pass)
2815 int error = 0;
2816 xlog_recover_item_t *item;
2818 error = xlog_recover_reorder_trans(log, trans, pass);
2819 if (error)
2820 return error;
2822 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2823 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2824 switch (ITEM_TYPE(item)) {
2825 case XFS_LI_BUF:
2826 error = xlog_recover_do_buffer_trans(log, item, pass);
2827 break;
2828 case XFS_LI_INODE:
2829 error = xlog_recover_do_inode_trans(log, item, pass);
2830 break;
2831 case XFS_LI_EFI:
2832 error = xlog_recover_do_efi_trans(log, item,
2833 trans->r_lsn, pass);
2834 break;
2835 case XFS_LI_EFD:
2836 xlog_recover_do_efd_trans(log, item, pass);
2837 error = 0;
2838 break;
2839 case XFS_LI_DQUOT:
2840 error = xlog_recover_do_dquot_trans(log, item, pass);
2841 break;
2842 case XFS_LI_QUOTAOFF:
2843 error = xlog_recover_do_quotaoff_trans(log, item,
2844 pass);
2845 break;
2846 default:
2847 xlog_warn(
2848 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2849 ASSERT(0);
2850 error = XFS_ERROR(EIO);
2851 break;
2854 if (error)
2855 return error;
2858 return 0;
2862 * Free up any resources allocated by the transaction
2864 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2866 STATIC void
2867 xlog_recover_free_trans(
2868 xlog_recover_t *trans)
2870 xlog_recover_item_t *item, *n;
2871 int i;
2873 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2874 /* Free the regions in the item. */
2875 list_del(&item->ri_list);
2876 for (i = 0; i < item->ri_cnt; i++)
2877 kmem_free(item->ri_buf[i].i_addr);
2878 /* Free the item itself */
2879 kmem_free(item->ri_buf);
2880 kmem_free(item);
2882 /* Free the transaction recover structure */
2883 kmem_free(trans);
2886 STATIC int
2887 xlog_recover_commit_trans(
2888 xlog_t *log,
2889 xlog_recover_t *trans,
2890 int pass)
2892 int error;
2894 hlist_del(&trans->r_list);
2895 if ((error = xlog_recover_do_trans(log, trans, pass)))
2896 return error;
2897 xlog_recover_free_trans(trans); /* no error */
2898 return 0;
2901 STATIC int
2902 xlog_recover_unmount_trans(
2903 xlog_recover_t *trans)
2905 /* Do nothing now */
2906 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2907 return 0;
2911 * There are two valid states of the r_state field. 0 indicates that the
2912 * transaction structure is in a normal state. We have either seen the
2913 * start of the transaction or the last operation we added was not a partial
2914 * operation. If the last operation we added to the transaction was a
2915 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2917 * NOTE: skip LRs with 0 data length.
2919 STATIC int
2920 xlog_recover_process_data(
2921 xlog_t *log,
2922 struct hlist_head rhash[],
2923 xlog_rec_header_t *rhead,
2924 xfs_caddr_t dp,
2925 int pass)
2927 xfs_caddr_t lp;
2928 int num_logops;
2929 xlog_op_header_t *ohead;
2930 xlog_recover_t *trans;
2931 xlog_tid_t tid;
2932 int error;
2933 unsigned long hash;
2934 uint flags;
2936 lp = dp + be32_to_cpu(rhead->h_len);
2937 num_logops = be32_to_cpu(rhead->h_num_logops);
2939 /* check the log format matches our own - else we can't recover */
2940 if (xlog_header_check_recover(log->l_mp, rhead))
2941 return (XFS_ERROR(EIO));
2943 while ((dp < lp) && num_logops) {
2944 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2945 ohead = (xlog_op_header_t *)dp;
2946 dp += sizeof(xlog_op_header_t);
2947 if (ohead->oh_clientid != XFS_TRANSACTION &&
2948 ohead->oh_clientid != XFS_LOG) {
2949 xlog_warn(
2950 "XFS: xlog_recover_process_data: bad clientid");
2951 ASSERT(0);
2952 return (XFS_ERROR(EIO));
2954 tid = be32_to_cpu(ohead->oh_tid);
2955 hash = XLOG_RHASH(tid);
2956 trans = xlog_recover_find_tid(&rhash[hash], tid);
2957 if (trans == NULL) { /* not found; add new tid */
2958 if (ohead->oh_flags & XLOG_START_TRANS)
2959 xlog_recover_new_tid(&rhash[hash], tid,
2960 be64_to_cpu(rhead->h_lsn));
2961 } else {
2962 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2963 xlog_warn(
2964 "XFS: xlog_recover_process_data: bad length");
2965 WARN_ON(1);
2966 return (XFS_ERROR(EIO));
2968 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2969 if (flags & XLOG_WAS_CONT_TRANS)
2970 flags &= ~XLOG_CONTINUE_TRANS;
2971 switch (flags) {
2972 case XLOG_COMMIT_TRANS:
2973 error = xlog_recover_commit_trans(log,
2974 trans, pass);
2975 break;
2976 case XLOG_UNMOUNT_TRANS:
2977 error = xlog_recover_unmount_trans(trans);
2978 break;
2979 case XLOG_WAS_CONT_TRANS:
2980 error = xlog_recover_add_to_cont_trans(log,
2981 trans, dp,
2982 be32_to_cpu(ohead->oh_len));
2983 break;
2984 case XLOG_START_TRANS:
2985 xlog_warn(
2986 "XFS: xlog_recover_process_data: bad transaction");
2987 ASSERT(0);
2988 error = XFS_ERROR(EIO);
2989 break;
2990 case 0:
2991 case XLOG_CONTINUE_TRANS:
2992 error = xlog_recover_add_to_trans(log, trans,
2993 dp, be32_to_cpu(ohead->oh_len));
2994 break;
2995 default:
2996 xlog_warn(
2997 "XFS: xlog_recover_process_data: bad flag");
2998 ASSERT(0);
2999 error = XFS_ERROR(EIO);
3000 break;
3002 if (error)
3003 return error;
3005 dp += be32_to_cpu(ohead->oh_len);
3006 num_logops--;
3008 return 0;
3012 * Process an extent free intent item that was recovered from
3013 * the log. We need to free the extents that it describes.
3015 STATIC int
3016 xlog_recover_process_efi(
3017 xfs_mount_t *mp,
3018 xfs_efi_log_item_t *efip)
3020 xfs_efd_log_item_t *efdp;
3021 xfs_trans_t *tp;
3022 int i;
3023 int error = 0;
3024 xfs_extent_t *extp;
3025 xfs_fsblock_t startblock_fsb;
3027 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3030 * First check the validity of the extents described by the
3031 * EFI. If any are bad, then assume that all are bad and
3032 * just toss the EFI.
3034 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3035 extp = &(efip->efi_format.efi_extents[i]);
3036 startblock_fsb = XFS_BB_TO_FSB(mp,
3037 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3038 if ((startblock_fsb == 0) ||
3039 (extp->ext_len == 0) ||
3040 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3041 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3043 * This will pull the EFI from the AIL and
3044 * free the memory associated with it.
3046 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3047 return XFS_ERROR(EIO);
3051 tp = xfs_trans_alloc(mp, 0);
3052 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3053 if (error)
3054 goto abort_error;
3055 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3057 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3058 extp = &(efip->efi_format.efi_extents[i]);
3059 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3060 if (error)
3061 goto abort_error;
3062 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3063 extp->ext_len);
3066 efip->efi_flags |= XFS_EFI_RECOVERED;
3067 error = xfs_trans_commit(tp, 0);
3068 return error;
3070 abort_error:
3071 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3072 return error;
3076 * When this is called, all of the EFIs which did not have
3077 * corresponding EFDs should be in the AIL. What we do now
3078 * is free the extents associated with each one.
3080 * Since we process the EFIs in normal transactions, they
3081 * will be removed at some point after the commit. This prevents
3082 * us from just walking down the list processing each one.
3083 * We'll use a flag in the EFI to skip those that we've already
3084 * processed and use the AIL iteration mechanism's generation
3085 * count to try to speed this up at least a bit.
3087 * When we start, we know that the EFIs are the only things in
3088 * the AIL. As we process them, however, other items are added
3089 * to the AIL. Since everything added to the AIL must come after
3090 * everything already in the AIL, we stop processing as soon as
3091 * we see something other than an EFI in the AIL.
3093 STATIC int
3094 xlog_recover_process_efis(
3095 xlog_t *log)
3097 xfs_log_item_t *lip;
3098 xfs_efi_log_item_t *efip;
3099 int error = 0;
3100 struct xfs_ail_cursor cur;
3101 struct xfs_ail *ailp;
3103 ailp = log->l_ailp;
3104 spin_lock(&ailp->xa_lock);
3105 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3106 while (lip != NULL) {
3108 * We're done when we see something other than an EFI.
3109 * There should be no EFIs left in the AIL now.
3111 if (lip->li_type != XFS_LI_EFI) {
3112 #ifdef DEBUG
3113 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3114 ASSERT(lip->li_type != XFS_LI_EFI);
3115 #endif
3116 break;
3120 * Skip EFIs that we've already processed.
3122 efip = (xfs_efi_log_item_t *)lip;
3123 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3124 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3125 continue;
3128 spin_unlock(&ailp->xa_lock);
3129 error = xlog_recover_process_efi(log->l_mp, efip);
3130 spin_lock(&ailp->xa_lock);
3131 if (error)
3132 goto out;
3133 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3135 out:
3136 xfs_trans_ail_cursor_done(ailp, &cur);
3137 spin_unlock(&ailp->xa_lock);
3138 return error;
3142 * This routine performs a transaction to null out a bad inode pointer
3143 * in an agi unlinked inode hash bucket.
3145 STATIC void
3146 xlog_recover_clear_agi_bucket(
3147 xfs_mount_t *mp,
3148 xfs_agnumber_t agno,
3149 int bucket)
3151 xfs_trans_t *tp;
3152 xfs_agi_t *agi;
3153 xfs_buf_t *agibp;
3154 int offset;
3155 int error;
3157 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3158 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3159 0, 0, 0);
3160 if (error)
3161 goto out_abort;
3163 error = xfs_read_agi(mp, tp, agno, &agibp);
3164 if (error)
3165 goto out_abort;
3167 agi = XFS_BUF_TO_AGI(agibp);
3168 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3169 offset = offsetof(xfs_agi_t, agi_unlinked) +
3170 (sizeof(xfs_agino_t) * bucket);
3171 xfs_trans_log_buf(tp, agibp, offset,
3172 (offset + sizeof(xfs_agino_t) - 1));
3174 error = xfs_trans_commit(tp, 0);
3175 if (error)
3176 goto out_error;
3177 return;
3179 out_abort:
3180 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3181 out_error:
3182 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3183 "failed to clear agi %d. Continuing.", agno);
3184 return;
3187 STATIC xfs_agino_t
3188 xlog_recover_process_one_iunlink(
3189 struct xfs_mount *mp,
3190 xfs_agnumber_t agno,
3191 xfs_agino_t agino,
3192 int bucket)
3194 struct xfs_buf *ibp;
3195 struct xfs_dinode *dip;
3196 struct xfs_inode *ip;
3197 xfs_ino_t ino;
3198 int error;
3200 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3201 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3202 if (error)
3203 goto fail;
3206 * Get the on disk inode to find the next inode in the bucket.
3208 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3209 if (error)
3210 goto fail_iput;
3212 ASSERT(ip->i_d.di_nlink == 0);
3213 ASSERT(ip->i_d.di_mode != 0);
3215 /* setup for the next pass */
3216 agino = be32_to_cpu(dip->di_next_unlinked);
3217 xfs_buf_relse(ibp);
3220 * Prevent any DMAPI event from being sent when the reference on
3221 * the inode is dropped.
3223 ip->i_d.di_dmevmask = 0;
3225 IRELE(ip);
3226 return agino;
3228 fail_iput:
3229 IRELE(ip);
3230 fail:
3232 * We can't read in the inode this bucket points to, or this inode
3233 * is messed up. Just ditch this bucket of inodes. We will lose
3234 * some inodes and space, but at least we won't hang.
3236 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3237 * clear the inode pointer in the bucket.
3239 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3240 return NULLAGINO;
3244 * xlog_iunlink_recover
3246 * This is called during recovery to process any inodes which
3247 * we unlinked but not freed when the system crashed. These
3248 * inodes will be on the lists in the AGI blocks. What we do
3249 * here is scan all the AGIs and fully truncate and free any
3250 * inodes found on the lists. Each inode is removed from the
3251 * lists when it has been fully truncated and is freed. The
3252 * freeing of the inode and its removal from the list must be
3253 * atomic.
3255 STATIC void
3256 xlog_recover_process_iunlinks(
3257 xlog_t *log)
3259 xfs_mount_t *mp;
3260 xfs_agnumber_t agno;
3261 xfs_agi_t *agi;
3262 xfs_buf_t *agibp;
3263 xfs_agino_t agino;
3264 int bucket;
3265 int error;
3266 uint mp_dmevmask;
3268 mp = log->l_mp;
3271 * Prevent any DMAPI event from being sent while in this function.
3273 mp_dmevmask = mp->m_dmevmask;
3274 mp->m_dmevmask = 0;
3276 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3278 * Find the agi for this ag.
3280 error = xfs_read_agi(mp, NULL, agno, &agibp);
3281 if (error) {
3283 * AGI is b0rked. Don't process it.
3285 * We should probably mark the filesystem as corrupt
3286 * after we've recovered all the ag's we can....
3288 continue;
3290 agi = XFS_BUF_TO_AGI(agibp);
3292 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3293 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3294 while (agino != NULLAGINO) {
3296 * Release the agi buffer so that it can
3297 * be acquired in the normal course of the
3298 * transaction to truncate and free the inode.
3300 xfs_buf_relse(agibp);
3302 agino = xlog_recover_process_one_iunlink(mp,
3303 agno, agino, bucket);
3306 * Reacquire the agibuffer and continue around
3307 * the loop. This should never fail as we know
3308 * the buffer was good earlier on.
3310 error = xfs_read_agi(mp, NULL, agno, &agibp);
3311 ASSERT(error == 0);
3312 agi = XFS_BUF_TO_AGI(agibp);
3317 * Release the buffer for the current agi so we can
3318 * go on to the next one.
3320 xfs_buf_relse(agibp);
3323 mp->m_dmevmask = mp_dmevmask;
3327 #ifdef DEBUG
3328 STATIC void
3329 xlog_pack_data_checksum(
3330 xlog_t *log,
3331 xlog_in_core_t *iclog,
3332 int size)
3334 int i;
3335 __be32 *up;
3336 uint chksum = 0;
3338 up = (__be32 *)iclog->ic_datap;
3339 /* divide length by 4 to get # words */
3340 for (i = 0; i < (size >> 2); i++) {
3341 chksum ^= be32_to_cpu(*up);
3342 up++;
3344 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3346 #else
3347 #define xlog_pack_data_checksum(log, iclog, size)
3348 #endif
3351 * Stamp cycle number in every block
3353 void
3354 xlog_pack_data(
3355 xlog_t *log,
3356 xlog_in_core_t *iclog,
3357 int roundoff)
3359 int i, j, k;
3360 int size = iclog->ic_offset + roundoff;
3361 __be32 cycle_lsn;
3362 xfs_caddr_t dp;
3364 xlog_pack_data_checksum(log, iclog, size);
3366 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3368 dp = iclog->ic_datap;
3369 for (i = 0; i < BTOBB(size) &&
3370 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3371 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3372 *(__be32 *)dp = cycle_lsn;
3373 dp += BBSIZE;
3376 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3377 xlog_in_core_2_t *xhdr = iclog->ic_data;
3379 for ( ; i < BTOBB(size); i++) {
3380 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3381 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3382 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3383 *(__be32 *)dp = cycle_lsn;
3384 dp += BBSIZE;
3387 for (i = 1; i < log->l_iclog_heads; i++) {
3388 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3393 STATIC void
3394 xlog_unpack_data(
3395 xlog_rec_header_t *rhead,
3396 xfs_caddr_t dp,
3397 xlog_t *log)
3399 int i, j, k;
3401 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3402 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3403 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3404 dp += BBSIZE;
3407 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3408 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3409 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3410 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3411 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3412 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3413 dp += BBSIZE;
3418 STATIC int
3419 xlog_valid_rec_header(
3420 xlog_t *log,
3421 xlog_rec_header_t *rhead,
3422 xfs_daddr_t blkno)
3424 int hlen;
3426 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3427 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3428 XFS_ERRLEVEL_LOW, log->l_mp);
3429 return XFS_ERROR(EFSCORRUPTED);
3431 if (unlikely(
3432 (!rhead->h_version ||
3433 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3434 xlog_warn("XFS: %s: unrecognised log version (%d).",
3435 __func__, be32_to_cpu(rhead->h_version));
3436 return XFS_ERROR(EIO);
3439 /* LR body must have data or it wouldn't have been written */
3440 hlen = be32_to_cpu(rhead->h_len);
3441 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3442 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3443 XFS_ERRLEVEL_LOW, log->l_mp);
3444 return XFS_ERROR(EFSCORRUPTED);
3446 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3447 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3448 XFS_ERRLEVEL_LOW, log->l_mp);
3449 return XFS_ERROR(EFSCORRUPTED);
3451 return 0;
3455 * Read the log from tail to head and process the log records found.
3456 * Handle the two cases where the tail and head are in the same cycle
3457 * and where the active portion of the log wraps around the end of
3458 * the physical log separately. The pass parameter is passed through
3459 * to the routines called to process the data and is not looked at
3460 * here.
3462 STATIC int
3463 xlog_do_recovery_pass(
3464 xlog_t *log,
3465 xfs_daddr_t head_blk,
3466 xfs_daddr_t tail_blk,
3467 int pass)
3469 xlog_rec_header_t *rhead;
3470 xfs_daddr_t blk_no;
3471 xfs_caddr_t offset;
3472 xfs_buf_t *hbp, *dbp;
3473 int error = 0, h_size;
3474 int bblks, split_bblks;
3475 int hblks, split_hblks, wrapped_hblks;
3476 struct hlist_head rhash[XLOG_RHASH_SIZE];
3478 ASSERT(head_blk != tail_blk);
3481 * Read the header of the tail block and get the iclog buffer size from
3482 * h_size. Use this to tell how many sectors make up the log header.
3484 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3486 * When using variable length iclogs, read first sector of
3487 * iclog header and extract the header size from it. Get a
3488 * new hbp that is the correct size.
3490 hbp = xlog_get_bp(log, 1);
3491 if (!hbp)
3492 return ENOMEM;
3494 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3495 if (error)
3496 goto bread_err1;
3498 rhead = (xlog_rec_header_t *)offset;
3499 error = xlog_valid_rec_header(log, rhead, tail_blk);
3500 if (error)
3501 goto bread_err1;
3502 h_size = be32_to_cpu(rhead->h_size);
3503 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3504 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3505 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3506 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3507 hblks++;
3508 xlog_put_bp(hbp);
3509 hbp = xlog_get_bp(log, hblks);
3510 } else {
3511 hblks = 1;
3513 } else {
3514 ASSERT(log->l_sectBBsize == 1);
3515 hblks = 1;
3516 hbp = xlog_get_bp(log, 1);
3517 h_size = XLOG_BIG_RECORD_BSIZE;
3520 if (!hbp)
3521 return ENOMEM;
3522 dbp = xlog_get_bp(log, BTOBB(h_size));
3523 if (!dbp) {
3524 xlog_put_bp(hbp);
3525 return ENOMEM;
3528 memset(rhash, 0, sizeof(rhash));
3529 if (tail_blk <= head_blk) {
3530 for (blk_no = tail_blk; blk_no < head_blk; ) {
3531 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3532 if (error)
3533 goto bread_err2;
3535 rhead = (xlog_rec_header_t *)offset;
3536 error = xlog_valid_rec_header(log, rhead, blk_no);
3537 if (error)
3538 goto bread_err2;
3540 /* blocks in data section */
3541 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3542 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3543 &offset);
3544 if (error)
3545 goto bread_err2;
3547 xlog_unpack_data(rhead, offset, log);
3548 if ((error = xlog_recover_process_data(log,
3549 rhash, rhead, offset, pass)))
3550 goto bread_err2;
3551 blk_no += bblks + hblks;
3553 } else {
3555 * Perform recovery around the end of the physical log.
3556 * When the head is not on the same cycle number as the tail,
3557 * we can't do a sequential recovery as above.
3559 blk_no = tail_blk;
3560 while (blk_no < log->l_logBBsize) {
3562 * Check for header wrapping around physical end-of-log
3564 offset = XFS_BUF_PTR(hbp);
3565 split_hblks = 0;
3566 wrapped_hblks = 0;
3567 if (blk_no + hblks <= log->l_logBBsize) {
3568 /* Read header in one read */
3569 error = xlog_bread(log, blk_no, hblks, hbp,
3570 &offset);
3571 if (error)
3572 goto bread_err2;
3573 } else {
3574 /* This LR is split across physical log end */
3575 if (blk_no != log->l_logBBsize) {
3576 /* some data before physical log end */
3577 ASSERT(blk_no <= INT_MAX);
3578 split_hblks = log->l_logBBsize - (int)blk_no;
3579 ASSERT(split_hblks > 0);
3580 error = xlog_bread(log, blk_no,
3581 split_hblks, hbp,
3582 &offset);
3583 if (error)
3584 goto bread_err2;
3588 * Note: this black magic still works with
3589 * large sector sizes (non-512) only because:
3590 * - we increased the buffer size originally
3591 * by 1 sector giving us enough extra space
3592 * for the second read;
3593 * - the log start is guaranteed to be sector
3594 * aligned;
3595 * - we read the log end (LR header start)
3596 * _first_, then the log start (LR header end)
3597 * - order is important.
3599 wrapped_hblks = hblks - split_hblks;
3600 error = XFS_BUF_SET_PTR(hbp,
3601 offset + BBTOB(split_hblks),
3602 BBTOB(hblks - split_hblks));
3603 if (error)
3604 goto bread_err2;
3606 error = xlog_bread_noalign(log, 0,
3607 wrapped_hblks, hbp);
3608 if (error)
3609 goto bread_err2;
3611 error = XFS_BUF_SET_PTR(hbp, offset,
3612 BBTOB(hblks));
3613 if (error)
3614 goto bread_err2;
3616 rhead = (xlog_rec_header_t *)offset;
3617 error = xlog_valid_rec_header(log, rhead,
3618 split_hblks ? blk_no : 0);
3619 if (error)
3620 goto bread_err2;
3622 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3623 blk_no += hblks;
3625 /* Read in data for log record */
3626 if (blk_no + bblks <= log->l_logBBsize) {
3627 error = xlog_bread(log, blk_no, bblks, dbp,
3628 &offset);
3629 if (error)
3630 goto bread_err2;
3631 } else {
3632 /* This log record is split across the
3633 * physical end of log */
3634 offset = XFS_BUF_PTR(dbp);
3635 split_bblks = 0;
3636 if (blk_no != log->l_logBBsize) {
3637 /* some data is before the physical
3638 * end of log */
3639 ASSERT(!wrapped_hblks);
3640 ASSERT(blk_no <= INT_MAX);
3641 split_bblks =
3642 log->l_logBBsize - (int)blk_no;
3643 ASSERT(split_bblks > 0);
3644 error = xlog_bread(log, blk_no,
3645 split_bblks, dbp,
3646 &offset);
3647 if (error)
3648 goto bread_err2;
3652 * Note: this black magic still works with
3653 * large sector sizes (non-512) only because:
3654 * - we increased the buffer size originally
3655 * by 1 sector giving us enough extra space
3656 * for the second read;
3657 * - the log start is guaranteed to be sector
3658 * aligned;
3659 * - we read the log end (LR header start)
3660 * _first_, then the log start (LR header end)
3661 * - order is important.
3663 error = XFS_BUF_SET_PTR(dbp,
3664 offset + BBTOB(split_bblks),
3665 BBTOB(bblks - split_bblks));
3666 if (error)
3667 goto bread_err2;
3669 error = xlog_bread_noalign(log, wrapped_hblks,
3670 bblks - split_bblks,
3671 dbp);
3672 if (error)
3673 goto bread_err2;
3675 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3676 if (error)
3677 goto bread_err2;
3679 xlog_unpack_data(rhead, offset, log);
3680 if ((error = xlog_recover_process_data(log, rhash,
3681 rhead, offset, pass)))
3682 goto bread_err2;
3683 blk_no += bblks;
3686 ASSERT(blk_no >= log->l_logBBsize);
3687 blk_no -= log->l_logBBsize;
3689 /* read first part of physical log */
3690 while (blk_no < head_blk) {
3691 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3692 if (error)
3693 goto bread_err2;
3695 rhead = (xlog_rec_header_t *)offset;
3696 error = xlog_valid_rec_header(log, rhead, blk_no);
3697 if (error)
3698 goto bread_err2;
3700 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3701 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3702 &offset);
3703 if (error)
3704 goto bread_err2;
3706 xlog_unpack_data(rhead, offset, log);
3707 if ((error = xlog_recover_process_data(log, rhash,
3708 rhead, offset, pass)))
3709 goto bread_err2;
3710 blk_no += bblks + hblks;
3714 bread_err2:
3715 xlog_put_bp(dbp);
3716 bread_err1:
3717 xlog_put_bp(hbp);
3718 return error;
3722 * Do the recovery of the log. We actually do this in two phases.
3723 * The two passes are necessary in order to implement the function
3724 * of cancelling a record written into the log. The first pass
3725 * determines those things which have been cancelled, and the
3726 * second pass replays log items normally except for those which
3727 * have been cancelled. The handling of the replay and cancellations
3728 * takes place in the log item type specific routines.
3730 * The table of items which have cancel records in the log is allocated
3731 * and freed at this level, since only here do we know when all of
3732 * the log recovery has been completed.
3734 STATIC int
3735 xlog_do_log_recovery(
3736 xlog_t *log,
3737 xfs_daddr_t head_blk,
3738 xfs_daddr_t tail_blk)
3740 int error;
3742 ASSERT(head_blk != tail_blk);
3745 * First do a pass to find all of the cancelled buf log items.
3746 * Store them in the buf_cancel_table for use in the second pass.
3748 log->l_buf_cancel_table =
3749 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3750 sizeof(xfs_buf_cancel_t*),
3751 KM_SLEEP);
3752 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3753 XLOG_RECOVER_PASS1);
3754 if (error != 0) {
3755 kmem_free(log->l_buf_cancel_table);
3756 log->l_buf_cancel_table = NULL;
3757 return error;
3760 * Then do a second pass to actually recover the items in the log.
3761 * When it is complete free the table of buf cancel items.
3763 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3764 XLOG_RECOVER_PASS2);
3765 #ifdef DEBUG
3766 if (!error) {
3767 int i;
3769 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3770 ASSERT(log->l_buf_cancel_table[i] == NULL);
3772 #endif /* DEBUG */
3774 kmem_free(log->l_buf_cancel_table);
3775 log->l_buf_cancel_table = NULL;
3777 return error;
3781 * Do the actual recovery
3783 STATIC int
3784 xlog_do_recover(
3785 xlog_t *log,
3786 xfs_daddr_t head_blk,
3787 xfs_daddr_t tail_blk)
3789 int error;
3790 xfs_buf_t *bp;
3791 xfs_sb_t *sbp;
3794 * First replay the images in the log.
3796 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3797 if (error) {
3798 return error;
3801 XFS_bflush(log->l_mp->m_ddev_targp);
3804 * If IO errors happened during recovery, bail out.
3806 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3807 return (EIO);
3811 * We now update the tail_lsn since much of the recovery has completed
3812 * and there may be space available to use. If there were no extent
3813 * or iunlinks, we can free up the entire log and set the tail_lsn to
3814 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3815 * lsn of the last known good LR on disk. If there are extent frees
3816 * or iunlinks they will have some entries in the AIL; so we look at
3817 * the AIL to determine how to set the tail_lsn.
3819 xlog_assign_tail_lsn(log->l_mp);
3822 * Now that we've finished replaying all buffer and inode
3823 * updates, re-read in the superblock.
3825 bp = xfs_getsb(log->l_mp, 0);
3826 XFS_BUF_UNDONE(bp);
3827 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3828 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3829 XFS_BUF_READ(bp);
3830 XFS_BUF_UNASYNC(bp);
3831 xfsbdstrat(log->l_mp, bp);
3832 error = xfs_iowait(bp);
3833 if (error) {
3834 xfs_ioerror_alert("xlog_do_recover",
3835 log->l_mp, bp, XFS_BUF_ADDR(bp));
3836 ASSERT(0);
3837 xfs_buf_relse(bp);
3838 return error;
3841 /* Convert superblock from on-disk format */
3842 sbp = &log->l_mp->m_sb;
3843 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3844 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3845 ASSERT(xfs_sb_good_version(sbp));
3846 xfs_buf_relse(bp);
3848 /* We've re-read the superblock so re-initialize per-cpu counters */
3849 xfs_icsb_reinit_counters(log->l_mp);
3851 xlog_recover_check_summary(log);
3853 /* Normal transactions can now occur */
3854 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3855 return 0;
3859 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3861 * Return error or zero.
3864 xlog_recover(
3865 xlog_t *log)
3867 xfs_daddr_t head_blk, tail_blk;
3868 int error;
3870 /* find the tail of the log */
3871 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3872 return error;
3874 if (tail_blk != head_blk) {
3875 /* There used to be a comment here:
3877 * disallow recovery on read-only mounts. note -- mount
3878 * checks for ENOSPC and turns it into an intelligent
3879 * error message.
3880 * ...but this is no longer true. Now, unless you specify
3881 * NORECOVERY (in which case this function would never be
3882 * called), we just go ahead and recover. We do this all
3883 * under the vfs layer, so we can get away with it unless
3884 * the device itself is read-only, in which case we fail.
3886 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3887 return error;
3890 cmn_err(CE_NOTE,
3891 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3892 log->l_mp->m_fsname, log->l_mp->m_logname ?
3893 log->l_mp->m_logname : "internal");
3895 error = xlog_do_recover(log, head_blk, tail_blk);
3896 log->l_flags |= XLOG_RECOVERY_NEEDED;
3898 return error;
3902 * In the first part of recovery we replay inodes and buffers and build
3903 * up the list of extent free items which need to be processed. Here
3904 * we process the extent free items and clean up the on disk unlinked
3905 * inode lists. This is separated from the first part of recovery so
3906 * that the root and real-time bitmap inodes can be read in from disk in
3907 * between the two stages. This is necessary so that we can free space
3908 * in the real-time portion of the file system.
3911 xlog_recover_finish(
3912 xlog_t *log)
3915 * Now we're ready to do the transactions needed for the
3916 * rest of recovery. Start with completing all the extent
3917 * free intent records and then process the unlinked inode
3918 * lists. At this point, we essentially run in normal mode
3919 * except that we're still performing recovery actions
3920 * rather than accepting new requests.
3922 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3923 int error;
3924 error = xlog_recover_process_efis(log);
3925 if (error) {
3926 cmn_err(CE_ALERT,
3927 "Failed to recover EFIs on filesystem: %s",
3928 log->l_mp->m_fsname);
3929 return error;
3932 * Sync the log to get all the EFIs out of the AIL.
3933 * This isn't absolutely necessary, but it helps in
3934 * case the unlink transactions would have problems
3935 * pushing the EFIs out of the way.
3937 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3939 xlog_recover_process_iunlinks(log);
3941 xlog_recover_check_summary(log);
3943 cmn_err(CE_NOTE,
3944 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3945 log->l_mp->m_fsname, log->l_mp->m_logname ?
3946 log->l_mp->m_logname : "internal");
3947 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3948 } else {
3949 cmn_err(CE_DEBUG,
3950 "!Ending clean XFS mount for filesystem: %s\n",
3951 log->l_mp->m_fsname);
3953 return 0;
3957 #if defined(DEBUG)
3959 * Read all of the agf and agi counters and check that they
3960 * are consistent with the superblock counters.
3962 void
3963 xlog_recover_check_summary(
3964 xlog_t *log)
3966 xfs_mount_t *mp;
3967 xfs_agf_t *agfp;
3968 xfs_buf_t *agfbp;
3969 xfs_buf_t *agibp;
3970 xfs_agnumber_t agno;
3971 __uint64_t freeblks;
3972 __uint64_t itotal;
3973 __uint64_t ifree;
3974 int error;
3976 mp = log->l_mp;
3978 freeblks = 0LL;
3979 itotal = 0LL;
3980 ifree = 0LL;
3981 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3982 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3983 if (error) {
3984 xfs_fs_cmn_err(CE_ALERT, mp,
3985 "xlog_recover_check_summary(agf)"
3986 "agf read failed agno %d error %d",
3987 agno, error);
3988 } else {
3989 agfp = XFS_BUF_TO_AGF(agfbp);
3990 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3991 be32_to_cpu(agfp->agf_flcount);
3992 xfs_buf_relse(agfbp);
3995 error = xfs_read_agi(mp, NULL, agno, &agibp);
3996 if (!error) {
3997 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3999 itotal += be32_to_cpu(agi->agi_count);
4000 ifree += be32_to_cpu(agi->agi_freecount);
4001 xfs_buf_relse(agibp);
4005 #endif /* DEBUG */