Driver-core: Always create class directories for classses that support namespaces.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext2 / inode.c
blob3675088cb88c53c9f23c01369652d9630f5ced11
1 /*
2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
35 #include "ext2.h"
36 #include "acl.h"
37 #include "xip.h"
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
61 struct inode *inode = mapping->host;
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, to, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
70 * Called at the last iput() if i_nlink is zero.
72 void ext2_delete_inode (struct inode * inode)
74 if (!is_bad_inode(inode))
75 dquot_initialize(inode);
76 truncate_inode_pages(&inode->i_data, 0);
78 if (is_bad_inode(inode))
79 goto no_delete;
80 EXT2_I(inode)->i_dtime = get_seconds();
81 mark_inode_dirty(inode);
82 __ext2_write_inode(inode, inode_needs_sync(inode));
84 inode->i_size = 0;
85 if (inode->i_blocks)
86 ext2_truncate_blocks(inode, 0);
87 ext2_free_inode (inode);
89 return;
90 no_delete:
91 clear_inode(inode); /* We must guarantee clearing of inode... */
94 typedef struct {
95 __le32 *p;
96 __le32 key;
97 struct buffer_head *bh;
98 } Indirect;
100 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
102 p->key = *(p->p = v);
103 p->bh = bh;
106 static inline int verify_chain(Indirect *from, Indirect *to)
108 while (from <= to && from->key == *from->p)
109 from++;
110 return (from > to);
114 * ext2_block_to_path - parse the block number into array of offsets
115 * @inode: inode in question (we are only interested in its superblock)
116 * @i_block: block number to be parsed
117 * @offsets: array to store the offsets in
118 * @boundary: set this non-zero if the referred-to block is likely to be
119 * followed (on disk) by an indirect block.
120 * To store the locations of file's data ext2 uses a data structure common
121 * for UNIX filesystems - tree of pointers anchored in the inode, with
122 * data blocks at leaves and indirect blocks in intermediate nodes.
123 * This function translates the block number into path in that tree -
124 * return value is the path length and @offsets[n] is the offset of
125 * pointer to (n+1)th node in the nth one. If @block is out of range
126 * (negative or too large) warning is printed and zero returned.
128 * Note: function doesn't find node addresses, so no IO is needed. All
129 * we need to know is the capacity of indirect blocks (taken from the
130 * inode->i_sb).
134 * Portability note: the last comparison (check that we fit into triple
135 * indirect block) is spelled differently, because otherwise on an
136 * architecture with 32-bit longs and 8Kb pages we might get into trouble
137 * if our filesystem had 8Kb blocks. We might use long long, but that would
138 * kill us on x86. Oh, well, at least the sign propagation does not matter -
139 * i_block would have to be negative in the very beginning, so we would not
140 * get there at all.
143 static int ext2_block_to_path(struct inode *inode,
144 long i_block, int offsets[4], int *boundary)
146 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
147 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
148 const long direct_blocks = EXT2_NDIR_BLOCKS,
149 indirect_blocks = ptrs,
150 double_blocks = (1 << (ptrs_bits * 2));
151 int n = 0;
152 int final = 0;
154 if (i_block < 0) {
155 ext2_msg(inode->i_sb, KERN_WARNING,
156 "warning: %s: block < 0", __func__);
157 } else if (i_block < direct_blocks) {
158 offsets[n++] = i_block;
159 final = direct_blocks;
160 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
161 offsets[n++] = EXT2_IND_BLOCK;
162 offsets[n++] = i_block;
163 final = ptrs;
164 } else if ((i_block -= indirect_blocks) < double_blocks) {
165 offsets[n++] = EXT2_DIND_BLOCK;
166 offsets[n++] = i_block >> ptrs_bits;
167 offsets[n++] = i_block & (ptrs - 1);
168 final = ptrs;
169 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
170 offsets[n++] = EXT2_TIND_BLOCK;
171 offsets[n++] = i_block >> (ptrs_bits * 2);
172 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
173 offsets[n++] = i_block & (ptrs - 1);
174 final = ptrs;
175 } else {
176 ext2_msg(inode->i_sb, KERN_WARNING,
177 "warning: %s: block is too big", __func__);
179 if (boundary)
180 *boundary = final - 1 - (i_block & (ptrs - 1));
182 return n;
186 * ext2_get_branch - read the chain of indirect blocks leading to data
187 * @inode: inode in question
188 * @depth: depth of the chain (1 - direct pointer, etc.)
189 * @offsets: offsets of pointers in inode/indirect blocks
190 * @chain: place to store the result
191 * @err: here we store the error value
193 * Function fills the array of triples <key, p, bh> and returns %NULL
194 * if everything went OK or the pointer to the last filled triple
195 * (incomplete one) otherwise. Upon the return chain[i].key contains
196 * the number of (i+1)-th block in the chain (as it is stored in memory,
197 * i.e. little-endian 32-bit), chain[i].p contains the address of that
198 * number (it points into struct inode for i==0 and into the bh->b_data
199 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
200 * block for i>0 and NULL for i==0. In other words, it holds the block
201 * numbers of the chain, addresses they were taken from (and where we can
202 * verify that chain did not change) and buffer_heads hosting these
203 * numbers.
205 * Function stops when it stumbles upon zero pointer (absent block)
206 * (pointer to last triple returned, *@err == 0)
207 * or when it gets an IO error reading an indirect block
208 * (ditto, *@err == -EIO)
209 * or when it notices that chain had been changed while it was reading
210 * (ditto, *@err == -EAGAIN)
211 * or when it reads all @depth-1 indirect blocks successfully and finds
212 * the whole chain, all way to the data (returns %NULL, *err == 0).
214 static Indirect *ext2_get_branch(struct inode *inode,
215 int depth,
216 int *offsets,
217 Indirect chain[4],
218 int *err)
220 struct super_block *sb = inode->i_sb;
221 Indirect *p = chain;
222 struct buffer_head *bh;
224 *err = 0;
225 /* i_data is not going away, no lock needed */
226 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
227 if (!p->key)
228 goto no_block;
229 while (--depth) {
230 bh = sb_bread(sb, le32_to_cpu(p->key));
231 if (!bh)
232 goto failure;
233 read_lock(&EXT2_I(inode)->i_meta_lock);
234 if (!verify_chain(chain, p))
235 goto changed;
236 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
237 read_unlock(&EXT2_I(inode)->i_meta_lock);
238 if (!p->key)
239 goto no_block;
241 return NULL;
243 changed:
244 read_unlock(&EXT2_I(inode)->i_meta_lock);
245 brelse(bh);
246 *err = -EAGAIN;
247 goto no_block;
248 failure:
249 *err = -EIO;
250 no_block:
251 return p;
255 * ext2_find_near - find a place for allocation with sufficient locality
256 * @inode: owner
257 * @ind: descriptor of indirect block.
259 * This function returns the preferred place for block allocation.
260 * It is used when heuristic for sequential allocation fails.
261 * Rules are:
262 * + if there is a block to the left of our position - allocate near it.
263 * + if pointer will live in indirect block - allocate near that block.
264 * + if pointer will live in inode - allocate in the same cylinder group.
266 * In the latter case we colour the starting block by the callers PID to
267 * prevent it from clashing with concurrent allocations for a different inode
268 * in the same block group. The PID is used here so that functionally related
269 * files will be close-by on-disk.
271 * Caller must make sure that @ind is valid and will stay that way.
274 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
276 struct ext2_inode_info *ei = EXT2_I(inode);
277 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
278 __le32 *p;
279 ext2_fsblk_t bg_start;
280 ext2_fsblk_t colour;
282 /* Try to find previous block */
283 for (p = ind->p - 1; p >= start; p--)
284 if (*p)
285 return le32_to_cpu(*p);
287 /* No such thing, so let's try location of indirect block */
288 if (ind->bh)
289 return ind->bh->b_blocknr;
292 * It is going to be refered from inode itself? OK, just put it into
293 * the same cylinder group then.
295 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
296 colour = (current->pid % 16) *
297 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
298 return bg_start + colour;
302 * ext2_find_goal - find a preferred place for allocation.
303 * @inode: owner
304 * @block: block we want
305 * @partial: pointer to the last triple within a chain
307 * Returns preferred place for a block (the goal).
310 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
311 Indirect *partial)
313 struct ext2_block_alloc_info *block_i;
315 block_i = EXT2_I(inode)->i_block_alloc_info;
318 * try the heuristic for sequential allocation,
319 * failing that at least try to get decent locality.
321 if (block_i && (block == block_i->last_alloc_logical_block + 1)
322 && (block_i->last_alloc_physical_block != 0)) {
323 return block_i->last_alloc_physical_block + 1;
326 return ext2_find_near(inode, partial);
330 * ext2_blks_to_allocate: Look up the block map and count the number
331 * of direct blocks need to be allocated for the given branch.
333 * @branch: chain of indirect blocks
334 * @k: number of blocks need for indirect blocks
335 * @blks: number of data blocks to be mapped.
336 * @blocks_to_boundary: the offset in the indirect block
338 * return the total number of blocks to be allocate, including the
339 * direct and indirect blocks.
341 static int
342 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
343 int blocks_to_boundary)
345 unsigned long count = 0;
348 * Simple case, [t,d]Indirect block(s) has not allocated yet
349 * then it's clear blocks on that path have not allocated
351 if (k > 0) {
352 /* right now don't hanel cross boundary allocation */
353 if (blks < blocks_to_boundary + 1)
354 count += blks;
355 else
356 count += blocks_to_boundary + 1;
357 return count;
360 count++;
361 while (count < blks && count <= blocks_to_boundary
362 && le32_to_cpu(*(branch[0].p + count)) == 0) {
363 count++;
365 return count;
369 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
370 * @indirect_blks: the number of blocks need to allocate for indirect
371 * blocks
373 * @new_blocks: on return it will store the new block numbers for
374 * the indirect blocks(if needed) and the first direct block,
375 * @blks: on return it will store the total number of allocated
376 * direct blocks
378 static int ext2_alloc_blocks(struct inode *inode,
379 ext2_fsblk_t goal, int indirect_blks, int blks,
380 ext2_fsblk_t new_blocks[4], int *err)
382 int target, i;
383 unsigned long count = 0;
384 int index = 0;
385 ext2_fsblk_t current_block = 0;
386 int ret = 0;
389 * Here we try to allocate the requested multiple blocks at once,
390 * on a best-effort basis.
391 * To build a branch, we should allocate blocks for
392 * the indirect blocks(if not allocated yet), and at least
393 * the first direct block of this branch. That's the
394 * minimum number of blocks need to allocate(required)
396 target = blks + indirect_blks;
398 while (1) {
399 count = target;
400 /* allocating blocks for indirect blocks and direct blocks */
401 current_block = ext2_new_blocks(inode,goal,&count,err);
402 if (*err)
403 goto failed_out;
405 target -= count;
406 /* allocate blocks for indirect blocks */
407 while (index < indirect_blks && count) {
408 new_blocks[index++] = current_block++;
409 count--;
412 if (count > 0)
413 break;
416 /* save the new block number for the first direct block */
417 new_blocks[index] = current_block;
419 /* total number of blocks allocated for direct blocks */
420 ret = count;
421 *err = 0;
422 return ret;
423 failed_out:
424 for (i = 0; i <index; i++)
425 ext2_free_blocks(inode, new_blocks[i], 1);
426 return ret;
430 * ext2_alloc_branch - allocate and set up a chain of blocks.
431 * @inode: owner
432 * @num: depth of the chain (number of blocks to allocate)
433 * @offsets: offsets (in the blocks) to store the pointers to next.
434 * @branch: place to store the chain in.
436 * This function allocates @num blocks, zeroes out all but the last one,
437 * links them into chain and (if we are synchronous) writes them to disk.
438 * In other words, it prepares a branch that can be spliced onto the
439 * inode. It stores the information about that chain in the branch[], in
440 * the same format as ext2_get_branch() would do. We are calling it after
441 * we had read the existing part of chain and partial points to the last
442 * triple of that (one with zero ->key). Upon the exit we have the same
443 * picture as after the successful ext2_get_block(), excpet that in one
444 * place chain is disconnected - *branch->p is still zero (we did not
445 * set the last link), but branch->key contains the number that should
446 * be placed into *branch->p to fill that gap.
448 * If allocation fails we free all blocks we've allocated (and forget
449 * their buffer_heads) and return the error value the from failed
450 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
451 * as described above and return 0.
454 static int ext2_alloc_branch(struct inode *inode,
455 int indirect_blks, int *blks, ext2_fsblk_t goal,
456 int *offsets, Indirect *branch)
458 int blocksize = inode->i_sb->s_blocksize;
459 int i, n = 0;
460 int err = 0;
461 struct buffer_head *bh;
462 int num;
463 ext2_fsblk_t new_blocks[4];
464 ext2_fsblk_t current_block;
466 num = ext2_alloc_blocks(inode, goal, indirect_blks,
467 *blks, new_blocks, &err);
468 if (err)
469 return err;
471 branch[0].key = cpu_to_le32(new_blocks[0]);
473 * metadata blocks and data blocks are allocated.
475 for (n = 1; n <= indirect_blks; n++) {
477 * Get buffer_head for parent block, zero it out
478 * and set the pointer to new one, then send
479 * parent to disk.
481 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
482 branch[n].bh = bh;
483 lock_buffer(bh);
484 memset(bh->b_data, 0, blocksize);
485 branch[n].p = (__le32 *) bh->b_data + offsets[n];
486 branch[n].key = cpu_to_le32(new_blocks[n]);
487 *branch[n].p = branch[n].key;
488 if ( n == indirect_blks) {
489 current_block = new_blocks[n];
491 * End of chain, update the last new metablock of
492 * the chain to point to the new allocated
493 * data blocks numbers
495 for (i=1; i < num; i++)
496 *(branch[n].p + i) = cpu_to_le32(++current_block);
498 set_buffer_uptodate(bh);
499 unlock_buffer(bh);
500 mark_buffer_dirty_inode(bh, inode);
501 /* We used to sync bh here if IS_SYNC(inode).
502 * But we now rely upon generic_write_sync()
503 * and b_inode_buffers. But not for directories.
505 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
506 sync_dirty_buffer(bh);
508 *blks = num;
509 return err;
513 * ext2_splice_branch - splice the allocated branch onto inode.
514 * @inode: owner
515 * @block: (logical) number of block we are adding
516 * @where: location of missing link
517 * @num: number of indirect blocks we are adding
518 * @blks: number of direct blocks we are adding
520 * This function fills the missing link and does all housekeeping needed in
521 * inode (->i_blocks, etc.). In case of success we end up with the full
522 * chain to new block and return 0.
524 static void ext2_splice_branch(struct inode *inode,
525 long block, Indirect *where, int num, int blks)
527 int i;
528 struct ext2_block_alloc_info *block_i;
529 ext2_fsblk_t current_block;
531 block_i = EXT2_I(inode)->i_block_alloc_info;
533 /* XXX LOCKING probably should have i_meta_lock ?*/
534 /* That's it */
536 *where->p = where->key;
539 * Update the host buffer_head or inode to point to more just allocated
540 * direct blocks blocks
542 if (num == 0 && blks > 1) {
543 current_block = le32_to_cpu(where->key) + 1;
544 for (i = 1; i < blks; i++)
545 *(where->p + i ) = cpu_to_le32(current_block++);
549 * update the most recently allocated logical & physical block
550 * in i_block_alloc_info, to assist find the proper goal block for next
551 * allocation
553 if (block_i) {
554 block_i->last_alloc_logical_block = block + blks - 1;
555 block_i->last_alloc_physical_block =
556 le32_to_cpu(where[num].key) + blks - 1;
559 /* We are done with atomic stuff, now do the rest of housekeeping */
561 /* had we spliced it onto indirect block? */
562 if (where->bh)
563 mark_buffer_dirty_inode(where->bh, inode);
565 inode->i_ctime = CURRENT_TIME_SEC;
566 mark_inode_dirty(inode);
570 * Allocation strategy is simple: if we have to allocate something, we will
571 * have to go the whole way to leaf. So let's do it before attaching anything
572 * to tree, set linkage between the newborn blocks, write them if sync is
573 * required, recheck the path, free and repeat if check fails, otherwise
574 * set the last missing link (that will protect us from any truncate-generated
575 * removals - all blocks on the path are immune now) and possibly force the
576 * write on the parent block.
577 * That has a nice additional property: no special recovery from the failed
578 * allocations is needed - we simply release blocks and do not touch anything
579 * reachable from inode.
581 * `handle' can be NULL if create == 0.
583 * return > 0, # of blocks mapped or allocated.
584 * return = 0, if plain lookup failed.
585 * return < 0, error case.
587 static int ext2_get_blocks(struct inode *inode,
588 sector_t iblock, unsigned long maxblocks,
589 struct buffer_head *bh_result,
590 int create)
592 int err = -EIO;
593 int offsets[4];
594 Indirect chain[4];
595 Indirect *partial;
596 ext2_fsblk_t goal;
597 int indirect_blks;
598 int blocks_to_boundary = 0;
599 int depth;
600 struct ext2_inode_info *ei = EXT2_I(inode);
601 int count = 0;
602 ext2_fsblk_t first_block = 0;
604 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
606 if (depth == 0)
607 return (err);
609 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
610 /* Simplest case - block found, no allocation needed */
611 if (!partial) {
612 first_block = le32_to_cpu(chain[depth - 1].key);
613 clear_buffer_new(bh_result); /* What's this do? */
614 count++;
615 /*map more blocks*/
616 while (count < maxblocks && count <= blocks_to_boundary) {
617 ext2_fsblk_t blk;
619 if (!verify_chain(chain, chain + depth - 1)) {
621 * Indirect block might be removed by
622 * truncate while we were reading it.
623 * Handling of that case: forget what we've
624 * got now, go to reread.
626 err = -EAGAIN;
627 count = 0;
628 break;
630 blk = le32_to_cpu(*(chain[depth-1].p + count));
631 if (blk == first_block + count)
632 count++;
633 else
634 break;
636 if (err != -EAGAIN)
637 goto got_it;
640 /* Next simple case - plain lookup or failed read of indirect block */
641 if (!create || err == -EIO)
642 goto cleanup;
644 mutex_lock(&ei->truncate_mutex);
646 * If the indirect block is missing while we are reading
647 * the chain(ext3_get_branch() returns -EAGAIN err), or
648 * if the chain has been changed after we grab the semaphore,
649 * (either because another process truncated this branch, or
650 * another get_block allocated this branch) re-grab the chain to see if
651 * the request block has been allocated or not.
653 * Since we already block the truncate/other get_block
654 * at this point, we will have the current copy of the chain when we
655 * splice the branch into the tree.
657 if (err == -EAGAIN || !verify_chain(chain, partial)) {
658 while (partial > chain) {
659 brelse(partial->bh);
660 partial--;
662 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
663 if (!partial) {
664 count++;
665 mutex_unlock(&ei->truncate_mutex);
666 if (err)
667 goto cleanup;
668 clear_buffer_new(bh_result);
669 goto got_it;
674 * Okay, we need to do block allocation. Lazily initialize the block
675 * allocation info here if necessary
677 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
678 ext2_init_block_alloc_info(inode);
680 goal = ext2_find_goal(inode, iblock, partial);
682 /* the number of blocks need to allocate for [d,t]indirect blocks */
683 indirect_blks = (chain + depth) - partial - 1;
685 * Next look up the indirect map to count the totoal number of
686 * direct blocks to allocate for this branch.
688 count = ext2_blks_to_allocate(partial, indirect_blks,
689 maxblocks, blocks_to_boundary);
691 * XXX ???? Block out ext2_truncate while we alter the tree
693 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
694 offsets + (partial - chain), partial);
696 if (err) {
697 mutex_unlock(&ei->truncate_mutex);
698 goto cleanup;
701 if (ext2_use_xip(inode->i_sb)) {
703 * we need to clear the block
705 err = ext2_clear_xip_target (inode,
706 le32_to_cpu(chain[depth-1].key));
707 if (err) {
708 mutex_unlock(&ei->truncate_mutex);
709 goto cleanup;
713 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
714 mutex_unlock(&ei->truncate_mutex);
715 set_buffer_new(bh_result);
716 got_it:
717 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
718 if (count > blocks_to_boundary)
719 set_buffer_boundary(bh_result);
720 err = count;
721 /* Clean up and exit */
722 partial = chain + depth - 1; /* the whole chain */
723 cleanup:
724 while (partial > chain) {
725 brelse(partial->bh);
726 partial--;
728 return err;
731 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
733 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
734 int ret = ext2_get_blocks(inode, iblock, max_blocks,
735 bh_result, create);
736 if (ret > 0) {
737 bh_result->b_size = (ret << inode->i_blkbits);
738 ret = 0;
740 return ret;
744 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
745 u64 start, u64 len)
747 return generic_block_fiemap(inode, fieinfo, start, len,
748 ext2_get_block);
751 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
753 return block_write_full_page(page, ext2_get_block, wbc);
756 static int ext2_readpage(struct file *file, struct page *page)
758 return mpage_readpage(page, ext2_get_block);
761 static int
762 ext2_readpages(struct file *file, struct address_space *mapping,
763 struct list_head *pages, unsigned nr_pages)
765 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
768 int __ext2_write_begin(struct file *file, struct address_space *mapping,
769 loff_t pos, unsigned len, unsigned flags,
770 struct page **pagep, void **fsdata)
772 return block_write_begin_newtrunc(file, mapping, pos, len, flags,
773 pagep, fsdata, ext2_get_block);
776 static int
777 ext2_write_begin(struct file *file, struct address_space *mapping,
778 loff_t pos, unsigned len, unsigned flags,
779 struct page **pagep, void **fsdata)
781 int ret;
783 *pagep = NULL;
784 ret = __ext2_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
785 if (ret < 0)
786 ext2_write_failed(mapping, pos + len);
787 return ret;
790 static int ext2_write_end(struct file *file, struct address_space *mapping,
791 loff_t pos, unsigned len, unsigned copied,
792 struct page *page, void *fsdata)
794 int ret;
796 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
797 if (ret < len)
798 ext2_write_failed(mapping, pos + len);
799 return ret;
802 static int
803 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
804 loff_t pos, unsigned len, unsigned flags,
805 struct page **pagep, void **fsdata)
807 int ret;
810 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
811 * directory handling code to pass around offsets rather than struct
812 * pages in order to make this work easily.
814 ret = nobh_write_begin_newtrunc(file, mapping, pos, len, flags, pagep,
815 fsdata, ext2_get_block);
816 if (ret < 0)
817 ext2_write_failed(mapping, pos + len);
818 return ret;
821 static int ext2_nobh_writepage(struct page *page,
822 struct writeback_control *wbc)
824 return nobh_writepage(page, ext2_get_block, wbc);
827 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
829 return generic_block_bmap(mapping,block,ext2_get_block);
832 static ssize_t
833 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
834 loff_t offset, unsigned long nr_segs)
836 struct file *file = iocb->ki_filp;
837 struct address_space *mapping = file->f_mapping;
838 struct inode *inode = mapping->host;
839 ssize_t ret;
841 ret = blockdev_direct_IO_newtrunc(rw, iocb, inode, inode->i_sb->s_bdev,
842 iov, offset, nr_segs, ext2_get_block, NULL);
843 if (ret < 0 && (rw & WRITE))
844 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
845 return ret;
848 static int
849 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
851 return mpage_writepages(mapping, wbc, ext2_get_block);
854 const struct address_space_operations ext2_aops = {
855 .readpage = ext2_readpage,
856 .readpages = ext2_readpages,
857 .writepage = ext2_writepage,
858 .sync_page = block_sync_page,
859 .write_begin = ext2_write_begin,
860 .write_end = ext2_write_end,
861 .bmap = ext2_bmap,
862 .direct_IO = ext2_direct_IO,
863 .writepages = ext2_writepages,
864 .migratepage = buffer_migrate_page,
865 .is_partially_uptodate = block_is_partially_uptodate,
866 .error_remove_page = generic_error_remove_page,
869 const struct address_space_operations ext2_aops_xip = {
870 .bmap = ext2_bmap,
871 .get_xip_mem = ext2_get_xip_mem,
874 const struct address_space_operations ext2_nobh_aops = {
875 .readpage = ext2_readpage,
876 .readpages = ext2_readpages,
877 .writepage = ext2_nobh_writepage,
878 .sync_page = block_sync_page,
879 .write_begin = ext2_nobh_write_begin,
880 .write_end = nobh_write_end,
881 .bmap = ext2_bmap,
882 .direct_IO = ext2_direct_IO,
883 .writepages = ext2_writepages,
884 .migratepage = buffer_migrate_page,
885 .error_remove_page = generic_error_remove_page,
889 * Probably it should be a library function... search for first non-zero word
890 * or memcmp with zero_page, whatever is better for particular architecture.
891 * Linus?
893 static inline int all_zeroes(__le32 *p, __le32 *q)
895 while (p < q)
896 if (*p++)
897 return 0;
898 return 1;
902 * ext2_find_shared - find the indirect blocks for partial truncation.
903 * @inode: inode in question
904 * @depth: depth of the affected branch
905 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
906 * @chain: place to store the pointers to partial indirect blocks
907 * @top: place to the (detached) top of branch
909 * This is a helper function used by ext2_truncate().
911 * When we do truncate() we may have to clean the ends of several indirect
912 * blocks but leave the blocks themselves alive. Block is partially
913 * truncated if some data below the new i_size is refered from it (and
914 * it is on the path to the first completely truncated data block, indeed).
915 * We have to free the top of that path along with everything to the right
916 * of the path. Since no allocation past the truncation point is possible
917 * until ext2_truncate() finishes, we may safely do the latter, but top
918 * of branch may require special attention - pageout below the truncation
919 * point might try to populate it.
921 * We atomically detach the top of branch from the tree, store the block
922 * number of its root in *@top, pointers to buffer_heads of partially
923 * truncated blocks - in @chain[].bh and pointers to their last elements
924 * that should not be removed - in @chain[].p. Return value is the pointer
925 * to last filled element of @chain.
927 * The work left to caller to do the actual freeing of subtrees:
928 * a) free the subtree starting from *@top
929 * b) free the subtrees whose roots are stored in
930 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
931 * c) free the subtrees growing from the inode past the @chain[0].p
932 * (no partially truncated stuff there).
935 static Indirect *ext2_find_shared(struct inode *inode,
936 int depth,
937 int offsets[4],
938 Indirect chain[4],
939 __le32 *top)
941 Indirect *partial, *p;
942 int k, err;
944 *top = 0;
945 for (k = depth; k > 1 && !offsets[k-1]; k--)
947 partial = ext2_get_branch(inode, k, offsets, chain, &err);
948 if (!partial)
949 partial = chain + k-1;
951 * If the branch acquired continuation since we've looked at it -
952 * fine, it should all survive and (new) top doesn't belong to us.
954 write_lock(&EXT2_I(inode)->i_meta_lock);
955 if (!partial->key && *partial->p) {
956 write_unlock(&EXT2_I(inode)->i_meta_lock);
957 goto no_top;
959 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
962 * OK, we've found the last block that must survive. The rest of our
963 * branch should be detached before unlocking. However, if that rest
964 * of branch is all ours and does not grow immediately from the inode
965 * it's easier to cheat and just decrement partial->p.
967 if (p == chain + k - 1 && p > chain) {
968 p->p--;
969 } else {
970 *top = *p->p;
971 *p->p = 0;
973 write_unlock(&EXT2_I(inode)->i_meta_lock);
975 while(partial > p)
977 brelse(partial->bh);
978 partial--;
980 no_top:
981 return partial;
985 * ext2_free_data - free a list of data blocks
986 * @inode: inode we are dealing with
987 * @p: array of block numbers
988 * @q: points immediately past the end of array
990 * We are freeing all blocks refered from that array (numbers are
991 * stored as little-endian 32-bit) and updating @inode->i_blocks
992 * appropriately.
994 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
996 unsigned long block_to_free = 0, count = 0;
997 unsigned long nr;
999 for ( ; p < q ; p++) {
1000 nr = le32_to_cpu(*p);
1001 if (nr) {
1002 *p = 0;
1003 /* accumulate blocks to free if they're contiguous */
1004 if (count == 0)
1005 goto free_this;
1006 else if (block_to_free == nr - count)
1007 count++;
1008 else {
1009 mark_inode_dirty(inode);
1010 ext2_free_blocks (inode, block_to_free, count);
1011 free_this:
1012 block_to_free = nr;
1013 count = 1;
1017 if (count > 0) {
1018 mark_inode_dirty(inode);
1019 ext2_free_blocks (inode, block_to_free, count);
1024 * ext2_free_branches - free an array of branches
1025 * @inode: inode we are dealing with
1026 * @p: array of block numbers
1027 * @q: pointer immediately past the end of array
1028 * @depth: depth of the branches to free
1030 * We are freeing all blocks refered from these branches (numbers are
1031 * stored as little-endian 32-bit) and updating @inode->i_blocks
1032 * appropriately.
1034 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1036 struct buffer_head * bh;
1037 unsigned long nr;
1039 if (depth--) {
1040 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1041 for ( ; p < q ; p++) {
1042 nr = le32_to_cpu(*p);
1043 if (!nr)
1044 continue;
1045 *p = 0;
1046 bh = sb_bread(inode->i_sb, nr);
1048 * A read failure? Report error and clear slot
1049 * (should be rare).
1051 if (!bh) {
1052 ext2_error(inode->i_sb, "ext2_free_branches",
1053 "Read failure, inode=%ld, block=%ld",
1054 inode->i_ino, nr);
1055 continue;
1057 ext2_free_branches(inode,
1058 (__le32*)bh->b_data,
1059 (__le32*)bh->b_data + addr_per_block,
1060 depth);
1061 bforget(bh);
1062 ext2_free_blocks(inode, nr, 1);
1063 mark_inode_dirty(inode);
1065 } else
1066 ext2_free_data(inode, p, q);
1069 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1071 __le32 *i_data = EXT2_I(inode)->i_data;
1072 struct ext2_inode_info *ei = EXT2_I(inode);
1073 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1074 int offsets[4];
1075 Indirect chain[4];
1076 Indirect *partial;
1077 __le32 nr = 0;
1078 int n;
1079 long iblock;
1080 unsigned blocksize;
1081 blocksize = inode->i_sb->s_blocksize;
1082 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1084 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1085 if (n == 0)
1086 return;
1089 * From here we block out all ext2_get_block() callers who want to
1090 * modify the block allocation tree.
1092 mutex_lock(&ei->truncate_mutex);
1094 if (n == 1) {
1095 ext2_free_data(inode, i_data+offsets[0],
1096 i_data + EXT2_NDIR_BLOCKS);
1097 goto do_indirects;
1100 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1101 /* Kill the top of shared branch (already detached) */
1102 if (nr) {
1103 if (partial == chain)
1104 mark_inode_dirty(inode);
1105 else
1106 mark_buffer_dirty_inode(partial->bh, inode);
1107 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1109 /* Clear the ends of indirect blocks on the shared branch */
1110 while (partial > chain) {
1111 ext2_free_branches(inode,
1112 partial->p + 1,
1113 (__le32*)partial->bh->b_data+addr_per_block,
1114 (chain+n-1) - partial);
1115 mark_buffer_dirty_inode(partial->bh, inode);
1116 brelse (partial->bh);
1117 partial--;
1119 do_indirects:
1120 /* Kill the remaining (whole) subtrees */
1121 switch (offsets[0]) {
1122 default:
1123 nr = i_data[EXT2_IND_BLOCK];
1124 if (nr) {
1125 i_data[EXT2_IND_BLOCK] = 0;
1126 mark_inode_dirty(inode);
1127 ext2_free_branches(inode, &nr, &nr+1, 1);
1129 case EXT2_IND_BLOCK:
1130 nr = i_data[EXT2_DIND_BLOCK];
1131 if (nr) {
1132 i_data[EXT2_DIND_BLOCK] = 0;
1133 mark_inode_dirty(inode);
1134 ext2_free_branches(inode, &nr, &nr+1, 2);
1136 case EXT2_DIND_BLOCK:
1137 nr = i_data[EXT2_TIND_BLOCK];
1138 if (nr) {
1139 i_data[EXT2_TIND_BLOCK] = 0;
1140 mark_inode_dirty(inode);
1141 ext2_free_branches(inode, &nr, &nr+1, 3);
1143 case EXT2_TIND_BLOCK:
1147 ext2_discard_reservation(inode);
1149 mutex_unlock(&ei->truncate_mutex);
1152 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1155 * XXX: it seems like a bug here that we don't allow
1156 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1157 * review and fix this.
1159 * Also would be nice to be able to handle IO errors and such,
1160 * but that's probably too much to ask.
1162 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1163 S_ISLNK(inode->i_mode)))
1164 return;
1165 if (ext2_inode_is_fast_symlink(inode))
1166 return;
1167 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1168 return;
1169 __ext2_truncate_blocks(inode, offset);
1172 int ext2_setsize(struct inode *inode, loff_t newsize)
1174 loff_t oldsize;
1175 int error;
1177 error = inode_newsize_ok(inode, newsize);
1178 if (error)
1179 return error;
1181 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 S_ISLNK(inode->i_mode)))
1183 return -EINVAL;
1184 if (ext2_inode_is_fast_symlink(inode))
1185 return -EINVAL;
1186 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1187 return -EPERM;
1189 if (mapping_is_xip(inode->i_mapping))
1190 error = xip_truncate_page(inode->i_mapping, newsize);
1191 else if (test_opt(inode->i_sb, NOBH))
1192 error = nobh_truncate_page(inode->i_mapping,
1193 newsize, ext2_get_block);
1194 else
1195 error = block_truncate_page(inode->i_mapping,
1196 newsize, ext2_get_block);
1197 if (error)
1198 return error;
1200 oldsize = inode->i_size;
1201 i_size_write(inode, newsize);
1202 truncate_pagecache(inode, oldsize, newsize);
1204 __ext2_truncate_blocks(inode, newsize);
1206 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1207 if (inode_needs_sync(inode)) {
1208 sync_mapping_buffers(inode->i_mapping);
1209 ext2_sync_inode (inode);
1210 } else {
1211 mark_inode_dirty(inode);
1214 return 0;
1217 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1218 struct buffer_head **p)
1220 struct buffer_head * bh;
1221 unsigned long block_group;
1222 unsigned long block;
1223 unsigned long offset;
1224 struct ext2_group_desc * gdp;
1226 *p = NULL;
1227 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1228 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1229 goto Einval;
1231 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1232 gdp = ext2_get_group_desc(sb, block_group, NULL);
1233 if (!gdp)
1234 goto Egdp;
1236 * Figure out the offset within the block group inode table
1238 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1239 block = le32_to_cpu(gdp->bg_inode_table) +
1240 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1241 if (!(bh = sb_bread(sb, block)))
1242 goto Eio;
1244 *p = bh;
1245 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1246 return (struct ext2_inode *) (bh->b_data + offset);
1248 Einval:
1249 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1250 (unsigned long) ino);
1251 return ERR_PTR(-EINVAL);
1252 Eio:
1253 ext2_error(sb, "ext2_get_inode",
1254 "unable to read inode block - inode=%lu, block=%lu",
1255 (unsigned long) ino, block);
1256 Egdp:
1257 return ERR_PTR(-EIO);
1260 void ext2_set_inode_flags(struct inode *inode)
1262 unsigned int flags = EXT2_I(inode)->i_flags;
1264 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1265 if (flags & EXT2_SYNC_FL)
1266 inode->i_flags |= S_SYNC;
1267 if (flags & EXT2_APPEND_FL)
1268 inode->i_flags |= S_APPEND;
1269 if (flags & EXT2_IMMUTABLE_FL)
1270 inode->i_flags |= S_IMMUTABLE;
1271 if (flags & EXT2_NOATIME_FL)
1272 inode->i_flags |= S_NOATIME;
1273 if (flags & EXT2_DIRSYNC_FL)
1274 inode->i_flags |= S_DIRSYNC;
1277 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1278 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1280 unsigned int flags = ei->vfs_inode.i_flags;
1282 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1283 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1284 if (flags & S_SYNC)
1285 ei->i_flags |= EXT2_SYNC_FL;
1286 if (flags & S_APPEND)
1287 ei->i_flags |= EXT2_APPEND_FL;
1288 if (flags & S_IMMUTABLE)
1289 ei->i_flags |= EXT2_IMMUTABLE_FL;
1290 if (flags & S_NOATIME)
1291 ei->i_flags |= EXT2_NOATIME_FL;
1292 if (flags & S_DIRSYNC)
1293 ei->i_flags |= EXT2_DIRSYNC_FL;
1296 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1298 struct ext2_inode_info *ei;
1299 struct buffer_head * bh;
1300 struct ext2_inode *raw_inode;
1301 struct inode *inode;
1302 long ret = -EIO;
1303 int n;
1305 inode = iget_locked(sb, ino);
1306 if (!inode)
1307 return ERR_PTR(-ENOMEM);
1308 if (!(inode->i_state & I_NEW))
1309 return inode;
1311 ei = EXT2_I(inode);
1312 ei->i_block_alloc_info = NULL;
1314 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1315 if (IS_ERR(raw_inode)) {
1316 ret = PTR_ERR(raw_inode);
1317 goto bad_inode;
1320 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1321 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1322 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1323 if (!(test_opt (inode->i_sb, NO_UID32))) {
1324 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1325 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1327 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1328 inode->i_size = le32_to_cpu(raw_inode->i_size);
1329 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1330 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1331 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1332 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1333 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1334 /* We now have enough fields to check if the inode was active or not.
1335 * This is needed because nfsd might try to access dead inodes
1336 * the test is that same one that e2fsck uses
1337 * NeilBrown 1999oct15
1339 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1340 /* this inode is deleted */
1341 brelse (bh);
1342 ret = -ESTALE;
1343 goto bad_inode;
1345 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1346 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1347 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1348 ei->i_frag_no = raw_inode->i_frag;
1349 ei->i_frag_size = raw_inode->i_fsize;
1350 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1351 ei->i_dir_acl = 0;
1352 if (S_ISREG(inode->i_mode))
1353 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1354 else
1355 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1356 ei->i_dtime = 0;
1357 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1358 ei->i_state = 0;
1359 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1360 ei->i_dir_start_lookup = 0;
1363 * NOTE! The in-memory inode i_data array is in little-endian order
1364 * even on big-endian machines: we do NOT byteswap the block numbers!
1366 for (n = 0; n < EXT2_N_BLOCKS; n++)
1367 ei->i_data[n] = raw_inode->i_block[n];
1369 if (S_ISREG(inode->i_mode)) {
1370 inode->i_op = &ext2_file_inode_operations;
1371 if (ext2_use_xip(inode->i_sb)) {
1372 inode->i_mapping->a_ops = &ext2_aops_xip;
1373 inode->i_fop = &ext2_xip_file_operations;
1374 } else if (test_opt(inode->i_sb, NOBH)) {
1375 inode->i_mapping->a_ops = &ext2_nobh_aops;
1376 inode->i_fop = &ext2_file_operations;
1377 } else {
1378 inode->i_mapping->a_ops = &ext2_aops;
1379 inode->i_fop = &ext2_file_operations;
1381 } else if (S_ISDIR(inode->i_mode)) {
1382 inode->i_op = &ext2_dir_inode_operations;
1383 inode->i_fop = &ext2_dir_operations;
1384 if (test_opt(inode->i_sb, NOBH))
1385 inode->i_mapping->a_ops = &ext2_nobh_aops;
1386 else
1387 inode->i_mapping->a_ops = &ext2_aops;
1388 } else if (S_ISLNK(inode->i_mode)) {
1389 if (ext2_inode_is_fast_symlink(inode)) {
1390 inode->i_op = &ext2_fast_symlink_inode_operations;
1391 nd_terminate_link(ei->i_data, inode->i_size,
1392 sizeof(ei->i_data) - 1);
1393 } else {
1394 inode->i_op = &ext2_symlink_inode_operations;
1395 if (test_opt(inode->i_sb, NOBH))
1396 inode->i_mapping->a_ops = &ext2_nobh_aops;
1397 else
1398 inode->i_mapping->a_ops = &ext2_aops;
1400 } else {
1401 inode->i_op = &ext2_special_inode_operations;
1402 if (raw_inode->i_block[0])
1403 init_special_inode(inode, inode->i_mode,
1404 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1405 else
1406 init_special_inode(inode, inode->i_mode,
1407 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1409 brelse (bh);
1410 ext2_set_inode_flags(inode);
1411 unlock_new_inode(inode);
1412 return inode;
1414 bad_inode:
1415 iget_failed(inode);
1416 return ERR_PTR(ret);
1419 static int __ext2_write_inode(struct inode *inode, int do_sync)
1421 struct ext2_inode_info *ei = EXT2_I(inode);
1422 struct super_block *sb = inode->i_sb;
1423 ino_t ino = inode->i_ino;
1424 uid_t uid = inode->i_uid;
1425 gid_t gid = inode->i_gid;
1426 struct buffer_head * bh;
1427 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1428 int n;
1429 int err = 0;
1431 if (IS_ERR(raw_inode))
1432 return -EIO;
1434 /* For fields not not tracking in the in-memory inode,
1435 * initialise them to zero for new inodes. */
1436 if (ei->i_state & EXT2_STATE_NEW)
1437 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1439 ext2_get_inode_flags(ei);
1440 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1441 if (!(test_opt(sb, NO_UID32))) {
1442 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1443 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1445 * Fix up interoperability with old kernels. Otherwise, old inodes get
1446 * re-used with the upper 16 bits of the uid/gid intact
1448 if (!ei->i_dtime) {
1449 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1450 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1451 } else {
1452 raw_inode->i_uid_high = 0;
1453 raw_inode->i_gid_high = 0;
1455 } else {
1456 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1457 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1458 raw_inode->i_uid_high = 0;
1459 raw_inode->i_gid_high = 0;
1461 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1462 raw_inode->i_size = cpu_to_le32(inode->i_size);
1463 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1464 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1465 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1467 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1468 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1469 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1470 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1471 raw_inode->i_frag = ei->i_frag_no;
1472 raw_inode->i_fsize = ei->i_frag_size;
1473 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1474 if (!S_ISREG(inode->i_mode))
1475 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1476 else {
1477 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1478 if (inode->i_size > 0x7fffffffULL) {
1479 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1480 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1481 EXT2_SB(sb)->s_es->s_rev_level ==
1482 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1483 /* If this is the first large file
1484 * created, add a flag to the superblock.
1486 spin_lock(&EXT2_SB(sb)->s_lock);
1487 ext2_update_dynamic_rev(sb);
1488 EXT2_SET_RO_COMPAT_FEATURE(sb,
1489 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1490 spin_unlock(&EXT2_SB(sb)->s_lock);
1491 ext2_write_super(sb);
1496 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1497 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1498 if (old_valid_dev(inode->i_rdev)) {
1499 raw_inode->i_block[0] =
1500 cpu_to_le32(old_encode_dev(inode->i_rdev));
1501 raw_inode->i_block[1] = 0;
1502 } else {
1503 raw_inode->i_block[0] = 0;
1504 raw_inode->i_block[1] =
1505 cpu_to_le32(new_encode_dev(inode->i_rdev));
1506 raw_inode->i_block[2] = 0;
1508 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1509 raw_inode->i_block[n] = ei->i_data[n];
1510 mark_buffer_dirty(bh);
1511 if (do_sync) {
1512 sync_dirty_buffer(bh);
1513 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1514 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1515 sb->s_id, (unsigned long) ino);
1516 err = -EIO;
1519 ei->i_state &= ~EXT2_STATE_NEW;
1520 brelse (bh);
1521 return err;
1524 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1526 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1529 int ext2_sync_inode(struct inode *inode)
1531 struct writeback_control wbc = {
1532 .sync_mode = WB_SYNC_ALL,
1533 .nr_to_write = 0, /* sys_fsync did this */
1535 return sync_inode(inode, &wbc);
1538 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1540 struct inode *inode = dentry->d_inode;
1541 int error;
1543 error = inode_change_ok(inode, iattr);
1544 if (error)
1545 return error;
1547 if (is_quota_modification(inode, iattr))
1548 dquot_initialize(inode);
1549 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1550 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1551 error = dquot_transfer(inode, iattr);
1552 if (error)
1553 return error;
1555 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1556 error = ext2_setsize(inode, iattr->ia_size);
1557 if (error)
1558 return error;
1560 generic_setattr(inode, iattr);
1561 if (iattr->ia_valid & ATTR_MODE)
1562 error = ext2_acl_chmod(inode);
1563 mark_inode_dirty(inode);
1565 return error;