2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
43 static int __ext2_write_inode(struct inode
*inode
, int do_sync
);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
50 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
51 (inode
->i_sb
->s_blocksize
>> 9) : 0;
53 return (S_ISLNK(inode
->i_mode
) &&
54 inode
->i_blocks
- ea_blocks
== 0);
57 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
);
59 static void ext2_write_failed(struct address_space
*mapping
, loff_t to
)
61 struct inode
*inode
= mapping
->host
;
63 if (to
> inode
->i_size
) {
64 truncate_pagecache(inode
, to
, inode
->i_size
);
65 ext2_truncate_blocks(inode
, inode
->i_size
);
70 * Called at the last iput() if i_nlink is zero.
72 void ext2_delete_inode (struct inode
* inode
)
74 if (!is_bad_inode(inode
))
75 dquot_initialize(inode
);
76 truncate_inode_pages(&inode
->i_data
, 0);
78 if (is_bad_inode(inode
))
80 EXT2_I(inode
)->i_dtime
= get_seconds();
81 mark_inode_dirty(inode
);
82 __ext2_write_inode(inode
, inode_needs_sync(inode
));
86 ext2_truncate_blocks(inode
, 0);
87 ext2_free_inode (inode
);
91 clear_inode(inode
); /* We must guarantee clearing of inode... */
97 struct buffer_head
*bh
;
100 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
102 p
->key
= *(p
->p
= v
);
106 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
108 while (from
<= to
&& from
->key
== *from
->p
)
114 * ext2_block_to_path - parse the block number into array of offsets
115 * @inode: inode in question (we are only interested in its superblock)
116 * @i_block: block number to be parsed
117 * @offsets: array to store the offsets in
118 * @boundary: set this non-zero if the referred-to block is likely to be
119 * followed (on disk) by an indirect block.
120 * To store the locations of file's data ext2 uses a data structure common
121 * for UNIX filesystems - tree of pointers anchored in the inode, with
122 * data blocks at leaves and indirect blocks in intermediate nodes.
123 * This function translates the block number into path in that tree -
124 * return value is the path length and @offsets[n] is the offset of
125 * pointer to (n+1)th node in the nth one. If @block is out of range
126 * (negative or too large) warning is printed and zero returned.
128 * Note: function doesn't find node addresses, so no IO is needed. All
129 * we need to know is the capacity of indirect blocks (taken from the
134 * Portability note: the last comparison (check that we fit into triple
135 * indirect block) is spelled differently, because otherwise on an
136 * architecture with 32-bit longs and 8Kb pages we might get into trouble
137 * if our filesystem had 8Kb blocks. We might use long long, but that would
138 * kill us on x86. Oh, well, at least the sign propagation does not matter -
139 * i_block would have to be negative in the very beginning, so we would not
143 static int ext2_block_to_path(struct inode
*inode
,
144 long i_block
, int offsets
[4], int *boundary
)
146 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
147 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
148 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
149 indirect_blocks
= ptrs
,
150 double_blocks
= (1 << (ptrs_bits
* 2));
155 ext2_msg(inode
->i_sb
, KERN_WARNING
,
156 "warning: %s: block < 0", __func__
);
157 } else if (i_block
< direct_blocks
) {
158 offsets
[n
++] = i_block
;
159 final
= direct_blocks
;
160 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
161 offsets
[n
++] = EXT2_IND_BLOCK
;
162 offsets
[n
++] = i_block
;
164 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
165 offsets
[n
++] = EXT2_DIND_BLOCK
;
166 offsets
[n
++] = i_block
>> ptrs_bits
;
167 offsets
[n
++] = i_block
& (ptrs
- 1);
169 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
170 offsets
[n
++] = EXT2_TIND_BLOCK
;
171 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
172 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
173 offsets
[n
++] = i_block
& (ptrs
- 1);
176 ext2_msg(inode
->i_sb
, KERN_WARNING
,
177 "warning: %s: block is too big", __func__
);
180 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
186 * ext2_get_branch - read the chain of indirect blocks leading to data
187 * @inode: inode in question
188 * @depth: depth of the chain (1 - direct pointer, etc.)
189 * @offsets: offsets of pointers in inode/indirect blocks
190 * @chain: place to store the result
191 * @err: here we store the error value
193 * Function fills the array of triples <key, p, bh> and returns %NULL
194 * if everything went OK or the pointer to the last filled triple
195 * (incomplete one) otherwise. Upon the return chain[i].key contains
196 * the number of (i+1)-th block in the chain (as it is stored in memory,
197 * i.e. little-endian 32-bit), chain[i].p contains the address of that
198 * number (it points into struct inode for i==0 and into the bh->b_data
199 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
200 * block for i>0 and NULL for i==0. In other words, it holds the block
201 * numbers of the chain, addresses they were taken from (and where we can
202 * verify that chain did not change) and buffer_heads hosting these
205 * Function stops when it stumbles upon zero pointer (absent block)
206 * (pointer to last triple returned, *@err == 0)
207 * or when it gets an IO error reading an indirect block
208 * (ditto, *@err == -EIO)
209 * or when it notices that chain had been changed while it was reading
210 * (ditto, *@err == -EAGAIN)
211 * or when it reads all @depth-1 indirect blocks successfully and finds
212 * the whole chain, all way to the data (returns %NULL, *err == 0).
214 static Indirect
*ext2_get_branch(struct inode
*inode
,
220 struct super_block
*sb
= inode
->i_sb
;
222 struct buffer_head
*bh
;
225 /* i_data is not going away, no lock needed */
226 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
230 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
233 read_lock(&EXT2_I(inode
)->i_meta_lock
);
234 if (!verify_chain(chain
, p
))
236 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
237 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
244 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
255 * ext2_find_near - find a place for allocation with sufficient locality
257 * @ind: descriptor of indirect block.
259 * This function returns the preferred place for block allocation.
260 * It is used when heuristic for sequential allocation fails.
262 * + if there is a block to the left of our position - allocate near it.
263 * + if pointer will live in indirect block - allocate near that block.
264 * + if pointer will live in inode - allocate in the same cylinder group.
266 * In the latter case we colour the starting block by the callers PID to
267 * prevent it from clashing with concurrent allocations for a different inode
268 * in the same block group. The PID is used here so that functionally related
269 * files will be close-by on-disk.
271 * Caller must make sure that @ind is valid and will stay that way.
274 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
276 struct ext2_inode_info
*ei
= EXT2_I(inode
);
277 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
279 ext2_fsblk_t bg_start
;
282 /* Try to find previous block */
283 for (p
= ind
->p
- 1; p
>= start
; p
--)
285 return le32_to_cpu(*p
);
287 /* No such thing, so let's try location of indirect block */
289 return ind
->bh
->b_blocknr
;
292 * It is going to be refered from inode itself? OK, just put it into
293 * the same cylinder group then.
295 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
296 colour
= (current
->pid
% 16) *
297 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
298 return bg_start
+ colour
;
302 * ext2_find_goal - find a preferred place for allocation.
304 * @block: block we want
305 * @partial: pointer to the last triple within a chain
307 * Returns preferred place for a block (the goal).
310 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
313 struct ext2_block_alloc_info
*block_i
;
315 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
318 * try the heuristic for sequential allocation,
319 * failing that at least try to get decent locality.
321 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
322 && (block_i
->last_alloc_physical_block
!= 0)) {
323 return block_i
->last_alloc_physical_block
+ 1;
326 return ext2_find_near(inode
, partial
);
330 * ext2_blks_to_allocate: Look up the block map and count the number
331 * of direct blocks need to be allocated for the given branch.
333 * @branch: chain of indirect blocks
334 * @k: number of blocks need for indirect blocks
335 * @blks: number of data blocks to be mapped.
336 * @blocks_to_boundary: the offset in the indirect block
338 * return the total number of blocks to be allocate, including the
339 * direct and indirect blocks.
342 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
343 int blocks_to_boundary
)
345 unsigned long count
= 0;
348 * Simple case, [t,d]Indirect block(s) has not allocated yet
349 * then it's clear blocks on that path have not allocated
352 /* right now don't hanel cross boundary allocation */
353 if (blks
< blocks_to_boundary
+ 1)
356 count
+= blocks_to_boundary
+ 1;
361 while (count
< blks
&& count
<= blocks_to_boundary
362 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
369 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
370 * @indirect_blks: the number of blocks need to allocate for indirect
373 * @new_blocks: on return it will store the new block numbers for
374 * the indirect blocks(if needed) and the first direct block,
375 * @blks: on return it will store the total number of allocated
378 static int ext2_alloc_blocks(struct inode
*inode
,
379 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
380 ext2_fsblk_t new_blocks
[4], int *err
)
383 unsigned long count
= 0;
385 ext2_fsblk_t current_block
= 0;
389 * Here we try to allocate the requested multiple blocks at once,
390 * on a best-effort basis.
391 * To build a branch, we should allocate blocks for
392 * the indirect blocks(if not allocated yet), and at least
393 * the first direct block of this branch. That's the
394 * minimum number of blocks need to allocate(required)
396 target
= blks
+ indirect_blks
;
400 /* allocating blocks for indirect blocks and direct blocks */
401 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
406 /* allocate blocks for indirect blocks */
407 while (index
< indirect_blks
&& count
) {
408 new_blocks
[index
++] = current_block
++;
416 /* save the new block number for the first direct block */
417 new_blocks
[index
] = current_block
;
419 /* total number of blocks allocated for direct blocks */
424 for (i
= 0; i
<index
; i
++)
425 ext2_free_blocks(inode
, new_blocks
[i
], 1);
430 * ext2_alloc_branch - allocate and set up a chain of blocks.
432 * @num: depth of the chain (number of blocks to allocate)
433 * @offsets: offsets (in the blocks) to store the pointers to next.
434 * @branch: place to store the chain in.
436 * This function allocates @num blocks, zeroes out all but the last one,
437 * links them into chain and (if we are synchronous) writes them to disk.
438 * In other words, it prepares a branch that can be spliced onto the
439 * inode. It stores the information about that chain in the branch[], in
440 * the same format as ext2_get_branch() would do. We are calling it after
441 * we had read the existing part of chain and partial points to the last
442 * triple of that (one with zero ->key). Upon the exit we have the same
443 * picture as after the successful ext2_get_block(), excpet that in one
444 * place chain is disconnected - *branch->p is still zero (we did not
445 * set the last link), but branch->key contains the number that should
446 * be placed into *branch->p to fill that gap.
448 * If allocation fails we free all blocks we've allocated (and forget
449 * their buffer_heads) and return the error value the from failed
450 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
451 * as described above and return 0.
454 static int ext2_alloc_branch(struct inode
*inode
,
455 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
456 int *offsets
, Indirect
*branch
)
458 int blocksize
= inode
->i_sb
->s_blocksize
;
461 struct buffer_head
*bh
;
463 ext2_fsblk_t new_blocks
[4];
464 ext2_fsblk_t current_block
;
466 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
467 *blks
, new_blocks
, &err
);
471 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
473 * metadata blocks and data blocks are allocated.
475 for (n
= 1; n
<= indirect_blks
; n
++) {
477 * Get buffer_head for parent block, zero it out
478 * and set the pointer to new one, then send
481 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
484 memset(bh
->b_data
, 0, blocksize
);
485 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
486 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
487 *branch
[n
].p
= branch
[n
].key
;
488 if ( n
== indirect_blks
) {
489 current_block
= new_blocks
[n
];
491 * End of chain, update the last new metablock of
492 * the chain to point to the new allocated
493 * data blocks numbers
495 for (i
=1; i
< num
; i
++)
496 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
498 set_buffer_uptodate(bh
);
500 mark_buffer_dirty_inode(bh
, inode
);
501 /* We used to sync bh here if IS_SYNC(inode).
502 * But we now rely upon generic_write_sync()
503 * and b_inode_buffers. But not for directories.
505 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
506 sync_dirty_buffer(bh
);
513 * ext2_splice_branch - splice the allocated branch onto inode.
515 * @block: (logical) number of block we are adding
516 * @where: location of missing link
517 * @num: number of indirect blocks we are adding
518 * @blks: number of direct blocks we are adding
520 * This function fills the missing link and does all housekeeping needed in
521 * inode (->i_blocks, etc.). In case of success we end up with the full
522 * chain to new block and return 0.
524 static void ext2_splice_branch(struct inode
*inode
,
525 long block
, Indirect
*where
, int num
, int blks
)
528 struct ext2_block_alloc_info
*block_i
;
529 ext2_fsblk_t current_block
;
531 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
533 /* XXX LOCKING probably should have i_meta_lock ?*/
536 *where
->p
= where
->key
;
539 * Update the host buffer_head or inode to point to more just allocated
540 * direct blocks blocks
542 if (num
== 0 && blks
> 1) {
543 current_block
= le32_to_cpu(where
->key
) + 1;
544 for (i
= 1; i
< blks
; i
++)
545 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
549 * update the most recently allocated logical & physical block
550 * in i_block_alloc_info, to assist find the proper goal block for next
554 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
555 block_i
->last_alloc_physical_block
=
556 le32_to_cpu(where
[num
].key
) + blks
- 1;
559 /* We are done with atomic stuff, now do the rest of housekeeping */
561 /* had we spliced it onto indirect block? */
563 mark_buffer_dirty_inode(where
->bh
, inode
);
565 inode
->i_ctime
= CURRENT_TIME_SEC
;
566 mark_inode_dirty(inode
);
570 * Allocation strategy is simple: if we have to allocate something, we will
571 * have to go the whole way to leaf. So let's do it before attaching anything
572 * to tree, set linkage between the newborn blocks, write them if sync is
573 * required, recheck the path, free and repeat if check fails, otherwise
574 * set the last missing link (that will protect us from any truncate-generated
575 * removals - all blocks on the path are immune now) and possibly force the
576 * write on the parent block.
577 * That has a nice additional property: no special recovery from the failed
578 * allocations is needed - we simply release blocks and do not touch anything
579 * reachable from inode.
581 * `handle' can be NULL if create == 0.
583 * return > 0, # of blocks mapped or allocated.
584 * return = 0, if plain lookup failed.
585 * return < 0, error case.
587 static int ext2_get_blocks(struct inode
*inode
,
588 sector_t iblock
, unsigned long maxblocks
,
589 struct buffer_head
*bh_result
,
598 int blocks_to_boundary
= 0;
600 struct ext2_inode_info
*ei
= EXT2_I(inode
);
602 ext2_fsblk_t first_block
= 0;
604 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
609 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
610 /* Simplest case - block found, no allocation needed */
612 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
613 clear_buffer_new(bh_result
); /* What's this do? */
616 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
619 if (!verify_chain(chain
, chain
+ depth
- 1)) {
621 * Indirect block might be removed by
622 * truncate while we were reading it.
623 * Handling of that case: forget what we've
624 * got now, go to reread.
630 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
631 if (blk
== first_block
+ count
)
640 /* Next simple case - plain lookup or failed read of indirect block */
641 if (!create
|| err
== -EIO
)
644 mutex_lock(&ei
->truncate_mutex
);
646 * If the indirect block is missing while we are reading
647 * the chain(ext3_get_branch() returns -EAGAIN err), or
648 * if the chain has been changed after we grab the semaphore,
649 * (either because another process truncated this branch, or
650 * another get_block allocated this branch) re-grab the chain to see if
651 * the request block has been allocated or not.
653 * Since we already block the truncate/other get_block
654 * at this point, we will have the current copy of the chain when we
655 * splice the branch into the tree.
657 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
658 while (partial
> chain
) {
662 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
665 mutex_unlock(&ei
->truncate_mutex
);
668 clear_buffer_new(bh_result
);
674 * Okay, we need to do block allocation. Lazily initialize the block
675 * allocation info here if necessary
677 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
678 ext2_init_block_alloc_info(inode
);
680 goal
= ext2_find_goal(inode
, iblock
, partial
);
682 /* the number of blocks need to allocate for [d,t]indirect blocks */
683 indirect_blks
= (chain
+ depth
) - partial
- 1;
685 * Next look up the indirect map to count the totoal number of
686 * direct blocks to allocate for this branch.
688 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
689 maxblocks
, blocks_to_boundary
);
691 * XXX ???? Block out ext2_truncate while we alter the tree
693 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
694 offsets
+ (partial
- chain
), partial
);
697 mutex_unlock(&ei
->truncate_mutex
);
701 if (ext2_use_xip(inode
->i_sb
)) {
703 * we need to clear the block
705 err
= ext2_clear_xip_target (inode
,
706 le32_to_cpu(chain
[depth
-1].key
));
708 mutex_unlock(&ei
->truncate_mutex
);
713 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
714 mutex_unlock(&ei
->truncate_mutex
);
715 set_buffer_new(bh_result
);
717 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
718 if (count
> blocks_to_boundary
)
719 set_buffer_boundary(bh_result
);
721 /* Clean up and exit */
722 partial
= chain
+ depth
- 1; /* the whole chain */
724 while (partial
> chain
) {
731 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
733 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
734 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
737 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
744 int ext2_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
747 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
751 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
753 return block_write_full_page(page
, ext2_get_block
, wbc
);
756 static int ext2_readpage(struct file
*file
, struct page
*page
)
758 return mpage_readpage(page
, ext2_get_block
);
762 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
763 struct list_head
*pages
, unsigned nr_pages
)
765 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
768 int __ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
769 loff_t pos
, unsigned len
, unsigned flags
,
770 struct page
**pagep
, void **fsdata
)
772 return block_write_begin_newtrunc(file
, mapping
, pos
, len
, flags
,
773 pagep
, fsdata
, ext2_get_block
);
777 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
778 loff_t pos
, unsigned len
, unsigned flags
,
779 struct page
**pagep
, void **fsdata
)
784 ret
= __ext2_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
);
786 ext2_write_failed(mapping
, pos
+ len
);
790 static int ext2_write_end(struct file
*file
, struct address_space
*mapping
,
791 loff_t pos
, unsigned len
, unsigned copied
,
792 struct page
*page
, void *fsdata
)
796 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
798 ext2_write_failed(mapping
, pos
+ len
);
803 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
804 loff_t pos
, unsigned len
, unsigned flags
,
805 struct page
**pagep
, void **fsdata
)
810 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
811 * directory handling code to pass around offsets rather than struct
812 * pages in order to make this work easily.
814 ret
= nobh_write_begin_newtrunc(file
, mapping
, pos
, len
, flags
, pagep
,
815 fsdata
, ext2_get_block
);
817 ext2_write_failed(mapping
, pos
+ len
);
821 static int ext2_nobh_writepage(struct page
*page
,
822 struct writeback_control
*wbc
)
824 return nobh_writepage(page
, ext2_get_block
, wbc
);
827 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
829 return generic_block_bmap(mapping
,block
,ext2_get_block
);
833 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
834 loff_t offset
, unsigned long nr_segs
)
836 struct file
*file
= iocb
->ki_filp
;
837 struct address_space
*mapping
= file
->f_mapping
;
838 struct inode
*inode
= mapping
->host
;
841 ret
= blockdev_direct_IO_newtrunc(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
,
842 iov
, offset
, nr_segs
, ext2_get_block
, NULL
);
843 if (ret
< 0 && (rw
& WRITE
))
844 ext2_write_failed(mapping
, offset
+ iov_length(iov
, nr_segs
));
849 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
851 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
854 const struct address_space_operations ext2_aops
= {
855 .readpage
= ext2_readpage
,
856 .readpages
= ext2_readpages
,
857 .writepage
= ext2_writepage
,
858 .sync_page
= block_sync_page
,
859 .write_begin
= ext2_write_begin
,
860 .write_end
= ext2_write_end
,
862 .direct_IO
= ext2_direct_IO
,
863 .writepages
= ext2_writepages
,
864 .migratepage
= buffer_migrate_page
,
865 .is_partially_uptodate
= block_is_partially_uptodate
,
866 .error_remove_page
= generic_error_remove_page
,
869 const struct address_space_operations ext2_aops_xip
= {
871 .get_xip_mem
= ext2_get_xip_mem
,
874 const struct address_space_operations ext2_nobh_aops
= {
875 .readpage
= ext2_readpage
,
876 .readpages
= ext2_readpages
,
877 .writepage
= ext2_nobh_writepage
,
878 .sync_page
= block_sync_page
,
879 .write_begin
= ext2_nobh_write_begin
,
880 .write_end
= nobh_write_end
,
882 .direct_IO
= ext2_direct_IO
,
883 .writepages
= ext2_writepages
,
884 .migratepage
= buffer_migrate_page
,
885 .error_remove_page
= generic_error_remove_page
,
889 * Probably it should be a library function... search for first non-zero word
890 * or memcmp with zero_page, whatever is better for particular architecture.
893 static inline int all_zeroes(__le32
*p
, __le32
*q
)
902 * ext2_find_shared - find the indirect blocks for partial truncation.
903 * @inode: inode in question
904 * @depth: depth of the affected branch
905 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
906 * @chain: place to store the pointers to partial indirect blocks
907 * @top: place to the (detached) top of branch
909 * This is a helper function used by ext2_truncate().
911 * When we do truncate() we may have to clean the ends of several indirect
912 * blocks but leave the blocks themselves alive. Block is partially
913 * truncated if some data below the new i_size is refered from it (and
914 * it is on the path to the first completely truncated data block, indeed).
915 * We have to free the top of that path along with everything to the right
916 * of the path. Since no allocation past the truncation point is possible
917 * until ext2_truncate() finishes, we may safely do the latter, but top
918 * of branch may require special attention - pageout below the truncation
919 * point might try to populate it.
921 * We atomically detach the top of branch from the tree, store the block
922 * number of its root in *@top, pointers to buffer_heads of partially
923 * truncated blocks - in @chain[].bh and pointers to their last elements
924 * that should not be removed - in @chain[].p. Return value is the pointer
925 * to last filled element of @chain.
927 * The work left to caller to do the actual freeing of subtrees:
928 * a) free the subtree starting from *@top
929 * b) free the subtrees whose roots are stored in
930 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
931 * c) free the subtrees growing from the inode past the @chain[0].p
932 * (no partially truncated stuff there).
935 static Indirect
*ext2_find_shared(struct inode
*inode
,
941 Indirect
*partial
, *p
;
945 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
947 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
949 partial
= chain
+ k
-1;
951 * If the branch acquired continuation since we've looked at it -
952 * fine, it should all survive and (new) top doesn't belong to us.
954 write_lock(&EXT2_I(inode
)->i_meta_lock
);
955 if (!partial
->key
&& *partial
->p
) {
956 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
959 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
962 * OK, we've found the last block that must survive. The rest of our
963 * branch should be detached before unlocking. However, if that rest
964 * of branch is all ours and does not grow immediately from the inode
965 * it's easier to cheat and just decrement partial->p.
967 if (p
== chain
+ k
- 1 && p
> chain
) {
973 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
985 * ext2_free_data - free a list of data blocks
986 * @inode: inode we are dealing with
987 * @p: array of block numbers
988 * @q: points immediately past the end of array
990 * We are freeing all blocks refered from that array (numbers are
991 * stored as little-endian 32-bit) and updating @inode->i_blocks
994 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
996 unsigned long block_to_free
= 0, count
= 0;
999 for ( ; p
< q
; p
++) {
1000 nr
= le32_to_cpu(*p
);
1003 /* accumulate blocks to free if they're contiguous */
1006 else if (block_to_free
== nr
- count
)
1009 mark_inode_dirty(inode
);
1010 ext2_free_blocks (inode
, block_to_free
, count
);
1018 mark_inode_dirty(inode
);
1019 ext2_free_blocks (inode
, block_to_free
, count
);
1024 * ext2_free_branches - free an array of branches
1025 * @inode: inode we are dealing with
1026 * @p: array of block numbers
1027 * @q: pointer immediately past the end of array
1028 * @depth: depth of the branches to free
1030 * We are freeing all blocks refered from these branches (numbers are
1031 * stored as little-endian 32-bit) and updating @inode->i_blocks
1034 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
1036 struct buffer_head
* bh
;
1040 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1041 for ( ; p
< q
; p
++) {
1042 nr
= le32_to_cpu(*p
);
1046 bh
= sb_bread(inode
->i_sb
, nr
);
1048 * A read failure? Report error and clear slot
1052 ext2_error(inode
->i_sb
, "ext2_free_branches",
1053 "Read failure, inode=%ld, block=%ld",
1057 ext2_free_branches(inode
,
1058 (__le32
*)bh
->b_data
,
1059 (__le32
*)bh
->b_data
+ addr_per_block
,
1062 ext2_free_blocks(inode
, nr
, 1);
1063 mark_inode_dirty(inode
);
1066 ext2_free_data(inode
, p
, q
);
1069 static void __ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1071 __le32
*i_data
= EXT2_I(inode
)->i_data
;
1072 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1073 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1081 blocksize
= inode
->i_sb
->s_blocksize
;
1082 iblock
= (offset
+ blocksize
-1) >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1084 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1089 * From here we block out all ext2_get_block() callers who want to
1090 * modify the block allocation tree.
1092 mutex_lock(&ei
->truncate_mutex
);
1095 ext2_free_data(inode
, i_data
+offsets
[0],
1096 i_data
+ EXT2_NDIR_BLOCKS
);
1100 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1101 /* Kill the top of shared branch (already detached) */
1103 if (partial
== chain
)
1104 mark_inode_dirty(inode
);
1106 mark_buffer_dirty_inode(partial
->bh
, inode
);
1107 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1109 /* Clear the ends of indirect blocks on the shared branch */
1110 while (partial
> chain
) {
1111 ext2_free_branches(inode
,
1113 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1114 (chain
+n
-1) - partial
);
1115 mark_buffer_dirty_inode(partial
->bh
, inode
);
1116 brelse (partial
->bh
);
1120 /* Kill the remaining (whole) subtrees */
1121 switch (offsets
[0]) {
1123 nr
= i_data
[EXT2_IND_BLOCK
];
1125 i_data
[EXT2_IND_BLOCK
] = 0;
1126 mark_inode_dirty(inode
);
1127 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1129 case EXT2_IND_BLOCK
:
1130 nr
= i_data
[EXT2_DIND_BLOCK
];
1132 i_data
[EXT2_DIND_BLOCK
] = 0;
1133 mark_inode_dirty(inode
);
1134 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1136 case EXT2_DIND_BLOCK
:
1137 nr
= i_data
[EXT2_TIND_BLOCK
];
1139 i_data
[EXT2_TIND_BLOCK
] = 0;
1140 mark_inode_dirty(inode
);
1141 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1143 case EXT2_TIND_BLOCK
:
1147 ext2_discard_reservation(inode
);
1149 mutex_unlock(&ei
->truncate_mutex
);
1152 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1155 * XXX: it seems like a bug here that we don't allow
1156 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1157 * review and fix this.
1159 * Also would be nice to be able to handle IO errors and such,
1160 * but that's probably too much to ask.
1162 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1163 S_ISLNK(inode
->i_mode
)))
1165 if (ext2_inode_is_fast_symlink(inode
))
1167 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1169 __ext2_truncate_blocks(inode
, offset
);
1172 int ext2_setsize(struct inode
*inode
, loff_t newsize
)
1177 error
= inode_newsize_ok(inode
, newsize
);
1181 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1182 S_ISLNK(inode
->i_mode
)))
1184 if (ext2_inode_is_fast_symlink(inode
))
1186 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1189 if (mapping_is_xip(inode
->i_mapping
))
1190 error
= xip_truncate_page(inode
->i_mapping
, newsize
);
1191 else if (test_opt(inode
->i_sb
, NOBH
))
1192 error
= nobh_truncate_page(inode
->i_mapping
,
1193 newsize
, ext2_get_block
);
1195 error
= block_truncate_page(inode
->i_mapping
,
1196 newsize
, ext2_get_block
);
1200 oldsize
= inode
->i_size
;
1201 i_size_write(inode
, newsize
);
1202 truncate_pagecache(inode
, oldsize
, newsize
);
1204 __ext2_truncate_blocks(inode
, newsize
);
1206 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1207 if (inode_needs_sync(inode
)) {
1208 sync_mapping_buffers(inode
->i_mapping
);
1209 ext2_sync_inode (inode
);
1211 mark_inode_dirty(inode
);
1217 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1218 struct buffer_head
**p
)
1220 struct buffer_head
* bh
;
1221 unsigned long block_group
;
1222 unsigned long block
;
1223 unsigned long offset
;
1224 struct ext2_group_desc
* gdp
;
1227 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1228 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1231 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1232 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1236 * Figure out the offset within the block group inode table
1238 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1239 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1240 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1241 if (!(bh
= sb_bread(sb
, block
)))
1245 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1246 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1249 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1250 (unsigned long) ino
);
1251 return ERR_PTR(-EINVAL
);
1253 ext2_error(sb
, "ext2_get_inode",
1254 "unable to read inode block - inode=%lu, block=%lu",
1255 (unsigned long) ino
, block
);
1257 return ERR_PTR(-EIO
);
1260 void ext2_set_inode_flags(struct inode
*inode
)
1262 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1264 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1265 if (flags
& EXT2_SYNC_FL
)
1266 inode
->i_flags
|= S_SYNC
;
1267 if (flags
& EXT2_APPEND_FL
)
1268 inode
->i_flags
|= S_APPEND
;
1269 if (flags
& EXT2_IMMUTABLE_FL
)
1270 inode
->i_flags
|= S_IMMUTABLE
;
1271 if (flags
& EXT2_NOATIME_FL
)
1272 inode
->i_flags
|= S_NOATIME
;
1273 if (flags
& EXT2_DIRSYNC_FL
)
1274 inode
->i_flags
|= S_DIRSYNC
;
1277 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1278 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1280 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1282 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1283 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1285 ei
->i_flags
|= EXT2_SYNC_FL
;
1286 if (flags
& S_APPEND
)
1287 ei
->i_flags
|= EXT2_APPEND_FL
;
1288 if (flags
& S_IMMUTABLE
)
1289 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1290 if (flags
& S_NOATIME
)
1291 ei
->i_flags
|= EXT2_NOATIME_FL
;
1292 if (flags
& S_DIRSYNC
)
1293 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1296 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1298 struct ext2_inode_info
*ei
;
1299 struct buffer_head
* bh
;
1300 struct ext2_inode
*raw_inode
;
1301 struct inode
*inode
;
1305 inode
= iget_locked(sb
, ino
);
1307 return ERR_PTR(-ENOMEM
);
1308 if (!(inode
->i_state
& I_NEW
))
1312 ei
->i_block_alloc_info
= NULL
;
1314 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1315 if (IS_ERR(raw_inode
)) {
1316 ret
= PTR_ERR(raw_inode
);
1320 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1321 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1322 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1323 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1324 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1325 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1327 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
1328 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1329 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1330 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1331 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1332 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1333 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1334 /* We now have enough fields to check if the inode was active or not.
1335 * This is needed because nfsd might try to access dead inodes
1336 * the test is that same one that e2fsck uses
1337 * NeilBrown 1999oct15
1339 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1340 /* this inode is deleted */
1345 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1346 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1347 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1348 ei
->i_frag_no
= raw_inode
->i_frag
;
1349 ei
->i_frag_size
= raw_inode
->i_fsize
;
1350 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1352 if (S_ISREG(inode
->i_mode
))
1353 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1355 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1357 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1359 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1360 ei
->i_dir_start_lookup
= 0;
1363 * NOTE! The in-memory inode i_data array is in little-endian order
1364 * even on big-endian machines: we do NOT byteswap the block numbers!
1366 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1367 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1369 if (S_ISREG(inode
->i_mode
)) {
1370 inode
->i_op
= &ext2_file_inode_operations
;
1371 if (ext2_use_xip(inode
->i_sb
)) {
1372 inode
->i_mapping
->a_ops
= &ext2_aops_xip
;
1373 inode
->i_fop
= &ext2_xip_file_operations
;
1374 } else if (test_opt(inode
->i_sb
, NOBH
)) {
1375 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1376 inode
->i_fop
= &ext2_file_operations
;
1378 inode
->i_mapping
->a_ops
= &ext2_aops
;
1379 inode
->i_fop
= &ext2_file_operations
;
1381 } else if (S_ISDIR(inode
->i_mode
)) {
1382 inode
->i_op
= &ext2_dir_inode_operations
;
1383 inode
->i_fop
= &ext2_dir_operations
;
1384 if (test_opt(inode
->i_sb
, NOBH
))
1385 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1387 inode
->i_mapping
->a_ops
= &ext2_aops
;
1388 } else if (S_ISLNK(inode
->i_mode
)) {
1389 if (ext2_inode_is_fast_symlink(inode
)) {
1390 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1391 nd_terminate_link(ei
->i_data
, inode
->i_size
,
1392 sizeof(ei
->i_data
) - 1);
1394 inode
->i_op
= &ext2_symlink_inode_operations
;
1395 if (test_opt(inode
->i_sb
, NOBH
))
1396 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1398 inode
->i_mapping
->a_ops
= &ext2_aops
;
1401 inode
->i_op
= &ext2_special_inode_operations
;
1402 if (raw_inode
->i_block
[0])
1403 init_special_inode(inode
, inode
->i_mode
,
1404 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1406 init_special_inode(inode
, inode
->i_mode
,
1407 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1410 ext2_set_inode_flags(inode
);
1411 unlock_new_inode(inode
);
1416 return ERR_PTR(ret
);
1419 static int __ext2_write_inode(struct inode
*inode
, int do_sync
)
1421 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1422 struct super_block
*sb
= inode
->i_sb
;
1423 ino_t ino
= inode
->i_ino
;
1424 uid_t uid
= inode
->i_uid
;
1425 gid_t gid
= inode
->i_gid
;
1426 struct buffer_head
* bh
;
1427 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1431 if (IS_ERR(raw_inode
))
1434 /* For fields not not tracking in the in-memory inode,
1435 * initialise them to zero for new inodes. */
1436 if (ei
->i_state
& EXT2_STATE_NEW
)
1437 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1439 ext2_get_inode_flags(ei
);
1440 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1441 if (!(test_opt(sb
, NO_UID32
))) {
1442 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1443 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1445 * Fix up interoperability with old kernels. Otherwise, old inodes get
1446 * re-used with the upper 16 bits of the uid/gid intact
1449 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1450 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1452 raw_inode
->i_uid_high
= 0;
1453 raw_inode
->i_gid_high
= 0;
1456 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1457 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1458 raw_inode
->i_uid_high
= 0;
1459 raw_inode
->i_gid_high
= 0;
1461 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1462 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1463 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1464 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1465 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1467 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1468 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1469 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1470 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1471 raw_inode
->i_frag
= ei
->i_frag_no
;
1472 raw_inode
->i_fsize
= ei
->i_frag_size
;
1473 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1474 if (!S_ISREG(inode
->i_mode
))
1475 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1477 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1478 if (inode
->i_size
> 0x7fffffffULL
) {
1479 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1480 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1481 EXT2_SB(sb
)->s_es
->s_rev_level
==
1482 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1483 /* If this is the first large file
1484 * created, add a flag to the superblock.
1486 spin_lock(&EXT2_SB(sb
)->s_lock
);
1487 ext2_update_dynamic_rev(sb
);
1488 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1489 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1490 spin_unlock(&EXT2_SB(sb
)->s_lock
);
1491 ext2_write_super(sb
);
1496 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1497 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1498 if (old_valid_dev(inode
->i_rdev
)) {
1499 raw_inode
->i_block
[0] =
1500 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1501 raw_inode
->i_block
[1] = 0;
1503 raw_inode
->i_block
[0] = 0;
1504 raw_inode
->i_block
[1] =
1505 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1506 raw_inode
->i_block
[2] = 0;
1508 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1509 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1510 mark_buffer_dirty(bh
);
1512 sync_dirty_buffer(bh
);
1513 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1514 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1515 sb
->s_id
, (unsigned long) ino
);
1519 ei
->i_state
&= ~EXT2_STATE_NEW
;
1524 int ext2_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1526 return __ext2_write_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1529 int ext2_sync_inode(struct inode
*inode
)
1531 struct writeback_control wbc
= {
1532 .sync_mode
= WB_SYNC_ALL
,
1533 .nr_to_write
= 0, /* sys_fsync did this */
1535 return sync_inode(inode
, &wbc
);
1538 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1540 struct inode
*inode
= dentry
->d_inode
;
1543 error
= inode_change_ok(inode
, iattr
);
1547 if (is_quota_modification(inode
, iattr
))
1548 dquot_initialize(inode
);
1549 if ((iattr
->ia_valid
& ATTR_UID
&& iattr
->ia_uid
!= inode
->i_uid
) ||
1550 (iattr
->ia_valid
& ATTR_GID
&& iattr
->ia_gid
!= inode
->i_gid
)) {
1551 error
= dquot_transfer(inode
, iattr
);
1555 if (iattr
->ia_valid
& ATTR_SIZE
&& iattr
->ia_size
!= inode
->i_size
) {
1556 error
= ext2_setsize(inode
, iattr
->ia_size
);
1560 generic_setattr(inode
, iattr
);
1561 if (iattr
->ia_valid
& ATTR_MODE
)
1562 error
= ext2_acl_chmod(inode
);
1563 mark_inode_dirty(inode
);