3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
37 #include <linux/dma-mapping.h>
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/string.h>
41 #include <linux/timer.h>
42 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/bitops.h>
46 #include <linux/slab.h>
47 #include <linux/interrupt.h>
48 #include <linux/init.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/ethtool.h>
52 #include <linux/mii.h>
53 #include <linux/skbuff.h>
54 #include <linux/delay.h>
55 #include <linux/crc32.h>
56 #include <linux/phy.h>
57 #include <asm/mipsregs.h>
60 #include <asm/processor.h>
62 #include <asm/mach-au1x00/au1000.h>
64 #include "au1000_eth.h"
66 #ifdef AU1000_ETH_DEBUG
67 static int au1000_debug
= 5;
69 static int au1000_debug
= 3;
72 #define DRV_NAME "au1000_eth"
73 #define DRV_VERSION "1.6"
74 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
75 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
77 MODULE_AUTHOR(DRV_AUTHOR
);
78 MODULE_DESCRIPTION(DRV_DESC
);
79 MODULE_LICENSE("GPL");
82 static void hard_stop(struct net_device
*);
83 static void enable_rx_tx(struct net_device
*dev
);
84 static struct net_device
* au1000_probe(int port_num
);
85 static int au1000_init(struct net_device
*);
86 static int au1000_open(struct net_device
*);
87 static int au1000_close(struct net_device
*);
88 static int au1000_tx(struct sk_buff
*, struct net_device
*);
89 static int au1000_rx(struct net_device
*);
90 static irqreturn_t
au1000_interrupt(int, void *);
91 static void au1000_tx_timeout(struct net_device
*);
92 static void set_rx_mode(struct net_device
*);
93 static struct net_device_stats
*au1000_get_stats(struct net_device
*);
94 static int au1000_ioctl(struct net_device
*, struct ifreq
*, int);
95 static int mdio_read(struct net_device
*, int, int);
96 static void mdio_write(struct net_device
*, int, int, u16
);
97 static void au1000_adjust_link(struct net_device
*);
98 static void enable_mac(struct net_device
*, int);
101 extern int get_ethernet_addr(char *ethernet_addr
);
102 extern void str2eaddr(unsigned char *ea
, unsigned char *str
);
103 extern char * prom_getcmdline(void);
106 * Theory of operation
108 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
109 * There are four receive and four transmit descriptors. These
110 * descriptors are not in memory; rather, they are just a set of
111 * hardware registers.
113 * Since the Au1000 has a coherent data cache, the receive and
114 * transmit buffers are allocated from the KSEG0 segment. The
115 * hardware registers, however, are still mapped at KSEG1 to
116 * make sure there's no out-of-order writes, and that all writes
117 * complete immediately.
120 /* These addresses are only used if yamon doesn't tell us what
121 * the mac address is, and the mac address is not passed on the
124 static unsigned char au1000_mac_addr
[6] __devinitdata
= {
125 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
128 struct au1000_private
*au_macs
[NUM_ETH_INTERFACES
];
131 * board-specific configurations
133 * PHY detection algorithm
135 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
138 * mii_probe() first searches the current MAC's MII bus for a PHY,
139 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
140 * defined) PHY address not already claimed by another netdev.
142 * If nothing was found that way when searching for the 2nd ethernet
143 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
144 * the first MII bus is searched as well for an unclaimed PHY; this is
145 * needed in case of a dual-PHY accessible only through the MAC0's MII
148 * Finally, if no PHY is found, then the corresponding ethernet
149 * controller is not registered to the network subsystem.
152 /* autodetection defaults */
153 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
154 #define AU1XXX_PHY1_SEARCH_ON_MAC0
158 * most boards PHY setup should be detectable properly with the
159 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
160 * you have a switch attached, or want to use the PHY's interrupt
161 * notification capabilities) you can provide a static PHY
164 * IRQs may only be set, if a PHY address was configured
165 * If a PHY address is given, also a bus id is required to be set
167 * ps: make sure the used irqs are configured properly in the board
171 #if defined(CONFIG_MIPS_BOSPORUS)
173 * Micrel/Kendin 5 port switch attached to MAC0,
174 * MAC0 is associated with PHY address 5 (== WAN port)
175 * MAC1 is not associated with any PHY, since it's connected directly
177 * no interrupts are used
179 # define AU1XXX_PHY_STATIC_CONFIG
181 # define AU1XXX_PHY0_ADDR 5
182 # define AU1XXX_PHY0_BUSID 0
183 # undef AU1XXX_PHY0_IRQ
185 # undef AU1XXX_PHY1_ADDR
186 # undef AU1XXX_PHY1_BUSID
187 # undef AU1XXX_PHY1_IRQ
190 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
191 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
197 static int mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
199 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
200 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
201 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
205 while (*mii_control_reg
& MAC_MII_BUSY
) {
207 if (--timedout
== 0) {
208 printk(KERN_ERR
"%s: read_MII busy timeout!!\n",
214 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
215 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
217 *mii_control_reg
= mii_control
;
220 while (*mii_control_reg
& MAC_MII_BUSY
) {
222 if (--timedout
== 0) {
223 printk(KERN_ERR
"%s: mdio_read busy timeout!!\n",
228 return (int)*mii_data_reg
;
231 static void mdio_write(struct net_device
*dev
, int phy_addr
, int reg
, u16 value
)
233 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
234 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
235 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
239 while (*mii_control_reg
& MAC_MII_BUSY
) {
241 if (--timedout
== 0) {
242 printk(KERN_ERR
"%s: mdio_write busy timeout!!\n",
248 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
249 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
251 *mii_data_reg
= value
;
252 *mii_control_reg
= mii_control
;
255 static int mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
257 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
258 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
259 struct net_device
*const dev
= bus
->priv
;
261 enable_mac(dev
, 0); /* make sure the MAC associated with this
262 * mii_bus is enabled */
263 return mdio_read(dev
, phy_addr
, regnum
);
266 static int mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
269 struct net_device
*const dev
= bus
->priv
;
271 enable_mac(dev
, 0); /* make sure the MAC associated with this
272 * mii_bus is enabled */
273 mdio_write(dev
, phy_addr
, regnum
, value
);
277 static int mdiobus_reset(struct mii_bus
*bus
)
279 struct net_device
*const dev
= bus
->priv
;
281 enable_mac(dev
, 0); /* make sure the MAC associated with this
282 * mii_bus is enabled */
286 static int mii_probe (struct net_device
*dev
)
288 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
289 struct phy_device
*phydev
= NULL
;
291 #if defined(AU1XXX_PHY_STATIC_CONFIG)
292 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
294 if(aup
->mac_id
== 0) { /* get PHY0 */
295 # if defined(AU1XXX_PHY0_ADDR)
296 phydev
= au_macs
[AU1XXX_PHY0_BUSID
]->mii_bus
.phy_map
[AU1XXX_PHY0_ADDR
];
298 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
301 # endif /* defined(AU1XXX_PHY0_ADDR) */
302 } else if (aup
->mac_id
== 1) { /* get PHY1 */
303 # if defined(AU1XXX_PHY1_ADDR)
304 phydev
= au_macs
[AU1XXX_PHY1_BUSID
]->mii_bus
.phy_map
[AU1XXX_PHY1_ADDR
];
306 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
309 # endif /* defined(AU1XXX_PHY1_ADDR) */
312 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
315 /* find the first (lowest address) PHY on the current MAC's MII bus */
316 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
317 if (aup
->mii_bus
.phy_map
[phy_addr
]) {
318 phydev
= aup
->mii_bus
.phy_map
[phy_addr
];
319 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
320 break; /* break out with first one found */
324 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
325 /* try harder to find a PHY */
326 if (!phydev
&& (aup
->mac_id
== 1)) {
327 /* no PHY found, maybe we have a dual PHY? */
328 printk (KERN_INFO DRV_NAME
": no PHY found on MAC1, "
329 "let's see if it's attached to MAC0...\n");
333 /* find the first (lowest address) non-attached PHY on
334 * the MAC0 MII bus */
335 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
336 struct phy_device
*const tmp_phydev
=
337 au_macs
[0]->mii_bus
.phy_map
[phy_addr
];
340 continue; /* no PHY here... */
342 if (tmp_phydev
->attached_dev
)
343 continue; /* already claimed by MAC0 */
346 break; /* found it */
349 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
351 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
353 printk (KERN_ERR DRV_NAME
":%s: no PHY found\n", dev
->name
);
357 /* now we are supposed to have a proper phydev, to attach to... */
359 BUG_ON(phydev
->attached_dev
);
361 phydev
= phy_connect(dev
, phydev
->dev
.bus_id
, &au1000_adjust_link
, 0,
362 PHY_INTERFACE_MODE_MII
);
364 if (IS_ERR(phydev
)) {
365 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
366 return PTR_ERR(phydev
);
369 /* mask with MAC supported features */
370 phydev
->supported
&= (SUPPORTED_10baseT_Half
371 | SUPPORTED_10baseT_Full
372 | SUPPORTED_100baseT_Half
373 | SUPPORTED_100baseT_Full
375 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
379 phydev
->advertising
= phydev
->supported
;
383 aup
->old_duplex
= -1;
384 aup
->phy_dev
= phydev
;
386 printk(KERN_INFO
"%s: attached PHY driver [%s] "
387 "(mii_bus:phy_addr=%s, irq=%d)\n",
388 dev
->name
, phydev
->drv
->name
, phydev
->dev
.bus_id
, phydev
->irq
);
395 * Buffer allocation/deallocation routines. The buffer descriptor returned
396 * has the virtual and dma address of a buffer suitable for
397 * both, receive and transmit operations.
399 static db_dest_t
*GetFreeDB(struct au1000_private
*aup
)
405 aup
->pDBfree
= pDB
->pnext
;
410 void ReleaseDB(struct au1000_private
*aup
, db_dest_t
*pDB
)
412 db_dest_t
*pDBfree
= aup
->pDBfree
;
414 pDBfree
->pnext
= pDB
;
418 static void enable_rx_tx(struct net_device
*dev
)
420 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
422 if (au1000_debug
> 4)
423 printk(KERN_INFO
"%s: enable_rx_tx\n", dev
->name
);
425 aup
->mac
->control
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
429 static void hard_stop(struct net_device
*dev
)
431 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
433 if (au1000_debug
> 4)
434 printk(KERN_INFO
"%s: hard stop\n", dev
->name
);
436 aup
->mac
->control
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
440 static void enable_mac(struct net_device
*dev
, int force_reset
)
443 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
445 spin_lock_irqsave(&aup
->lock
, flags
);
447 if(force_reset
|| (!aup
->mac_enabled
)) {
448 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
450 *aup
->enable
= (MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
451 | MAC_EN_CLOCK_ENABLE
);
454 aup
->mac_enabled
= 1;
457 spin_unlock_irqrestore(&aup
->lock
, flags
);
460 static void reset_mac_unlocked(struct net_device
*dev
)
462 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
467 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
473 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
474 /* reset control bits */
475 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
477 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
478 /* reset control bits */
479 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
482 aup
->mac_enabled
= 0;
486 static void reset_mac(struct net_device
*dev
)
488 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
491 if (au1000_debug
> 4)
492 printk(KERN_INFO
"%s: reset mac, aup %x\n",
493 dev
->name
, (unsigned)aup
);
495 spin_lock_irqsave(&aup
->lock
, flags
);
497 reset_mac_unlocked (dev
);
499 spin_unlock_irqrestore(&aup
->lock
, flags
);
503 * Setup the receive and transmit "rings". These pointers are the addresses
504 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
505 * these are not descriptors sitting in memory.
508 setup_hw_rings(struct au1000_private
*aup
, u32 rx_base
, u32 tx_base
)
512 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
513 aup
->rx_dma_ring
[i
] =
514 (volatile rx_dma_t
*) (rx_base
+ sizeof(rx_dma_t
)*i
);
516 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
517 aup
->tx_dma_ring
[i
] =
518 (volatile tx_dma_t
*) (tx_base
+ sizeof(tx_dma_t
)*i
);
526 struct net_device
*dev
;
528 #ifdef CONFIG_SOC_AU1000
529 {AU1000_ETH0_BASE
, AU1000_MAC0_ENABLE
, AU1000_MAC0_DMA_INT
},
530 {AU1000_ETH1_BASE
, AU1000_MAC1_ENABLE
, AU1000_MAC1_DMA_INT
}
532 #ifdef CONFIG_SOC_AU1100
533 {AU1100_ETH0_BASE
, AU1100_MAC0_ENABLE
, AU1100_MAC0_DMA_INT
}
535 #ifdef CONFIG_SOC_AU1500
536 {AU1500_ETH0_BASE
, AU1500_MAC0_ENABLE
, AU1500_MAC0_DMA_INT
},
537 {AU1500_ETH1_BASE
, AU1500_MAC1_ENABLE
, AU1500_MAC1_DMA_INT
}
539 #ifdef CONFIG_SOC_AU1550
540 {AU1550_ETH0_BASE
, AU1550_MAC0_ENABLE
, AU1550_MAC0_DMA_INT
},
541 {AU1550_ETH1_BASE
, AU1550_MAC1_ENABLE
, AU1550_MAC1_DMA_INT
}
548 * Setup the base address and interupt of the Au1xxx ethernet macs
549 * based on cpu type and whether the interface is enabled in sys_pinfunc
550 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
552 static int __init
au1000_init_module(void)
554 int ni
= (int)((au_readl(SYS_PINFUNC
) & (u32
)(SYS_PF_NI2
)) >> 4);
555 struct net_device
*dev
;
556 int i
, found_one
= 0;
558 num_ifs
= NUM_ETH_INTERFACES
- ni
;
560 for(i
= 0; i
< num_ifs
; i
++) {
561 dev
= au1000_probe(i
);
575 static int au1000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
577 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
580 return phy_ethtool_gset(aup
->phy_dev
, cmd
);
585 static int au1000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
587 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
589 if (!capable(CAP_NET_ADMIN
))
593 return phy_ethtool_sset(aup
->phy_dev
, cmd
);
599 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
601 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
603 strcpy(info
->driver
, DRV_NAME
);
604 strcpy(info
->version
, DRV_VERSION
);
605 info
->fw_version
[0] = '\0';
606 sprintf(info
->bus_info
, "%s %d", DRV_NAME
, aup
->mac_id
);
607 info
->regdump_len
= 0;
610 static const struct ethtool_ops au1000_ethtool_ops
= {
611 .get_settings
= au1000_get_settings
,
612 .set_settings
= au1000_set_settings
,
613 .get_drvinfo
= au1000_get_drvinfo
,
614 .get_link
= ethtool_op_get_link
,
617 static struct net_device
* au1000_probe(int port_num
)
619 static unsigned version_printed
= 0;
620 struct au1000_private
*aup
= NULL
;
621 struct net_device
*dev
= NULL
;
622 db_dest_t
*pDB
, *pDBfree
;
628 if (port_num
>= NUM_ETH_INTERFACES
)
631 base
= CPHYSADDR(iflist
[port_num
].base_addr
);
632 macen
= CPHYSADDR(iflist
[port_num
].macen_addr
);
633 irq
= iflist
[port_num
].irq
;
635 if (!request_mem_region( base
, MAC_IOSIZE
, "Au1x00 ENET") ||
636 !request_mem_region(macen
, 4, "Au1x00 ENET"))
639 if (version_printed
++ == 0)
640 printk("%s version %s %s\n", DRV_NAME
, DRV_VERSION
, DRV_AUTHOR
);
642 dev
= alloc_etherdev(sizeof(struct au1000_private
));
644 printk(KERN_ERR
"%s: alloc_etherdev failed\n", DRV_NAME
);
648 if ((err
= register_netdev(dev
)) != 0) {
649 printk(KERN_ERR
"%s: Cannot register net device, error %d\n",
655 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
656 dev
->name
, base
, irq
);
660 /* Allocate the data buffers */
661 /* Snooping works fine with eth on all au1xxx */
662 aup
->vaddr
= (u32
)dma_alloc_noncoherent(NULL
, MAX_BUF_SIZE
*
663 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
667 release_mem_region( base
, MAC_IOSIZE
);
668 release_mem_region(macen
, 4);
672 /* aup->mac is the base address of the MAC's registers */
673 aup
->mac
= (volatile mac_reg_t
*)iflist
[port_num
].base_addr
;
675 /* Setup some variables for quick register address access */
676 aup
->enable
= (volatile u32
*)iflist
[port_num
].macen_addr
;
677 aup
->mac_id
= port_num
;
678 au_macs
[port_num
] = aup
;
681 /* Check the environment variables first */
682 if (get_ethernet_addr(ethaddr
) == 0)
683 memcpy(au1000_mac_addr
, ethaddr
, sizeof(au1000_mac_addr
));
685 /* Check command line */
686 argptr
= prom_getcmdline();
687 if ((pmac
= strstr(argptr
, "ethaddr=")) == NULL
)
688 printk(KERN_INFO
"%s: No MAC address found\n",
690 /* Use the hard coded MAC addresses */
692 str2eaddr(ethaddr
, pmac
+ strlen("ethaddr="));
693 memcpy(au1000_mac_addr
, ethaddr
,
694 sizeof(au1000_mac_addr
));
698 setup_hw_rings(aup
, MAC0_RX_DMA_ADDR
, MAC0_TX_DMA_ADDR
);
699 } else if (port_num
== 1)
700 setup_hw_rings(aup
, MAC1_RX_DMA_ADDR
, MAC1_TX_DMA_ADDR
);
703 * Assign to the Ethernet ports two consecutive MAC addresses
704 * to match those that are printed on their stickers
706 memcpy(dev
->dev_addr
, au1000_mac_addr
, sizeof(au1000_mac_addr
));
707 dev
->dev_addr
[5] += port_num
;
710 aup
->mac_enabled
= 0;
712 aup
->mii_bus
.priv
= dev
;
713 aup
->mii_bus
.read
= mdiobus_read
;
714 aup
->mii_bus
.write
= mdiobus_write
;
715 aup
->mii_bus
.reset
= mdiobus_reset
;
716 aup
->mii_bus
.name
= "au1000_eth_mii";
717 aup
->mii_bus
.id
= aup
->mac_id
;
718 aup
->mii_bus
.irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
719 for(i
= 0; i
< PHY_MAX_ADDR
; ++i
)
720 aup
->mii_bus
.irq
[i
] = PHY_POLL
;
722 /* if known, set corresponding PHY IRQs */
723 #if defined(AU1XXX_PHY_STATIC_CONFIG)
724 # if defined(AU1XXX_PHY0_IRQ)
725 if (AU1XXX_PHY0_BUSID
== aup
->mii_bus
.id
)
726 aup
->mii_bus
.irq
[AU1XXX_PHY0_ADDR
] = AU1XXX_PHY0_IRQ
;
728 # if defined(AU1XXX_PHY1_IRQ)
729 if (AU1XXX_PHY1_BUSID
== aup
->mii_bus
.id
)
730 aup
->mii_bus
.irq
[AU1XXX_PHY1_ADDR
] = AU1XXX_PHY1_IRQ
;
733 mdiobus_register(&aup
->mii_bus
);
735 if (mii_probe(dev
) != 0) {
740 /* setup the data buffer descriptors and attach a buffer to each one */
742 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
743 pDB
->pnext
= pDBfree
;
745 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
746 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
749 aup
->pDBfree
= pDBfree
;
751 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
752 pDB
= GetFreeDB(aup
);
756 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
757 aup
->rx_db_inuse
[i
] = pDB
;
759 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
760 pDB
= GetFreeDB(aup
);
764 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
765 aup
->tx_dma_ring
[i
]->len
= 0;
766 aup
->tx_db_inuse
[i
] = pDB
;
769 spin_lock_init(&aup
->lock
);
770 dev
->base_addr
= base
;
772 dev
->open
= au1000_open
;
773 dev
->hard_start_xmit
= au1000_tx
;
774 dev
->stop
= au1000_close
;
775 dev
->get_stats
= au1000_get_stats
;
776 dev
->set_multicast_list
= &set_rx_mode
;
777 dev
->do_ioctl
= &au1000_ioctl
;
778 SET_ETHTOOL_OPS(dev
, &au1000_ethtool_ops
);
779 dev
->tx_timeout
= au1000_tx_timeout
;
780 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
783 * The boot code uses the ethernet controller, so reset it to start
784 * fresh. au1000_init() expects that the device is in reset state.
791 /* here we should have a valid dev plus aup-> register addresses
792 * so we can reset the mac properly.*/
795 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
796 if (aup
->rx_db_inuse
[i
])
797 ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
799 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
800 if (aup
->tx_db_inuse
[i
])
801 ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
803 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
804 (void *)aup
->vaddr
, aup
->dma_addr
);
805 unregister_netdev(dev
);
807 release_mem_region( base
, MAC_IOSIZE
);
808 release_mem_region(macen
, 4);
813 * Initialize the interface.
815 * When the device powers up, the clocks are disabled and the
816 * mac is in reset state. When the interface is closed, we
817 * do the same -- reset the device and disable the clocks to
818 * conserve power. Thus, whenever au1000_init() is called,
819 * the device should already be in reset state.
821 static int au1000_init(struct net_device
*dev
)
823 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
828 if (au1000_debug
> 4)
829 printk("%s: au1000_init\n", dev
->name
);
831 /* bring the device out of reset */
834 spin_lock_irqsave(&aup
->lock
, flags
);
836 aup
->mac
->control
= 0;
837 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
838 aup
->tx_tail
= aup
->tx_head
;
839 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
841 aup
->mac
->mac_addr_high
= dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4];
842 aup
->mac
->mac_addr_low
= dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
843 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0];
845 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
846 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
850 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
851 #ifndef CONFIG_CPU_LITTLE_ENDIAN
852 control
|= MAC_BIG_ENDIAN
;
855 if (aup
->phy_dev
->link
&& (DUPLEX_FULL
== aup
->phy_dev
->duplex
))
856 control
|= MAC_FULL_DUPLEX
;
858 control
|= MAC_DISABLE_RX_OWN
;
859 } else { /* PHY-less op, assume full-duplex */
860 control
|= MAC_FULL_DUPLEX
;
863 aup
->mac
->control
= control
;
864 aup
->mac
->vlan1_tag
= 0x8100; /* activate vlan support */
867 spin_unlock_irqrestore(&aup
->lock
, flags
);
872 au1000_adjust_link(struct net_device
*dev
)
874 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
875 struct phy_device
*phydev
= aup
->phy_dev
;
878 int status_change
= 0;
880 BUG_ON(!aup
->phy_dev
);
882 spin_lock_irqsave(&aup
->lock
, flags
);
884 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
887 switch(phydev
->speed
) {
893 "%s: Speed (%d) is not 10/100 ???\n",
894 dev
->name
, phydev
->speed
);
898 aup
->old_speed
= phydev
->speed
;
903 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
904 // duplex mode changed
906 /* switching duplex mode requires to disable rx and tx! */
909 if (DUPLEX_FULL
== phydev
->duplex
)
910 aup
->mac
->control
= ((aup
->mac
->control
912 & ~MAC_DISABLE_RX_OWN
);
914 aup
->mac
->control
= ((aup
->mac
->control
916 | MAC_DISABLE_RX_OWN
);
920 aup
->old_duplex
= phydev
->duplex
;
925 if(phydev
->link
!= aup
->old_link
) {
926 // link state changed
928 if (phydev
->link
) // link went up
930 else { // link went down
932 aup
->old_duplex
= -1;
935 aup
->old_link
= phydev
->link
;
939 spin_unlock_irqrestore(&aup
->lock
, flags
);
943 printk(KERN_INFO
"%s: link up (%d/%s)\n",
944 dev
->name
, phydev
->speed
,
945 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
947 printk(KERN_INFO
"%s: link down\n", dev
->name
);
951 static int au1000_open(struct net_device
*dev
)
954 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
956 if (au1000_debug
> 4)
957 printk("%s: open: dev=%p\n", dev
->name
, dev
);
959 if ((retval
= request_irq(dev
->irq
, &au1000_interrupt
, 0,
961 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
962 dev
->name
, dev
->irq
);
966 if ((retval
= au1000_init(dev
))) {
967 printk(KERN_ERR
"%s: error in au1000_init\n", dev
->name
);
968 free_irq(dev
->irq
, dev
);
973 /* cause the PHY state machine to schedule a link state check */
974 aup
->phy_dev
->state
= PHY_CHANGELINK
;
975 phy_start(aup
->phy_dev
);
978 netif_start_queue(dev
);
980 if (au1000_debug
> 4)
981 printk("%s: open: Initialization done.\n", dev
->name
);
986 static int au1000_close(struct net_device
*dev
)
989 struct au1000_private
*const aup
= (struct au1000_private
*) dev
->priv
;
991 if (au1000_debug
> 4)
992 printk("%s: close: dev=%p\n", dev
->name
, dev
);
995 phy_stop(aup
->phy_dev
);
997 spin_lock_irqsave(&aup
->lock
, flags
);
999 reset_mac_unlocked (dev
);
1001 /* stop the device */
1002 netif_stop_queue(dev
);
1004 /* disable the interrupt */
1005 free_irq(dev
->irq
, dev
);
1006 spin_unlock_irqrestore(&aup
->lock
, flags
);
1011 static void __exit
au1000_cleanup_module(void)
1014 struct net_device
*dev
;
1015 struct au1000_private
*aup
;
1017 for (i
= 0; i
< num_ifs
; i
++) {
1018 dev
= iflist
[i
].dev
;
1020 aup
= (struct au1000_private
*) dev
->priv
;
1021 unregister_netdev(dev
);
1022 for (j
= 0; j
< NUM_RX_DMA
; j
++)
1023 if (aup
->rx_db_inuse
[j
])
1024 ReleaseDB(aup
, aup
->rx_db_inuse
[j
]);
1025 for (j
= 0; j
< NUM_TX_DMA
; j
++)
1026 if (aup
->tx_db_inuse
[j
])
1027 ReleaseDB(aup
, aup
->tx_db_inuse
[j
]);
1028 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
*
1029 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1030 (void *)aup
->vaddr
, aup
->dma_addr
);
1031 release_mem_region(dev
->base_addr
, MAC_IOSIZE
);
1032 release_mem_region(CPHYSADDR(iflist
[i
].macen_addr
), 4);
1038 static void update_tx_stats(struct net_device
*dev
, u32 status
)
1040 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1041 struct net_device_stats
*ps
= &aup
->stats
;
1043 if (status
& TX_FRAME_ABORTED
) {
1044 if (!aup
->phy_dev
|| (DUPLEX_FULL
== aup
->phy_dev
->duplex
)) {
1045 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
1046 /* any other tx errors are only valid
1047 * in half duplex mode */
1049 ps
->tx_aborted_errors
++;
1054 ps
->tx_aborted_errors
++;
1055 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
1056 ps
->tx_carrier_errors
++;
1063 * Called from the interrupt service routine to acknowledge
1064 * the TX DONE bits. This is a must if the irq is setup as
1067 static void au1000_tx_ack(struct net_device
*dev
)
1069 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1070 volatile tx_dma_t
*ptxd
;
1072 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
1074 while (ptxd
->buff_stat
& TX_T_DONE
) {
1075 update_tx_stats(dev
, ptxd
->status
);
1076 ptxd
->buff_stat
&= ~TX_T_DONE
;
1080 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
1081 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
1085 netif_wake_queue(dev
);
1092 * Au1000 transmit routine.
1094 static int au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1096 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1097 struct net_device_stats
*ps
= &aup
->stats
;
1098 volatile tx_dma_t
*ptxd
;
1103 if (au1000_debug
> 5)
1104 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1105 dev
->name
, (unsigned)aup
, skb
->len
,
1106 skb
->data
, aup
->tx_head
);
1108 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
1109 buff_stat
= ptxd
->buff_stat
;
1110 if (buff_stat
& TX_DMA_ENABLE
) {
1111 /* We've wrapped around and the transmitter is still busy */
1112 netif_stop_queue(dev
);
1116 else if (buff_stat
& TX_T_DONE
) {
1117 update_tx_stats(dev
, ptxd
->status
);
1123 netif_wake_queue(dev
);
1126 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
1127 skb_copy_from_linear_data(skb
, pDB
->vaddr
, skb
->len
);
1128 if (skb
->len
< ETH_ZLEN
) {
1129 for (i
=skb
->len
; i
<ETH_ZLEN
; i
++) {
1130 ((char *)pDB
->vaddr
)[i
] = 0;
1132 ptxd
->len
= ETH_ZLEN
;
1135 ptxd
->len
= skb
->len
;
1138 ps
->tx_bytes
+= ptxd
->len
;
1140 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
1143 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
1144 dev
->trans_start
= jiffies
;
1148 static inline void update_rx_stats(struct net_device
*dev
, u32 status
)
1150 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1151 struct net_device_stats
*ps
= &aup
->stats
;
1154 if (status
& RX_MCAST_FRAME
)
1157 if (status
& RX_ERROR
) {
1159 if (status
& RX_MISSED_FRAME
)
1160 ps
->rx_missed_errors
++;
1161 if (status
& (RX_OVERLEN
| RX_OVERLEN
| RX_LEN_ERROR
))
1162 ps
->rx_length_errors
++;
1163 if (status
& RX_CRC_ERROR
)
1164 ps
->rx_crc_errors
++;
1165 if (status
& RX_COLL
)
1169 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
1174 * Au1000 receive routine.
1176 static int au1000_rx(struct net_device
*dev
)
1178 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1179 struct sk_buff
*skb
;
1180 volatile rx_dma_t
*prxd
;
1181 u32 buff_stat
, status
;
1185 if (au1000_debug
> 5)
1186 printk("%s: au1000_rx head %d\n", dev
->name
, aup
->rx_head
);
1188 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
1189 buff_stat
= prxd
->buff_stat
;
1190 while (buff_stat
& RX_T_DONE
) {
1191 status
= prxd
->status
;
1192 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
1193 update_rx_stats(dev
, status
);
1194 if (!(status
& RX_ERROR
)) {
1197 frmlen
= (status
& RX_FRAME_LEN_MASK
);
1198 frmlen
-= 4; /* Remove FCS */
1199 skb
= dev_alloc_skb(frmlen
+ 2);
1202 "%s: Memory squeeze, dropping packet.\n",
1204 aup
->stats
.rx_dropped
++;
1207 skb_reserve(skb
, 2); /* 16 byte IP header align */
1208 skb_copy_to_linear_data(skb
,
1209 (unsigned char *)pDB
->vaddr
, frmlen
);
1210 skb_put(skb
, frmlen
);
1211 skb
->protocol
= eth_type_trans(skb
, dev
);
1212 netif_rx(skb
); /* pass the packet to upper layers */
1215 if (au1000_debug
> 4) {
1216 if (status
& RX_MISSED_FRAME
)
1217 printk("rx miss\n");
1218 if (status
& RX_WDOG_TIMER
)
1219 printk("rx wdog\n");
1220 if (status
& RX_RUNT
)
1221 printk("rx runt\n");
1222 if (status
& RX_OVERLEN
)
1223 printk("rx overlen\n");
1224 if (status
& RX_COLL
)
1225 printk("rx coll\n");
1226 if (status
& RX_MII_ERROR
)
1227 printk("rx mii error\n");
1228 if (status
& RX_CRC_ERROR
)
1229 printk("rx crc error\n");
1230 if (status
& RX_LEN_ERROR
)
1231 printk("rx len error\n");
1232 if (status
& RX_U_CNTRL_FRAME
)
1233 printk("rx u control frame\n");
1234 if (status
& RX_MISSED_FRAME
)
1235 printk("rx miss\n");
1238 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
1239 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
1242 /* next descriptor */
1243 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
1244 buff_stat
= prxd
->buff_stat
;
1245 dev
->last_rx
= jiffies
;
1252 * Au1000 interrupt service routine.
1254 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
)
1256 struct net_device
*dev
= (struct net_device
*) dev_id
;
1259 printk(KERN_ERR
"%s: isr: null dev ptr\n", dev
->name
);
1260 return IRQ_RETVAL(1);
1263 /* Handle RX interrupts first to minimize chance of overrun */
1267 return IRQ_RETVAL(1);
1272 * The Tx ring has been full longer than the watchdog timeout
1273 * value. The transmitter must be hung?
1275 static void au1000_tx_timeout(struct net_device
*dev
)
1277 printk(KERN_ERR
"%s: au1000_tx_timeout: dev=%p\n", dev
->name
, dev
);
1280 dev
->trans_start
= jiffies
;
1281 netif_wake_queue(dev
);
1284 static void set_rx_mode(struct net_device
*dev
)
1286 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1288 if (au1000_debug
> 4)
1289 printk("%s: set_rx_mode: flags=%x\n", dev
->name
, dev
->flags
);
1291 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1292 aup
->mac
->control
|= MAC_PROMISCUOUS
;
1293 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1294 dev
->mc_count
> MULTICAST_FILTER_LIMIT
) {
1295 aup
->mac
->control
|= MAC_PASS_ALL_MULTI
;
1296 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1297 printk(KERN_INFO
"%s: Pass all multicast\n", dev
->name
);
1300 struct dev_mc_list
*mclist
;
1301 u32 mc_filter
[2]; /* Multicast hash filter */
1303 mc_filter
[1] = mc_filter
[0] = 0;
1304 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1305 i
++, mclist
= mclist
->next
) {
1306 set_bit(ether_crc(ETH_ALEN
, mclist
->dmi_addr
)>>26,
1309 aup
->mac
->multi_hash_high
= mc_filter
[1];
1310 aup
->mac
->multi_hash_low
= mc_filter
[0];
1311 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1312 aup
->mac
->control
|= MAC_HASH_MODE
;
1316 static int au1000_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1318 struct au1000_private
*aup
= (struct au1000_private
*)dev
->priv
;
1320 if (!netif_running(dev
)) return -EINVAL
;
1322 if (!aup
->phy_dev
) return -EINVAL
; // PHY not controllable
1324 return phy_mii_ioctl(aup
->phy_dev
, if_mii(rq
), cmd
);
1327 static struct net_device_stats
*au1000_get_stats(struct net_device
*dev
)
1329 struct au1000_private
*aup
= (struct au1000_private
*) dev
->priv
;
1331 if (au1000_debug
> 4)
1332 printk("%s: au1000_get_stats: dev=%p\n", dev
->name
, dev
);
1334 if (netif_device_present(dev
)) {
1340 module_init(au1000_init_module
);
1341 module_exit(au1000_cleanup_module
);