[PATCH] x86: i386/x86-64 Add nmi watchdog support for new Intel CPUs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / nmi.c
blob7b9a053effa3c147d92f4069f491afdd9008fc9d
1 /*
2 * linux/arch/i386/nmi.c
4 * NMI watchdog support on APIC systems
6 * Started by Ingo Molnar <mingo@redhat.com>
8 * Fixes:
9 * Mikael Pettersson : AMD K7 support for local APIC NMI watchdog.
10 * Mikael Pettersson : Power Management for local APIC NMI watchdog.
11 * Mikael Pettersson : Pentium 4 support for local APIC NMI watchdog.
12 * Pavel Machek and
13 * Mikael Pettersson : PM converted to driver model. Disable/enable API.
16 #include <linux/config.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/nmi.h>
21 #include <linux/sysdev.h>
22 #include <linux/sysctl.h>
23 #include <linux/percpu.h>
24 #include <linux/dmi.h>
26 #include <asm/smp.h>
27 #include <asm/nmi.h>
28 #include <asm/kdebug.h>
29 #include <asm/intel_arch_perfmon.h>
31 #include "mach_traps.h"
33 /* perfctr_nmi_owner tracks the ownership of the perfctr registers:
34 * evtsel_nmi_owner tracks the ownership of the event selection
35 * - different performance counters/ event selection may be reserved for
36 * different subsystems this reservation system just tries to coordinate
37 * things a little
39 static DEFINE_PER_CPU(unsigned long, perfctr_nmi_owner);
40 static DEFINE_PER_CPU(unsigned long, evntsel_nmi_owner[3]);
42 /* this number is calculated from Intel's MSR_P4_CRU_ESCR5 register and it's
43 * offset from MSR_P4_BSU_ESCR0. It will be the max for all platforms (for now)
45 #define NMI_MAX_COUNTER_BITS 66
47 /* nmi_active:
48 * >0: the lapic NMI watchdog is active, but can be disabled
49 * <0: the lapic NMI watchdog has not been set up, and cannot
50 * be enabled
51 * 0: the lapic NMI watchdog is disabled, but can be enabled
53 atomic_t nmi_active = ATOMIC_INIT(0); /* oprofile uses this */
55 unsigned int nmi_watchdog = NMI_DEFAULT;
56 static unsigned int nmi_hz = HZ;
58 struct nmi_watchdog_ctlblk {
59 int enabled;
60 u64 check_bit;
61 unsigned int cccr_msr;
62 unsigned int perfctr_msr; /* the MSR to reset in NMI handler */
63 unsigned int evntsel_msr; /* the MSR to select the events to handle */
65 static DEFINE_PER_CPU(struct nmi_watchdog_ctlblk, nmi_watchdog_ctlblk);
67 /* local prototypes */
68 static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu);
70 extern void show_registers(struct pt_regs *regs);
71 extern int unknown_nmi_panic;
73 /* converts an msr to an appropriate reservation bit */
74 static inline unsigned int nmi_perfctr_msr_to_bit(unsigned int msr)
76 /* returns the bit offset of the performance counter register */
77 switch (boot_cpu_data.x86_vendor) {
78 case X86_VENDOR_AMD:
79 return (msr - MSR_K7_PERFCTR0);
80 case X86_VENDOR_INTEL:
81 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
82 return (msr - MSR_ARCH_PERFMON_PERFCTR0);
84 switch (boot_cpu_data.x86) {
85 case 6:
86 return (msr - MSR_P6_PERFCTR0);
87 case 15:
88 return (msr - MSR_P4_BPU_PERFCTR0);
91 return 0;
94 /* converts an msr to an appropriate reservation bit */
95 static inline unsigned int nmi_evntsel_msr_to_bit(unsigned int msr)
97 /* returns the bit offset of the event selection register */
98 switch (boot_cpu_data.x86_vendor) {
99 case X86_VENDOR_AMD:
100 return (msr - MSR_K7_EVNTSEL0);
101 case X86_VENDOR_INTEL:
102 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
103 return (msr - MSR_ARCH_PERFMON_EVENTSEL0);
105 switch (boot_cpu_data.x86) {
106 case 6:
107 return (msr - MSR_P6_EVNTSEL0);
108 case 15:
109 return (msr - MSR_P4_BSU_ESCR0);
112 return 0;
115 /* checks for a bit availability (hack for oprofile) */
116 int avail_to_resrv_perfctr_nmi_bit(unsigned int counter)
118 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
120 return (!test_bit(counter, &__get_cpu_var(perfctr_nmi_owner)));
123 /* checks the an msr for availability */
124 int avail_to_resrv_perfctr_nmi(unsigned int msr)
126 unsigned int counter;
128 counter = nmi_perfctr_msr_to_bit(msr);
129 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
131 return (!test_bit(counter, &__get_cpu_var(perfctr_nmi_owner)));
134 int reserve_perfctr_nmi(unsigned int msr)
136 unsigned int counter;
138 counter = nmi_perfctr_msr_to_bit(msr);
139 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
141 if (!test_and_set_bit(counter, &__get_cpu_var(perfctr_nmi_owner)))
142 return 1;
143 return 0;
146 void release_perfctr_nmi(unsigned int msr)
148 unsigned int counter;
150 counter = nmi_perfctr_msr_to_bit(msr);
151 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
153 clear_bit(counter, &__get_cpu_var(perfctr_nmi_owner));
156 int reserve_evntsel_nmi(unsigned int msr)
158 unsigned int counter;
160 counter = nmi_evntsel_msr_to_bit(msr);
161 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
163 if (!test_and_set_bit(counter, &__get_cpu_var(evntsel_nmi_owner)[0]))
164 return 1;
165 return 0;
168 void release_evntsel_nmi(unsigned int msr)
170 unsigned int counter;
172 counter = nmi_evntsel_msr_to_bit(msr);
173 BUG_ON(counter > NMI_MAX_COUNTER_BITS);
175 clear_bit(counter, &__get_cpu_var(evntsel_nmi_owner)[0]);
178 static __cpuinit inline int nmi_known_cpu(void)
180 switch (boot_cpu_data.x86_vendor) {
181 case X86_VENDOR_AMD:
182 return ((boot_cpu_data.x86 == 15) || (boot_cpu_data.x86 == 6));
183 case X86_VENDOR_INTEL:
184 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
185 return 1;
186 else
187 return ((boot_cpu_data.x86 == 15) || (boot_cpu_data.x86 == 6));
189 return 0;
192 #ifdef CONFIG_SMP
193 /* The performance counters used by NMI_LOCAL_APIC don't trigger when
194 * the CPU is idle. To make sure the NMI watchdog really ticks on all
195 * CPUs during the test make them busy.
197 static __init void nmi_cpu_busy(void *data)
199 volatile int *endflag = data;
200 local_irq_enable_in_hardirq();
201 /* Intentionally don't use cpu_relax here. This is
202 to make sure that the performance counter really ticks,
203 even if there is a simulator or similar that catches the
204 pause instruction. On a real HT machine this is fine because
205 all other CPUs are busy with "useless" delay loops and don't
206 care if they get somewhat less cycles. */
207 while (*endflag == 0)
208 barrier();
210 #endif
212 static int __init check_nmi_watchdog(void)
214 volatile int endflag = 0;
215 unsigned int *prev_nmi_count;
216 int cpu;
218 /* Enable NMI watchdog for newer systems.
219 Actually it should be safe for most systems before 2004 too except
220 for some IBM systems that corrupt registers when NMI happens
221 during SMM. Unfortunately we don't have more exact information
222 on these and use this coarse check. */
223 if (nmi_watchdog == NMI_DEFAULT && dmi_get_year(DMI_BIOS_DATE) >= 2004)
224 nmi_watchdog = NMI_LOCAL_APIC;
226 if ((nmi_watchdog == NMI_NONE) || (nmi_watchdog == NMI_DEFAULT))
227 return 0;
229 if (!atomic_read(&nmi_active))
230 return 0;
232 prev_nmi_count = kmalloc(NR_CPUS * sizeof(int), GFP_KERNEL);
233 if (!prev_nmi_count)
234 return -1;
236 printk(KERN_INFO "Testing NMI watchdog ... ");
238 if (nmi_watchdog == NMI_LOCAL_APIC)
239 smp_call_function(nmi_cpu_busy, (void *)&endflag, 0, 0);
241 for_each_possible_cpu(cpu)
242 prev_nmi_count[cpu] = per_cpu(irq_stat, cpu).__nmi_count;
243 local_irq_enable();
244 mdelay((10*1000)/nmi_hz); // wait 10 ticks
246 for_each_possible_cpu(cpu) {
247 #ifdef CONFIG_SMP
248 /* Check cpu_callin_map here because that is set
249 after the timer is started. */
250 if (!cpu_isset(cpu, cpu_callin_map))
251 continue;
252 #endif
253 if (!per_cpu(nmi_watchdog_ctlblk, cpu).enabled)
254 continue;
255 if (nmi_count(cpu) - prev_nmi_count[cpu] <= 5) {
256 printk("CPU#%d: NMI appears to be stuck (%d->%d)!\n",
257 cpu,
258 prev_nmi_count[cpu],
259 nmi_count(cpu));
260 per_cpu(nmi_watchdog_ctlblk, cpu).enabled = 0;
261 atomic_dec(&nmi_active);
264 if (!atomic_read(&nmi_active)) {
265 kfree(prev_nmi_count);
266 atomic_set(&nmi_active, -1);
267 return -1;
269 endflag = 1;
270 printk("OK.\n");
272 /* now that we know it works we can reduce NMI frequency to
273 something more reasonable; makes a difference in some configs */
274 if (nmi_watchdog == NMI_LOCAL_APIC) {
275 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
277 nmi_hz = 1;
279 * On Intel CPUs with ARCH_PERFMON only 32 bits in the counter
280 * are writable, with higher bits sign extending from bit 31.
281 * So, we can only program the counter with 31 bit values and
282 * 32nd bit should be 1, for 33.. to be 1.
283 * Find the appropriate nmi_hz
285 if (wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0 &&
286 ((u64)cpu_khz * 1000) > 0x7fffffffULL) {
287 u64 count = (u64)cpu_khz * 1000;
288 do_div(count, 0x7fffffffUL);
289 nmi_hz = count + 1;
293 kfree(prev_nmi_count);
294 return 0;
296 /* This needs to happen later in boot so counters are working */
297 late_initcall(check_nmi_watchdog);
299 static int __init setup_nmi_watchdog(char *str)
301 int nmi;
303 get_option(&str, &nmi);
305 if ((nmi >= NMI_INVALID) || (nmi < NMI_NONE))
306 return 0;
308 * If any other x86 CPU has a local APIC, then
309 * please test the NMI stuff there and send me the
310 * missing bits. Right now Intel P6/P4 and AMD K7 only.
312 if ((nmi == NMI_LOCAL_APIC) && (nmi_known_cpu() == 0))
313 return 0; /* no lapic support */
314 nmi_watchdog = nmi;
315 return 1;
318 __setup("nmi_watchdog=", setup_nmi_watchdog);
320 static void disable_lapic_nmi_watchdog(void)
322 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
324 if (atomic_read(&nmi_active) <= 0)
325 return;
327 on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
329 BUG_ON(atomic_read(&nmi_active) != 0);
332 static void enable_lapic_nmi_watchdog(void)
334 BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
336 /* are we already enabled */
337 if (atomic_read(&nmi_active) != 0)
338 return;
340 /* are we lapic aware */
341 if (nmi_known_cpu() <= 0)
342 return;
344 on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
345 touch_nmi_watchdog();
348 void disable_timer_nmi_watchdog(void)
350 BUG_ON(nmi_watchdog != NMI_IO_APIC);
352 if (atomic_read(&nmi_active) <= 0)
353 return;
355 disable_irq(0);
356 on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
358 BUG_ON(atomic_read(&nmi_active) != 0);
361 void enable_timer_nmi_watchdog(void)
363 BUG_ON(nmi_watchdog != NMI_IO_APIC);
365 if (atomic_read(&nmi_active) == 0) {
366 touch_nmi_watchdog();
367 on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
368 enable_irq(0);
372 #ifdef CONFIG_PM
374 static int nmi_pm_active; /* nmi_active before suspend */
376 static int lapic_nmi_suspend(struct sys_device *dev, pm_message_t state)
378 /* only CPU0 goes here, other CPUs should be offline */
379 nmi_pm_active = atomic_read(&nmi_active);
380 stop_apic_nmi_watchdog(NULL);
381 BUG_ON(atomic_read(&nmi_active) != 0);
382 return 0;
385 static int lapic_nmi_resume(struct sys_device *dev)
387 /* only CPU0 goes here, other CPUs should be offline */
388 if (nmi_pm_active > 0) {
389 setup_apic_nmi_watchdog(NULL);
390 touch_nmi_watchdog();
392 return 0;
396 static struct sysdev_class nmi_sysclass = {
397 set_kset_name("lapic_nmi"),
398 .resume = lapic_nmi_resume,
399 .suspend = lapic_nmi_suspend,
402 static struct sys_device device_lapic_nmi = {
403 .id = 0,
404 .cls = &nmi_sysclass,
407 static int __init init_lapic_nmi_sysfs(void)
409 int error;
411 /* should really be a BUG_ON but b/c this is an
412 * init call, it just doesn't work. -dcz
414 if (nmi_watchdog != NMI_LOCAL_APIC)
415 return 0;
417 if ( atomic_read(&nmi_active) < 0 )
418 return 0;
420 error = sysdev_class_register(&nmi_sysclass);
421 if (!error)
422 error = sysdev_register(&device_lapic_nmi);
423 return error;
425 /* must come after the local APIC's device_initcall() */
426 late_initcall(init_lapic_nmi_sysfs);
428 #endif /* CONFIG_PM */
431 * Activate the NMI watchdog via the local APIC.
432 * Original code written by Keith Owens.
435 static void write_watchdog_counter(unsigned int perfctr_msr, const char *descr)
437 u64 count = (u64)cpu_khz * 1000;
439 do_div(count, nmi_hz);
440 if(descr)
441 Dprintk("setting %s to -0x%08Lx\n", descr, count);
442 wrmsrl(perfctr_msr, 0 - count);
445 /* Note that these events don't tick when the CPU idles. This means
446 the frequency varies with CPU load. */
448 #define K7_EVNTSEL_ENABLE (1 << 22)
449 #define K7_EVNTSEL_INT (1 << 20)
450 #define K7_EVNTSEL_OS (1 << 17)
451 #define K7_EVNTSEL_USR (1 << 16)
452 #define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 0x76
453 #define K7_NMI_EVENT K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING
455 static int setup_k7_watchdog(void)
457 unsigned int perfctr_msr, evntsel_msr;
458 unsigned int evntsel;
459 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
461 perfctr_msr = MSR_K7_PERFCTR0;
462 evntsel_msr = MSR_K7_EVNTSEL0;
463 if (!reserve_perfctr_nmi(perfctr_msr))
464 goto fail;
466 if (!reserve_evntsel_nmi(evntsel_msr))
467 goto fail1;
469 wrmsrl(perfctr_msr, 0UL);
471 evntsel = K7_EVNTSEL_INT
472 | K7_EVNTSEL_OS
473 | K7_EVNTSEL_USR
474 | K7_NMI_EVENT;
476 /* setup the timer */
477 wrmsr(evntsel_msr, evntsel, 0);
478 write_watchdog_counter(perfctr_msr, "K7_PERFCTR0");
479 apic_write(APIC_LVTPC, APIC_DM_NMI);
480 evntsel |= K7_EVNTSEL_ENABLE;
481 wrmsr(evntsel_msr, evntsel, 0);
483 wd->perfctr_msr = perfctr_msr;
484 wd->evntsel_msr = evntsel_msr;
485 wd->cccr_msr = 0; //unused
486 wd->check_bit = 1ULL<<63;
487 return 1;
488 fail1:
489 release_perfctr_nmi(perfctr_msr);
490 fail:
491 return 0;
494 static void stop_k7_watchdog(void)
496 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
498 wrmsr(wd->evntsel_msr, 0, 0);
500 release_evntsel_nmi(wd->evntsel_msr);
501 release_perfctr_nmi(wd->perfctr_msr);
504 #define P6_EVNTSEL0_ENABLE (1 << 22)
505 #define P6_EVNTSEL_INT (1 << 20)
506 #define P6_EVNTSEL_OS (1 << 17)
507 #define P6_EVNTSEL_USR (1 << 16)
508 #define P6_EVENT_CPU_CLOCKS_NOT_HALTED 0x79
509 #define P6_NMI_EVENT P6_EVENT_CPU_CLOCKS_NOT_HALTED
511 static int setup_p6_watchdog(void)
513 unsigned int perfctr_msr, evntsel_msr;
514 unsigned int evntsel;
515 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
517 perfctr_msr = MSR_P6_PERFCTR0;
518 evntsel_msr = MSR_P6_EVNTSEL0;
519 if (!reserve_perfctr_nmi(perfctr_msr))
520 goto fail;
522 if (!reserve_evntsel_nmi(evntsel_msr))
523 goto fail1;
525 wrmsrl(perfctr_msr, 0UL);
527 evntsel = P6_EVNTSEL_INT
528 | P6_EVNTSEL_OS
529 | P6_EVNTSEL_USR
530 | P6_NMI_EVENT;
532 /* setup the timer */
533 wrmsr(evntsel_msr, evntsel, 0);
534 write_watchdog_counter(perfctr_msr, "P6_PERFCTR0");
535 apic_write(APIC_LVTPC, APIC_DM_NMI);
536 evntsel |= P6_EVNTSEL0_ENABLE;
537 wrmsr(evntsel_msr, evntsel, 0);
539 wd->perfctr_msr = perfctr_msr;
540 wd->evntsel_msr = evntsel_msr;
541 wd->cccr_msr = 0; //unused
542 wd->check_bit = 1ULL<<39;
543 return 1;
544 fail1:
545 release_perfctr_nmi(perfctr_msr);
546 fail:
547 return 0;
550 static void stop_p6_watchdog(void)
552 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
554 wrmsr(wd->evntsel_msr, 0, 0);
556 release_evntsel_nmi(wd->evntsel_msr);
557 release_perfctr_nmi(wd->perfctr_msr);
560 /* Note that these events don't tick when the CPU idles. This means
561 the frequency varies with CPU load. */
563 #define MSR_P4_MISC_ENABLE_PERF_AVAIL (1<<7)
564 #define P4_ESCR_EVENT_SELECT(N) ((N)<<25)
565 #define P4_ESCR_OS (1<<3)
566 #define P4_ESCR_USR (1<<2)
567 #define P4_CCCR_OVF_PMI0 (1<<26)
568 #define P4_CCCR_OVF_PMI1 (1<<27)
569 #define P4_CCCR_THRESHOLD(N) ((N)<<20)
570 #define P4_CCCR_COMPLEMENT (1<<19)
571 #define P4_CCCR_COMPARE (1<<18)
572 #define P4_CCCR_REQUIRED (3<<16)
573 #define P4_CCCR_ESCR_SELECT(N) ((N)<<13)
574 #define P4_CCCR_ENABLE (1<<12)
575 #define P4_CCCR_OVF (1<<31)
576 /* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter
577 CRU_ESCR0 (with any non-null event selector) through a complemented
578 max threshold. [IA32-Vol3, Section 14.9.9] */
580 static int setup_p4_watchdog(void)
582 unsigned int perfctr_msr, evntsel_msr, cccr_msr;
583 unsigned int evntsel, cccr_val;
584 unsigned int misc_enable, dummy;
585 unsigned int ht_num;
586 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
588 rdmsr(MSR_IA32_MISC_ENABLE, misc_enable, dummy);
589 if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL))
590 return 0;
592 #ifdef CONFIG_SMP
593 /* detect which hyperthread we are on */
594 if (smp_num_siblings == 2) {
595 unsigned int ebx, apicid;
597 ebx = cpuid_ebx(1);
598 apicid = (ebx >> 24) & 0xff;
599 ht_num = apicid & 1;
600 } else
601 #endif
602 ht_num = 0;
604 /* performance counters are shared resources
605 * assign each hyperthread its own set
606 * (re-use the ESCR0 register, seems safe
607 * and keeps the cccr_val the same)
609 if (!ht_num) {
610 /* logical cpu 0 */
611 perfctr_msr = MSR_P4_IQ_PERFCTR0;
612 evntsel_msr = MSR_P4_CRU_ESCR0;
613 cccr_msr = MSR_P4_IQ_CCCR0;
614 cccr_val = P4_CCCR_OVF_PMI0 | P4_CCCR_ESCR_SELECT(4);
615 } else {
616 /* logical cpu 1 */
617 perfctr_msr = MSR_P4_IQ_PERFCTR1;
618 evntsel_msr = MSR_P4_CRU_ESCR0;
619 cccr_msr = MSR_P4_IQ_CCCR1;
620 cccr_val = P4_CCCR_OVF_PMI1 | P4_CCCR_ESCR_SELECT(4);
623 if (!reserve_perfctr_nmi(perfctr_msr))
624 goto fail;
626 if (!reserve_evntsel_nmi(evntsel_msr))
627 goto fail1;
629 evntsel = P4_ESCR_EVENT_SELECT(0x3F)
630 | P4_ESCR_OS
631 | P4_ESCR_USR;
633 cccr_val |= P4_CCCR_THRESHOLD(15)
634 | P4_CCCR_COMPLEMENT
635 | P4_CCCR_COMPARE
636 | P4_CCCR_REQUIRED;
638 wrmsr(evntsel_msr, evntsel, 0);
639 wrmsr(cccr_msr, cccr_val, 0);
640 write_watchdog_counter(perfctr_msr, "P4_IQ_COUNTER0");
641 apic_write(APIC_LVTPC, APIC_DM_NMI);
642 cccr_val |= P4_CCCR_ENABLE;
643 wrmsr(cccr_msr, cccr_val, 0);
644 wd->perfctr_msr = perfctr_msr;
645 wd->evntsel_msr = evntsel_msr;
646 wd->cccr_msr = cccr_msr;
647 wd->check_bit = 1ULL<<39;
648 return 1;
649 fail1:
650 release_perfctr_nmi(perfctr_msr);
651 fail:
652 return 0;
655 static void stop_p4_watchdog(void)
657 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
659 wrmsr(wd->cccr_msr, 0, 0);
660 wrmsr(wd->evntsel_msr, 0, 0);
662 release_evntsel_nmi(wd->evntsel_msr);
663 release_perfctr_nmi(wd->perfctr_msr);
666 #define ARCH_PERFMON_NMI_EVENT_SEL ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL
667 #define ARCH_PERFMON_NMI_EVENT_UMASK ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK
669 static int setup_intel_arch_watchdog(void)
671 unsigned int ebx;
672 union cpuid10_eax eax;
673 unsigned int unused;
674 unsigned int perfctr_msr, evntsel_msr;
675 unsigned int evntsel;
676 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
679 * Check whether the Architectural PerfMon supports
680 * Unhalted Core Cycles Event or not.
681 * NOTE: Corresponding bit = 0 in ebx indicates event present.
683 cpuid(10, &(eax.full), &ebx, &unused, &unused);
684 if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
685 (ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
686 goto fail;
688 perfctr_msr = MSR_ARCH_PERFMON_PERFCTR0;
689 evntsel_msr = MSR_ARCH_PERFMON_EVENTSEL0;
691 if (!reserve_perfctr_nmi(perfctr_msr))
692 goto fail;
694 if (!reserve_evntsel_nmi(evntsel_msr))
695 goto fail1;
697 wrmsrl(perfctr_msr, 0UL);
699 evntsel = ARCH_PERFMON_EVENTSEL_INT
700 | ARCH_PERFMON_EVENTSEL_OS
701 | ARCH_PERFMON_EVENTSEL_USR
702 | ARCH_PERFMON_NMI_EVENT_SEL
703 | ARCH_PERFMON_NMI_EVENT_UMASK;
705 /* setup the timer */
706 wrmsr(evntsel_msr, evntsel, 0);
707 write_watchdog_counter(perfctr_msr, "INTEL_ARCH_PERFCTR0");
708 apic_write(APIC_LVTPC, APIC_DM_NMI);
709 evntsel |= ARCH_PERFMON_EVENTSEL0_ENABLE;
710 wrmsr(evntsel_msr, evntsel, 0);
712 wd->perfctr_msr = perfctr_msr;
713 wd->evntsel_msr = evntsel_msr;
714 wd->cccr_msr = 0; //unused
715 wd->check_bit = 1ULL << (eax.split.bit_width - 1);
716 return 1;
717 fail1:
718 release_perfctr_nmi(perfctr_msr);
719 fail:
720 return 0;
723 static void stop_intel_arch_watchdog(void)
725 unsigned int ebx;
726 union cpuid10_eax eax;
727 unsigned int unused;
728 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
731 * Check whether the Architectural PerfMon supports
732 * Unhalted Core Cycles Event or not.
733 * NOTE: Corresponding bit = 0 in ebx indicates event present.
735 cpuid(10, &(eax.full), &ebx, &unused, &unused);
736 if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
737 (ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
738 return;
740 wrmsr(wd->evntsel_msr, 0, 0);
741 release_evntsel_nmi(wd->evntsel_msr);
742 release_perfctr_nmi(wd->perfctr_msr);
745 void setup_apic_nmi_watchdog (void *unused)
747 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
749 /* only support LOCAL and IO APICs for now */
750 if ((nmi_watchdog != NMI_LOCAL_APIC) &&
751 (nmi_watchdog != NMI_IO_APIC))
752 return;
754 if (wd->enabled == 1)
755 return;
757 /* cheap hack to support suspend/resume */
758 /* if cpu0 is not active neither should the other cpus */
759 if ((smp_processor_id() != 0) && (atomic_read(&nmi_active) <= 0))
760 return;
762 if (nmi_watchdog == NMI_LOCAL_APIC) {
763 switch (boot_cpu_data.x86_vendor) {
764 case X86_VENDOR_AMD:
765 if (boot_cpu_data.x86 != 6 && boot_cpu_data.x86 != 15)
766 return;
767 if (!setup_k7_watchdog())
768 return;
769 break;
770 case X86_VENDOR_INTEL:
771 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
772 if (!setup_intel_arch_watchdog())
773 return;
774 break;
776 switch (boot_cpu_data.x86) {
777 case 6:
778 if (boot_cpu_data.x86_model > 0xd)
779 return;
781 if (!setup_p6_watchdog())
782 return;
783 break;
784 case 15:
785 if (boot_cpu_data.x86_model > 0x4)
786 return;
788 if (!setup_p4_watchdog())
789 return;
790 break;
791 default:
792 return;
794 break;
795 default:
796 return;
799 wd->enabled = 1;
800 atomic_inc(&nmi_active);
803 void stop_apic_nmi_watchdog(void *unused)
805 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
807 /* only support LOCAL and IO APICs for now */
808 if ((nmi_watchdog != NMI_LOCAL_APIC) &&
809 (nmi_watchdog != NMI_IO_APIC))
810 return;
812 if (wd->enabled == 0)
813 return;
815 if (nmi_watchdog == NMI_LOCAL_APIC) {
816 switch (boot_cpu_data.x86_vendor) {
817 case X86_VENDOR_AMD:
818 stop_k7_watchdog();
819 break;
820 case X86_VENDOR_INTEL:
821 if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
822 stop_intel_arch_watchdog();
823 break;
825 switch (boot_cpu_data.x86) {
826 case 6:
827 if (boot_cpu_data.x86_model > 0xd)
828 break;
829 stop_p6_watchdog();
830 break;
831 case 15:
832 if (boot_cpu_data.x86_model > 0x4)
833 break;
834 stop_p4_watchdog();
835 break;
837 break;
838 default:
839 return;
842 wd->enabled = 0;
843 atomic_dec(&nmi_active);
847 * the best way to detect whether a CPU has a 'hard lockup' problem
848 * is to check it's local APIC timer IRQ counts. If they are not
849 * changing then that CPU has some problem.
851 * as these watchdog NMI IRQs are generated on every CPU, we only
852 * have to check the current processor.
854 * since NMIs don't listen to _any_ locks, we have to be extremely
855 * careful not to rely on unsafe variables. The printk might lock
856 * up though, so we have to break up any console locks first ...
857 * [when there will be more tty-related locks, break them up
858 * here too!]
861 static unsigned int
862 last_irq_sums [NR_CPUS],
863 alert_counter [NR_CPUS];
865 void touch_nmi_watchdog (void)
867 int i;
870 * Just reset the alert counters, (other CPUs might be
871 * spinning on locks we hold):
873 for_each_possible_cpu(i)
874 alert_counter[i] = 0;
877 * Tickle the softlockup detector too:
879 touch_softlockup_watchdog();
881 EXPORT_SYMBOL(touch_nmi_watchdog);
883 extern void die_nmi(struct pt_regs *, const char *msg);
885 int nmi_watchdog_tick (struct pt_regs * regs, unsigned reason)
889 * Since current_thread_info()-> is always on the stack, and we
890 * always switch the stack NMI-atomically, it's safe to use
891 * smp_processor_id().
893 unsigned int sum;
894 int touched = 0;
895 int cpu = smp_processor_id();
896 struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
897 u64 dummy;
898 int rc=0;
900 /* check for other users first */
901 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT)
902 == NOTIFY_STOP) {
903 rc = 1;
904 touched = 1;
907 sum = per_cpu(irq_stat, cpu).apic_timer_irqs;
909 /* if the apic timer isn't firing, this cpu isn't doing much */
910 if (!touched && last_irq_sums[cpu] == sum) {
912 * Ayiee, looks like this CPU is stuck ...
913 * wait a few IRQs (5 seconds) before doing the oops ...
915 alert_counter[cpu]++;
916 if (alert_counter[cpu] == 5*nmi_hz)
918 * die_nmi will return ONLY if NOTIFY_STOP happens..
920 die_nmi(regs, "BUG: NMI Watchdog detected LOCKUP");
921 } else {
922 last_irq_sums[cpu] = sum;
923 alert_counter[cpu] = 0;
925 /* see if the nmi watchdog went off */
926 if (wd->enabled) {
927 if (nmi_watchdog == NMI_LOCAL_APIC) {
928 rdmsrl(wd->perfctr_msr, dummy);
929 if (dummy & wd->check_bit){
930 /* this wasn't a watchdog timer interrupt */
931 goto done;
934 /* only Intel P4 uses the cccr msr */
935 if (wd->cccr_msr != 0) {
937 * P4 quirks:
938 * - An overflown perfctr will assert its interrupt
939 * until the OVF flag in its CCCR is cleared.
940 * - LVTPC is masked on interrupt and must be
941 * unmasked by the LVTPC handler.
943 rdmsrl(wd->cccr_msr, dummy);
944 dummy &= ~P4_CCCR_OVF;
945 wrmsrl(wd->cccr_msr, dummy);
946 apic_write(APIC_LVTPC, APIC_DM_NMI);
948 else if (wd->perfctr_msr == MSR_P6_PERFCTR0 ||
949 wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0) {
950 /* P6 based Pentium M need to re-unmask
951 * the apic vector but it doesn't hurt
952 * other P6 variant.
953 * ArchPerfom/Core Duo also needs this */
954 apic_write(APIC_LVTPC, APIC_DM_NMI);
956 /* start the cycle over again */
957 write_watchdog_counter(wd->perfctr_msr, NULL);
958 rc = 1;
959 } else if (nmi_watchdog == NMI_IO_APIC) {
960 /* don't know how to accurately check for this.
961 * just assume it was a watchdog timer interrupt
962 * This matches the old behaviour.
964 rc = 1;
965 } else
966 printk(KERN_WARNING "Unknown enabled NMI hardware?!\n");
968 done:
969 return rc;
972 int do_nmi_callback(struct pt_regs * regs, int cpu)
974 #ifdef CONFIG_SYSCTL
975 if (unknown_nmi_panic)
976 return unknown_nmi_panic_callback(regs, cpu);
977 #endif
978 return 0;
981 #ifdef CONFIG_SYSCTL
983 static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu)
985 unsigned char reason = get_nmi_reason();
986 char buf[64];
988 sprintf(buf, "NMI received for unknown reason %02x\n", reason);
989 die_nmi(regs, buf);
990 return 0;
994 * proc handler for /proc/sys/kernel/nmi
996 int proc_nmi_enabled(struct ctl_table *table, int write, struct file *file,
997 void __user *buffer, size_t *length, loff_t *ppos)
999 int old_state;
1001 nmi_watchdog_enabled = (atomic_read(&nmi_active) > 0) ? 1 : 0;
1002 old_state = nmi_watchdog_enabled;
1003 proc_dointvec(table, write, file, buffer, length, ppos);
1004 if (!!old_state == !!nmi_watchdog_enabled)
1005 return 0;
1007 if (atomic_read(&nmi_active) < 0) {
1008 printk( KERN_WARNING "NMI watchdog is permanently disabled\n");
1009 return -EIO;
1012 if (nmi_watchdog == NMI_DEFAULT) {
1013 if (nmi_known_cpu() > 0)
1014 nmi_watchdog = NMI_LOCAL_APIC;
1015 else
1016 nmi_watchdog = NMI_IO_APIC;
1019 if (nmi_watchdog == NMI_LOCAL_APIC) {
1020 if (nmi_watchdog_enabled)
1021 enable_lapic_nmi_watchdog();
1022 else
1023 disable_lapic_nmi_watchdog();
1024 } else {
1025 printk( KERN_WARNING
1026 "NMI watchdog doesn't know what hardware to touch\n");
1027 return -EIO;
1029 return 0;
1032 #endif
1034 EXPORT_SYMBOL(nmi_active);
1035 EXPORT_SYMBOL(nmi_watchdog);
1036 EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi);
1037 EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi_bit);
1038 EXPORT_SYMBOL(reserve_perfctr_nmi);
1039 EXPORT_SYMBOL(release_perfctr_nmi);
1040 EXPORT_SYMBOL(reserve_evntsel_nmi);
1041 EXPORT_SYMBOL(release_evntsel_nmi);
1042 EXPORT_SYMBOL(disable_timer_nmi_watchdog);
1043 EXPORT_SYMBOL(enable_timer_nmi_watchdog);