2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
39 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
);
40 static int load_elf_library(struct file
*);
41 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
42 int, int, unsigned long);
45 * If we don't support core dumping, then supply a NULL so we
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params
*cprm
);
51 #define elf_core_dump NULL
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
57 #define ELF_MIN_ALIGN PAGE_SIZE
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS 0
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
68 static struct linux_binfmt elf_format
= {
69 .module
= THIS_MODULE
,
70 .load_binary
= load_elf_binary
,
71 .load_shlib
= load_elf_library
,
72 .core_dump
= elf_core_dump
,
73 .min_coredump
= ELF_EXEC_PAGESIZE
,
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
78 static int set_brk(unsigned long start
, unsigned long end
)
80 start
= ELF_PAGEALIGN(start
);
81 end
= ELF_PAGEALIGN(end
);
84 down_write(¤t
->mm
->mmap_sem
);
85 addr
= do_brk(start
, end
- start
);
86 up_write(¤t
->mm
->mmap_sem
);
90 current
->mm
->start_brk
= current
->mm
->brk
= end
;
94 /* We need to explicitly zero any fractional pages
95 after the data section (i.e. bss). This would
96 contain the junk from the file that should not
99 static int padzero(unsigned long elf_bss
)
103 nbyte
= ELF_PAGEOFFSET(elf_bss
);
105 nbyte
= ELF_MIN_ALIGN
- nbyte
;
106 if (clear_user((void __user
*) elf_bss
, nbyte
))
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 (((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
127 #ifndef ELF_BASE_PLATFORM
129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131 * will be copied to the user stack in the same manner as AT_PLATFORM.
133 #define ELF_BASE_PLATFORM NULL
137 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
138 unsigned long load_addr
, unsigned long interp_load_addr
)
140 unsigned long p
= bprm
->p
;
141 int argc
= bprm
->argc
;
142 int envc
= bprm
->envc
;
143 elf_addr_t __user
*argv
;
144 elf_addr_t __user
*envp
;
145 elf_addr_t __user
*sp
;
146 elf_addr_t __user
*u_platform
;
147 elf_addr_t __user
*u_base_platform
;
148 elf_addr_t __user
*u_rand_bytes
;
149 const char *k_platform
= ELF_PLATFORM
;
150 const char *k_base_platform
= ELF_BASE_PLATFORM
;
151 unsigned char k_rand_bytes
[16];
153 elf_addr_t
*elf_info
;
155 const struct cred
*cred
= current_cred();
156 struct vm_area_struct
*vma
;
159 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 * evictions by the processes running on the same package. One
161 * thing we can do is to shuffle the initial stack for them.
164 p
= arch_align_stack(p
);
167 * If this architecture has a platform capability string, copy it
168 * to userspace. In some cases (Sparc), this info is impossible
169 * for userspace to get any other way, in others (i386) it is
174 size_t len
= strlen(k_platform
) + 1;
176 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
177 if (__copy_to_user(u_platform
, k_platform
, len
))
182 * If this architecture has a "base" platform capability
183 * string, copy it to userspace.
185 u_base_platform
= NULL
;
186 if (k_base_platform
) {
187 size_t len
= strlen(k_base_platform
) + 1;
189 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
190 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
195 * Generate 16 random bytes for userspace PRNG seeding.
197 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
198 u_rand_bytes
= (elf_addr_t __user
*)
199 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
200 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
203 /* Create the ELF interpreter info */
204 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
208 elf_info[ei_index++] = id; \
209 elf_info[ei_index++] = val; \
214 * ARCH_DLINFO must come first so PPC can do its special alignment of
216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 * ARCH_DLINFO changes
221 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
222 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
223 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
224 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
225 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
226 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
227 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
228 NEW_AUX_ENT(AT_FLAGS
, 0);
229 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
230 NEW_AUX_ENT(AT_UID
, cred
->uid
);
231 NEW_AUX_ENT(AT_EUID
, cred
->euid
);
232 NEW_AUX_ENT(AT_GID
, cred
->gid
);
233 NEW_AUX_ENT(AT_EGID
, cred
->egid
);
234 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
235 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
236 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
238 NEW_AUX_ENT(AT_PLATFORM
,
239 (elf_addr_t
)(unsigned long)u_platform
);
241 if (k_base_platform
) {
242 NEW_AUX_ENT(AT_BASE_PLATFORM
,
243 (elf_addr_t
)(unsigned long)u_base_platform
);
245 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
246 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
249 /* AT_NULL is zero; clear the rest too */
250 memset(&elf_info
[ei_index
], 0,
251 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
253 /* And advance past the AT_NULL entry. */
256 sp
= STACK_ADD(p
, ei_index
);
258 items
= (argc
+ 1) + (envc
+ 1) + 1;
259 bprm
->p
= STACK_ROUND(sp
, items
);
261 /* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
264 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
266 sp
= (elf_addr_t __user
*)bprm
->p
;
271 * Grow the stack manually; some architectures have a limit on how
272 * far ahead a user-space access may be in order to grow the stack.
274 vma
= find_extend_vma(current
->mm
, bprm
->p
);
278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 if (__put_user(argc
, sp
++))
282 envp
= argv
+ argc
+ 1;
284 /* Populate argv and envp */
285 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
288 if (__put_user((elf_addr_t
)p
, argv
++))
290 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
291 if (!len
|| len
> MAX_ARG_STRLEN
)
295 if (__put_user(0, argv
))
297 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
300 if (__put_user((elf_addr_t
)p
, envp
++))
302 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
303 if (!len
|| len
> MAX_ARG_STRLEN
)
307 if (__put_user(0, envp
))
309 current
->mm
->env_end
= p
;
311 /* Put the elf_info on the stack in the right place. */
312 sp
= (elf_addr_t __user
*)envp
+ 1;
313 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
318 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
319 struct elf_phdr
*eppnt
, int prot
, int type
,
320 unsigned long total_size
)
322 unsigned long map_addr
;
323 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
324 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
325 addr
= ELF_PAGESTART(addr
);
326 size
= ELF_PAGEALIGN(size
);
328 /* mmap() will return -EINVAL if given a zero size, but a
329 * segment with zero filesize is perfectly valid */
333 down_write(¤t
->mm
->mmap_sem
);
335 * total_size is the size of the ELF (interpreter) image.
336 * The _first_ mmap needs to know the full size, otherwise
337 * randomization might put this image into an overlapping
338 * position with the ELF binary image. (since size < total_size)
339 * So we first map the 'big' image - and unmap the remainder at
340 * the end. (which unmap is needed for ELF images with holes.)
343 total_size
= ELF_PAGEALIGN(total_size
);
344 map_addr
= do_mmap(filep
, addr
, total_size
, prot
, type
, off
);
345 if (!BAD_ADDR(map_addr
))
346 do_munmap(current
->mm
, map_addr
+size
, total_size
-size
);
348 map_addr
= do_mmap(filep
, addr
, size
, prot
, type
, off
);
350 up_write(¤t
->mm
->mmap_sem
);
354 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
356 int i
, first_idx
= -1, last_idx
= -1;
358 for (i
= 0; i
< nr
; i
++) {
359 if (cmds
[i
].p_type
== PT_LOAD
) {
368 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
369 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
373 /* This is much more generalized than the library routine read function,
374 so we keep this separate. Technically the library read function
375 is only provided so that we can read a.out libraries that have
378 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
379 struct file
*interpreter
, unsigned long *interp_map_addr
,
380 unsigned long no_base
)
382 struct elf_phdr
*elf_phdata
;
383 struct elf_phdr
*eppnt
;
384 unsigned long load_addr
= 0;
385 int load_addr_set
= 0;
386 unsigned long last_bss
= 0, elf_bss
= 0;
387 unsigned long error
= ~0UL;
388 unsigned long total_size
;
391 /* First of all, some simple consistency checks */
392 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
393 interp_elf_ex
->e_type
!= ET_DYN
)
395 if (!elf_check_arch(interp_elf_ex
))
397 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
401 * If the size of this structure has changed, then punt, since
402 * we will be doing the wrong thing.
404 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
406 if (interp_elf_ex
->e_phnum
< 1 ||
407 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
410 /* Now read in all of the header information */
411 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
412 if (size
> ELF_MIN_ALIGN
)
414 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
418 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
419 (char *)elf_phdata
, size
);
421 if (retval
!= size
) {
427 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
434 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
435 if (eppnt
->p_type
== PT_LOAD
) {
436 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
438 unsigned long vaddr
= 0;
439 unsigned long k
, map_addr
;
441 if (eppnt
->p_flags
& PF_R
)
442 elf_prot
= PROT_READ
;
443 if (eppnt
->p_flags
& PF_W
)
444 elf_prot
|= PROT_WRITE
;
445 if (eppnt
->p_flags
& PF_X
)
446 elf_prot
|= PROT_EXEC
;
447 vaddr
= eppnt
->p_vaddr
;
448 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
449 elf_type
|= MAP_FIXED
;
450 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
453 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
454 eppnt
, elf_prot
, elf_type
, total_size
);
456 if (!*interp_map_addr
)
457 *interp_map_addr
= map_addr
;
459 if (BAD_ADDR(map_addr
))
462 if (!load_addr_set
&&
463 interp_elf_ex
->e_type
== ET_DYN
) {
464 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
469 * Check to see if the section's size will overflow the
470 * allowed task size. Note that p_filesz must always be
471 * <= p_memsize so it's only necessary to check p_memsz.
473 k
= load_addr
+ eppnt
->p_vaddr
;
475 eppnt
->p_filesz
> eppnt
->p_memsz
||
476 eppnt
->p_memsz
> TASK_SIZE
||
477 TASK_SIZE
- eppnt
->p_memsz
< k
) {
483 * Find the end of the file mapping for this phdr, and
484 * keep track of the largest address we see for this.
486 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
491 * Do the same thing for the memory mapping - between
492 * elf_bss and last_bss is the bss section.
494 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
500 if (last_bss
> elf_bss
) {
502 * Now fill out the bss section. First pad the last page up
503 * to the page boundary, and then perform a mmap to make sure
504 * that there are zero-mapped pages up to and including the
507 if (padzero(elf_bss
)) {
512 /* What we have mapped so far */
513 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
515 /* Map the last of the bss segment */
516 down_write(¤t
->mm
->mmap_sem
);
517 error
= do_brk(elf_bss
, last_bss
- elf_bss
);
518 up_write(¤t
->mm
->mmap_sem
);
532 * These are the functions used to load ELF style executables and shared
533 * libraries. There is no binary dependent code anywhere else.
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
543 static unsigned long randomize_stack_top(unsigned long stack_top
)
545 unsigned int random_variable
= 0;
547 if ((current
->flags
& PF_RANDOMIZE
) &&
548 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
549 random_variable
= get_random_int() & STACK_RND_MASK
;
550 random_variable
<<= PAGE_SHIFT
;
552 #ifdef CONFIG_STACK_GROWSUP
553 return PAGE_ALIGN(stack_top
) + random_variable
;
555 return PAGE_ALIGN(stack_top
) - random_variable
;
559 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
)
561 struct file
*interpreter
= NULL
; /* to shut gcc up */
562 unsigned long load_addr
= 0, load_bias
= 0;
563 int load_addr_set
= 0;
564 char * elf_interpreter
= NULL
;
566 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
567 unsigned long elf_bss
, elf_brk
;
570 unsigned long elf_entry
;
571 unsigned long interp_load_addr
= 0;
572 unsigned long start_code
, end_code
, start_data
, end_data
;
573 unsigned long reloc_func_desc
= 0;
574 int executable_stack
= EXSTACK_DEFAULT
;
575 unsigned long def_flags
= 0;
577 struct elfhdr elf_ex
;
578 struct elfhdr interp_elf_ex
;
581 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
587 /* Get the exec-header */
588 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
595 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
597 if (!elf_check_arch(&loc
->elf_ex
))
599 if (!bprm
->file
->f_op
|| !bprm
->file
->f_op
->mmap
)
602 /* Now read in all of the header information */
603 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
605 if (loc
->elf_ex
.e_phnum
< 1 ||
606 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
608 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
610 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
614 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
615 (char *)elf_phdata
, size
);
616 if (retval
!= size
) {
622 elf_ppnt
= elf_phdata
;
631 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
632 if (elf_ppnt
->p_type
== PT_INTERP
) {
633 /* This is the program interpreter used for
634 * shared libraries - for now assume that this
635 * is an a.out format binary
638 if (elf_ppnt
->p_filesz
> PATH_MAX
||
639 elf_ppnt
->p_filesz
< 2)
643 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
645 if (!elf_interpreter
)
648 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
651 if (retval
!= elf_ppnt
->p_filesz
) {
654 goto out_free_interp
;
656 /* make sure path is NULL terminated */
658 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
659 goto out_free_interp
;
661 interpreter
= open_exec(elf_interpreter
);
662 retval
= PTR_ERR(interpreter
);
663 if (IS_ERR(interpreter
))
664 goto out_free_interp
;
667 * If the binary is not readable then enforce
668 * mm->dumpable = 0 regardless of the interpreter's
671 if (file_permission(interpreter
, MAY_READ
) < 0)
672 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
674 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
676 if (retval
!= BINPRM_BUF_SIZE
) {
679 goto out_free_dentry
;
682 /* Get the exec headers */
683 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
689 elf_ppnt
= elf_phdata
;
690 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
691 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
692 if (elf_ppnt
->p_flags
& PF_X
)
693 executable_stack
= EXSTACK_ENABLE_X
;
695 executable_stack
= EXSTACK_DISABLE_X
;
699 /* Some simple consistency checks for the interpreter */
700 if (elf_interpreter
) {
702 /* Not an ELF interpreter */
703 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
704 goto out_free_dentry
;
705 /* Verify the interpreter has a valid arch */
706 if (!elf_check_arch(&loc
->interp_elf_ex
))
707 goto out_free_dentry
;
710 /* Flush all traces of the currently running executable */
711 retval
= flush_old_exec(bprm
);
713 goto out_free_dentry
;
715 /* OK, This is the point of no return */
716 current
->flags
&= ~PF_FORKNOEXEC
;
717 current
->mm
->def_flags
= def_flags
;
719 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
720 may depend on the personality. */
721 SET_PERSONALITY(loc
->elf_ex
);
722 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
723 current
->personality
|= READ_IMPLIES_EXEC
;
725 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
726 current
->flags
|= PF_RANDOMIZE
;
728 setup_new_exec(bprm
);
730 /* Do this so that we can load the interpreter, if need be. We will
731 change some of these later */
732 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
733 current
->mm
->cached_hole_size
= 0;
734 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
737 send_sig(SIGKILL
, current
, 0);
738 goto out_free_dentry
;
741 current
->mm
->start_stack
= bprm
->p
;
743 /* Now we do a little grungy work by mmapping the ELF image into
744 the correct location in memory. */
745 for(i
= 0, elf_ppnt
= elf_phdata
;
746 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
747 int elf_prot
= 0, elf_flags
;
748 unsigned long k
, vaddr
;
750 if (elf_ppnt
->p_type
!= PT_LOAD
)
753 if (unlikely (elf_brk
> elf_bss
)) {
756 /* There was a PT_LOAD segment with p_memsz > p_filesz
757 before this one. Map anonymous pages, if needed,
758 and clear the area. */
759 retval
= set_brk(elf_bss
+ load_bias
,
760 elf_brk
+ load_bias
);
762 send_sig(SIGKILL
, current
, 0);
763 goto out_free_dentry
;
765 nbyte
= ELF_PAGEOFFSET(elf_bss
);
767 nbyte
= ELF_MIN_ALIGN
- nbyte
;
768 if (nbyte
> elf_brk
- elf_bss
)
769 nbyte
= elf_brk
- elf_bss
;
770 if (clear_user((void __user
*)elf_bss
+
773 * This bss-zeroing can fail if the ELF
774 * file specifies odd protections. So
775 * we don't check the return value
781 if (elf_ppnt
->p_flags
& PF_R
)
782 elf_prot
|= PROT_READ
;
783 if (elf_ppnt
->p_flags
& PF_W
)
784 elf_prot
|= PROT_WRITE
;
785 if (elf_ppnt
->p_flags
& PF_X
)
786 elf_prot
|= PROT_EXEC
;
788 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
790 vaddr
= elf_ppnt
->p_vaddr
;
791 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
792 elf_flags
|= MAP_FIXED
;
793 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
794 /* Try and get dynamic programs out of the way of the
795 * default mmap base, as well as whatever program they
796 * might try to exec. This is because the brk will
797 * follow the loader, and is not movable. */
798 #if defined(CONFIG_X86) || defined(CONFIG_ARM)
801 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
805 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
806 elf_prot
, elf_flags
, 0);
807 if (BAD_ADDR(error
)) {
808 send_sig(SIGKILL
, current
, 0);
809 retval
= IS_ERR((void *)error
) ?
810 PTR_ERR((void*)error
) : -EINVAL
;
811 goto out_free_dentry
;
814 if (!load_addr_set
) {
816 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
817 if (loc
->elf_ex
.e_type
== ET_DYN
) {
819 ELF_PAGESTART(load_bias
+ vaddr
);
820 load_addr
+= load_bias
;
821 reloc_func_desc
= load_bias
;
824 k
= elf_ppnt
->p_vaddr
;
831 * Check to see if the section's size will overflow the
832 * allowed task size. Note that p_filesz must always be
833 * <= p_memsz so it is only necessary to check p_memsz.
835 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
836 elf_ppnt
->p_memsz
> TASK_SIZE
||
837 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
838 /* set_brk can never work. Avoid overflows. */
839 send_sig(SIGKILL
, current
, 0);
841 goto out_free_dentry
;
844 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
848 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
852 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
857 loc
->elf_ex
.e_entry
+= load_bias
;
858 elf_bss
+= load_bias
;
859 elf_brk
+= load_bias
;
860 start_code
+= load_bias
;
861 end_code
+= load_bias
;
862 start_data
+= load_bias
;
863 end_data
+= load_bias
;
865 /* Calling set_brk effectively mmaps the pages that we need
866 * for the bss and break sections. We must do this before
867 * mapping in the interpreter, to make sure it doesn't wind
868 * up getting placed where the bss needs to go.
870 retval
= set_brk(elf_bss
, elf_brk
);
872 send_sig(SIGKILL
, current
, 0);
873 goto out_free_dentry
;
875 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
876 send_sig(SIGSEGV
, current
, 0);
877 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
878 goto out_free_dentry
;
881 if (elf_interpreter
) {
882 unsigned long uninitialized_var(interp_map_addr
);
884 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
888 if (!IS_ERR((void *)elf_entry
)) {
890 * load_elf_interp() returns relocation
893 interp_load_addr
= elf_entry
;
894 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
896 if (BAD_ADDR(elf_entry
)) {
897 force_sig(SIGSEGV
, current
);
898 retval
= IS_ERR((void *)elf_entry
) ?
899 (int)elf_entry
: -EINVAL
;
900 goto out_free_dentry
;
902 reloc_func_desc
= interp_load_addr
;
904 allow_write_access(interpreter
);
906 kfree(elf_interpreter
);
908 elf_entry
= loc
->elf_ex
.e_entry
;
909 if (BAD_ADDR(elf_entry
)) {
910 force_sig(SIGSEGV
, current
);
912 goto out_free_dentry
;
918 set_binfmt(&elf_format
);
920 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
921 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
923 send_sig(SIGKILL
, current
, 0);
926 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
928 install_exec_creds(bprm
);
929 current
->flags
&= ~PF_FORKNOEXEC
;
930 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
931 load_addr
, interp_load_addr
);
933 send_sig(SIGKILL
, current
, 0);
936 /* N.B. passed_fileno might not be initialized? */
937 current
->mm
->end_code
= end_code
;
938 current
->mm
->start_code
= start_code
;
939 current
->mm
->start_data
= start_data
;
940 current
->mm
->end_data
= end_data
;
941 current
->mm
->start_stack
= bprm
->p
;
943 #ifdef arch_randomize_brk
944 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1))
945 current
->mm
->brk
= current
->mm
->start_brk
=
946 arch_randomize_brk(current
->mm
);
949 if (current
->personality
& MMAP_PAGE_ZERO
) {
950 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
951 and some applications "depend" upon this behavior.
952 Since we do not have the power to recompile these, we
953 emulate the SVr4 behavior. Sigh. */
954 down_write(¤t
->mm
->mmap_sem
);
955 error
= do_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
956 MAP_FIXED
| MAP_PRIVATE
, 0);
957 up_write(¤t
->mm
->mmap_sem
);
962 * The ABI may specify that certain registers be set up in special
963 * ways (on i386 %edx is the address of a DT_FINI function, for
964 * example. In addition, it may also specify (eg, PowerPC64 ELF)
965 * that the e_entry field is the address of the function descriptor
966 * for the startup routine, rather than the address of the startup
967 * routine itself. This macro performs whatever initialization to
968 * the regs structure is required as well as any relocations to the
969 * function descriptor entries when executing dynamically links apps.
971 ELF_PLAT_INIT(regs
, reloc_func_desc
);
974 start_thread(regs
, elf_entry
, bprm
->p
);
983 allow_write_access(interpreter
);
987 kfree(elf_interpreter
);
993 /* This is really simpleminded and specialized - we are loading an
994 a.out library that is given an ELF header. */
995 static int load_elf_library(struct file
*file
)
997 struct elf_phdr
*elf_phdata
;
998 struct elf_phdr
*eppnt
;
999 unsigned long elf_bss
, bss
, len
;
1000 int retval
, error
, i
, j
;
1001 struct elfhdr elf_ex
;
1004 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1005 if (retval
!= sizeof(elf_ex
))
1008 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1011 /* First of all, some simple consistency checks */
1012 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1013 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1016 /* Now read in all of the header information */
1018 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1019 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1022 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1028 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1032 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1033 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1038 while (eppnt
->p_type
!= PT_LOAD
)
1041 /* Now use mmap to map the library into memory. */
1042 down_write(¤t
->mm
->mmap_sem
);
1043 error
= do_mmap(file
,
1044 ELF_PAGESTART(eppnt
->p_vaddr
),
1046 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1047 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1048 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1050 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1051 up_write(¤t
->mm
->mmap_sem
);
1052 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1055 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1056 if (padzero(elf_bss
)) {
1061 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1063 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1065 down_write(¤t
->mm
->mmap_sem
);
1066 do_brk(len
, bss
- len
);
1067 up_write(¤t
->mm
->mmap_sem
);
1077 #ifdef CONFIG_ELF_CORE
1081 * Modelled on fs/exec.c:aout_core_dump()
1082 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1086 * Decide what to dump of a segment, part, all or none.
1088 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1089 unsigned long mm_flags
)
1091 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1093 /* The vma can be set up to tell us the answer directly. */
1094 if (vma
->vm_flags
& VM_ALWAYSDUMP
)
1097 /* Hugetlb memory check */
1098 if (vma
->vm_flags
& VM_HUGETLB
) {
1099 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1101 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1105 /* Do not dump I/O mapped devices or special mappings */
1106 if (vma
->vm_flags
& (VM_IO
| VM_RESERVED
))
1109 /* By default, dump shared memory if mapped from an anonymous file. */
1110 if (vma
->vm_flags
& VM_SHARED
) {
1111 if (vma
->vm_file
->f_path
.dentry
->d_inode
->i_nlink
== 0 ?
1112 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1117 /* Dump segments that have been written to. */
1118 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1120 if (vma
->vm_file
== NULL
)
1123 if (FILTER(MAPPED_PRIVATE
))
1127 * If this looks like the beginning of a DSO or executable mapping,
1128 * check for an ELF header. If we find one, dump the first page to
1129 * aid in determining what was mapped here.
1131 if (FILTER(ELF_HEADERS
) &&
1132 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1133 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1135 mm_segment_t fs
= get_fs();
1137 * Doing it this way gets the constant folded by GCC.
1141 char elfmag
[SELFMAG
];
1143 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1144 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1145 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1146 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1147 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1149 * Switch to the user "segment" for get_user(),
1150 * then put back what elf_core_dump() had in place.
1153 if (unlikely(get_user(word
, header
)))
1156 if (word
== magic
.cmp
)
1165 return vma
->vm_end
- vma
->vm_start
;
1168 /* An ELF note in memory */
1173 unsigned int datasz
;
1177 static int notesize(struct memelfnote
*en
)
1181 sz
= sizeof(struct elf_note
);
1182 sz
+= roundup(strlen(en
->name
) + 1, 4);
1183 sz
+= roundup(en
->datasz
, 4);
1188 #define DUMP_WRITE(addr, nr, foffset) \
1189 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1191 static int alignfile(struct file
*file
, loff_t
*foffset
)
1193 static const char buf
[4] = { 0, };
1194 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1198 static int writenote(struct memelfnote
*men
, struct file
*file
,
1202 en
.n_namesz
= strlen(men
->name
) + 1;
1203 en
.n_descsz
= men
->datasz
;
1204 en
.n_type
= men
->type
;
1206 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1207 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1208 if (!alignfile(file
, foffset
))
1210 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1211 if (!alignfile(file
, foffset
))
1218 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1219 u16 machine
, u32 flags
, u8 osabi
)
1221 memset(elf
, 0, sizeof(*elf
));
1223 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1224 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1225 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1226 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1227 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1229 elf
->e_type
= ET_CORE
;
1230 elf
->e_machine
= machine
;
1231 elf
->e_version
= EV_CURRENT
;
1232 elf
->e_phoff
= sizeof(struct elfhdr
);
1233 elf
->e_flags
= flags
;
1234 elf
->e_ehsize
= sizeof(struct elfhdr
);
1235 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1236 elf
->e_phnum
= segs
;
1241 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1243 phdr
->p_type
= PT_NOTE
;
1244 phdr
->p_offset
= offset
;
1247 phdr
->p_filesz
= sz
;
1254 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1255 unsigned int sz
, void *data
)
1265 * fill up all the fields in prstatus from the given task struct, except
1266 * registers which need to be filled up separately.
1268 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1269 struct task_struct
*p
, long signr
)
1271 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1272 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1273 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1275 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1277 prstatus
->pr_pid
= task_pid_vnr(p
);
1278 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1279 prstatus
->pr_sid
= task_session_vnr(p
);
1280 if (thread_group_leader(p
)) {
1281 struct task_cputime cputime
;
1284 * This is the record for the group leader. It shows the
1285 * group-wide total, not its individual thread total.
1287 thread_group_cputime(p
, &cputime
);
1288 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1289 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1291 cputime_to_timeval(p
->utime
, &prstatus
->pr_utime
);
1292 cputime_to_timeval(p
->stime
, &prstatus
->pr_stime
);
1294 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1295 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1298 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1299 struct mm_struct
*mm
)
1301 const struct cred
*cred
;
1302 unsigned int i
, len
;
1304 /* first copy the parameters from user space */
1305 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1307 len
= mm
->arg_end
- mm
->arg_start
;
1308 if (len
>= ELF_PRARGSZ
)
1309 len
= ELF_PRARGSZ
-1;
1310 if (copy_from_user(&psinfo
->pr_psargs
,
1311 (const char __user
*)mm
->arg_start
, len
))
1313 for(i
= 0; i
< len
; i
++)
1314 if (psinfo
->pr_psargs
[i
] == 0)
1315 psinfo
->pr_psargs
[i
] = ' ';
1316 psinfo
->pr_psargs
[len
] = 0;
1319 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1321 psinfo
->pr_pid
= task_pid_vnr(p
);
1322 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1323 psinfo
->pr_sid
= task_session_vnr(p
);
1325 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1326 psinfo
->pr_state
= i
;
1327 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1328 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1329 psinfo
->pr_nice
= task_nice(p
);
1330 psinfo
->pr_flag
= p
->flags
;
1332 cred
= __task_cred(p
);
1333 SET_UID(psinfo
->pr_uid
, cred
->uid
);
1334 SET_GID(psinfo
->pr_gid
, cred
->gid
);
1336 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1341 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1343 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1347 while (auxv
[i
- 2] != AT_NULL
);
1348 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1351 #ifdef CORE_DUMP_USE_REGSET
1352 #include <linux/regset.h>
1354 struct elf_thread_core_info
{
1355 struct elf_thread_core_info
*next
;
1356 struct task_struct
*task
;
1357 struct elf_prstatus prstatus
;
1358 struct memelfnote notes
[0];
1361 struct elf_note_info
{
1362 struct elf_thread_core_info
*thread
;
1363 struct memelfnote psinfo
;
1364 struct memelfnote auxv
;
1370 * When a regset has a writeback hook, we call it on each thread before
1371 * dumping user memory. On register window machines, this makes sure the
1372 * user memory backing the register data is up to date before we read it.
1374 static void do_thread_regset_writeback(struct task_struct
*task
,
1375 const struct user_regset
*regset
)
1377 if (regset
->writeback
)
1378 regset
->writeback(task
, regset
, 1);
1381 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1382 const struct user_regset_view
*view
,
1383 long signr
, size_t *total
)
1388 * NT_PRSTATUS is the one special case, because the regset data
1389 * goes into the pr_reg field inside the note contents, rather
1390 * than being the whole note contents. We fill the reset in here.
1391 * We assume that regset 0 is NT_PRSTATUS.
1393 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1394 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1395 0, sizeof(t
->prstatus
.pr_reg
),
1396 &t
->prstatus
.pr_reg
, NULL
);
1398 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1399 sizeof(t
->prstatus
), &t
->prstatus
);
1400 *total
+= notesize(&t
->notes
[0]);
1402 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1405 * Each other regset might generate a note too. For each regset
1406 * that has no core_note_type or is inactive, we leave t->notes[i]
1407 * all zero and we'll know to skip writing it later.
1409 for (i
= 1; i
< view
->n
; ++i
) {
1410 const struct user_regset
*regset
= &view
->regsets
[i
];
1411 do_thread_regset_writeback(t
->task
, regset
);
1412 if (regset
->core_note_type
&&
1413 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1415 size_t size
= regset
->n
* regset
->size
;
1416 void *data
= kmalloc(size
, GFP_KERNEL
);
1417 if (unlikely(!data
))
1419 ret
= regset
->get(t
->task
, regset
,
1420 0, size
, data
, NULL
);
1424 if (regset
->core_note_type
!= NT_PRFPREG
)
1425 fill_note(&t
->notes
[i
], "LINUX",
1426 regset
->core_note_type
,
1429 t
->prstatus
.pr_fpvalid
= 1;
1430 fill_note(&t
->notes
[i
], "CORE",
1431 NT_PRFPREG
, size
, data
);
1433 *total
+= notesize(&t
->notes
[i
]);
1441 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1442 struct elf_note_info
*info
,
1443 long signr
, struct pt_regs
*regs
)
1445 struct task_struct
*dump_task
= current
;
1446 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1447 struct elf_thread_core_info
*t
;
1448 struct elf_prpsinfo
*psinfo
;
1449 struct core_thread
*ct
;
1453 info
->thread
= NULL
;
1455 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1459 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1462 * Figure out how many notes we're going to need for each thread.
1464 info
->thread_notes
= 0;
1465 for (i
= 0; i
< view
->n
; ++i
)
1466 if (view
->regsets
[i
].core_note_type
!= 0)
1467 ++info
->thread_notes
;
1470 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1471 * since it is our one special case.
1473 if (unlikely(info
->thread_notes
== 0) ||
1474 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1480 * Initialize the ELF file header.
1482 fill_elf_header(elf
, phdrs
,
1483 view
->e_machine
, view
->e_flags
, view
->ei_osabi
);
1486 * Allocate a structure for each thread.
1488 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1489 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1490 notes
[info
->thread_notes
]),
1496 if (ct
->task
== dump_task
|| !info
->thread
) {
1497 t
->next
= info
->thread
;
1501 * Make sure to keep the original task at
1502 * the head of the list.
1504 t
->next
= info
->thread
->next
;
1505 info
->thread
->next
= t
;
1510 * Now fill in each thread's information.
1512 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1513 if (!fill_thread_core_info(t
, view
, signr
, &info
->size
))
1517 * Fill in the two process-wide notes.
1519 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1520 info
->size
+= notesize(&info
->psinfo
);
1522 fill_auxv_note(&info
->auxv
, current
->mm
);
1523 info
->size
+= notesize(&info
->auxv
);
1528 static size_t get_note_info_size(struct elf_note_info
*info
)
1534 * Write all the notes for each thread. When writing the first thread, the
1535 * process-wide notes are interleaved after the first thread-specific note.
1537 static int write_note_info(struct elf_note_info
*info
,
1538 struct file
*file
, loff_t
*foffset
)
1541 struct elf_thread_core_info
*t
= info
->thread
;
1546 if (!writenote(&t
->notes
[0], file
, foffset
))
1549 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1551 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1554 for (i
= 1; i
< info
->thread_notes
; ++i
)
1555 if (t
->notes
[i
].data
&&
1556 !writenote(&t
->notes
[i
], file
, foffset
))
1566 static void free_note_info(struct elf_note_info
*info
)
1568 struct elf_thread_core_info
*threads
= info
->thread
;
1571 struct elf_thread_core_info
*t
= threads
;
1573 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1574 for (i
= 1; i
< info
->thread_notes
; ++i
)
1575 kfree(t
->notes
[i
].data
);
1578 kfree(info
->psinfo
.data
);
1583 /* Here is the structure in which status of each thread is captured. */
1584 struct elf_thread_status
1586 struct list_head list
;
1587 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1588 elf_fpregset_t fpu
; /* NT_PRFPREG */
1589 struct task_struct
*thread
;
1590 #ifdef ELF_CORE_COPY_XFPREGS
1591 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1593 struct memelfnote notes
[3];
1598 * In order to add the specific thread information for the elf file format,
1599 * we need to keep a linked list of every threads pr_status and then create
1600 * a single section for them in the final core file.
1602 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1605 struct task_struct
*p
= t
->thread
;
1608 fill_prstatus(&t
->prstatus
, p
, signr
);
1609 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1611 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1614 sz
+= notesize(&t
->notes
[0]);
1616 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1618 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1621 sz
+= notesize(&t
->notes
[1]);
1624 #ifdef ELF_CORE_COPY_XFPREGS
1625 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1626 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1627 sizeof(t
->xfpu
), &t
->xfpu
);
1629 sz
+= notesize(&t
->notes
[2]);
1635 struct elf_note_info
{
1636 struct memelfnote
*notes
;
1637 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1638 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1639 struct list_head thread_list
;
1640 elf_fpregset_t
*fpu
;
1641 #ifdef ELF_CORE_COPY_XFPREGS
1642 elf_fpxregset_t
*xfpu
;
1644 int thread_status_size
;
1648 static int elf_note_info_init(struct elf_note_info
*info
)
1650 memset(info
, 0, sizeof(*info
));
1651 INIT_LIST_HEAD(&info
->thread_list
);
1653 /* Allocate space for six ELF notes */
1654 info
->notes
= kmalloc(6 * sizeof(struct memelfnote
), GFP_KERNEL
);
1657 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1660 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1661 if (!info
->prstatus
)
1663 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1666 #ifdef ELF_CORE_COPY_XFPREGS
1667 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1672 #ifdef ELF_CORE_COPY_XFPREGS
1677 kfree(info
->prstatus
);
1679 kfree(info
->psinfo
);
1685 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1686 struct elf_note_info
*info
,
1687 long signr
, struct pt_regs
*regs
)
1689 struct list_head
*t
;
1691 if (!elf_note_info_init(info
))
1695 struct core_thread
*ct
;
1696 struct elf_thread_status
*ets
;
1698 for (ct
= current
->mm
->core_state
->dumper
.next
;
1699 ct
; ct
= ct
->next
) {
1700 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1704 ets
->thread
= ct
->task
;
1705 list_add(&ets
->list
, &info
->thread_list
);
1708 list_for_each(t
, &info
->thread_list
) {
1711 ets
= list_entry(t
, struct elf_thread_status
, list
);
1712 sz
= elf_dump_thread_status(signr
, ets
);
1713 info
->thread_status_size
+= sz
;
1716 /* now collect the dump for the current */
1717 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1718 fill_prstatus(info
->prstatus
, current
, signr
);
1719 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1722 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
, ELF_OSABI
);
1725 * Set up the notes in similar form to SVR4 core dumps made
1726 * with info from their /proc.
1729 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1730 sizeof(*info
->prstatus
), info
->prstatus
);
1731 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1732 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1733 sizeof(*info
->psinfo
), info
->psinfo
);
1737 fill_auxv_note(&info
->notes
[info
->numnote
++], current
->mm
);
1739 /* Try to dump the FPU. */
1740 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1742 if (info
->prstatus
->pr_fpvalid
)
1743 fill_note(info
->notes
+ info
->numnote
++,
1744 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1745 #ifdef ELF_CORE_COPY_XFPREGS
1746 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1747 fill_note(info
->notes
+ info
->numnote
++,
1748 "LINUX", ELF_CORE_XFPREG_TYPE
,
1749 sizeof(*info
->xfpu
), info
->xfpu
);
1755 static size_t get_note_info_size(struct elf_note_info
*info
)
1760 for (i
= 0; i
< info
->numnote
; i
++)
1761 sz
+= notesize(info
->notes
+ i
);
1763 sz
+= info
->thread_status_size
;
1768 static int write_note_info(struct elf_note_info
*info
,
1769 struct file
*file
, loff_t
*foffset
)
1772 struct list_head
*t
;
1774 for (i
= 0; i
< info
->numnote
; i
++)
1775 if (!writenote(info
->notes
+ i
, file
, foffset
))
1778 /* write out the thread status notes section */
1779 list_for_each(t
, &info
->thread_list
) {
1780 struct elf_thread_status
*tmp
=
1781 list_entry(t
, struct elf_thread_status
, list
);
1783 for (i
= 0; i
< tmp
->num_notes
; i
++)
1784 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1791 static void free_note_info(struct elf_note_info
*info
)
1793 while (!list_empty(&info
->thread_list
)) {
1794 struct list_head
*tmp
= info
->thread_list
.next
;
1796 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1799 kfree(info
->prstatus
);
1800 kfree(info
->psinfo
);
1803 #ifdef ELF_CORE_COPY_XFPREGS
1810 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1811 struct vm_area_struct
*gate_vma
)
1813 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1820 * Helper function for iterating across a vma list. It ensures that the caller
1821 * will visit `gate_vma' prior to terminating the search.
1823 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1824 struct vm_area_struct
*gate_vma
)
1826 struct vm_area_struct
*ret
;
1828 ret
= this_vma
->vm_next
;
1831 if (this_vma
== gate_vma
)
1836 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1837 elf_addr_t e_shoff
, int segs
)
1839 elf
->e_shoff
= e_shoff
;
1840 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1842 elf
->e_shstrndx
= SHN_UNDEF
;
1844 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
1846 shdr4extnum
->sh_type
= SHT_NULL
;
1847 shdr4extnum
->sh_size
= elf
->e_shnum
;
1848 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
1849 shdr4extnum
->sh_info
= segs
;
1852 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
1853 unsigned long mm_flags
)
1855 struct vm_area_struct
*vma
;
1858 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
1859 vma
= next_vma(vma
, gate_vma
))
1860 size
+= vma_dump_size(vma
, mm_flags
);
1867 * This is a two-pass process; first we find the offsets of the bits,
1868 * and then they are actually written out. If we run out of core limit
1871 static int elf_core_dump(struct coredump_params
*cprm
)
1877 struct vm_area_struct
*vma
, *gate_vma
;
1878 struct elfhdr
*elf
= NULL
;
1879 loff_t offset
= 0, dataoff
, foffset
;
1880 struct elf_note_info info
;
1881 struct elf_phdr
*phdr4note
= NULL
;
1882 struct elf_shdr
*shdr4extnum
= NULL
;
1887 * We no longer stop all VM operations.
1889 * This is because those proceses that could possibly change map_count
1890 * or the mmap / vma pages are now blocked in do_exit on current
1891 * finishing this core dump.
1893 * Only ptrace can touch these memory addresses, but it doesn't change
1894 * the map_count or the pages allocated. So no possibility of crashing
1895 * exists while dumping the mm->vm_next areas to the core file.
1898 /* alloc memory for large data structures: too large to be on stack */
1899 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
1903 * The number of segs are recored into ELF header as 16bit value.
1904 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1906 segs
= current
->mm
->map_count
;
1907 segs
+= elf_core_extra_phdrs();
1909 gate_vma
= get_gate_vma(current
);
1910 if (gate_vma
!= NULL
)
1913 /* for notes section */
1916 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1917 * this, kernel supports extended numbering. Have a look at
1918 * include/linux/elf.h for further information. */
1919 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
1922 * Collect all the non-memory information about the process for the
1923 * notes. This also sets up the file header.
1925 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->signr
, cprm
->regs
))
1929 current
->flags
|= PF_DUMPCORE
;
1934 offset
+= sizeof(*elf
); /* Elf header */
1935 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
1938 /* Write notes phdr entry */
1940 size_t sz
= get_note_info_size(&info
);
1942 sz
+= elf_coredump_extra_notes_size();
1944 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
1948 fill_elf_note_phdr(phdr4note
, sz
, offset
);
1952 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
1954 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
1955 offset
+= elf_core_extra_data_size();
1958 if (e_phnum
== PN_XNUM
) {
1959 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
1962 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
1967 size
+= sizeof(*elf
);
1968 if (size
> cprm
->limit
|| !dump_write(cprm
->file
, elf
, sizeof(*elf
)))
1971 size
+= sizeof(*phdr4note
);
1972 if (size
> cprm
->limit
1973 || !dump_write(cprm
->file
, phdr4note
, sizeof(*phdr4note
)))
1976 /* Write program headers for segments dump */
1977 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
1978 vma
= next_vma(vma
, gate_vma
)) {
1979 struct elf_phdr phdr
;
1981 phdr
.p_type
= PT_LOAD
;
1982 phdr
.p_offset
= offset
;
1983 phdr
.p_vaddr
= vma
->vm_start
;
1985 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
1986 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
1987 offset
+= phdr
.p_filesz
;
1988 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
1989 if (vma
->vm_flags
& VM_WRITE
)
1990 phdr
.p_flags
|= PF_W
;
1991 if (vma
->vm_flags
& VM_EXEC
)
1992 phdr
.p_flags
|= PF_X
;
1993 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
1995 size
+= sizeof(phdr
);
1996 if (size
> cprm
->limit
1997 || !dump_write(cprm
->file
, &phdr
, sizeof(phdr
)))
2001 if (!elf_core_write_extra_phdrs(cprm
->file
, offset
, &size
, cprm
->limit
))
2004 /* write out the notes section */
2005 if (!write_note_info(&info
, cprm
->file
, &foffset
))
2008 if (elf_coredump_extra_notes_write(cprm
->file
, &foffset
))
2012 if (!dump_seek(cprm
->file
, dataoff
- foffset
))
2015 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2016 vma
= next_vma(vma
, gate_vma
)) {
2020 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2022 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2026 page
= get_dump_page(addr
);
2028 void *kaddr
= kmap(page
);
2029 stop
= ((size
+= PAGE_SIZE
) > cprm
->limit
) ||
2030 !dump_write(cprm
->file
, kaddr
,
2033 page_cache_release(page
);
2035 stop
= !dump_seek(cprm
->file
, PAGE_SIZE
);
2041 if (!elf_core_write_extra_data(cprm
->file
, &size
, cprm
->limit
))
2044 if (e_phnum
== PN_XNUM
) {
2045 size
+= sizeof(*shdr4extnum
);
2046 if (size
> cprm
->limit
2047 || !dump_write(cprm
->file
, shdr4extnum
,
2048 sizeof(*shdr4extnum
)))
2056 free_note_info(&info
);
2064 #endif /* CONFIG_ELF_CORE */
2066 static int __init
init_elf_binfmt(void)
2068 return register_binfmt(&elf_format
);
2071 static void __exit
exit_elf_binfmt(void)
2073 /* Remove the COFF and ELF loaders. */
2074 unregister_binfmt(&elf_format
);
2077 core_initcall(init_elf_binfmt
);
2078 module_exit(exit_elf_binfmt
);
2079 MODULE_LICENSE("GPL");