4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
23 #include <asm/local.h>
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq
*s
)
33 ret
= trace_seq_printf(s
, "# compressed entry header\n");
34 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
35 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
36 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
37 ret
= trace_seq_printf(s
, "\n");
38 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING
);
40 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND
);
42 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
65 * |reader| RING BUFFER
67 * +------+ +---+ +---+ +---+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
94 * +------------------------------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
102 * | New +---+ +---+ +---+
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
146 RB_BUFFERS_ON_BIT
= 0,
147 RB_BUFFERS_DISABLED_BIT
= 1,
151 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
152 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
155 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
169 EXPORT_SYMBOL_GPL(tracing_on
);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
183 EXPORT_SYMBOL_GPL(tracing_off
);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags
== RB_BUFFERS_ON
;
203 EXPORT_SYMBOL_GPL(tracing_is_on
);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 RB_LEN_TIME_EXTEND
= 8,
223 RB_LEN_TIME_STAMP
= 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event
*event
)
231 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
234 static void rb_event_set_padding(struct ring_buffer_event
*event
)
236 /* padding has a NULL time_delta */
237 event
->type_len
= RINGBUF_TYPE_PADDING
;
238 event
->time_delta
= 0;
242 rb_event_data_length(struct ring_buffer_event
*event
)
247 length
= event
->type_len
* RB_ALIGNMENT
;
249 length
= event
->array
[0];
250 return length
+ RB_EVNT_HDR_SIZE
;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event
*event
)
261 switch (event
->type_len
) {
262 case RINGBUF_TYPE_PADDING
:
263 if (rb_null_event(event
))
266 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
268 case RINGBUF_TYPE_TIME_EXTEND
:
269 return RB_LEN_TIME_EXTEND
;
271 case RINGBUF_TYPE_TIME_STAMP
:
272 return RB_LEN_TIME_STAMP
;
274 case RINGBUF_TYPE_DATA
:
275 return rb_event_data_length(event
);
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event
*event
)
292 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
293 /* time extends include the data event after it */
294 len
= RB_LEN_TIME_EXTEND
;
295 event
= skip_time_extend(event
);
297 return len
+ rb_event_length(event
);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
314 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
315 event
= skip_time_extend(event
);
317 length
= rb_event_length(event
);
318 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
320 length
-= RB_EVNT_HDR_SIZE
;
321 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
322 length
-= sizeof(event
->array
[0]);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
327 /* inline for ring buffer fast paths */
329 rb_event_data(struct ring_buffer_event
*event
)
331 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
332 event
= skip_time_extend(event
);
333 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
334 /* If length is in len field, then array[0] has the data */
336 return (void *)&event
->array
[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event
->array
[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
347 return rb_event_data(event
);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page
{
364 u64 time_stamp
; /* page time stamp */
365 local_t commit
; /* write committed index */
366 unsigned char data
[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
378 struct list_head list
; /* list of buffer pages */
379 local_t write
; /* index for next write */
380 unsigned read
; /* index for next read */
381 local_t entries
; /* entries on this page */
382 unsigned long real_end
; /* real end of data */
383 struct buffer_data_page
*page
; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page
*bpage
)
403 local_set(&bpage
->commit
, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page
)
414 return local_read(&((struct buffer_data_page
*)page
)->commit
)
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
422 static void free_buffer_page(struct buffer_page
*bpage
)
424 free_page((unsigned long)bpage
->page
);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta
)
433 if (delta
& TS_DELTA_TEST
)
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq
*s
)
445 struct buffer_data_page field
;
448 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field
.time_stamp
),
451 (unsigned int)is_signed_type(u64
));
453 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field
), commit
),
456 (unsigned int)sizeof(field
.commit
),
457 (unsigned int)is_signed_type(long));
459 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field
), commit
),
463 (unsigned int)is_signed_type(long));
465 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field
), data
),
468 (unsigned int)BUF_PAGE_SIZE
,
469 (unsigned int)is_signed_type(char));
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu
{
479 atomic_t record_disabled
;
480 struct ring_buffer
*buffer
;
481 raw_spinlock_t reader_lock
; /* serialize readers */
482 arch_spinlock_t lock
;
483 struct lock_class_key lock_key
;
484 struct list_head
*pages
;
485 struct buffer_page
*head_page
; /* read from head */
486 struct buffer_page
*tail_page
; /* write to tail */
487 struct buffer_page
*commit_page
; /* committed pages */
488 struct buffer_page
*reader_page
;
489 unsigned long lost_events
;
490 unsigned long last_overrun
;
491 local_t entries_bytes
;
492 local_t commit_overrun
;
498 unsigned long read_bytes
;
507 atomic_t record_disabled
;
508 cpumask_var_t cpumask
;
510 struct lock_class_key
*reader_lock_key
;
514 struct ring_buffer_per_cpu
**buffers
;
516 #ifdef CONFIG_HOTPLUG_CPU
517 struct notifier_block cpu_notify
;
522 struct ring_buffer_iter
{
523 struct ring_buffer_per_cpu
*cpu_buffer
;
525 struct buffer_page
*head_page
;
526 struct buffer_page
*cache_reader_page
;
527 unsigned long cache_read
;
531 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
532 #define RB_WARN_ON(b, cond) \
534 int _____ret = unlikely(cond); \
536 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
537 struct ring_buffer_per_cpu *__b = \
539 atomic_inc(&__b->buffer->record_disabled); \
541 atomic_inc(&b->record_disabled); \
547 /* Up this if you want to test the TIME_EXTENTS and normalization */
548 #define DEBUG_SHIFT 0
550 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
552 /* shift to debug/test normalization and TIME_EXTENTS */
553 return buffer
->clock() << DEBUG_SHIFT
;
556 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
560 preempt_disable_notrace();
561 time
= rb_time_stamp(buffer
);
562 preempt_enable_no_resched_notrace();
566 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
568 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
571 /* Just stupid testing the normalize function and deltas */
574 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
577 * Making the ring buffer lockless makes things tricky.
578 * Although writes only happen on the CPU that they are on,
579 * and they only need to worry about interrupts. Reads can
582 * The reader page is always off the ring buffer, but when the
583 * reader finishes with a page, it needs to swap its page with
584 * a new one from the buffer. The reader needs to take from
585 * the head (writes go to the tail). But if a writer is in overwrite
586 * mode and wraps, it must push the head page forward.
588 * Here lies the problem.
590 * The reader must be careful to replace only the head page, and
591 * not another one. As described at the top of the file in the
592 * ASCII art, the reader sets its old page to point to the next
593 * page after head. It then sets the page after head to point to
594 * the old reader page. But if the writer moves the head page
595 * during this operation, the reader could end up with the tail.
597 * We use cmpxchg to help prevent this race. We also do something
598 * special with the page before head. We set the LSB to 1.
600 * When the writer must push the page forward, it will clear the
601 * bit that points to the head page, move the head, and then set
602 * the bit that points to the new head page.
604 * We also don't want an interrupt coming in and moving the head
605 * page on another writer. Thus we use the second LSB to catch
608 * head->list->prev->next bit 1 bit 0
611 * Points to head page 0 1
614 * Note we can not trust the prev pointer of the head page, because:
616 * +----+ +-----+ +-----+
617 * | |------>| T |---X--->| N |
619 * +----+ +-----+ +-----+
622 * +----------| R |----------+ |
626 * Key: ---X--> HEAD flag set in pointer
631 * (see __rb_reserve_next() to see where this happens)
633 * What the above shows is that the reader just swapped out
634 * the reader page with a page in the buffer, but before it
635 * could make the new header point back to the new page added
636 * it was preempted by a writer. The writer moved forward onto
637 * the new page added by the reader and is about to move forward
640 * You can see, it is legitimate for the previous pointer of
641 * the head (or any page) not to point back to itself. But only
645 #define RB_PAGE_NORMAL 0UL
646 #define RB_PAGE_HEAD 1UL
647 #define RB_PAGE_UPDATE 2UL
650 #define RB_FLAG_MASK 3UL
652 /* PAGE_MOVED is not part of the mask */
653 #define RB_PAGE_MOVED 4UL
656 * rb_list_head - remove any bit
658 static struct list_head
*rb_list_head(struct list_head
*list
)
660 unsigned long val
= (unsigned long)list
;
662 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
666 * rb_is_head_page - test if the given page is the head page
668 * Because the reader may move the head_page pointer, we can
669 * not trust what the head page is (it may be pointing to
670 * the reader page). But if the next page is a header page,
671 * its flags will be non zero.
674 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
675 struct buffer_page
*page
, struct list_head
*list
)
679 val
= (unsigned long)list
->next
;
681 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
682 return RB_PAGE_MOVED
;
684 return val
& RB_FLAG_MASK
;
690 * The unique thing about the reader page, is that, if the
691 * writer is ever on it, the previous pointer never points
692 * back to the reader page.
694 static int rb_is_reader_page(struct buffer_page
*page
)
696 struct list_head
*list
= page
->list
.prev
;
698 return rb_list_head(list
->next
) != &page
->list
;
702 * rb_set_list_to_head - set a list_head to be pointing to head.
704 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
705 struct list_head
*list
)
709 ptr
= (unsigned long *)&list
->next
;
710 *ptr
|= RB_PAGE_HEAD
;
711 *ptr
&= ~RB_PAGE_UPDATE
;
715 * rb_head_page_activate - sets up head page
717 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
719 struct buffer_page
*head
;
721 head
= cpu_buffer
->head_page
;
726 * Set the previous list pointer to have the HEAD flag.
728 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
731 static void rb_list_head_clear(struct list_head
*list
)
733 unsigned long *ptr
= (unsigned long *)&list
->next
;
735 *ptr
&= ~RB_FLAG_MASK
;
739 * rb_head_page_dactivate - clears head page ptr (for free list)
742 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
744 struct list_head
*hd
;
746 /* Go through the whole list and clear any pointers found. */
747 rb_list_head_clear(cpu_buffer
->pages
);
749 list_for_each(hd
, cpu_buffer
->pages
)
750 rb_list_head_clear(hd
);
753 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
754 struct buffer_page
*head
,
755 struct buffer_page
*prev
,
756 int old_flag
, int new_flag
)
758 struct list_head
*list
;
759 unsigned long val
= (unsigned long)&head
->list
;
764 val
&= ~RB_FLAG_MASK
;
766 ret
= cmpxchg((unsigned long *)&list
->next
,
767 val
| old_flag
, val
| new_flag
);
769 /* check if the reader took the page */
770 if ((ret
& ~RB_FLAG_MASK
) != val
)
771 return RB_PAGE_MOVED
;
773 return ret
& RB_FLAG_MASK
;
776 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
777 struct buffer_page
*head
,
778 struct buffer_page
*prev
,
781 return rb_head_page_set(cpu_buffer
, head
, prev
,
782 old_flag
, RB_PAGE_UPDATE
);
785 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
786 struct buffer_page
*head
,
787 struct buffer_page
*prev
,
790 return rb_head_page_set(cpu_buffer
, head
, prev
,
791 old_flag
, RB_PAGE_HEAD
);
794 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
795 struct buffer_page
*head
,
796 struct buffer_page
*prev
,
799 return rb_head_page_set(cpu_buffer
, head
, prev
,
800 old_flag
, RB_PAGE_NORMAL
);
803 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
804 struct buffer_page
**bpage
)
806 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
808 *bpage
= list_entry(p
, struct buffer_page
, list
);
811 static struct buffer_page
*
812 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
814 struct buffer_page
*head
;
815 struct buffer_page
*page
;
816 struct list_head
*list
;
819 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
823 list
= cpu_buffer
->pages
;
824 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
827 page
= head
= cpu_buffer
->head_page
;
829 * It is possible that the writer moves the header behind
830 * where we started, and we miss in one loop.
831 * A second loop should grab the header, but we'll do
832 * three loops just because I'm paranoid.
834 for (i
= 0; i
< 3; i
++) {
836 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
837 cpu_buffer
->head_page
= page
;
840 rb_inc_page(cpu_buffer
, &page
);
841 } while (page
!= head
);
844 RB_WARN_ON(cpu_buffer
, 1);
849 static int rb_head_page_replace(struct buffer_page
*old
,
850 struct buffer_page
*new)
852 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
856 val
= *ptr
& ~RB_FLAG_MASK
;
859 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
865 * rb_tail_page_update - move the tail page forward
867 * Returns 1 if moved tail page, 0 if someone else did.
869 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
870 struct buffer_page
*tail_page
,
871 struct buffer_page
*next_page
)
873 struct buffer_page
*old_tail
;
874 unsigned long old_entries
;
875 unsigned long old_write
;
879 * The tail page now needs to be moved forward.
881 * We need to reset the tail page, but without messing
882 * with possible erasing of data brought in by interrupts
883 * that have moved the tail page and are currently on it.
885 * We add a counter to the write field to denote this.
887 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
888 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
891 * Just make sure we have seen our old_write and synchronize
892 * with any interrupts that come in.
897 * If the tail page is still the same as what we think
898 * it is, then it is up to us to update the tail
901 if (tail_page
== cpu_buffer
->tail_page
) {
902 /* Zero the write counter */
903 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
904 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
907 * This will only succeed if an interrupt did
908 * not come in and change it. In which case, we
909 * do not want to modify it.
911 * We add (void) to let the compiler know that we do not care
912 * about the return value of these functions. We use the
913 * cmpxchg to only update if an interrupt did not already
914 * do it for us. If the cmpxchg fails, we don't care.
916 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
917 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
920 * No need to worry about races with clearing out the commit.
921 * it only can increment when a commit takes place. But that
922 * only happens in the outer most nested commit.
924 local_set(&next_page
->page
->commit
, 0);
926 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
927 tail_page
, next_page
);
929 if (old_tail
== tail_page
)
936 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
937 struct buffer_page
*bpage
)
939 unsigned long val
= (unsigned long)bpage
;
941 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
948 * rb_check_list - make sure a pointer to a list has the last bits zero
950 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
951 struct list_head
*list
)
953 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
955 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
961 * check_pages - integrity check of buffer pages
962 * @cpu_buffer: CPU buffer with pages to test
964 * As a safety measure we check to make sure the data pages have not
967 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
969 struct list_head
*head
= cpu_buffer
->pages
;
970 struct buffer_page
*bpage
, *tmp
;
972 rb_head_page_deactivate(cpu_buffer
);
974 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
976 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
979 if (rb_check_list(cpu_buffer
, head
))
982 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
983 if (RB_WARN_ON(cpu_buffer
,
984 bpage
->list
.next
->prev
!= &bpage
->list
))
986 if (RB_WARN_ON(cpu_buffer
,
987 bpage
->list
.prev
->next
!= &bpage
->list
))
989 if (rb_check_list(cpu_buffer
, &bpage
->list
))
993 rb_head_page_activate(cpu_buffer
);
998 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1001 struct buffer_page
*bpage
, *tmp
;
1007 for (i
= 0; i
< nr_pages
; i
++) {
1010 * __GFP_NORETRY flag makes sure that the allocation fails
1011 * gracefully without invoking oom-killer and the system is
1014 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1015 GFP_KERNEL
| __GFP_NORETRY
,
1016 cpu_to_node(cpu_buffer
->cpu
));
1020 rb_check_bpage(cpu_buffer
, bpage
);
1022 list_add(&bpage
->list
, &pages
);
1024 page
= alloc_pages_node(cpu_to_node(cpu_buffer
->cpu
),
1025 GFP_KERNEL
| __GFP_NORETRY
, 0);
1028 bpage
->page
= page_address(page
);
1029 rb_init_page(bpage
->page
);
1033 * The ring buffer page list is a circular list that does not
1034 * start and end with a list head. All page list items point to
1037 cpu_buffer
->pages
= pages
.next
;
1040 rb_check_pages(cpu_buffer
);
1045 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1046 list_del_init(&bpage
->list
);
1047 free_buffer_page(bpage
);
1052 static struct ring_buffer_per_cpu
*
1053 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
1055 struct ring_buffer_per_cpu
*cpu_buffer
;
1056 struct buffer_page
*bpage
;
1060 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1061 GFP_KERNEL
, cpu_to_node(cpu
));
1065 cpu_buffer
->cpu
= cpu
;
1066 cpu_buffer
->buffer
= buffer
;
1067 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1068 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1069 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1071 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1072 GFP_KERNEL
, cpu_to_node(cpu
));
1074 goto fail_free_buffer
;
1076 rb_check_bpage(cpu_buffer
, bpage
);
1078 cpu_buffer
->reader_page
= bpage
;
1079 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1081 goto fail_free_reader
;
1082 bpage
->page
= page_address(page
);
1083 rb_init_page(bpage
->page
);
1085 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1087 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1089 goto fail_free_reader
;
1091 cpu_buffer
->head_page
1092 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1093 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1095 rb_head_page_activate(cpu_buffer
);
1100 free_buffer_page(cpu_buffer
->reader_page
);
1107 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1109 struct list_head
*head
= cpu_buffer
->pages
;
1110 struct buffer_page
*bpage
, *tmp
;
1112 free_buffer_page(cpu_buffer
->reader_page
);
1114 rb_head_page_deactivate(cpu_buffer
);
1117 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1118 list_del_init(&bpage
->list
);
1119 free_buffer_page(bpage
);
1121 bpage
= list_entry(head
, struct buffer_page
, list
);
1122 free_buffer_page(bpage
);
1128 #ifdef CONFIG_HOTPLUG_CPU
1129 static int rb_cpu_notify(struct notifier_block
*self
,
1130 unsigned long action
, void *hcpu
);
1134 * ring_buffer_alloc - allocate a new ring_buffer
1135 * @size: the size in bytes per cpu that is needed.
1136 * @flags: attributes to set for the ring buffer.
1138 * Currently the only flag that is available is the RB_FL_OVERWRITE
1139 * flag. This flag means that the buffer will overwrite old data
1140 * when the buffer wraps. If this flag is not set, the buffer will
1141 * drop data when the tail hits the head.
1143 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1144 struct lock_class_key
*key
)
1146 struct ring_buffer
*buffer
;
1150 /* keep it in its own cache line */
1151 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1156 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1157 goto fail_free_buffer
;
1159 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1160 buffer
->flags
= flags
;
1161 buffer
->clock
= trace_clock_local
;
1162 buffer
->reader_lock_key
= key
;
1164 /* need at least two pages */
1165 if (buffer
->pages
< 2)
1169 * In case of non-hotplug cpu, if the ring-buffer is allocated
1170 * in early initcall, it will not be notified of secondary cpus.
1171 * In that off case, we need to allocate for all possible cpus.
1173 #ifdef CONFIG_HOTPLUG_CPU
1175 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1177 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1179 buffer
->cpus
= nr_cpu_ids
;
1181 bsize
= sizeof(void *) * nr_cpu_ids
;
1182 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1184 if (!buffer
->buffers
)
1185 goto fail_free_cpumask
;
1187 for_each_buffer_cpu(buffer
, cpu
) {
1188 buffer
->buffers
[cpu
] =
1189 rb_allocate_cpu_buffer(buffer
, cpu
);
1190 if (!buffer
->buffers
[cpu
])
1191 goto fail_free_buffers
;
1194 #ifdef CONFIG_HOTPLUG_CPU
1195 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1196 buffer
->cpu_notify
.priority
= 0;
1197 register_cpu_notifier(&buffer
->cpu_notify
);
1201 mutex_init(&buffer
->mutex
);
1206 for_each_buffer_cpu(buffer
, cpu
) {
1207 if (buffer
->buffers
[cpu
])
1208 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1210 kfree(buffer
->buffers
);
1213 free_cpumask_var(buffer
->cpumask
);
1220 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1223 * ring_buffer_free - free a ring buffer.
1224 * @buffer: the buffer to free.
1227 ring_buffer_free(struct ring_buffer
*buffer
)
1233 #ifdef CONFIG_HOTPLUG_CPU
1234 unregister_cpu_notifier(&buffer
->cpu_notify
);
1237 for_each_buffer_cpu(buffer
, cpu
)
1238 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1242 kfree(buffer
->buffers
);
1243 free_cpumask_var(buffer
->cpumask
);
1247 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1249 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1252 buffer
->clock
= clock
;
1255 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1258 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1260 struct buffer_page
*bpage
;
1261 struct list_head
*p
;
1264 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1265 rb_head_page_deactivate(cpu_buffer
);
1267 for (i
= 0; i
< nr_pages
; i
++) {
1268 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1270 p
= cpu_buffer
->pages
->next
;
1271 bpage
= list_entry(p
, struct buffer_page
, list
);
1272 list_del_init(&bpage
->list
);
1273 free_buffer_page(bpage
);
1275 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1278 rb_reset_cpu(cpu_buffer
);
1279 rb_check_pages(cpu_buffer
);
1282 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1286 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1287 struct list_head
*pages
, unsigned nr_pages
)
1289 struct buffer_page
*bpage
;
1290 struct list_head
*p
;
1293 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1294 rb_head_page_deactivate(cpu_buffer
);
1296 for (i
= 0; i
< nr_pages
; i
++) {
1297 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1300 bpage
= list_entry(p
, struct buffer_page
, list
);
1301 list_del_init(&bpage
->list
);
1302 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1304 rb_reset_cpu(cpu_buffer
);
1305 rb_check_pages(cpu_buffer
);
1308 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1312 * ring_buffer_resize - resize the ring buffer
1313 * @buffer: the buffer to resize.
1314 * @size: the new size.
1316 * Minimum size is 2 * BUF_PAGE_SIZE.
1318 * Returns -1 on failure.
1320 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1322 struct ring_buffer_per_cpu
*cpu_buffer
;
1323 unsigned nr_pages
, rm_pages
, new_pages
;
1324 struct buffer_page
*bpage
, *tmp
;
1325 unsigned long buffer_size
;
1330 * Always succeed at resizing a non-existent buffer:
1335 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1336 size
*= BUF_PAGE_SIZE
;
1337 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1339 /* we need a minimum of two pages */
1340 if (size
< BUF_PAGE_SIZE
* 2)
1341 size
= BUF_PAGE_SIZE
* 2;
1343 if (size
== buffer_size
)
1346 atomic_inc(&buffer
->record_disabled
);
1348 /* Make sure all writers are done with this buffer. */
1349 synchronize_sched();
1351 mutex_lock(&buffer
->mutex
);
1354 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1356 if (size
< buffer_size
) {
1358 /* easy case, just free pages */
1359 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1362 rm_pages
= buffer
->pages
- nr_pages
;
1364 for_each_buffer_cpu(buffer
, cpu
) {
1365 cpu_buffer
= buffer
->buffers
[cpu
];
1366 rb_remove_pages(cpu_buffer
, rm_pages
);
1372 * This is a bit more difficult. We only want to add pages
1373 * when we can allocate enough for all CPUs. We do this
1374 * by allocating all the pages and storing them on a local
1375 * link list. If we succeed in our allocation, then we
1376 * add these pages to the cpu_buffers. Otherwise we just free
1377 * them all and return -ENOMEM;
1379 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1382 new_pages
= nr_pages
- buffer
->pages
;
1384 for_each_buffer_cpu(buffer
, cpu
) {
1385 for (i
= 0; i
< new_pages
; i
++) {
1388 * __GFP_NORETRY flag makes sure that the allocation
1389 * fails gracefully without invoking oom-killer and
1390 * the system is not destabilized.
1392 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1394 GFP_KERNEL
| __GFP_NORETRY
,
1398 list_add(&bpage
->list
, &pages
);
1399 page
= alloc_pages_node(cpu_to_node(cpu
),
1400 GFP_KERNEL
| __GFP_NORETRY
, 0);
1403 bpage
->page
= page_address(page
);
1404 rb_init_page(bpage
->page
);
1408 for_each_buffer_cpu(buffer
, cpu
) {
1409 cpu_buffer
= buffer
->buffers
[cpu
];
1410 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1413 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1417 buffer
->pages
= nr_pages
;
1419 mutex_unlock(&buffer
->mutex
);
1421 atomic_dec(&buffer
->record_disabled
);
1426 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1427 list_del_init(&bpage
->list
);
1428 free_buffer_page(bpage
);
1431 mutex_unlock(&buffer
->mutex
);
1432 atomic_dec(&buffer
->record_disabled
);
1436 * Something went totally wrong, and we are too paranoid
1437 * to even clean up the mess.
1441 mutex_unlock(&buffer
->mutex
);
1442 atomic_dec(&buffer
->record_disabled
);
1445 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1447 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1449 mutex_lock(&buffer
->mutex
);
1451 buffer
->flags
|= RB_FL_OVERWRITE
;
1453 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1454 mutex_unlock(&buffer
->mutex
);
1456 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1458 static inline void *
1459 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1461 return bpage
->data
+ index
;
1464 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1466 return bpage
->page
->data
+ index
;
1469 static inline struct ring_buffer_event
*
1470 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1472 return __rb_page_index(cpu_buffer
->reader_page
,
1473 cpu_buffer
->reader_page
->read
);
1476 static inline struct ring_buffer_event
*
1477 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1479 return __rb_page_index(iter
->head_page
, iter
->head
);
1482 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1484 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1487 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1489 return local_read(&bpage
->page
->commit
);
1492 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1494 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1497 /* Size is determined by what has been committed */
1498 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1500 return rb_page_commit(bpage
);
1503 static inline unsigned
1504 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1506 return rb_page_commit(cpu_buffer
->commit_page
);
1509 static inline unsigned
1510 rb_event_index(struct ring_buffer_event
*event
)
1512 unsigned long addr
= (unsigned long)event
;
1514 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1518 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1519 struct ring_buffer_event
*event
)
1521 unsigned long addr
= (unsigned long)event
;
1522 unsigned long index
;
1524 index
= rb_event_index(event
);
1527 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1528 rb_commit_index(cpu_buffer
) == index
;
1532 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1534 unsigned long max_count
;
1537 * We only race with interrupts and NMIs on this CPU.
1538 * If we own the commit event, then we can commit
1539 * all others that interrupted us, since the interruptions
1540 * are in stack format (they finish before they come
1541 * back to us). This allows us to do a simple loop to
1542 * assign the commit to the tail.
1545 max_count
= cpu_buffer
->buffer
->pages
* 100;
1547 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1548 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1550 if (RB_WARN_ON(cpu_buffer
,
1551 rb_is_reader_page(cpu_buffer
->tail_page
)))
1553 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1554 rb_page_write(cpu_buffer
->commit_page
));
1555 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1556 cpu_buffer
->write_stamp
=
1557 cpu_buffer
->commit_page
->page
->time_stamp
;
1558 /* add barrier to keep gcc from optimizing too much */
1561 while (rb_commit_index(cpu_buffer
) !=
1562 rb_page_write(cpu_buffer
->commit_page
)) {
1564 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1565 rb_page_write(cpu_buffer
->commit_page
));
1566 RB_WARN_ON(cpu_buffer
,
1567 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1572 /* again, keep gcc from optimizing */
1576 * If an interrupt came in just after the first while loop
1577 * and pushed the tail page forward, we will be left with
1578 * a dangling commit that will never go forward.
1580 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1584 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1586 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1587 cpu_buffer
->reader_page
->read
= 0;
1590 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1592 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1595 * The iterator could be on the reader page (it starts there).
1596 * But the head could have moved, since the reader was
1597 * found. Check for this case and assign the iterator
1598 * to the head page instead of next.
1600 if (iter
->head_page
== cpu_buffer
->reader_page
)
1601 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1603 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1605 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1609 /* Slow path, do not inline */
1610 static noinline
struct ring_buffer_event
*
1611 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1613 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1615 /* Not the first event on the page? */
1616 if (rb_event_index(event
)) {
1617 event
->time_delta
= delta
& TS_MASK
;
1618 event
->array
[0] = delta
>> TS_SHIFT
;
1620 /* nope, just zero it */
1621 event
->time_delta
= 0;
1622 event
->array
[0] = 0;
1625 return skip_time_extend(event
);
1629 * ring_buffer_update_event - update event type and data
1630 * @event: the even to update
1631 * @type: the type of event
1632 * @length: the size of the event field in the ring buffer
1634 * Update the type and data fields of the event. The length
1635 * is the actual size that is written to the ring buffer,
1636 * and with this, we can determine what to place into the
1640 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1641 struct ring_buffer_event
*event
, unsigned length
,
1642 int add_timestamp
, u64 delta
)
1644 /* Only a commit updates the timestamp */
1645 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
1649 * If we need to add a timestamp, then we
1650 * add it to the start of the resevered space.
1652 if (unlikely(add_timestamp
)) {
1653 event
= rb_add_time_stamp(event
, delta
);
1654 length
-= RB_LEN_TIME_EXTEND
;
1658 event
->time_delta
= delta
;
1659 length
-= RB_EVNT_HDR_SIZE
;
1660 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
1661 event
->type_len
= 0;
1662 event
->array
[0] = length
;
1664 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1668 * rb_handle_head_page - writer hit the head page
1670 * Returns: +1 to retry page
1675 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1676 struct buffer_page
*tail_page
,
1677 struct buffer_page
*next_page
)
1679 struct buffer_page
*new_head
;
1684 entries
= rb_page_entries(next_page
);
1687 * The hard part is here. We need to move the head
1688 * forward, and protect against both readers on
1689 * other CPUs and writers coming in via interrupts.
1691 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1695 * type can be one of four:
1696 * NORMAL - an interrupt already moved it for us
1697 * HEAD - we are the first to get here.
1698 * UPDATE - we are the interrupt interrupting
1700 * MOVED - a reader on another CPU moved the next
1701 * pointer to its reader page. Give up
1708 * We changed the head to UPDATE, thus
1709 * it is our responsibility to update
1712 local_add(entries
, &cpu_buffer
->overrun
);
1713 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1716 * The entries will be zeroed out when we move the
1720 /* still more to do */
1723 case RB_PAGE_UPDATE
:
1725 * This is an interrupt that interrupt the
1726 * previous update. Still more to do.
1729 case RB_PAGE_NORMAL
:
1731 * An interrupt came in before the update
1732 * and processed this for us.
1733 * Nothing left to do.
1738 * The reader is on another CPU and just did
1739 * a swap with our next_page.
1744 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1749 * Now that we are here, the old head pointer is
1750 * set to UPDATE. This will keep the reader from
1751 * swapping the head page with the reader page.
1752 * The reader (on another CPU) will spin till
1755 * We just need to protect against interrupts
1756 * doing the job. We will set the next pointer
1757 * to HEAD. After that, we set the old pointer
1758 * to NORMAL, but only if it was HEAD before.
1759 * otherwise we are an interrupt, and only
1760 * want the outer most commit to reset it.
1762 new_head
= next_page
;
1763 rb_inc_page(cpu_buffer
, &new_head
);
1765 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1769 * Valid returns are:
1770 * HEAD - an interrupt came in and already set it.
1771 * NORMAL - One of two things:
1772 * 1) We really set it.
1773 * 2) A bunch of interrupts came in and moved
1774 * the page forward again.
1778 case RB_PAGE_NORMAL
:
1782 RB_WARN_ON(cpu_buffer
, 1);
1787 * It is possible that an interrupt came in,
1788 * set the head up, then more interrupts came in
1789 * and moved it again. When we get back here,
1790 * the page would have been set to NORMAL but we
1791 * just set it back to HEAD.
1793 * How do you detect this? Well, if that happened
1794 * the tail page would have moved.
1796 if (ret
== RB_PAGE_NORMAL
) {
1798 * If the tail had moved passed next, then we need
1799 * to reset the pointer.
1801 if (cpu_buffer
->tail_page
!= tail_page
&&
1802 cpu_buffer
->tail_page
!= next_page
)
1803 rb_head_page_set_normal(cpu_buffer
, new_head
,
1809 * If this was the outer most commit (the one that
1810 * changed the original pointer from HEAD to UPDATE),
1811 * then it is up to us to reset it to NORMAL.
1813 if (type
== RB_PAGE_HEAD
) {
1814 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1817 if (RB_WARN_ON(cpu_buffer
,
1818 ret
!= RB_PAGE_UPDATE
))
1825 static unsigned rb_calculate_event_length(unsigned length
)
1827 struct ring_buffer_event event
; /* Used only for sizeof array */
1829 /* zero length can cause confusions */
1833 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1834 length
+= sizeof(event
.array
[0]);
1836 length
+= RB_EVNT_HDR_SIZE
;
1837 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
1843 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1844 struct buffer_page
*tail_page
,
1845 unsigned long tail
, unsigned long length
)
1847 struct ring_buffer_event
*event
;
1850 * Only the event that crossed the page boundary
1851 * must fill the old tail_page with padding.
1853 if (tail
>= BUF_PAGE_SIZE
) {
1855 * If the page was filled, then we still need
1856 * to update the real_end. Reset it to zero
1857 * and the reader will ignore it.
1859 if (tail
== BUF_PAGE_SIZE
)
1860 tail_page
->real_end
= 0;
1862 local_sub(length
, &tail_page
->write
);
1866 event
= __rb_page_index(tail_page
, tail
);
1867 kmemcheck_annotate_bitfield(event
, bitfield
);
1869 /* account for padding bytes */
1870 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
1873 * Save the original length to the meta data.
1874 * This will be used by the reader to add lost event
1877 tail_page
->real_end
= tail
;
1880 * If this event is bigger than the minimum size, then
1881 * we need to be careful that we don't subtract the
1882 * write counter enough to allow another writer to slip
1884 * We put in a discarded commit instead, to make sure
1885 * that this space is not used again.
1887 * If we are less than the minimum size, we don't need to
1890 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1891 /* No room for any events */
1893 /* Mark the rest of the page with padding */
1894 rb_event_set_padding(event
);
1896 /* Set the write back to the previous setting */
1897 local_sub(length
, &tail_page
->write
);
1901 /* Put in a discarded event */
1902 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1903 event
->type_len
= RINGBUF_TYPE_PADDING
;
1904 /* time delta must be non zero */
1905 event
->time_delta
= 1;
1907 /* Set write to end of buffer */
1908 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1909 local_sub(length
, &tail_page
->write
);
1913 * This is the slow path, force gcc not to inline it.
1915 static noinline
struct ring_buffer_event
*
1916 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1917 unsigned long length
, unsigned long tail
,
1918 struct buffer_page
*tail_page
, u64 ts
)
1920 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1921 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1922 struct buffer_page
*next_page
;
1925 next_page
= tail_page
;
1927 rb_inc_page(cpu_buffer
, &next_page
);
1930 * If for some reason, we had an interrupt storm that made
1931 * it all the way around the buffer, bail, and warn
1934 if (unlikely(next_page
== commit_page
)) {
1935 local_inc(&cpu_buffer
->commit_overrun
);
1940 * This is where the fun begins!
1942 * We are fighting against races between a reader that
1943 * could be on another CPU trying to swap its reader
1944 * page with the buffer head.
1946 * We are also fighting against interrupts coming in and
1947 * moving the head or tail on us as well.
1949 * If the next page is the head page then we have filled
1950 * the buffer, unless the commit page is still on the
1953 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1956 * If the commit is not on the reader page, then
1957 * move the header page.
1959 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1961 * If we are not in overwrite mode,
1962 * this is easy, just stop here.
1964 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1967 ret
= rb_handle_head_page(cpu_buffer
,
1976 * We need to be careful here too. The
1977 * commit page could still be on the reader
1978 * page. We could have a small buffer, and
1979 * have filled up the buffer with events
1980 * from interrupts and such, and wrapped.
1982 * Note, if the tail page is also the on the
1983 * reader_page, we let it move out.
1985 if (unlikely((cpu_buffer
->commit_page
!=
1986 cpu_buffer
->tail_page
) &&
1987 (cpu_buffer
->commit_page
==
1988 cpu_buffer
->reader_page
))) {
1989 local_inc(&cpu_buffer
->commit_overrun
);
1995 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1998 * Nested commits always have zero deltas, so
1999 * just reread the time stamp
2001 ts
= rb_time_stamp(buffer
);
2002 next_page
->page
->time_stamp
= ts
;
2007 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2009 /* fail and let the caller try again */
2010 return ERR_PTR(-EAGAIN
);
2014 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2019 static struct ring_buffer_event
*
2020 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2021 unsigned long length
, u64 ts
,
2022 u64 delta
, int add_timestamp
)
2024 struct buffer_page
*tail_page
;
2025 struct ring_buffer_event
*event
;
2026 unsigned long tail
, write
;
2029 * If the time delta since the last event is too big to
2030 * hold in the time field of the event, then we append a
2031 * TIME EXTEND event ahead of the data event.
2033 if (unlikely(add_timestamp
))
2034 length
+= RB_LEN_TIME_EXTEND
;
2036 tail_page
= cpu_buffer
->tail_page
;
2037 write
= local_add_return(length
, &tail_page
->write
);
2039 /* set write to only the index of the write */
2040 write
&= RB_WRITE_MASK
;
2041 tail
= write
- length
;
2043 /* See if we shot pass the end of this buffer page */
2044 if (unlikely(write
> BUF_PAGE_SIZE
))
2045 return rb_move_tail(cpu_buffer
, length
, tail
,
2048 /* We reserved something on the buffer */
2050 event
= __rb_page_index(tail_page
, tail
);
2051 kmemcheck_annotate_bitfield(event
, bitfield
);
2052 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2054 local_inc(&tail_page
->entries
);
2057 * If this is the first commit on the page, then update
2061 tail_page
->page
->time_stamp
= ts
;
2063 /* account for these added bytes */
2064 local_add(length
, &cpu_buffer
->entries_bytes
);
2070 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2071 struct ring_buffer_event
*event
)
2073 unsigned long new_index
, old_index
;
2074 struct buffer_page
*bpage
;
2075 unsigned long index
;
2078 new_index
= rb_event_index(event
);
2079 old_index
= new_index
+ rb_event_ts_length(event
);
2080 addr
= (unsigned long)event
;
2083 bpage
= cpu_buffer
->tail_page
;
2085 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2086 unsigned long write_mask
=
2087 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2088 unsigned long event_length
= rb_event_length(event
);
2090 * This is on the tail page. It is possible that
2091 * a write could come in and move the tail page
2092 * and write to the next page. That is fine
2093 * because we just shorten what is on this page.
2095 old_index
+= write_mask
;
2096 new_index
+= write_mask
;
2097 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2098 if (index
== old_index
) {
2099 /* update counters */
2100 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2105 /* could not discard */
2109 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2111 local_inc(&cpu_buffer
->committing
);
2112 local_inc(&cpu_buffer
->commits
);
2115 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2117 unsigned long commits
;
2119 if (RB_WARN_ON(cpu_buffer
,
2120 !local_read(&cpu_buffer
->committing
)))
2124 commits
= local_read(&cpu_buffer
->commits
);
2125 /* synchronize with interrupts */
2127 if (local_read(&cpu_buffer
->committing
) == 1)
2128 rb_set_commit_to_write(cpu_buffer
);
2130 local_dec(&cpu_buffer
->committing
);
2132 /* synchronize with interrupts */
2136 * Need to account for interrupts coming in between the
2137 * updating of the commit page and the clearing of the
2138 * committing counter.
2140 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2141 !local_read(&cpu_buffer
->committing
)) {
2142 local_inc(&cpu_buffer
->committing
);
2147 static struct ring_buffer_event
*
2148 rb_reserve_next_event(struct ring_buffer
*buffer
,
2149 struct ring_buffer_per_cpu
*cpu_buffer
,
2150 unsigned long length
)
2152 struct ring_buffer_event
*event
;
2158 rb_start_commit(cpu_buffer
);
2160 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2162 * Due to the ability to swap a cpu buffer from a buffer
2163 * it is possible it was swapped before we committed.
2164 * (committing stops a swap). We check for it here and
2165 * if it happened, we have to fail the write.
2168 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2169 local_dec(&cpu_buffer
->committing
);
2170 local_dec(&cpu_buffer
->commits
);
2175 length
= rb_calculate_event_length(length
);
2181 * We allow for interrupts to reenter here and do a trace.
2182 * If one does, it will cause this original code to loop
2183 * back here. Even with heavy interrupts happening, this
2184 * should only happen a few times in a row. If this happens
2185 * 1000 times in a row, there must be either an interrupt
2186 * storm or we have something buggy.
2189 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2192 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2193 diff
= ts
- cpu_buffer
->write_stamp
;
2195 /* make sure this diff is calculated here */
2198 /* Did the write stamp get updated already? */
2199 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2201 if (unlikely(test_time_stamp(delta
))) {
2202 int local_clock_stable
= 1;
2203 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2204 local_clock_stable
= sched_clock_stable
;
2206 WARN_ONCE(delta
> (1ULL << 59),
2207 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2208 (unsigned long long)delta
,
2209 (unsigned long long)ts
,
2210 (unsigned long long)cpu_buffer
->write_stamp
,
2211 local_clock_stable
? "" :
2212 "If you just came from a suspend/resume,\n"
2213 "please switch to the trace global clock:\n"
2214 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2219 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2220 delta
, add_timestamp
);
2221 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2230 rb_end_commit(cpu_buffer
);
2234 #ifdef CONFIG_TRACING
2236 #define TRACE_RECURSIVE_DEPTH 16
2238 /* Keep this code out of the fast path cache */
2239 static noinline
void trace_recursive_fail(void)
2241 /* Disable all tracing before we do anything else */
2242 tracing_off_permanent();
2244 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2245 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2246 trace_recursion_buffer(),
2247 hardirq_count() >> HARDIRQ_SHIFT
,
2248 softirq_count() >> SOFTIRQ_SHIFT
,
2254 static inline int trace_recursive_lock(void)
2256 trace_recursion_inc();
2258 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH
))
2261 trace_recursive_fail();
2266 static inline void trace_recursive_unlock(void)
2268 WARN_ON_ONCE(!trace_recursion_buffer());
2270 trace_recursion_dec();
2275 #define trace_recursive_lock() (0)
2276 #define trace_recursive_unlock() do { } while (0)
2281 * ring_buffer_lock_reserve - reserve a part of the buffer
2282 * @buffer: the ring buffer to reserve from
2283 * @length: the length of the data to reserve (excluding event header)
2285 * Returns a reseverd event on the ring buffer to copy directly to.
2286 * The user of this interface will need to get the body to write into
2287 * and can use the ring_buffer_event_data() interface.
2289 * The length is the length of the data needed, not the event length
2290 * which also includes the event header.
2292 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2293 * If NULL is returned, then nothing has been allocated or locked.
2295 struct ring_buffer_event
*
2296 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2298 struct ring_buffer_per_cpu
*cpu_buffer
;
2299 struct ring_buffer_event
*event
;
2302 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2305 /* If we are tracing schedule, we don't want to recurse */
2306 preempt_disable_notrace();
2308 if (atomic_read(&buffer
->record_disabled
))
2311 if (trace_recursive_lock())
2314 cpu
= raw_smp_processor_id();
2316 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2319 cpu_buffer
= buffer
->buffers
[cpu
];
2321 if (atomic_read(&cpu_buffer
->record_disabled
))
2324 if (length
> BUF_MAX_DATA_SIZE
)
2327 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2334 trace_recursive_unlock();
2337 preempt_enable_notrace();
2340 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2343 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2344 struct ring_buffer_event
*event
)
2349 * The event first in the commit queue updates the
2352 if (rb_event_is_commit(cpu_buffer
, event
)) {
2354 * A commit event that is first on a page
2355 * updates the write timestamp with the page stamp
2357 if (!rb_event_index(event
))
2358 cpu_buffer
->write_stamp
=
2359 cpu_buffer
->commit_page
->page
->time_stamp
;
2360 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2361 delta
= event
->array
[0];
2363 delta
+= event
->time_delta
;
2364 cpu_buffer
->write_stamp
+= delta
;
2366 cpu_buffer
->write_stamp
+= event
->time_delta
;
2370 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2371 struct ring_buffer_event
*event
)
2373 local_inc(&cpu_buffer
->entries
);
2374 rb_update_write_stamp(cpu_buffer
, event
);
2375 rb_end_commit(cpu_buffer
);
2379 * ring_buffer_unlock_commit - commit a reserved
2380 * @buffer: The buffer to commit to
2381 * @event: The event pointer to commit.
2383 * This commits the data to the ring buffer, and releases any locks held.
2385 * Must be paired with ring_buffer_lock_reserve.
2387 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2388 struct ring_buffer_event
*event
)
2390 struct ring_buffer_per_cpu
*cpu_buffer
;
2391 int cpu
= raw_smp_processor_id();
2393 cpu_buffer
= buffer
->buffers
[cpu
];
2395 rb_commit(cpu_buffer
, event
);
2397 trace_recursive_unlock();
2399 preempt_enable_notrace();
2403 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2405 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2407 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2408 event
= skip_time_extend(event
);
2410 /* array[0] holds the actual length for the discarded event */
2411 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2412 event
->type_len
= RINGBUF_TYPE_PADDING
;
2413 /* time delta must be non zero */
2414 if (!event
->time_delta
)
2415 event
->time_delta
= 1;
2419 * Decrement the entries to the page that an event is on.
2420 * The event does not even need to exist, only the pointer
2421 * to the page it is on. This may only be called before the commit
2425 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2426 struct ring_buffer_event
*event
)
2428 unsigned long addr
= (unsigned long)event
;
2429 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2430 struct buffer_page
*start
;
2434 /* Do the likely case first */
2435 if (likely(bpage
->page
== (void *)addr
)) {
2436 local_dec(&bpage
->entries
);
2441 * Because the commit page may be on the reader page we
2442 * start with the next page and check the end loop there.
2444 rb_inc_page(cpu_buffer
, &bpage
);
2447 if (bpage
->page
== (void *)addr
) {
2448 local_dec(&bpage
->entries
);
2451 rb_inc_page(cpu_buffer
, &bpage
);
2452 } while (bpage
!= start
);
2454 /* commit not part of this buffer?? */
2455 RB_WARN_ON(cpu_buffer
, 1);
2459 * ring_buffer_commit_discard - discard an event that has not been committed
2460 * @buffer: the ring buffer
2461 * @event: non committed event to discard
2463 * Sometimes an event that is in the ring buffer needs to be ignored.
2464 * This function lets the user discard an event in the ring buffer
2465 * and then that event will not be read later.
2467 * This function only works if it is called before the the item has been
2468 * committed. It will try to free the event from the ring buffer
2469 * if another event has not been added behind it.
2471 * If another event has been added behind it, it will set the event
2472 * up as discarded, and perform the commit.
2474 * If this function is called, do not call ring_buffer_unlock_commit on
2477 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2478 struct ring_buffer_event
*event
)
2480 struct ring_buffer_per_cpu
*cpu_buffer
;
2483 /* The event is discarded regardless */
2484 rb_event_discard(event
);
2486 cpu
= smp_processor_id();
2487 cpu_buffer
= buffer
->buffers
[cpu
];
2490 * This must only be called if the event has not been
2491 * committed yet. Thus we can assume that preemption
2492 * is still disabled.
2494 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2496 rb_decrement_entry(cpu_buffer
, event
);
2497 if (rb_try_to_discard(cpu_buffer
, event
))
2501 * The commit is still visible by the reader, so we
2502 * must still update the timestamp.
2504 rb_update_write_stamp(cpu_buffer
, event
);
2506 rb_end_commit(cpu_buffer
);
2508 trace_recursive_unlock();
2510 preempt_enable_notrace();
2513 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2516 * ring_buffer_write - write data to the buffer without reserving
2517 * @buffer: The ring buffer to write to.
2518 * @length: The length of the data being written (excluding the event header)
2519 * @data: The data to write to the buffer.
2521 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2522 * one function. If you already have the data to write to the buffer, it
2523 * may be easier to simply call this function.
2525 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2526 * and not the length of the event which would hold the header.
2528 int ring_buffer_write(struct ring_buffer
*buffer
,
2529 unsigned long length
,
2532 struct ring_buffer_per_cpu
*cpu_buffer
;
2533 struct ring_buffer_event
*event
;
2538 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2541 preempt_disable_notrace();
2543 if (atomic_read(&buffer
->record_disabled
))
2546 cpu
= raw_smp_processor_id();
2548 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2551 cpu_buffer
= buffer
->buffers
[cpu
];
2553 if (atomic_read(&cpu_buffer
->record_disabled
))
2556 if (length
> BUF_MAX_DATA_SIZE
)
2559 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2563 body
= rb_event_data(event
);
2565 memcpy(body
, data
, length
);
2567 rb_commit(cpu_buffer
, event
);
2571 preempt_enable_notrace();
2575 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2577 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2579 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2580 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2581 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2583 /* In case of error, head will be NULL */
2584 if (unlikely(!head
))
2587 return reader
->read
== rb_page_commit(reader
) &&
2588 (commit
== reader
||
2590 head
->read
== rb_page_commit(commit
)));
2594 * ring_buffer_record_disable - stop all writes into the buffer
2595 * @buffer: The ring buffer to stop writes to.
2597 * This prevents all writes to the buffer. Any attempt to write
2598 * to the buffer after this will fail and return NULL.
2600 * The caller should call synchronize_sched() after this.
2602 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2604 atomic_inc(&buffer
->record_disabled
);
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2609 * ring_buffer_record_enable - enable writes to the buffer
2610 * @buffer: The ring buffer to enable writes
2612 * Note, multiple disables will need the same number of enables
2613 * to truly enable the writing (much like preempt_disable).
2615 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2617 atomic_dec(&buffer
->record_disabled
);
2619 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2622 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2623 * @buffer: The ring buffer to stop writes to.
2624 * @cpu: The CPU buffer to stop
2626 * This prevents all writes to the buffer. Any attempt to write
2627 * to the buffer after this will fail and return NULL.
2629 * The caller should call synchronize_sched() after this.
2631 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2633 struct ring_buffer_per_cpu
*cpu_buffer
;
2635 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2638 cpu_buffer
= buffer
->buffers
[cpu
];
2639 atomic_inc(&cpu_buffer
->record_disabled
);
2641 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2644 * ring_buffer_record_enable_cpu - enable writes to the buffer
2645 * @buffer: The ring buffer to enable writes
2646 * @cpu: The CPU to enable.
2648 * Note, multiple disables will need the same number of enables
2649 * to truly enable the writing (much like preempt_disable).
2651 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2653 struct ring_buffer_per_cpu
*cpu_buffer
;
2655 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2658 cpu_buffer
= buffer
->buffers
[cpu
];
2659 atomic_dec(&cpu_buffer
->record_disabled
);
2661 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2664 * The total entries in the ring buffer is the running counter
2665 * of entries entered into the ring buffer, minus the sum of
2666 * the entries read from the ring buffer and the number of
2667 * entries that were overwritten.
2669 static inline unsigned long
2670 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
2672 return local_read(&cpu_buffer
->entries
) -
2673 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
2677 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2678 * @buffer: The ring buffer
2679 * @cpu: The per CPU buffer to read from.
2681 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
2683 unsigned long flags
;
2684 struct ring_buffer_per_cpu
*cpu_buffer
;
2685 struct buffer_page
*bpage
;
2688 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2691 cpu_buffer
= buffer
->buffers
[cpu
];
2692 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2694 * if the tail is on reader_page, oldest time stamp is on the reader
2697 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
2698 bpage
= cpu_buffer
->reader_page
;
2700 bpage
= rb_set_head_page(cpu_buffer
);
2701 ret
= bpage
->page
->time_stamp
;
2702 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2706 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
2709 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2710 * @buffer: The ring buffer
2711 * @cpu: The per CPU buffer to read from.
2713 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
2715 struct ring_buffer_per_cpu
*cpu_buffer
;
2718 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2721 cpu_buffer
= buffer
->buffers
[cpu
];
2722 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
2726 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
2729 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2730 * @buffer: The ring buffer
2731 * @cpu: The per CPU buffer to get the entries from.
2733 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2735 struct ring_buffer_per_cpu
*cpu_buffer
;
2737 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2740 cpu_buffer
= buffer
->buffers
[cpu
];
2742 return rb_num_of_entries(cpu_buffer
);
2744 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2747 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2748 * @buffer: The ring buffer
2749 * @cpu: The per CPU buffer to get the number of overruns from
2751 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2753 struct ring_buffer_per_cpu
*cpu_buffer
;
2756 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2759 cpu_buffer
= buffer
->buffers
[cpu
];
2760 ret
= local_read(&cpu_buffer
->overrun
);
2764 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2767 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2768 * @buffer: The ring buffer
2769 * @cpu: The per CPU buffer to get the number of overruns from
2772 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2774 struct ring_buffer_per_cpu
*cpu_buffer
;
2777 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2780 cpu_buffer
= buffer
->buffers
[cpu
];
2781 ret
= local_read(&cpu_buffer
->commit_overrun
);
2785 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2788 * ring_buffer_entries - get the number of entries in a buffer
2789 * @buffer: The ring buffer
2791 * Returns the total number of entries in the ring buffer
2794 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2796 struct ring_buffer_per_cpu
*cpu_buffer
;
2797 unsigned long entries
= 0;
2800 /* if you care about this being correct, lock the buffer */
2801 for_each_buffer_cpu(buffer
, cpu
) {
2802 cpu_buffer
= buffer
->buffers
[cpu
];
2803 entries
+= rb_num_of_entries(cpu_buffer
);
2808 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2811 * ring_buffer_overruns - get the number of overruns in buffer
2812 * @buffer: The ring buffer
2814 * Returns the total number of overruns in the ring buffer
2817 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2819 struct ring_buffer_per_cpu
*cpu_buffer
;
2820 unsigned long overruns
= 0;
2823 /* if you care about this being correct, lock the buffer */
2824 for_each_buffer_cpu(buffer
, cpu
) {
2825 cpu_buffer
= buffer
->buffers
[cpu
];
2826 overruns
+= local_read(&cpu_buffer
->overrun
);
2831 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2833 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2835 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2837 /* Iterator usage is expected to have record disabled */
2838 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2839 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2840 if (unlikely(!iter
->head_page
))
2842 iter
->head
= iter
->head_page
->read
;
2844 iter
->head_page
= cpu_buffer
->reader_page
;
2845 iter
->head
= cpu_buffer
->reader_page
->read
;
2848 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2850 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2851 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
2852 iter
->cache_read
= cpu_buffer
->read
;
2856 * ring_buffer_iter_reset - reset an iterator
2857 * @iter: The iterator to reset
2859 * Resets the iterator, so that it will start from the beginning
2862 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2864 struct ring_buffer_per_cpu
*cpu_buffer
;
2865 unsigned long flags
;
2870 cpu_buffer
= iter
->cpu_buffer
;
2872 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2873 rb_iter_reset(iter
);
2874 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2876 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2879 * ring_buffer_iter_empty - check if an iterator has no more to read
2880 * @iter: The iterator to check
2882 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2884 struct ring_buffer_per_cpu
*cpu_buffer
;
2886 cpu_buffer
= iter
->cpu_buffer
;
2888 return iter
->head_page
== cpu_buffer
->commit_page
&&
2889 iter
->head
== rb_commit_index(cpu_buffer
);
2891 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2894 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2895 struct ring_buffer_event
*event
)
2899 switch (event
->type_len
) {
2900 case RINGBUF_TYPE_PADDING
:
2903 case RINGBUF_TYPE_TIME_EXTEND
:
2904 delta
= event
->array
[0];
2906 delta
+= event
->time_delta
;
2907 cpu_buffer
->read_stamp
+= delta
;
2910 case RINGBUF_TYPE_TIME_STAMP
:
2911 /* FIXME: not implemented */
2914 case RINGBUF_TYPE_DATA
:
2915 cpu_buffer
->read_stamp
+= event
->time_delta
;
2925 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2926 struct ring_buffer_event
*event
)
2930 switch (event
->type_len
) {
2931 case RINGBUF_TYPE_PADDING
:
2934 case RINGBUF_TYPE_TIME_EXTEND
:
2935 delta
= event
->array
[0];
2937 delta
+= event
->time_delta
;
2938 iter
->read_stamp
+= delta
;
2941 case RINGBUF_TYPE_TIME_STAMP
:
2942 /* FIXME: not implemented */
2945 case RINGBUF_TYPE_DATA
:
2946 iter
->read_stamp
+= event
->time_delta
;
2955 static struct buffer_page
*
2956 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2958 struct buffer_page
*reader
= NULL
;
2959 unsigned long overwrite
;
2960 unsigned long flags
;
2964 local_irq_save(flags
);
2965 arch_spin_lock(&cpu_buffer
->lock
);
2969 * This should normally only loop twice. But because the
2970 * start of the reader inserts an empty page, it causes
2971 * a case where we will loop three times. There should be no
2972 * reason to loop four times (that I know of).
2974 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2979 reader
= cpu_buffer
->reader_page
;
2981 /* If there's more to read, return this page */
2982 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2985 /* Never should we have an index greater than the size */
2986 if (RB_WARN_ON(cpu_buffer
,
2987 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2990 /* check if we caught up to the tail */
2992 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2996 * Reset the reader page to size zero.
2998 local_set(&cpu_buffer
->reader_page
->write
, 0);
2999 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3000 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3001 cpu_buffer
->reader_page
->real_end
= 0;
3005 * Splice the empty reader page into the list around the head.
3007 reader
= rb_set_head_page(cpu_buffer
);
3008 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3009 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3012 * cpu_buffer->pages just needs to point to the buffer, it
3013 * has no specific buffer page to point to. Lets move it out
3014 * of our way so we don't accidentally swap it.
3016 cpu_buffer
->pages
= reader
->list
.prev
;
3018 /* The reader page will be pointing to the new head */
3019 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3022 * We want to make sure we read the overruns after we set up our
3023 * pointers to the next object. The writer side does a
3024 * cmpxchg to cross pages which acts as the mb on the writer
3025 * side. Note, the reader will constantly fail the swap
3026 * while the writer is updating the pointers, so this
3027 * guarantees that the overwrite recorded here is the one we
3028 * want to compare with the last_overrun.
3031 overwrite
= local_read(&(cpu_buffer
->overrun
));
3034 * Here's the tricky part.
3036 * We need to move the pointer past the header page.
3037 * But we can only do that if a writer is not currently
3038 * moving it. The page before the header page has the
3039 * flag bit '1' set if it is pointing to the page we want.
3040 * but if the writer is in the process of moving it
3041 * than it will be '2' or already moved '0'.
3044 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3047 * If we did not convert it, then we must try again.
3053 * Yeah! We succeeded in replacing the page.
3055 * Now make the new head point back to the reader page.
3057 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3058 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3060 /* Finally update the reader page to the new head */
3061 cpu_buffer
->reader_page
= reader
;
3062 rb_reset_reader_page(cpu_buffer
);
3064 if (overwrite
!= cpu_buffer
->last_overrun
) {
3065 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3066 cpu_buffer
->last_overrun
= overwrite
;
3072 arch_spin_unlock(&cpu_buffer
->lock
);
3073 local_irq_restore(flags
);
3078 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3080 struct ring_buffer_event
*event
;
3081 struct buffer_page
*reader
;
3084 reader
= rb_get_reader_page(cpu_buffer
);
3086 /* This function should not be called when buffer is empty */
3087 if (RB_WARN_ON(cpu_buffer
, !reader
))
3090 event
= rb_reader_event(cpu_buffer
);
3092 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3095 rb_update_read_stamp(cpu_buffer
, event
);
3097 length
= rb_event_length(event
);
3098 cpu_buffer
->reader_page
->read
+= length
;
3101 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3103 struct ring_buffer_per_cpu
*cpu_buffer
;
3104 struct ring_buffer_event
*event
;
3107 cpu_buffer
= iter
->cpu_buffer
;
3110 * Check if we are at the end of the buffer.
3112 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3113 /* discarded commits can make the page empty */
3114 if (iter
->head_page
== cpu_buffer
->commit_page
)
3120 event
= rb_iter_head_event(iter
);
3122 length
= rb_event_length(event
);
3125 * This should not be called to advance the header if we are
3126 * at the tail of the buffer.
3128 if (RB_WARN_ON(cpu_buffer
,
3129 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3130 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3133 rb_update_iter_read_stamp(iter
, event
);
3135 iter
->head
+= length
;
3137 /* check for end of page padding */
3138 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3139 (iter
->head_page
!= cpu_buffer
->commit_page
))
3140 rb_advance_iter(iter
);
3143 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3145 return cpu_buffer
->lost_events
;
3148 static struct ring_buffer_event
*
3149 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3150 unsigned long *lost_events
)
3152 struct ring_buffer_event
*event
;
3153 struct buffer_page
*reader
;
3158 * We repeat when a time extend is encountered.
3159 * Since the time extend is always attached to a data event,
3160 * we should never loop more than once.
3161 * (We never hit the following condition more than twice).
3163 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3166 reader
= rb_get_reader_page(cpu_buffer
);
3170 event
= rb_reader_event(cpu_buffer
);
3172 switch (event
->type_len
) {
3173 case RINGBUF_TYPE_PADDING
:
3174 if (rb_null_event(event
))
3175 RB_WARN_ON(cpu_buffer
, 1);
3177 * Because the writer could be discarding every
3178 * event it creates (which would probably be bad)
3179 * if we were to go back to "again" then we may never
3180 * catch up, and will trigger the warn on, or lock
3181 * the box. Return the padding, and we will release
3182 * the current locks, and try again.
3186 case RINGBUF_TYPE_TIME_EXTEND
:
3187 /* Internal data, OK to advance */
3188 rb_advance_reader(cpu_buffer
);
3191 case RINGBUF_TYPE_TIME_STAMP
:
3192 /* FIXME: not implemented */
3193 rb_advance_reader(cpu_buffer
);
3196 case RINGBUF_TYPE_DATA
:
3198 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3199 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3200 cpu_buffer
->cpu
, ts
);
3203 *lost_events
= rb_lost_events(cpu_buffer
);
3212 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3214 static struct ring_buffer_event
*
3215 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3217 struct ring_buffer
*buffer
;
3218 struct ring_buffer_per_cpu
*cpu_buffer
;
3219 struct ring_buffer_event
*event
;
3222 cpu_buffer
= iter
->cpu_buffer
;
3223 buffer
= cpu_buffer
->buffer
;
3226 * Check if someone performed a consuming read to
3227 * the buffer. A consuming read invalidates the iterator
3228 * and we need to reset the iterator in this case.
3230 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3231 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3232 rb_iter_reset(iter
);
3235 if (ring_buffer_iter_empty(iter
))
3239 * We repeat when a time extend is encountered.
3240 * Since the time extend is always attached to a data event,
3241 * we should never loop more than once.
3242 * (We never hit the following condition more than twice).
3244 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3247 if (rb_per_cpu_empty(cpu_buffer
))
3250 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3255 event
= rb_iter_head_event(iter
);
3257 switch (event
->type_len
) {
3258 case RINGBUF_TYPE_PADDING
:
3259 if (rb_null_event(event
)) {
3263 rb_advance_iter(iter
);
3266 case RINGBUF_TYPE_TIME_EXTEND
:
3267 /* Internal data, OK to advance */
3268 rb_advance_iter(iter
);
3271 case RINGBUF_TYPE_TIME_STAMP
:
3272 /* FIXME: not implemented */
3273 rb_advance_iter(iter
);
3276 case RINGBUF_TYPE_DATA
:
3278 *ts
= iter
->read_stamp
+ event
->time_delta
;
3279 ring_buffer_normalize_time_stamp(buffer
,
3280 cpu_buffer
->cpu
, ts
);
3290 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3292 static inline int rb_ok_to_lock(void)
3295 * If an NMI die dumps out the content of the ring buffer
3296 * do not grab locks. We also permanently disable the ring
3297 * buffer too. A one time deal is all you get from reading
3298 * the ring buffer from an NMI.
3300 if (likely(!in_nmi()))
3303 tracing_off_permanent();
3308 * ring_buffer_peek - peek at the next event to be read
3309 * @buffer: The ring buffer to read
3310 * @cpu: The cpu to peak at
3311 * @ts: The timestamp counter of this event.
3312 * @lost_events: a variable to store if events were lost (may be NULL)
3314 * This will return the event that will be read next, but does
3315 * not consume the data.
3317 struct ring_buffer_event
*
3318 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3319 unsigned long *lost_events
)
3321 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3322 struct ring_buffer_event
*event
;
3323 unsigned long flags
;
3326 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3329 dolock
= rb_ok_to_lock();
3331 local_irq_save(flags
);
3333 raw_spin_lock(&cpu_buffer
->reader_lock
);
3334 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3335 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3336 rb_advance_reader(cpu_buffer
);
3338 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3339 local_irq_restore(flags
);
3341 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3348 * ring_buffer_iter_peek - peek at the next event to be read
3349 * @iter: The ring buffer iterator
3350 * @ts: The timestamp counter of this event.
3352 * This will return the event that will be read next, but does
3353 * not increment the iterator.
3355 struct ring_buffer_event
*
3356 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3358 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3359 struct ring_buffer_event
*event
;
3360 unsigned long flags
;
3363 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3364 event
= rb_iter_peek(iter
, ts
);
3365 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3367 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3374 * ring_buffer_consume - return an event and consume it
3375 * @buffer: The ring buffer to get the next event from
3376 * @cpu: the cpu to read the buffer from
3377 * @ts: a variable to store the timestamp (may be NULL)
3378 * @lost_events: a variable to store if events were lost (may be NULL)
3380 * Returns the next event in the ring buffer, and that event is consumed.
3381 * Meaning, that sequential reads will keep returning a different event,
3382 * and eventually empty the ring buffer if the producer is slower.
3384 struct ring_buffer_event
*
3385 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3386 unsigned long *lost_events
)
3388 struct ring_buffer_per_cpu
*cpu_buffer
;
3389 struct ring_buffer_event
*event
= NULL
;
3390 unsigned long flags
;
3393 dolock
= rb_ok_to_lock();
3396 /* might be called in atomic */
3399 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3402 cpu_buffer
= buffer
->buffers
[cpu
];
3403 local_irq_save(flags
);
3405 raw_spin_lock(&cpu_buffer
->reader_lock
);
3407 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3409 cpu_buffer
->lost_events
= 0;
3410 rb_advance_reader(cpu_buffer
);
3414 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3415 local_irq_restore(flags
);
3420 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3425 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3428 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3429 * @buffer: The ring buffer to read from
3430 * @cpu: The cpu buffer to iterate over
3432 * This performs the initial preparations necessary to iterate
3433 * through the buffer. Memory is allocated, buffer recording
3434 * is disabled, and the iterator pointer is returned to the caller.
3436 * Disabling buffer recordng prevents the reading from being
3437 * corrupted. This is not a consuming read, so a producer is not
3440 * After a sequence of ring_buffer_read_prepare calls, the user is
3441 * expected to make at least one call to ring_buffer_prepare_sync.
3442 * Afterwards, ring_buffer_read_start is invoked to get things going
3445 * This overall must be paired with ring_buffer_finish.
3447 struct ring_buffer_iter
*
3448 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3450 struct ring_buffer_per_cpu
*cpu_buffer
;
3451 struct ring_buffer_iter
*iter
;
3453 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3456 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3460 cpu_buffer
= buffer
->buffers
[cpu
];
3462 iter
->cpu_buffer
= cpu_buffer
;
3464 atomic_inc(&cpu_buffer
->record_disabled
);
3468 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3471 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3473 * All previously invoked ring_buffer_read_prepare calls to prepare
3474 * iterators will be synchronized. Afterwards, read_buffer_read_start
3475 * calls on those iterators are allowed.
3478 ring_buffer_read_prepare_sync(void)
3480 synchronize_sched();
3482 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3485 * ring_buffer_read_start - start a non consuming read of the buffer
3486 * @iter: The iterator returned by ring_buffer_read_prepare
3488 * This finalizes the startup of an iteration through the buffer.
3489 * The iterator comes from a call to ring_buffer_read_prepare and
3490 * an intervening ring_buffer_read_prepare_sync must have been
3493 * Must be paired with ring_buffer_finish.
3496 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3498 struct ring_buffer_per_cpu
*cpu_buffer
;
3499 unsigned long flags
;
3504 cpu_buffer
= iter
->cpu_buffer
;
3506 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3507 arch_spin_lock(&cpu_buffer
->lock
);
3508 rb_iter_reset(iter
);
3509 arch_spin_unlock(&cpu_buffer
->lock
);
3510 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3512 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3515 * ring_buffer_finish - finish reading the iterator of the buffer
3516 * @iter: The iterator retrieved by ring_buffer_start
3518 * This re-enables the recording to the buffer, and frees the
3522 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3524 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3526 atomic_dec(&cpu_buffer
->record_disabled
);
3529 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3532 * ring_buffer_read - read the next item in the ring buffer by the iterator
3533 * @iter: The ring buffer iterator
3534 * @ts: The time stamp of the event read.
3536 * This reads the next event in the ring buffer and increments the iterator.
3538 struct ring_buffer_event
*
3539 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3541 struct ring_buffer_event
*event
;
3542 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3543 unsigned long flags
;
3545 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3547 event
= rb_iter_peek(iter
, ts
);
3551 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3554 rb_advance_iter(iter
);
3556 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3560 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3563 * ring_buffer_size - return the size of the ring buffer (in bytes)
3564 * @buffer: The ring buffer.
3566 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3568 return BUF_PAGE_SIZE
* buffer
->pages
;
3570 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3573 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3575 rb_head_page_deactivate(cpu_buffer
);
3577 cpu_buffer
->head_page
3578 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3579 local_set(&cpu_buffer
->head_page
->write
, 0);
3580 local_set(&cpu_buffer
->head_page
->entries
, 0);
3581 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3583 cpu_buffer
->head_page
->read
= 0;
3585 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3586 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3588 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3589 local_set(&cpu_buffer
->reader_page
->write
, 0);
3590 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3591 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3592 cpu_buffer
->reader_page
->read
= 0;
3594 local_set(&cpu_buffer
->commit_overrun
, 0);
3595 local_set(&cpu_buffer
->entries_bytes
, 0);
3596 local_set(&cpu_buffer
->overrun
, 0);
3597 local_set(&cpu_buffer
->entries
, 0);
3598 local_set(&cpu_buffer
->committing
, 0);
3599 local_set(&cpu_buffer
->commits
, 0);
3600 cpu_buffer
->read
= 0;
3601 cpu_buffer
->read_bytes
= 0;
3603 cpu_buffer
->write_stamp
= 0;
3604 cpu_buffer
->read_stamp
= 0;
3606 cpu_buffer
->lost_events
= 0;
3607 cpu_buffer
->last_overrun
= 0;
3609 rb_head_page_activate(cpu_buffer
);
3613 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3614 * @buffer: The ring buffer to reset a per cpu buffer of
3615 * @cpu: The CPU buffer to be reset
3617 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3619 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3620 unsigned long flags
;
3622 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3625 atomic_inc(&cpu_buffer
->record_disabled
);
3627 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3629 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3632 arch_spin_lock(&cpu_buffer
->lock
);
3634 rb_reset_cpu(cpu_buffer
);
3636 arch_spin_unlock(&cpu_buffer
->lock
);
3639 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3641 atomic_dec(&cpu_buffer
->record_disabled
);
3643 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3646 * ring_buffer_reset - reset a ring buffer
3647 * @buffer: The ring buffer to reset all cpu buffers
3649 void ring_buffer_reset(struct ring_buffer
*buffer
)
3653 for_each_buffer_cpu(buffer
, cpu
)
3654 ring_buffer_reset_cpu(buffer
, cpu
);
3656 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3659 * rind_buffer_empty - is the ring buffer empty?
3660 * @buffer: The ring buffer to test
3662 int ring_buffer_empty(struct ring_buffer
*buffer
)
3664 struct ring_buffer_per_cpu
*cpu_buffer
;
3665 unsigned long flags
;
3670 dolock
= rb_ok_to_lock();
3672 /* yes this is racy, but if you don't like the race, lock the buffer */
3673 for_each_buffer_cpu(buffer
, cpu
) {
3674 cpu_buffer
= buffer
->buffers
[cpu
];
3675 local_irq_save(flags
);
3677 raw_spin_lock(&cpu_buffer
->reader_lock
);
3678 ret
= rb_per_cpu_empty(cpu_buffer
);
3680 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3681 local_irq_restore(flags
);
3689 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3692 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3693 * @buffer: The ring buffer
3694 * @cpu: The CPU buffer to test
3696 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3698 struct ring_buffer_per_cpu
*cpu_buffer
;
3699 unsigned long flags
;
3703 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3706 dolock
= rb_ok_to_lock();
3708 cpu_buffer
= buffer
->buffers
[cpu
];
3709 local_irq_save(flags
);
3711 raw_spin_lock(&cpu_buffer
->reader_lock
);
3712 ret
= rb_per_cpu_empty(cpu_buffer
);
3714 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3715 local_irq_restore(flags
);
3719 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3721 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3723 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3724 * @buffer_a: One buffer to swap with
3725 * @buffer_b: The other buffer to swap with
3727 * This function is useful for tracers that want to take a "snapshot"
3728 * of a CPU buffer and has another back up buffer lying around.
3729 * it is expected that the tracer handles the cpu buffer not being
3730 * used at the moment.
3732 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3733 struct ring_buffer
*buffer_b
, int cpu
)
3735 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3736 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3739 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3740 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3743 /* At least make sure the two buffers are somewhat the same */
3744 if (buffer_a
->pages
!= buffer_b
->pages
)
3749 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3752 if (atomic_read(&buffer_a
->record_disabled
))
3755 if (atomic_read(&buffer_b
->record_disabled
))
3758 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3759 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3761 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3764 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3768 * We can't do a synchronize_sched here because this
3769 * function can be called in atomic context.
3770 * Normally this will be called from the same CPU as cpu.
3771 * If not it's up to the caller to protect this.
3773 atomic_inc(&cpu_buffer_a
->record_disabled
);
3774 atomic_inc(&cpu_buffer_b
->record_disabled
);
3777 if (local_read(&cpu_buffer_a
->committing
))
3779 if (local_read(&cpu_buffer_b
->committing
))
3782 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3783 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3785 cpu_buffer_b
->buffer
= buffer_a
;
3786 cpu_buffer_a
->buffer
= buffer_b
;
3791 atomic_dec(&cpu_buffer_a
->record_disabled
);
3792 atomic_dec(&cpu_buffer_b
->record_disabled
);
3796 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3797 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3800 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3801 * @buffer: the buffer to allocate for.
3803 * This function is used in conjunction with ring_buffer_read_page.
3804 * When reading a full page from the ring buffer, these functions
3805 * can be used to speed up the process. The calling function should
3806 * allocate a few pages first with this function. Then when it
3807 * needs to get pages from the ring buffer, it passes the result
3808 * of this function into ring_buffer_read_page, which will swap
3809 * the page that was allocated, with the read page of the buffer.
3812 * The page allocated, or NULL on error.
3814 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
3816 struct buffer_data_page
*bpage
;
3819 page
= alloc_pages_node(cpu_to_node(cpu
),
3820 GFP_KERNEL
| __GFP_NORETRY
, 0);
3824 bpage
= page_address(page
);
3826 rb_init_page(bpage
);
3830 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3833 * ring_buffer_free_read_page - free an allocated read page
3834 * @buffer: the buffer the page was allocate for
3835 * @data: the page to free
3837 * Free a page allocated from ring_buffer_alloc_read_page.
3839 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3841 free_page((unsigned long)data
);
3843 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3846 * ring_buffer_read_page - extract a page from the ring buffer
3847 * @buffer: buffer to extract from
3848 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3849 * @len: amount to extract
3850 * @cpu: the cpu of the buffer to extract
3851 * @full: should the extraction only happen when the page is full.
3853 * This function will pull out a page from the ring buffer and consume it.
3854 * @data_page must be the address of the variable that was returned
3855 * from ring_buffer_alloc_read_page. This is because the page might be used
3856 * to swap with a page in the ring buffer.
3859 * rpage = ring_buffer_alloc_read_page(buffer);
3862 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3864 * process_page(rpage, ret);
3866 * When @full is set, the function will not return true unless
3867 * the writer is off the reader page.
3869 * Note: it is up to the calling functions to handle sleeps and wakeups.
3870 * The ring buffer can be used anywhere in the kernel and can not
3871 * blindly call wake_up. The layer that uses the ring buffer must be
3872 * responsible for that.
3875 * >=0 if data has been transferred, returns the offset of consumed data.
3876 * <0 if no data has been transferred.
3878 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3879 void **data_page
, size_t len
, int cpu
, int full
)
3881 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3882 struct ring_buffer_event
*event
;
3883 struct buffer_data_page
*bpage
;
3884 struct buffer_page
*reader
;
3885 unsigned long missed_events
;
3886 unsigned long flags
;
3887 unsigned int commit
;
3892 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3896 * If len is not big enough to hold the page header, then
3897 * we can not copy anything.
3899 if (len
<= BUF_PAGE_HDR_SIZE
)
3902 len
-= BUF_PAGE_HDR_SIZE
;
3911 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3913 reader
= rb_get_reader_page(cpu_buffer
);
3917 event
= rb_reader_event(cpu_buffer
);
3919 read
= reader
->read
;
3920 commit
= rb_page_commit(reader
);
3922 /* Check if any events were dropped */
3923 missed_events
= cpu_buffer
->lost_events
;
3926 * If this page has been partially read or
3927 * if len is not big enough to read the rest of the page or
3928 * a writer is still on the page, then
3929 * we must copy the data from the page to the buffer.
3930 * Otherwise, we can simply swap the page with the one passed in.
3932 if (read
|| (len
< (commit
- read
)) ||
3933 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3934 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3935 unsigned int rpos
= read
;
3936 unsigned int pos
= 0;
3942 if (len
> (commit
- read
))
3943 len
= (commit
- read
);
3945 /* Always keep the time extend and data together */
3946 size
= rb_event_ts_length(event
);
3951 /* save the current timestamp, since the user will need it */
3952 save_timestamp
= cpu_buffer
->read_stamp
;
3954 /* Need to copy one event at a time */
3956 /* We need the size of one event, because
3957 * rb_advance_reader only advances by one event,
3958 * whereas rb_event_ts_length may include the size of
3959 * one or two events.
3960 * We have already ensured there's enough space if this
3961 * is a time extend. */
3962 size
= rb_event_length(event
);
3963 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3967 rb_advance_reader(cpu_buffer
);
3968 rpos
= reader
->read
;
3974 event
= rb_reader_event(cpu_buffer
);
3975 /* Always keep the time extend and data together */
3976 size
= rb_event_ts_length(event
);
3977 } while (len
>= size
);
3980 local_set(&bpage
->commit
, pos
);
3981 bpage
->time_stamp
= save_timestamp
;
3983 /* we copied everything to the beginning */
3986 /* update the entry counter */
3987 cpu_buffer
->read
+= rb_page_entries(reader
);
3988 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
3990 /* swap the pages */
3991 rb_init_page(bpage
);
3992 bpage
= reader
->page
;
3993 reader
->page
= *data_page
;
3994 local_set(&reader
->write
, 0);
3995 local_set(&reader
->entries
, 0);
4000 * Use the real_end for the data size,
4001 * This gives us a chance to store the lost events
4004 if (reader
->real_end
)
4005 local_set(&bpage
->commit
, reader
->real_end
);
4009 cpu_buffer
->lost_events
= 0;
4011 commit
= local_read(&bpage
->commit
);
4013 * Set a flag in the commit field if we lost events
4015 if (missed_events
) {
4016 /* If there is room at the end of the page to save the
4017 * missed events, then record it there.
4019 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4020 memcpy(&bpage
->data
[commit
], &missed_events
,
4021 sizeof(missed_events
));
4022 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4023 commit
+= sizeof(missed_events
);
4025 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4029 * This page may be off to user land. Zero it out here.
4031 if (commit
< BUF_PAGE_SIZE
)
4032 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4035 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4042 #ifdef CONFIG_TRACING
4044 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
4045 size_t cnt
, loff_t
*ppos
)
4047 unsigned long *p
= filp
->private_data
;
4051 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
4052 r
= sprintf(buf
, "permanently disabled\n");
4054 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
4056 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
4060 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
4061 size_t cnt
, loff_t
*ppos
)
4063 unsigned long *p
= filp
->private_data
;
4067 ret
= kstrtoul_from_user(ubuf
, cnt
, 10, &val
);
4072 set_bit(RB_BUFFERS_ON_BIT
, p
);
4074 clear_bit(RB_BUFFERS_ON_BIT
, p
);
4081 static const struct file_operations rb_simple_fops
= {
4082 .open
= tracing_open_generic
,
4083 .read
= rb_simple_read
,
4084 .write
= rb_simple_write
,
4085 .llseek
= default_llseek
,
4089 static __init
int rb_init_debugfs(void)
4091 struct dentry
*d_tracer
;
4093 d_tracer
= tracing_init_dentry();
4095 trace_create_file("tracing_on", 0644, d_tracer
,
4096 &ring_buffer_flags
, &rb_simple_fops
);
4101 fs_initcall(rb_init_debugfs
);
4104 #ifdef CONFIG_HOTPLUG_CPU
4105 static int rb_cpu_notify(struct notifier_block
*self
,
4106 unsigned long action
, void *hcpu
)
4108 struct ring_buffer
*buffer
=
4109 container_of(self
, struct ring_buffer
, cpu_notify
);
4110 long cpu
= (long)hcpu
;
4113 case CPU_UP_PREPARE
:
4114 case CPU_UP_PREPARE_FROZEN
:
4115 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4118 buffer
->buffers
[cpu
] =
4119 rb_allocate_cpu_buffer(buffer
, cpu
);
4120 if (!buffer
->buffers
[cpu
]) {
4121 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4126 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4128 case CPU_DOWN_PREPARE
:
4129 case CPU_DOWN_PREPARE_FROZEN
:
4132 * If we were to free the buffer, then the user would
4133 * lose any trace that was in the buffer.