1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
65 #define DEBUG_CDB_H(x...)
68 /* #define DEBUG_CMD_MAP */
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
72 #define DEBUG_CMD_M(x...)
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
79 #define DEBUG_MEM(x...)
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
86 #define DEBUG_MEM2(x...)
89 /* #define DEBUG_SG_CALC */
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
93 #define DEBUG_SC(x...)
96 /* #define DEBUG_SE_OBJ */
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
100 #define DEBUG_SO(x...)
103 /* #define DEBUG_CMD_VOL */
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
107 #define DEBUG_VOL(x...)
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
114 #define DEBUG_CS(x...)
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
121 #define DEBUG_PT(x...)
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
128 #define DEBUG_TS(x...)
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
135 #define DEBUG_TRANSPORT_S(x...)
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
142 #define DEBUG_TF(x...)
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
149 #define DEBUG_DO(x...)
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
156 #define DEBUG_TSTATE(x...)
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
163 #define DEBUG_ST(x...)
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
170 #define DEBUG_TT(x...)
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
177 #define DEBUG_GRF(x...)
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
184 #define DEBUG_STA(x...)
187 struct se_global
*se_global
;
189 static struct kmem_cache
*se_cmd_cache
;
190 static struct kmem_cache
*se_sess_cache
;
191 struct kmem_cache
*se_tmr_req_cache
;
192 struct kmem_cache
*se_ua_cache
;
193 struct kmem_cache
*se_mem_cache
;
194 struct kmem_cache
*t10_pr_reg_cache
;
195 struct kmem_cache
*t10_alua_lu_gp_cache
;
196 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
197 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
198 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t
)(struct se_task
*, u32
);
203 static int transport_generic_write_pending(struct se_cmd
*);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device
*dev
);
206 static void transport_complete_task_attr(struct se_cmd
*cmd
);
207 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
208 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
209 static u32
transport_generic_get_cdb_count(struct se_cmd
*cmd
,
210 unsigned long long starting_lba
, u32 sectors
,
211 enum dma_data_direction data_direction
,
212 struct list_head
*mem_list
, int set_counts
);
213 static int transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
,
215 static int transport_generic_remove(struct se_cmd
*cmd
,
216 int release_to_pool
, int session_reinstatement
);
217 static int transport_get_sectors(struct se_cmd
*cmd
);
218 static struct list_head
*transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd
*cmd
,
220 struct list_head
*se_mem_list
, void *in_mem
,
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd
*cmd
,
223 unsigned char *dst
, struct list_head
*se_mem_list
);
224 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
225 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
226 struct se_queue_obj
*qobj
);
227 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
228 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
230 int init_se_global(void)
232 struct se_global
*global
;
234 global
= kzalloc(sizeof(struct se_global
), GFP_KERNEL
);
236 printk(KERN_ERR
"Unable to allocate memory for struct se_global\n");
240 INIT_LIST_HEAD(&global
->g_lu_gps_list
);
241 INIT_LIST_HEAD(&global
->g_se_tpg_list
);
242 INIT_LIST_HEAD(&global
->g_hba_list
);
243 INIT_LIST_HEAD(&global
->g_se_dev_list
);
244 spin_lock_init(&global
->g_device_lock
);
245 spin_lock_init(&global
->hba_lock
);
246 spin_lock_init(&global
->se_tpg_lock
);
247 spin_lock_init(&global
->lu_gps_lock
);
248 spin_lock_init(&global
->plugin_class_lock
);
250 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
251 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
252 if (!(se_cmd_cache
)) {
253 printk(KERN_ERR
"kmem_cache_create for struct se_cmd failed\n");
256 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
257 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
259 if (!(se_tmr_req_cache
)) {
260 printk(KERN_ERR
"kmem_cache_create() for struct se_tmr_req"
264 se_sess_cache
= kmem_cache_create("se_sess_cache",
265 sizeof(struct se_session
), __alignof__(struct se_session
),
267 if (!(se_sess_cache
)) {
268 printk(KERN_ERR
"kmem_cache_create() for struct se_session"
272 se_ua_cache
= kmem_cache_create("se_ua_cache",
273 sizeof(struct se_ua
), __alignof__(struct se_ua
),
275 if (!(se_ua_cache
)) {
276 printk(KERN_ERR
"kmem_cache_create() for struct se_ua failed\n");
279 se_mem_cache
= kmem_cache_create("se_mem_cache",
280 sizeof(struct se_mem
), __alignof__(struct se_mem
), 0, NULL
);
281 if (!(se_mem_cache
)) {
282 printk(KERN_ERR
"kmem_cache_create() for struct se_mem failed\n");
285 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
286 sizeof(struct t10_pr_registration
),
287 __alignof__(struct t10_pr_registration
), 0, NULL
);
288 if (!(t10_pr_reg_cache
)) {
289 printk(KERN_ERR
"kmem_cache_create() for struct t10_pr_registration"
293 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
294 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
296 if (!(t10_alua_lu_gp_cache
)) {
297 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_cache"
301 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
302 sizeof(struct t10_alua_lu_gp_member
),
303 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
304 if (!(t10_alua_lu_gp_mem_cache
)) {
305 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_mem_"
309 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
310 sizeof(struct t10_alua_tg_pt_gp
),
311 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
312 if (!(t10_alua_tg_pt_gp_cache
)) {
313 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
317 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
318 "t10_alua_tg_pt_gp_mem_cache",
319 sizeof(struct t10_alua_tg_pt_gp_member
),
320 __alignof__(struct t10_alua_tg_pt_gp_member
),
322 if (!(t10_alua_tg_pt_gp_mem_cache
)) {
323 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
333 kmem_cache_destroy(se_cmd_cache
);
334 if (se_tmr_req_cache
)
335 kmem_cache_destroy(se_tmr_req_cache
);
337 kmem_cache_destroy(se_sess_cache
);
339 kmem_cache_destroy(se_ua_cache
);
341 kmem_cache_destroy(se_mem_cache
);
342 if (t10_pr_reg_cache
)
343 kmem_cache_destroy(t10_pr_reg_cache
);
344 if (t10_alua_lu_gp_cache
)
345 kmem_cache_destroy(t10_alua_lu_gp_cache
);
346 if (t10_alua_lu_gp_mem_cache
)
347 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
348 if (t10_alua_tg_pt_gp_cache
)
349 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
350 if (t10_alua_tg_pt_gp_mem_cache
)
351 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
356 void release_se_global(void)
358 struct se_global
*global
;
364 kmem_cache_destroy(se_cmd_cache
);
365 kmem_cache_destroy(se_tmr_req_cache
);
366 kmem_cache_destroy(se_sess_cache
);
367 kmem_cache_destroy(se_ua_cache
);
368 kmem_cache_destroy(se_mem_cache
);
369 kmem_cache_destroy(t10_pr_reg_cache
);
370 kmem_cache_destroy(t10_alua_lu_gp_cache
);
371 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
372 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
373 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table
;
383 * Initialize the index table for allocating unique row indexes to various mib
386 void init_scsi_index_table(void)
388 memset(&scsi_index_table
, 0, sizeof(struct scsi_index_table
));
389 spin_lock_init(&scsi_index_table
.lock
);
393 * Allocate a new row index for the entry type specified
395 u32
scsi_get_new_index(scsi_index_t type
)
399 if ((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
)) {
400 printk(KERN_ERR
"Invalid index type %d\n", type
);
404 spin_lock(&scsi_index_table
.lock
);
405 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
407 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
408 spin_unlock(&scsi_index_table
.lock
);
413 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
415 atomic_set(&qobj
->queue_cnt
, 0);
416 INIT_LIST_HEAD(&qobj
->qobj_list
);
417 init_waitqueue_head(&qobj
->thread_wq
);
418 spin_lock_init(&qobj
->cmd_queue_lock
);
420 EXPORT_SYMBOL(transport_init_queue_obj
);
422 static int transport_subsystem_reqmods(void)
426 ret
= request_module("target_core_iblock");
428 printk(KERN_ERR
"Unable to load target_core_iblock\n");
430 ret
= request_module("target_core_file");
432 printk(KERN_ERR
"Unable to load target_core_file\n");
434 ret
= request_module("target_core_pscsi");
436 printk(KERN_ERR
"Unable to load target_core_pscsi\n");
438 ret
= request_module("target_core_stgt");
440 printk(KERN_ERR
"Unable to load target_core_stgt\n");
445 int transport_subsystem_check_init(void)
447 if (se_global
->g_sub_api_initialized
)
450 * Request the loading of known TCM subsystem plugins..
452 if (transport_subsystem_reqmods() < 0)
455 se_global
->g_sub_api_initialized
= 1;
459 struct se_session
*transport_init_session(void)
461 struct se_session
*se_sess
;
463 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
465 printk(KERN_ERR
"Unable to allocate struct se_session from"
467 return ERR_PTR(-ENOMEM
);
469 INIT_LIST_HEAD(&se_sess
->sess_list
);
470 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
474 EXPORT_SYMBOL(transport_init_session
);
477 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
479 void __transport_register_session(
480 struct se_portal_group
*se_tpg
,
481 struct se_node_acl
*se_nacl
,
482 struct se_session
*se_sess
,
483 void *fabric_sess_ptr
)
485 unsigned char buf
[PR_REG_ISID_LEN
];
487 se_sess
->se_tpg
= se_tpg
;
488 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
490 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
492 * Only set for struct se_session's that will actually be moving I/O.
493 * eg: *NOT* discovery sessions.
497 * If the fabric module supports an ISID based TransportID,
498 * save this value in binary from the fabric I_T Nexus now.
500 if (TPG_TFO(se_tpg
)->sess_get_initiator_sid
!= NULL
) {
501 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
502 TPG_TFO(se_tpg
)->sess_get_initiator_sid(se_sess
,
503 &buf
[0], PR_REG_ISID_LEN
);
504 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
506 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
508 * The se_nacl->nacl_sess pointer will be set to the
509 * last active I_T Nexus for each struct se_node_acl.
511 se_nacl
->nacl_sess
= se_sess
;
513 list_add_tail(&se_sess
->sess_acl_list
,
514 &se_nacl
->acl_sess_list
);
515 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
517 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
519 printk(KERN_INFO
"TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520 TPG_TFO(se_tpg
)->get_fabric_name(), se_sess
->fabric_sess_ptr
);
522 EXPORT_SYMBOL(__transport_register_session
);
524 void transport_register_session(
525 struct se_portal_group
*se_tpg
,
526 struct se_node_acl
*se_nacl
,
527 struct se_session
*se_sess
,
528 void *fabric_sess_ptr
)
530 spin_lock_bh(&se_tpg
->session_lock
);
531 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
532 spin_unlock_bh(&se_tpg
->session_lock
);
534 EXPORT_SYMBOL(transport_register_session
);
536 void transport_deregister_session_configfs(struct se_session
*se_sess
)
538 struct se_node_acl
*se_nacl
;
541 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
543 se_nacl
= se_sess
->se_node_acl
;
545 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
546 list_del(&se_sess
->sess_acl_list
);
548 * If the session list is empty, then clear the pointer.
549 * Otherwise, set the struct se_session pointer from the tail
550 * element of the per struct se_node_acl active session list.
552 if (list_empty(&se_nacl
->acl_sess_list
))
553 se_nacl
->nacl_sess
= NULL
;
555 se_nacl
->nacl_sess
= container_of(
556 se_nacl
->acl_sess_list
.prev
,
557 struct se_session
, sess_acl_list
);
559 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
562 EXPORT_SYMBOL(transport_deregister_session_configfs
);
564 void transport_free_session(struct se_session
*se_sess
)
566 kmem_cache_free(se_sess_cache
, se_sess
);
568 EXPORT_SYMBOL(transport_free_session
);
570 void transport_deregister_session(struct se_session
*se_sess
)
572 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
573 struct se_node_acl
*se_nacl
;
576 transport_free_session(se_sess
);
580 spin_lock_bh(&se_tpg
->session_lock
);
581 list_del(&se_sess
->sess_list
);
582 se_sess
->se_tpg
= NULL
;
583 se_sess
->fabric_sess_ptr
= NULL
;
584 spin_unlock_bh(&se_tpg
->session_lock
);
587 * Determine if we need to do extra work for this initiator node's
588 * struct se_node_acl if it had been previously dynamically generated.
590 se_nacl
= se_sess
->se_node_acl
;
592 spin_lock_bh(&se_tpg
->acl_node_lock
);
593 if (se_nacl
->dynamic_node_acl
) {
594 if (!(TPG_TFO(se_tpg
)->tpg_check_demo_mode_cache(
596 list_del(&se_nacl
->acl_list
);
597 se_tpg
->num_node_acls
--;
598 spin_unlock_bh(&se_tpg
->acl_node_lock
);
600 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
601 core_free_device_list_for_node(se_nacl
, se_tpg
);
602 TPG_TFO(se_tpg
)->tpg_release_fabric_acl(se_tpg
,
604 spin_lock_bh(&se_tpg
->acl_node_lock
);
607 spin_unlock_bh(&se_tpg
->acl_node_lock
);
610 transport_free_session(se_sess
);
612 printk(KERN_INFO
"TARGET_CORE[%s]: Deregistered fabric_sess\n",
613 TPG_TFO(se_tpg
)->get_fabric_name());
615 EXPORT_SYMBOL(transport_deregister_session
);
618 * Called with T_TASK(cmd)->t_state_lock held.
620 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
622 struct se_device
*dev
;
623 struct se_task
*task
;
629 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
634 if (atomic_read(&task
->task_active
))
637 if (!(atomic_read(&task
->task_state_active
)))
640 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
641 list_del(&task
->t_state_list
);
642 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643 CMD_TFO(cmd
)->tfo_get_task_tag(cmd
), dev
, task
);
644 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
646 atomic_set(&task
->task_state_active
, 0);
647 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_ex_left
);
651 /* transport_cmd_check_stop():
653 * 'transport_off = 1' determines if t_transport_active should be cleared.
654 * 'transport_off = 2' determines if task_dev_state should be removed.
656 * A non-zero u8 t_state sets cmd->t_state.
657 * Returns 1 when command is stopped, else 0.
659 static int transport_cmd_check_stop(
666 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
668 * Determine if IOCTL context caller in requesting the stopping of this
669 * command for LUN shutdown purposes.
671 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
672 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
674 CMD_TFO(cmd
)->get_task_tag(cmd
));
676 cmd
->deferred_t_state
= cmd
->t_state
;
677 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
678 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
679 if (transport_off
== 2)
680 transport_all_task_dev_remove_state(cmd
);
681 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
683 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
687 * Determine if frontend context caller is requesting the stopping of
688 * this command for frontend excpections.
690 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
691 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
693 CMD_TFO(cmd
)->get_task_tag(cmd
));
695 cmd
->deferred_t_state
= cmd
->t_state
;
696 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
697 if (transport_off
== 2)
698 transport_all_task_dev_remove_state(cmd
);
701 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
704 if (transport_off
== 2)
706 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
708 complete(&T_TASK(cmd
)->t_transport_stop_comp
);
712 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
713 if (transport_off
== 2) {
714 transport_all_task_dev_remove_state(cmd
);
716 * Clear struct se_cmd->se_lun before the transport_off == 2
717 * handoff to fabric module.
721 * Some fabric modules like tcm_loop can release
722 * their internally allocated I/O reference now and
725 if (CMD_TFO(cmd
)->check_stop_free
!= NULL
) {
726 spin_unlock_irqrestore(
727 &T_TASK(cmd
)->t_state_lock
, flags
);
729 CMD_TFO(cmd
)->check_stop_free(cmd
);
733 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
737 cmd
->t_state
= t_state
;
738 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
745 return transport_cmd_check_stop(cmd
, 2, 0);
748 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
750 struct se_lun
*lun
= SE_LUN(cmd
);
756 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
757 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
758 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
761 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
762 transport_all_task_dev_remove_state(cmd
);
763 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
767 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
768 if (atomic_read(&T_TASK(cmd
)->transport_lun_active
)) {
769 list_del(&cmd
->se_lun_list
);
770 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
772 printk(KERN_INFO
"Removed ITT: 0x%08x from LUN LIST[%d]\n"
773 CMD_TFO(cmd
)->get_task_tag(cmd
), lun
->unpacked_lun
);
776 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
779 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
781 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
782 transport_lun_remove_cmd(cmd
);
784 if (transport_cmd_check_stop_to_fabric(cmd
))
787 transport_generic_remove(cmd
, 0, 0);
790 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
792 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
794 if (transport_cmd_check_stop_to_fabric(cmd
))
797 transport_generic_remove(cmd
, 0, 0);
800 static int transport_add_cmd_to_queue(
804 struct se_device
*dev
= cmd
->se_dev
;
805 struct se_queue_obj
*qobj
= dev
->dev_queue_obj
;
806 struct se_queue_req
*qr
;
809 qr
= kzalloc(sizeof(struct se_queue_req
), GFP_ATOMIC
);
811 printk(KERN_ERR
"Unable to allocate memory for"
812 " struct se_queue_req\n");
815 INIT_LIST_HEAD(&qr
->qr_list
);
817 qr
->cmd
= (void *)cmd
;
821 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
822 cmd
->t_state
= t_state
;
823 atomic_set(&T_TASK(cmd
)->t_transport_active
, 1);
824 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
827 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
828 list_add_tail(&qr
->qr_list
, &qobj
->qobj_list
);
829 atomic_inc(&T_TASK(cmd
)->t_transport_queue_active
);
830 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
832 atomic_inc(&qobj
->queue_cnt
);
833 wake_up_interruptible(&qobj
->thread_wq
);
838 * Called with struct se_queue_obj->cmd_queue_lock held.
840 static struct se_queue_req
*
841 __transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
844 struct se_queue_req
*qr
= NULL
;
846 if (list_empty(&qobj
->qobj_list
))
849 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
853 cmd
= (struct se_cmd
*)qr
->cmd
;
854 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
856 list_del(&qr
->qr_list
);
857 atomic_dec(&qobj
->queue_cnt
);
862 static struct se_queue_req
*
863 transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
866 struct se_queue_req
*qr
;
869 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
870 if (list_empty(&qobj
->qobj_list
)) {
871 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
875 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
879 cmd
= (struct se_cmd
*)qr
->cmd
;
880 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
882 list_del(&qr
->qr_list
);
883 atomic_dec(&qobj
->queue_cnt
);
884 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
889 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
890 struct se_queue_obj
*qobj
)
892 struct se_cmd
*q_cmd
;
893 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
896 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
897 if (!(atomic_read(&T_TASK(cmd
)->t_transport_queue_active
))) {
898 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
902 list_for_each_entry_safe(qr
, qr_p
, &qobj
->qobj_list
, qr_list
) {
903 q_cmd
= (struct se_cmd
*)qr
->cmd
;
907 atomic_dec(&T_TASK(q_cmd
)->t_transport_queue_active
);
908 atomic_dec(&qobj
->queue_cnt
);
909 list_del(&qr
->qr_list
);
912 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
914 if (atomic_read(&T_TASK(cmd
)->t_transport_queue_active
)) {
915 printk(KERN_ERR
"ITT: 0x%08x t_transport_queue_active: %d\n",
916 CMD_TFO(cmd
)->get_task_tag(cmd
),
917 atomic_read(&T_TASK(cmd
)->t_transport_queue_active
));
922 * Completion function used by TCM subsystem plugins (such as FILEIO)
923 * for queueing up response from struct se_subsystem_api->do_task()
925 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
927 struct se_task
*task
= list_entry(T_TASK(cmd
)->t_task_list
.next
,
928 struct se_task
, t_list
);
931 cmd
->scsi_status
= SAM_STAT_GOOD
;
932 task
->task_scsi_status
= GOOD
;
934 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
935 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
936 TASK_CMD(task
)->transport_error_status
=
937 PYX_TRANSPORT_ILLEGAL_REQUEST
;
940 transport_complete_task(task
, good
);
942 EXPORT_SYMBOL(transport_complete_sync_cache
);
944 /* transport_complete_task():
946 * Called from interrupt and non interrupt context depending
947 * on the transport plugin.
949 void transport_complete_task(struct se_task
*task
, int success
)
951 struct se_cmd
*cmd
= TASK_CMD(task
);
952 struct se_device
*dev
= task
->se_dev
;
956 printk(KERN_INFO
"task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
957 T_TASK(cmd
)->t_task_cdb
[0], dev
);
960 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
961 atomic_inc(&dev
->depth_left
);
962 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
963 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
966 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
967 atomic_set(&task
->task_active
, 0);
970 * See if any sense data exists, if so set the TASK_SENSE flag.
971 * Also check for any other post completion work that needs to be
972 * done by the plugins.
974 if (dev
&& dev
->transport
->transport_complete
) {
975 if (dev
->transport
->transport_complete(task
) != 0) {
976 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
977 task
->task_sense
= 1;
983 * See if we are waiting for outstanding struct se_task
984 * to complete for an exception condition
986 if (atomic_read(&task
->task_stop
)) {
988 * Decrement T_TASK(cmd)->t_se_count if this task had
989 * previously thrown its timeout exception handler.
991 if (atomic_read(&task
->task_timeout
)) {
992 atomic_dec(&T_TASK(cmd
)->t_se_count
);
993 atomic_set(&task
->task_timeout
, 0);
995 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
997 complete(&task
->task_stop_comp
);
1001 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1002 * left counter to determine when the struct se_cmd is ready to be queued to
1003 * the processing thread.
1005 if (atomic_read(&task
->task_timeout
)) {
1006 if (!(atomic_dec_and_test(
1007 &T_TASK(cmd
)->t_task_cdbs_timeout_left
))) {
1008 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
1012 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
1013 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1015 transport_add_cmd_to_queue(cmd
, t_state
);
1018 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_timeout_left
);
1021 * Decrement the outstanding t_task_cdbs_left count. The last
1022 * struct se_task from struct se_cmd will complete itself into the
1023 * device queue depending upon int success.
1025 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
1027 T_TASK(cmd
)->t_tasks_failed
= 1;
1029 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1033 if (!success
|| T_TASK(cmd
)->t_tasks_failed
) {
1034 t_state
= TRANSPORT_COMPLETE_FAILURE
;
1035 if (!task
->task_error_status
) {
1036 task
->task_error_status
=
1037 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1038 cmd
->transport_error_status
=
1039 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1042 atomic_set(&T_TASK(cmd
)->t_transport_complete
, 1);
1043 t_state
= TRANSPORT_COMPLETE_OK
;
1045 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1047 transport_add_cmd_to_queue(cmd
, t_state
);
1049 EXPORT_SYMBOL(transport_complete_task
);
1052 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1053 * struct se_task list are ready to be added to the active execution list
1056 * Called with se_dev_t->execute_task_lock called.
1058 static inline int transport_add_task_check_sam_attr(
1059 struct se_task
*task
,
1060 struct se_task
*task_prev
,
1061 struct se_device
*dev
)
1064 * No SAM Task attribute emulation enabled, add to tail of
1067 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
1068 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1072 * HEAD_OF_QUEUE attribute for received CDB, which means
1073 * the first task that is associated with a struct se_cmd goes to
1074 * head of the struct se_device->execute_task_list, and task_prev
1075 * after that for each subsequent task
1077 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1078 list_add(&task
->t_execute_list
,
1079 (task_prev
!= NULL
) ?
1080 &task_prev
->t_execute_list
:
1081 &dev
->execute_task_list
);
1083 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1084 " in execution queue\n",
1085 T_TASK(task
->task_se_cmd
)->t_task_cdb
[0]);
1089 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1090 * transitioned from Dermant -> Active state, and are added to the end
1091 * of the struct se_device->execute_task_list
1093 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1097 /* __transport_add_task_to_execute_queue():
1099 * Called with se_dev_t->execute_task_lock called.
1101 static void __transport_add_task_to_execute_queue(
1102 struct se_task
*task
,
1103 struct se_task
*task_prev
,
1104 struct se_device
*dev
)
1108 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
1109 atomic_inc(&dev
->execute_tasks
);
1111 if (atomic_read(&task
->task_state_active
))
1114 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1115 * state list as well. Running with SAM Task Attribute emulation
1116 * will always return head_of_queue == 0 here
1119 list_add(&task
->t_state_list
, (task_prev
) ?
1120 &task_prev
->t_state_list
:
1121 &dev
->state_task_list
);
1123 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1125 atomic_set(&task
->task_state_active
, 1);
1127 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1128 CMD_TFO(task
->task_se_cmd
)->get_task_tag(task
->task_se_cmd
),
1132 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
1134 struct se_device
*dev
;
1135 struct se_task
*task
;
1136 unsigned long flags
;
1138 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1139 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1142 if (atomic_read(&task
->task_state_active
))
1145 spin_lock(&dev
->execute_task_lock
);
1146 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1147 atomic_set(&task
->task_state_active
, 1);
1149 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1150 CMD_TFO(task
->task_se_cmd
)->get_task_tag(
1151 task
->task_se_cmd
), task
, dev
);
1153 spin_unlock(&dev
->execute_task_lock
);
1155 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1158 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
1160 struct se_device
*dev
= SE_DEV(cmd
);
1161 struct se_task
*task
, *task_prev
= NULL
;
1162 unsigned long flags
;
1164 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1165 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1166 if (atomic_read(&task
->task_execute_queue
))
1169 * __transport_add_task_to_execute_queue() handles the
1170 * SAM Task Attribute emulation if enabled
1172 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
1173 atomic_set(&task
->task_execute_queue
, 1);
1176 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1181 /* transport_get_task_from_execute_queue():
1183 * Called with dev->execute_task_lock held.
1185 static struct se_task
*
1186 transport_get_task_from_execute_queue(struct se_device
*dev
)
1188 struct se_task
*task
;
1190 if (list_empty(&dev
->execute_task_list
))
1193 list_for_each_entry(task
, &dev
->execute_task_list
, t_execute_list
)
1196 list_del(&task
->t_execute_list
);
1197 atomic_set(&task
->task_execute_queue
, 0);
1198 atomic_dec(&dev
->execute_tasks
);
1203 /* transport_remove_task_from_execute_queue():
1207 void transport_remove_task_from_execute_queue(
1208 struct se_task
*task
,
1209 struct se_device
*dev
)
1211 unsigned long flags
;
1213 if (atomic_read(&task
->task_execute_queue
) == 0) {
1218 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1219 list_del(&task
->t_execute_list
);
1220 atomic_set(&task
->task_execute_queue
, 0);
1221 atomic_dec(&dev
->execute_tasks
);
1222 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1225 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1227 switch (cmd
->data_direction
) {
1230 case DMA_FROM_DEVICE
:
1234 case DMA_BIDIRECTIONAL
:
1243 void transport_dump_dev_state(
1244 struct se_device
*dev
,
1248 *bl
+= sprintf(b
+ *bl
, "Status: ");
1249 switch (dev
->dev_status
) {
1250 case TRANSPORT_DEVICE_ACTIVATED
:
1251 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1253 case TRANSPORT_DEVICE_DEACTIVATED
:
1254 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1256 case TRANSPORT_DEVICE_SHUTDOWN
:
1257 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1259 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1260 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1261 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1264 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1268 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1269 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1271 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1272 DEV_ATTRIB(dev
)->block_size
, DEV_ATTRIB(dev
)->max_sectors
);
1273 *bl
+= sprintf(b
+ *bl
, " ");
1276 /* transport_release_all_cmds():
1280 static void transport_release_all_cmds(struct se_device
*dev
)
1282 struct se_cmd
*cmd
= NULL
;
1283 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
1284 int bug_out
= 0, t_state
;
1285 unsigned long flags
;
1287 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1288 list_for_each_entry_safe(qr
, qr_p
, &dev
->dev_queue_obj
->qobj_list
,
1291 cmd
= (struct se_cmd
*)qr
->cmd
;
1292 t_state
= qr
->state
;
1293 list_del(&qr
->qr_list
);
1295 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
,
1298 printk(KERN_ERR
"Releasing ITT: 0x%08x, i_state: %u,"
1299 " t_state: %u directly\n",
1300 CMD_TFO(cmd
)->get_task_tag(cmd
),
1301 CMD_TFO(cmd
)->get_cmd_state(cmd
), t_state
);
1303 transport_release_fe_cmd(cmd
);
1306 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1308 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1315 void transport_dump_vpd_proto_id(
1316 struct t10_vpd
*vpd
,
1317 unsigned char *p_buf
,
1320 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1323 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1324 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1326 switch (vpd
->protocol_identifier
) {
1328 sprintf(buf
+len
, "Fibre Channel\n");
1331 sprintf(buf
+len
, "Parallel SCSI\n");
1334 sprintf(buf
+len
, "SSA\n");
1337 sprintf(buf
+len
, "IEEE 1394\n");
1340 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1344 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1347 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1350 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1354 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1357 sprintf(buf
+len
, "Unknown 0x%02x\n",
1358 vpd
->protocol_identifier
);
1363 strncpy(p_buf
, buf
, p_buf_len
);
1365 printk(KERN_INFO
"%s", buf
);
1369 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1372 * Check if the Protocol Identifier Valid (PIV) bit is set..
1374 * from spc3r23.pdf section 7.5.1
1376 if (page_83
[1] & 0x80) {
1377 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1378 vpd
->protocol_identifier_set
= 1;
1379 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1382 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1384 int transport_dump_vpd_assoc(
1385 struct t10_vpd
*vpd
,
1386 unsigned char *p_buf
,
1389 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1392 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1393 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1395 switch (vpd
->association
) {
1397 sprintf(buf
+len
, "addressed logical unit\n");
1400 sprintf(buf
+len
, "target port\n");
1403 sprintf(buf
+len
, "SCSI target device\n");
1406 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1412 strncpy(p_buf
, buf
, p_buf_len
);
1419 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1422 * The VPD identification association..
1424 * from spc3r23.pdf Section 7.6.3.1 Table 297
1426 vpd
->association
= (page_83
[1] & 0x30);
1427 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1429 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1431 int transport_dump_vpd_ident_type(
1432 struct t10_vpd
*vpd
,
1433 unsigned char *p_buf
,
1436 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1439 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1440 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1442 switch (vpd
->device_identifier_type
) {
1444 sprintf(buf
+len
, "Vendor specific\n");
1447 sprintf(buf
+len
, "T10 Vendor ID based\n");
1450 sprintf(buf
+len
, "EUI-64 based\n");
1453 sprintf(buf
+len
, "NAA\n");
1456 sprintf(buf
+len
, "Relative target port identifier\n");
1459 sprintf(buf
+len
, "SCSI name string\n");
1462 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1463 vpd
->device_identifier_type
);
1469 strncpy(p_buf
, buf
, p_buf_len
);
1476 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1479 * The VPD identifier type..
1481 * from spc3r23.pdf Section 7.6.3.1 Table 298
1483 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1484 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1486 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1488 int transport_dump_vpd_ident(
1489 struct t10_vpd
*vpd
,
1490 unsigned char *p_buf
,
1493 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1496 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1498 switch (vpd
->device_identifier_code_set
) {
1499 case 0x01: /* Binary */
1500 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1501 &vpd
->device_identifier
[0]);
1503 case 0x02: /* ASCII */
1504 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1505 &vpd
->device_identifier
[0]);
1507 case 0x03: /* UTF-8 */
1508 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1509 &vpd
->device_identifier
[0]);
1512 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1513 " 0x%02x", vpd
->device_identifier_code_set
);
1519 strncpy(p_buf
, buf
, p_buf_len
);
1527 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1529 static const char hex_str
[] = "0123456789abcdef";
1530 int j
= 0, i
= 4; /* offset to start of the identifer */
1533 * The VPD Code Set (encoding)
1535 * from spc3r23.pdf Section 7.6.3.1 Table 296
1537 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1538 switch (vpd
->device_identifier_code_set
) {
1539 case 0x01: /* Binary */
1540 vpd
->device_identifier
[j
++] =
1541 hex_str
[vpd
->device_identifier_type
];
1542 while (i
< (4 + page_83
[3])) {
1543 vpd
->device_identifier
[j
++] =
1544 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1545 vpd
->device_identifier
[j
++] =
1546 hex_str
[page_83
[i
] & 0x0f];
1550 case 0x02: /* ASCII */
1551 case 0x03: /* UTF-8 */
1552 while (i
< (4 + page_83
[3]))
1553 vpd
->device_identifier
[j
++] = page_83
[i
++];
1559 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1561 EXPORT_SYMBOL(transport_set_vpd_ident
);
1563 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1566 * If this device is from Target_Core_Mod/pSCSI, disable the
1567 * SAM Task Attribute emulation.
1569 * This is currently not available in upsream Linux/SCSI Target
1570 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1572 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1573 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1577 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1578 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1579 " device\n", TRANSPORT(dev
)->name
,
1580 TRANSPORT(dev
)->get_device_rev(dev
));
1583 static void scsi_dump_inquiry(struct se_device
*dev
)
1585 struct t10_wwn
*wwn
= DEV_T10_WWN(dev
);
1588 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1590 printk(" Vendor: ");
1591 for (i
= 0; i
< 8; i
++)
1592 if (wwn
->vendor
[i
] >= 0x20)
1593 printk("%c", wwn
->vendor
[i
]);
1598 for (i
= 0; i
< 16; i
++)
1599 if (wwn
->model
[i
] >= 0x20)
1600 printk("%c", wwn
->model
[i
]);
1604 printk(" Revision: ");
1605 for (i
= 0; i
< 4; i
++)
1606 if (wwn
->revision
[i
] >= 0x20)
1607 printk("%c", wwn
->revision
[i
]);
1613 device_type
= TRANSPORT(dev
)->get_device_type(dev
);
1614 printk(" Type: %s ", scsi_device_type(device_type
));
1615 printk(" ANSI SCSI revision: %02x\n",
1616 TRANSPORT(dev
)->get_device_rev(dev
));
1619 struct se_device
*transport_add_device_to_core_hba(
1621 struct se_subsystem_api
*transport
,
1622 struct se_subsystem_dev
*se_dev
,
1624 void *transport_dev
,
1625 struct se_dev_limits
*dev_limits
,
1626 const char *inquiry_prod
,
1627 const char *inquiry_rev
)
1630 struct se_device
*dev
;
1632 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1634 printk(KERN_ERR
"Unable to allocate memory for se_dev_t\n");
1637 dev
->dev_queue_obj
= kzalloc(sizeof(struct se_queue_obj
), GFP_KERNEL
);
1638 if (!(dev
->dev_queue_obj
)) {
1639 printk(KERN_ERR
"Unable to allocate memory for"
1640 " dev->dev_queue_obj\n");
1644 transport_init_queue_obj(dev
->dev_queue_obj
);
1646 dev
->dev_status_queue_obj
= kzalloc(sizeof(struct se_queue_obj
),
1648 if (!(dev
->dev_status_queue_obj
)) {
1649 printk(KERN_ERR
"Unable to allocate memory for"
1650 " dev->dev_status_queue_obj\n");
1651 kfree(dev
->dev_queue_obj
);
1655 transport_init_queue_obj(dev
->dev_status_queue_obj
);
1657 dev
->dev_flags
= device_flags
;
1658 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1659 dev
->dev_ptr
= (void *) transport_dev
;
1661 dev
->se_sub_dev
= se_dev
;
1662 dev
->transport
= transport
;
1663 atomic_set(&dev
->active_cmds
, 0);
1664 INIT_LIST_HEAD(&dev
->dev_list
);
1665 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1666 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1667 INIT_LIST_HEAD(&dev
->execute_task_list
);
1668 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1669 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1670 INIT_LIST_HEAD(&dev
->state_task_list
);
1671 spin_lock_init(&dev
->execute_task_lock
);
1672 spin_lock_init(&dev
->delayed_cmd_lock
);
1673 spin_lock_init(&dev
->ordered_cmd_lock
);
1674 spin_lock_init(&dev
->state_task_lock
);
1675 spin_lock_init(&dev
->dev_alua_lock
);
1676 spin_lock_init(&dev
->dev_reservation_lock
);
1677 spin_lock_init(&dev
->dev_status_lock
);
1678 spin_lock_init(&dev
->dev_status_thr_lock
);
1679 spin_lock_init(&dev
->se_port_lock
);
1680 spin_lock_init(&dev
->se_tmr_lock
);
1682 dev
->queue_depth
= dev_limits
->queue_depth
;
1683 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1684 atomic_set(&dev
->dev_ordered_id
, 0);
1686 se_dev_set_default_attribs(dev
, dev_limits
);
1688 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1689 dev
->creation_time
= get_jiffies_64();
1690 spin_lock_init(&dev
->stats_lock
);
1692 spin_lock(&hba
->device_lock
);
1693 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1695 spin_unlock(&hba
->device_lock
);
1697 * Setup the SAM Task Attribute emulation for struct se_device
1699 core_setup_task_attr_emulation(dev
);
1701 * Force PR and ALUA passthrough emulation with internal object use.
1703 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1705 * Setup the Reservations infrastructure for struct se_device
1707 core_setup_reservations(dev
, force_pt
);
1709 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1711 if (core_setup_alua(dev
, force_pt
) < 0)
1715 * Startup the struct se_device processing thread
1717 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1718 "LIO_%s", TRANSPORT(dev
)->name
);
1719 if (IS_ERR(dev
->process_thread
)) {
1720 printk(KERN_ERR
"Unable to create kthread: LIO_%s\n",
1721 TRANSPORT(dev
)->name
);
1726 * Preload the initial INQUIRY const values if we are doing
1727 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1728 * passthrough because this is being provided by the backend LLD.
1729 * This is required so that transport_get_inquiry() copies these
1730 * originals once back into DEV_T10_WWN(dev) for the virtual device
1733 if (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1734 if (!(inquiry_prod
) || !(inquiry_prod
)) {
1735 printk(KERN_ERR
"All non TCM/pSCSI plugins require"
1736 " INQUIRY consts\n");
1740 strncpy(&DEV_T10_WWN(dev
)->vendor
[0], "LIO-ORG", 8);
1741 strncpy(&DEV_T10_WWN(dev
)->model
[0], inquiry_prod
, 16);
1742 strncpy(&DEV_T10_WWN(dev
)->revision
[0], inquiry_rev
, 4);
1744 scsi_dump_inquiry(dev
);
1748 kthread_stop(dev
->process_thread
);
1750 spin_lock(&hba
->device_lock
);
1751 list_del(&dev
->dev_list
);
1753 spin_unlock(&hba
->device_lock
);
1755 se_release_vpd_for_dev(dev
);
1757 kfree(dev
->dev_status_queue_obj
);
1758 kfree(dev
->dev_queue_obj
);
1763 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1765 /* transport_generic_prepare_cdb():
1767 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1768 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1769 * The point of this is since we are mapping iSCSI LUNs to
1770 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1771 * devices and HBAs for a loop.
1773 static inline void transport_generic_prepare_cdb(
1777 case READ_10
: /* SBC - RDProtect */
1778 case READ_12
: /* SBC - RDProtect */
1779 case READ_16
: /* SBC - RDProtect */
1780 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1781 case VERIFY
: /* SBC - VRProtect */
1782 case VERIFY_16
: /* SBC - VRProtect */
1783 case WRITE_VERIFY
: /* SBC - VRProtect */
1784 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1787 cdb
[1] &= 0x1f; /* clear logical unit number */
1792 static struct se_task
*
1793 transport_generic_get_task(struct se_cmd
*cmd
,
1794 enum dma_data_direction data_direction
)
1796 struct se_task
*task
;
1797 struct se_device
*dev
= SE_DEV(cmd
);
1798 unsigned long flags
;
1800 task
= dev
->transport
->alloc_task(cmd
);
1802 printk(KERN_ERR
"Unable to allocate struct se_task\n");
1806 INIT_LIST_HEAD(&task
->t_list
);
1807 INIT_LIST_HEAD(&task
->t_execute_list
);
1808 INIT_LIST_HEAD(&task
->t_state_list
);
1809 init_completion(&task
->task_stop_comp
);
1810 task
->task_no
= T_TASK(cmd
)->t_tasks_no
++;
1811 task
->task_se_cmd
= cmd
;
1813 task
->task_data_direction
= data_direction
;
1815 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1816 list_add_tail(&task
->t_list
, &T_TASK(cmd
)->t_task_list
);
1817 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1822 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1824 void transport_device_setup_cmd(struct se_cmd
*cmd
)
1826 cmd
->se_dev
= SE_LUN(cmd
)->lun_se_dev
;
1828 EXPORT_SYMBOL(transport_device_setup_cmd
);
1831 * Used by fabric modules containing a local struct se_cmd within their
1832 * fabric dependent per I/O descriptor.
1834 void transport_init_se_cmd(
1836 struct target_core_fabric_ops
*tfo
,
1837 struct se_session
*se_sess
,
1841 unsigned char *sense_buffer
)
1843 INIT_LIST_HEAD(&cmd
->se_lun_list
);
1844 INIT_LIST_HEAD(&cmd
->se_delayed_list
);
1845 INIT_LIST_HEAD(&cmd
->se_ordered_list
);
1847 * Setup t_task pointer to t_task_backstore
1849 cmd
->t_task
= &cmd
->t_task_backstore
;
1851 INIT_LIST_HEAD(&T_TASK(cmd
)->t_task_list
);
1852 init_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
1853 init_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
1854 init_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
1855 spin_lock_init(&T_TASK(cmd
)->t_state_lock
);
1856 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 1);
1859 cmd
->se_sess
= se_sess
;
1860 cmd
->data_length
= data_length
;
1861 cmd
->data_direction
= data_direction
;
1862 cmd
->sam_task_attr
= task_attr
;
1863 cmd
->sense_buffer
= sense_buffer
;
1865 EXPORT_SYMBOL(transport_init_se_cmd
);
1867 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1870 * Check if SAM Task Attribute emulation is enabled for this
1871 * struct se_device storage object
1873 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1876 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1877 DEBUG_STA("SAM Task Attribute ACA"
1878 " emulation is not supported\n");
1882 * Used to determine when ORDERED commands should go from
1883 * Dormant to Active status.
1885 cmd
->se_ordered_id
= atomic_inc_return(&SE_DEV(cmd
)->dev_ordered_id
);
1886 smp_mb__after_atomic_inc();
1887 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1888 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1889 TRANSPORT(cmd
->se_dev
)->name
);
1893 void transport_free_se_cmd(
1894 struct se_cmd
*se_cmd
)
1896 if (se_cmd
->se_tmr_req
)
1897 core_tmr_release_req(se_cmd
->se_tmr_req
);
1899 * Check and free any extended CDB buffer that was allocated
1901 if (T_TASK(se_cmd
)->t_task_cdb
!= T_TASK(se_cmd
)->__t_task_cdb
)
1902 kfree(T_TASK(se_cmd
)->t_task_cdb
);
1904 EXPORT_SYMBOL(transport_free_se_cmd
);
1906 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1908 /* transport_generic_allocate_tasks():
1910 * Called from fabric RX Thread.
1912 int transport_generic_allocate_tasks(
1918 transport_generic_prepare_cdb(cdb
);
1921 * This is needed for early exceptions.
1923 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1925 transport_device_setup_cmd(cmd
);
1927 * Ensure that the received CDB is less than the max (252 + 8) bytes
1928 * for VARIABLE_LENGTH_CMD
1930 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1931 printk(KERN_ERR
"Received SCSI CDB with command_size: %d that"
1932 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1933 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1937 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1938 * allocate the additional extended CDB buffer now.. Otherwise
1939 * setup the pointer from __t_task_cdb to t_task_cdb.
1941 if (scsi_command_size(cdb
) > sizeof(T_TASK(cmd
)->__t_task_cdb
)) {
1942 T_TASK(cmd
)->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1944 if (!(T_TASK(cmd
)->t_task_cdb
)) {
1945 printk(KERN_ERR
"Unable to allocate T_TASK(cmd)->t_task_cdb"
1946 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1947 scsi_command_size(cdb
),
1948 (unsigned long)sizeof(T_TASK(cmd
)->__t_task_cdb
));
1952 T_TASK(cmd
)->t_task_cdb
= &T_TASK(cmd
)->__t_task_cdb
[0];
1954 * Copy the original CDB into T_TASK(cmd).
1956 memcpy(T_TASK(cmd
)->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1958 * Setup the received CDB based on SCSI defined opcodes and
1959 * perform unit attention, persistent reservations and ALUA
1960 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1961 * pointer is expected to be setup before we reach this point.
1963 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1967 * Check for SAM Task Attribute Emulation
1969 if (transport_check_alloc_task_attr(cmd
) < 0) {
1970 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1971 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1974 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1975 if (cmd
->se_lun
->lun_sep
)
1976 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1977 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1980 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1983 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1984 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1986 int transport_generic_handle_cdb(
1991 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
1995 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1998 EXPORT_SYMBOL(transport_generic_handle_cdb
);
2001 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
2002 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2003 * complete setup in TCM process context w/ TFO->new_cmd_map().
2005 int transport_generic_handle_cdb_map(
2010 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
2014 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
2017 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
2019 /* transport_generic_handle_data():
2023 int transport_generic_handle_data(
2027 * For the software fabric case, then we assume the nexus is being
2028 * failed/shutdown when signals are pending from the kthread context
2029 * caller, so we return a failure. For the HW target mode case running
2030 * in interrupt code, the signal_pending() check is skipped.
2032 if (!in_interrupt() && signal_pending(current
))
2035 * If the received CDB has aleady been ABORTED by the generic
2036 * target engine, we now call transport_check_aborted_status()
2037 * to queue any delated TASK_ABORTED status for the received CDB to the
2038 * fabric module as we are expecting no further incoming DATA OUT
2039 * sequences at this point.
2041 if (transport_check_aborted_status(cmd
, 1) != 0)
2044 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
2047 EXPORT_SYMBOL(transport_generic_handle_data
);
2049 /* transport_generic_handle_tmr():
2053 int transport_generic_handle_tmr(
2057 * This is needed for early exceptions.
2059 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
2060 transport_device_setup_cmd(cmd
);
2062 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
2065 EXPORT_SYMBOL(transport_generic_handle_tmr
);
2067 void transport_generic_free_cmd_intr(
2070 transport_add_cmd_to_queue(cmd
, TRANSPORT_FREE_CMD_INTR
);
2072 EXPORT_SYMBOL(transport_generic_free_cmd_intr
);
2074 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
2076 struct se_task
*task
, *task_tmp
;
2077 unsigned long flags
;
2080 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2081 CMD_TFO(cmd
)->get_task_tag(cmd
));
2084 * No tasks remain in the execution queue
2086 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2087 list_for_each_entry_safe(task
, task_tmp
,
2088 &T_TASK(cmd
)->t_task_list
, t_list
) {
2089 DEBUG_TS("task_no[%d] - Processing task %p\n",
2090 task
->task_no
, task
);
2092 * If the struct se_task has not been sent and is not active,
2093 * remove the struct se_task from the execution queue.
2095 if (!atomic_read(&task
->task_sent
) &&
2096 !atomic_read(&task
->task_active
)) {
2097 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2099 transport_remove_task_from_execute_queue(task
,
2102 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2104 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2109 * If the struct se_task is active, sleep until it is returned
2112 if (atomic_read(&task
->task_active
)) {
2113 atomic_set(&task
->task_stop
, 1);
2114 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2117 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2119 wait_for_completion(&task
->task_stop_comp
);
2120 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2123 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2124 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
2126 atomic_set(&task
->task_active
, 0);
2127 atomic_set(&task
->task_stop
, 0);
2129 DEBUG_TS("task_no[%d] - Did nothing\n", task
->task_no
);
2133 __transport_stop_task_timer(task
, &flags
);
2135 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2140 static void transport_failure_reset_queue_depth(struct se_device
*dev
)
2142 unsigned long flags
;
2144 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2145 atomic_inc(&dev
->depth_left
);
2146 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
2147 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2151 * Handle SAM-esque emulation for generic transport request failures.
2153 static void transport_generic_request_failure(
2155 struct se_device
*dev
,
2159 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2160 " CDB: 0x%02x\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
2161 T_TASK(cmd
)->t_task_cdb
[0]);
2162 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2163 " %d/%d transport_error_status: %d\n",
2164 CMD_TFO(cmd
)->get_cmd_state(cmd
),
2165 cmd
->t_state
, cmd
->deferred_t_state
,
2166 cmd
->transport_error_status
);
2167 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2168 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2169 " t_transport_active: %d t_transport_stop: %d"
2170 " t_transport_sent: %d\n", T_TASK(cmd
)->t_task_cdbs
,
2171 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
2172 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
2173 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
),
2174 atomic_read(&T_TASK(cmd
)->t_transport_active
),
2175 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
2176 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
2178 transport_stop_all_task_timers(cmd
);
2181 transport_failure_reset_queue_depth(dev
);
2183 * For SAM Task Attribute emulation for failed struct se_cmd
2185 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2186 transport_complete_task_attr(cmd
);
2189 transport_direct_request_timeout(cmd
);
2190 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2193 switch (cmd
->transport_error_status
) {
2194 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
2195 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2197 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
2198 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
2200 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
2201 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
2203 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
2204 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
2206 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
2208 transport_new_cmd_failure(cmd
);
2210 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2211 * we force this session to fall back to session
2214 CMD_TFO(cmd
)->fall_back_to_erl0(cmd
->se_sess
);
2215 CMD_TFO(cmd
)->stop_session(cmd
->se_sess
, 0, 0);
2218 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2219 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2220 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2222 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2223 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2225 case PYX_TRANSPORT_WRITE_PROTECTED
:
2226 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2228 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2230 * No SENSE Data payload for this case, set SCSI Status
2231 * and queue the response to $FABRIC_MOD.
2233 * Uses linux/include/scsi/scsi.h SAM status codes defs
2235 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2237 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2238 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2241 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2244 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
2245 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
2246 cmd
->orig_fe_lun
, 0x2C,
2247 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2249 CMD_TFO(cmd
)->queue_status(cmd
);
2251 case PYX_TRANSPORT_USE_SENSE_REASON
:
2253 * struct se_cmd->scsi_sense_reason already set
2257 printk(KERN_ERR
"Unknown transport error for CDB 0x%02x: %d\n",
2258 T_TASK(cmd
)->t_task_cdb
[0],
2259 cmd
->transport_error_status
);
2260 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2265 transport_new_cmd_failure(cmd
);
2267 transport_send_check_condition_and_sense(cmd
,
2268 cmd
->scsi_sense_reason
, 0);
2270 transport_lun_remove_cmd(cmd
);
2271 if (!(transport_cmd_check_stop_to_fabric(cmd
)))
2275 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2277 unsigned long flags
;
2279 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2280 if (!(atomic_read(&T_TASK(cmd
)->t_transport_timeout
))) {
2281 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2284 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_timeout_left
)) {
2285 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2289 atomic_sub(atomic_read(&T_TASK(cmd
)->t_transport_timeout
),
2290 &T_TASK(cmd
)->t_se_count
);
2291 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2294 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2296 unsigned long flags
;
2299 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2300 * to allow last call to free memory resources.
2302 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2303 if (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) > 1) {
2304 int tmp
= (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) - 1);
2306 atomic_sub(tmp
, &T_TASK(cmd
)->t_se_count
);
2308 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2310 transport_generic_remove(cmd
, 0, 0);
2314 transport_generic_allocate_buf(struct se_cmd
*cmd
, u32 data_length
)
2318 buf
= kzalloc(data_length
, GFP_KERNEL
);
2320 printk(KERN_ERR
"Unable to allocate memory for buffer\n");
2324 T_TASK(cmd
)->t_tasks_se_num
= 0;
2325 T_TASK(cmd
)->t_task_buf
= buf
;
2330 static inline u32
transport_lba_21(unsigned char *cdb
)
2332 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2335 static inline u32
transport_lba_32(unsigned char *cdb
)
2337 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2340 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2342 unsigned int __v1
, __v2
;
2344 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2345 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2347 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2351 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2353 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2355 unsigned int __v1
, __v2
;
2357 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2358 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2360 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2363 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2365 unsigned long flags
;
2367 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2368 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2369 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2373 * Called from interrupt context.
2375 static void transport_task_timeout_handler(unsigned long data
)
2377 struct se_task
*task
= (struct se_task
*)data
;
2378 struct se_cmd
*cmd
= TASK_CMD(task
);
2379 unsigned long flags
;
2381 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2383 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2384 if (task
->task_flags
& TF_STOP
) {
2385 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2388 task
->task_flags
&= ~TF_RUNNING
;
2391 * Determine if transport_complete_task() has already been called.
2393 if (!(atomic_read(&task
->task_active
))) {
2394 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2395 " == 0\n", task
, cmd
);
2396 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2400 atomic_inc(&T_TASK(cmd
)->t_se_count
);
2401 atomic_inc(&T_TASK(cmd
)->t_transport_timeout
);
2402 T_TASK(cmd
)->t_tasks_failed
= 1;
2404 atomic_set(&task
->task_timeout
, 1);
2405 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2406 task
->task_scsi_status
= 1;
2408 if (atomic_read(&task
->task_stop
)) {
2409 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2410 " == 1\n", task
, cmd
);
2411 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2412 complete(&task
->task_stop_comp
);
2416 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
2417 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2418 " t_task_cdbs_left\n", task
, cmd
);
2419 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2422 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2425 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2426 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2428 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2432 * Called with T_TASK(cmd)->t_state_lock held.
2434 static void transport_start_task_timer(struct se_task
*task
)
2436 struct se_device
*dev
= task
->se_dev
;
2439 if (task
->task_flags
& TF_RUNNING
)
2442 * If the task_timeout is disabled, exit now.
2444 timeout
= DEV_ATTRIB(dev
)->task_timeout
;
2448 init_timer(&task
->task_timer
);
2449 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2450 task
->task_timer
.data
= (unsigned long) task
;
2451 task
->task_timer
.function
= transport_task_timeout_handler
;
2453 task
->task_flags
|= TF_RUNNING
;
2454 add_timer(&task
->task_timer
);
2456 printk(KERN_INFO
"Starting task timer for cmd: %p task: %p seconds:"
2457 " %d\n", task
->task_se_cmd
, task
, timeout
);
2462 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2464 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2466 struct se_cmd
*cmd
= TASK_CMD(task
);
2468 if (!(task
->task_flags
& TF_RUNNING
))
2471 task
->task_flags
|= TF_STOP
;
2472 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, *flags
);
2474 del_timer_sync(&task
->task_timer
);
2476 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, *flags
);
2477 task
->task_flags
&= ~TF_RUNNING
;
2478 task
->task_flags
&= ~TF_STOP
;
2481 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2483 struct se_task
*task
= NULL
, *task_tmp
;
2484 unsigned long flags
;
2486 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2487 list_for_each_entry_safe(task
, task_tmp
,
2488 &T_TASK(cmd
)->t_task_list
, t_list
)
2489 __transport_stop_task_timer(task
, &flags
);
2490 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2493 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2495 if (dev
->dev_tcq_window_closed
++ <
2496 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2497 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2499 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2501 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
2506 * Called from Fabric Module context from transport_execute_tasks()
2508 * The return of this function determins if the tasks from struct se_cmd
2509 * get added to the execution queue in transport_execute_tasks(),
2510 * or are added to the delayed or ordered lists here.
2512 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2514 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2517 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2518 * to allow the passed struct se_cmd list of tasks to the front of the list.
2520 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2521 atomic_inc(&SE_DEV(cmd
)->dev_hoq_count
);
2522 smp_mb__after_atomic_inc();
2523 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2524 " 0x%02x, se_ordered_id: %u\n",
2525 T_TASK(cmd
)->t_task_cdb
[0],
2526 cmd
->se_ordered_id
);
2528 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2529 spin_lock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2530 list_add_tail(&cmd
->se_ordered_list
,
2531 &SE_DEV(cmd
)->ordered_cmd_list
);
2532 spin_unlock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2534 atomic_inc(&SE_DEV(cmd
)->dev_ordered_sync
);
2535 smp_mb__after_atomic_inc();
2537 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2538 " list, se_ordered_id: %u\n",
2539 T_TASK(cmd
)->t_task_cdb
[0],
2540 cmd
->se_ordered_id
);
2542 * Add ORDERED command to tail of execution queue if
2543 * no other older commands exist that need to be
2546 if (!(atomic_read(&SE_DEV(cmd
)->simple_cmds
)))
2550 * For SIMPLE and UNTAGGED Task Attribute commands
2552 atomic_inc(&SE_DEV(cmd
)->simple_cmds
);
2553 smp_mb__after_atomic_inc();
2556 * Otherwise if one or more outstanding ORDERED task attribute exist,
2557 * add the dormant task(s) built for the passed struct se_cmd to the
2558 * execution queue and become in Active state for this struct se_device.
2560 if (atomic_read(&SE_DEV(cmd
)->dev_ordered_sync
) != 0) {
2562 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2563 * will be drained upon completion of HEAD_OF_QUEUE task.
2565 spin_lock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2566 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2567 list_add_tail(&cmd
->se_delayed_list
,
2568 &SE_DEV(cmd
)->delayed_cmd_list
);
2569 spin_unlock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2571 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2572 " delayed CMD list, se_ordered_id: %u\n",
2573 T_TASK(cmd
)->t_task_cdb
[0], cmd
->sam_task_attr
,
2574 cmd
->se_ordered_id
);
2576 * Return zero to let transport_execute_tasks() know
2577 * not to add the delayed tasks to the execution list.
2582 * Otherwise, no ORDERED task attributes exist..
2588 * Called from fabric module context in transport_generic_new_cmd() and
2589 * transport_generic_process_write()
2591 static int transport_execute_tasks(struct se_cmd
*cmd
)
2595 if (!(cmd
->se_cmd_flags
& SCF_SE_DISABLE_ONLINE_CHECK
)) {
2596 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2597 cmd
->transport_error_status
=
2598 PYX_TRANSPORT_LU_COMM_FAILURE
;
2599 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2604 * Call transport_cmd_check_stop() to see if a fabric exception
2605 * has occurred that prevents execution.
2607 if (!(transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
))) {
2609 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2610 * attribute for the tasks of the received struct se_cmd CDB
2612 add_tasks
= transport_execute_task_attr(cmd
);
2616 * This calls transport_add_tasks_from_cmd() to handle
2617 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2618 * (if enabled) in __transport_add_task_to_execute_queue() and
2619 * transport_add_task_check_sam_attr().
2621 transport_add_tasks_from_cmd(cmd
);
2624 * Kick the execution queue for the cmd associated struct se_device
2628 __transport_execute_tasks(SE_DEV(cmd
));
2633 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2634 * from struct se_device->execute_task_list and
2636 * Called from transport_processing_thread()
2638 static int __transport_execute_tasks(struct se_device
*dev
)
2641 struct se_cmd
*cmd
= NULL
;
2642 struct se_task
*task
;
2643 unsigned long flags
;
2646 * Check if there is enough room in the device and HBA queue to send
2647 * struct se_transport_task's to the selected transport.
2650 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2651 if (!(atomic_read(&dev
->depth_left
)) ||
2652 !(atomic_read(&SE_HBA(dev
)->left_queue_depth
))) {
2653 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2654 return transport_tcq_window_closed(dev
);
2656 dev
->dev_tcq_window_closed
= 0;
2658 spin_lock(&dev
->execute_task_lock
);
2659 task
= transport_get_task_from_execute_queue(dev
);
2660 spin_unlock(&dev
->execute_task_lock
);
2663 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2667 atomic_dec(&dev
->depth_left
);
2668 atomic_dec(&SE_HBA(dev
)->left_queue_depth
);
2669 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2671 cmd
= TASK_CMD(task
);
2673 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2674 atomic_set(&task
->task_active
, 1);
2675 atomic_set(&task
->task_sent
, 1);
2676 atomic_inc(&T_TASK(cmd
)->t_task_cdbs_sent
);
2678 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
) ==
2679 T_TASK(cmd
)->t_task_cdbs
)
2680 atomic_set(&cmd
->transport_sent
, 1);
2682 transport_start_task_timer(task
);
2683 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2685 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2686 * to grab REPORT_LUNS CDBs before they hit the
2687 * struct se_subsystem_api->do_task() caller below.
2689 if (cmd
->transport_emulate_cdb
) {
2690 error
= cmd
->transport_emulate_cdb(cmd
);
2692 cmd
->transport_error_status
= error
;
2693 atomic_set(&task
->task_active
, 0);
2694 atomic_set(&cmd
->transport_sent
, 0);
2695 transport_stop_tasks_for_cmd(cmd
);
2696 transport_generic_request_failure(cmd
, dev
, 0, 1);
2700 * Handle the successful completion for transport_emulate_cdb()
2701 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2702 * Otherwise the caller is expected to complete the task with
2705 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2706 cmd
->scsi_status
= SAM_STAT_GOOD
;
2707 task
->task_scsi_status
= GOOD
;
2708 transport_complete_task(task
, 1);
2712 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2713 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2714 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2715 * LUN emulation code.
2717 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2718 * call ->do_task() directly and let the underlying TCM subsystem plugin
2719 * code handle the CDB emulation.
2721 if ((TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2722 (!(TASK_CMD(task
)->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2723 error
= transport_emulate_control_cdb(task
);
2725 error
= TRANSPORT(dev
)->do_task(task
);
2728 cmd
->transport_error_status
= error
;
2729 atomic_set(&task
->task_active
, 0);
2730 atomic_set(&cmd
->transport_sent
, 0);
2731 transport_stop_tasks_for_cmd(cmd
);
2732 transport_generic_request_failure(cmd
, dev
, 0, 1);
2741 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2743 unsigned long flags
;
2745 * Any unsolicited data will get dumped for failed command inside of
2748 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2749 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2750 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2751 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2753 CMD_TFO(se_cmd
)->new_cmd_failure(se_cmd
);
2756 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2758 static inline u32
transport_get_sectors_6(
2763 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2766 * Assume TYPE_DISK for non struct se_device objects.
2767 * Use 8-bit sector value.
2773 * Use 24-bit allocation length for TYPE_TAPE.
2775 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2776 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2779 * Everything else assume TYPE_DISK Sector CDB location.
2780 * Use 8-bit sector value. SBC-3 says:
2782 * A TRANSFER LENGTH field set to zero specifies that 256
2783 * logical blocks shall be written. Any other value
2784 * specifies the number of logical blocks that shall be
2788 return cdb
[4] ? : 256;
2791 static inline u32
transport_get_sectors_10(
2796 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2799 * Assume TYPE_DISK for non struct se_device objects.
2800 * Use 16-bit sector value.
2806 * XXX_10 is not defined in SSC, throw an exception
2808 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2814 * Everything else assume TYPE_DISK Sector CDB location.
2815 * Use 16-bit sector value.
2818 return (u32
)(cdb
[7] << 8) + cdb
[8];
2821 static inline u32
transport_get_sectors_12(
2826 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2829 * Assume TYPE_DISK for non struct se_device objects.
2830 * Use 32-bit sector value.
2836 * XXX_12 is not defined in SSC, throw an exception
2838 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2844 * Everything else assume TYPE_DISK Sector CDB location.
2845 * Use 32-bit sector value.
2848 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2851 static inline u32
transport_get_sectors_16(
2856 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2859 * Assume TYPE_DISK for non struct se_device objects.
2860 * Use 32-bit sector value.
2866 * Use 24-bit allocation length for TYPE_TAPE.
2868 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2869 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2872 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2873 (cdb
[12] << 8) + cdb
[13];
2877 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2879 static inline u32
transport_get_sectors_32(
2885 * Assume TYPE_DISK for non struct se_device objects.
2886 * Use 32-bit sector value.
2888 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2889 (cdb
[30] << 8) + cdb
[31];
2893 static inline u32
transport_get_size(
2898 struct se_device
*dev
= SE_DEV(cmd
);
2900 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2901 if (cdb
[1] & 1) { /* sectors */
2902 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2907 printk(KERN_INFO
"Returning block_size: %u, sectors: %u == %u for"
2908 " %s object\n", DEV_ATTRIB(dev
)->block_size
, sectors
,
2909 DEV_ATTRIB(dev
)->block_size
* sectors
,
2910 TRANSPORT(dev
)->name
);
2912 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2915 unsigned char transport_asciihex_to_binaryhex(unsigned char val
[2])
2917 unsigned char result
= 0;
2921 if ((val
[0] >= 'a') && (val
[0] <= 'f'))
2922 result
= ((val
[0] - 'a' + 10) & 0xf) << 4;
2924 if ((val
[0] >= 'A') && (val
[0] <= 'F'))
2925 result
= ((val
[0] - 'A' + 10) & 0xf) << 4;
2927 result
= ((val
[0] - '0') & 0xf) << 4;
2931 if ((val
[1] >= 'a') && (val
[1] <= 'f'))
2932 result
|= ((val
[1] - 'a' + 10) & 0xf);
2934 if ((val
[1] >= 'A') && (val
[1] <= 'F'))
2935 result
|= ((val
[1] - 'A' + 10) & 0xf);
2937 result
|= ((val
[1] - '0') & 0xf);
2941 EXPORT_SYMBOL(transport_asciihex_to_binaryhex
);
2943 static void transport_xor_callback(struct se_cmd
*cmd
)
2945 unsigned char *buf
, *addr
;
2946 struct se_mem
*se_mem
;
2947 unsigned int offset
;
2950 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2952 * 1) read the specified logical block(s);
2953 * 2) transfer logical blocks from the data-out buffer;
2954 * 3) XOR the logical blocks transferred from the data-out buffer with
2955 * the logical blocks read, storing the resulting XOR data in a buffer;
2956 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2957 * blocks transferred from the data-out buffer; and
2958 * 5) transfer the resulting XOR data to the data-in buffer.
2960 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2962 printk(KERN_ERR
"Unable to allocate xor_callback buf\n");
2966 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2967 * into the locally allocated *buf
2969 transport_memcpy_se_mem_read_contig(cmd
, buf
, T_TASK(cmd
)->t_mem_list
);
2971 * Now perform the XOR against the BIDI read memory located at
2972 * T_TASK(cmd)->t_mem_bidi_list
2976 list_for_each_entry(se_mem
, T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
2977 addr
= (unsigned char *)kmap_atomic(se_mem
->se_page
, KM_USER0
);
2981 for (i
= 0; i
< se_mem
->se_len
; i
++)
2982 *(addr
+ se_mem
->se_off
+ i
) ^= *(buf
+ offset
+ i
);
2984 offset
+= se_mem
->se_len
;
2985 kunmap_atomic(addr
, KM_USER0
);
2992 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2994 static int transport_get_sense_data(struct se_cmd
*cmd
)
2996 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2997 struct se_device
*dev
;
2998 struct se_task
*task
= NULL
, *task_tmp
;
2999 unsigned long flags
;
3003 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
3006 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3007 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3008 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3012 list_for_each_entry_safe(task
, task_tmp
,
3013 &T_TASK(cmd
)->t_task_list
, t_list
) {
3015 if (!task
->task_sense
)
3022 if (!TRANSPORT(dev
)->get_sense_buffer
) {
3023 printk(KERN_ERR
"TRANSPORT(dev)->get_sense_buffer"
3028 sense_buffer
= TRANSPORT(dev
)->get_sense_buffer(task
);
3029 if (!(sense_buffer
)) {
3030 printk(KERN_ERR
"ITT[0x%08x]_TASK[%d]: Unable to locate"
3031 " sense buffer for task with sense\n",
3032 CMD_TFO(cmd
)->get_task_tag(cmd
), task
->task_no
);
3035 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3037 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
3038 TRANSPORT_SENSE_BUFFER
);
3040 memcpy((void *)&buffer
[offset
], (void *)sense_buffer
,
3041 TRANSPORT_SENSE_BUFFER
);
3042 cmd
->scsi_status
= task
->task_scsi_status
;
3043 /* Automatically padded */
3044 cmd
->scsi_sense_length
=
3045 (TRANSPORT_SENSE_BUFFER
+ offset
);
3047 printk(KERN_INFO
"HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3049 dev
->se_hba
->hba_id
, TRANSPORT(dev
)->name
,
3053 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3058 static int transport_allocate_resources(struct se_cmd
*cmd
)
3060 u32 length
= cmd
->data_length
;
3062 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3063 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
))
3064 return transport_generic_get_mem(cmd
, length
, PAGE_SIZE
);
3065 else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
)
3066 return transport_generic_allocate_buf(cmd
, length
);
3072 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
3074 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3075 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3076 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
3077 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
3079 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3080 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3083 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3086 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
3087 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
3088 cmd
->orig_fe_lun
, 0x2C,
3089 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
3093 /* transport_generic_cmd_sequencer():
3095 * Generic Command Sequencer that should work for most DAS transport
3098 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3101 * FIXME: Need to support other SCSI OPCODES where as well.
3103 static int transport_generic_cmd_sequencer(
3107 struct se_device
*dev
= SE_DEV(cmd
);
3108 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
3109 int ret
= 0, sector_ret
= 0, passthrough
;
3110 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
3114 * Check for an existing UNIT ATTENTION condition
3116 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
3117 cmd
->transport_wait_for_tasks
=
3118 &transport_nop_wait_for_tasks
;
3119 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3120 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
3124 * Check status of Asymmetric Logical Unit Assignment port
3126 ret
= T10_ALUA(su_dev
)->alua_state_check(cmd
, cdb
, &alua_ascq
);
3128 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3130 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3131 * The ALUA additional sense code qualifier (ASCQ) is determined
3132 * by the ALUA primary or secondary access state..
3136 printk(KERN_INFO
"[%s]: ALUA TG Port not available,"
3137 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3138 CMD_TFO(cmd
)->get_fabric_name(), alua_ascq
);
3140 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
3141 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3142 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
3145 goto out_invalid_cdb_field
;
3148 * Check status for SPC-3 Persistent Reservations
3150 if (T10_PR_OPS(su_dev
)->t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
3151 if (T10_PR_OPS(su_dev
)->t10_seq_non_holder(
3152 cmd
, cdb
, pr_reg_type
) != 0)
3153 return transport_handle_reservation_conflict(cmd
);
3155 * This means the CDB is allowed for the SCSI Initiator port
3156 * when said port is *NOT* holding the legacy SPC-2 or
3157 * SPC-3 Persistent Reservation.
3163 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3165 goto out_unsupported_cdb
;
3166 size
= transport_get_size(sectors
, cdb
, cmd
);
3167 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3168 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3169 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3172 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3174 goto out_unsupported_cdb
;
3175 size
= transport_get_size(sectors
, cdb
, cmd
);
3176 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3177 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3178 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3181 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3183 goto out_unsupported_cdb
;
3184 size
= transport_get_size(sectors
, cdb
, cmd
);
3185 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3186 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3187 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3190 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3192 goto out_unsupported_cdb
;
3193 size
= transport_get_size(sectors
, cdb
, cmd
);
3194 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3195 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3196 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3199 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3201 goto out_unsupported_cdb
;
3202 size
= transport_get_size(sectors
, cdb
, cmd
);
3203 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3204 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3205 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3208 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3210 goto out_unsupported_cdb
;
3211 size
= transport_get_size(sectors
, cdb
, cmd
);
3212 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3213 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3214 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3215 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3218 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3220 goto out_unsupported_cdb
;
3221 size
= transport_get_size(sectors
, cdb
, cmd
);
3222 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3223 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3224 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3225 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3228 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3230 goto out_unsupported_cdb
;
3231 size
= transport_get_size(sectors
, cdb
, cmd
);
3232 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3233 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3234 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3235 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3237 case XDWRITEREAD_10
:
3238 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3239 !(T_TASK(cmd
)->t_tasks_bidi
))
3240 goto out_invalid_cdb_field
;
3241 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3243 goto out_unsupported_cdb
;
3244 size
= transport_get_size(sectors
, cdb
, cmd
);
3245 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3246 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3247 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3248 passthrough
= (TRANSPORT(dev
)->transport_type
==
3249 TRANSPORT_PLUGIN_PHBA_PDEV
);
3251 * Skip the remaining assignments for TCM/PSCSI passthrough
3256 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3258 cmd
->transport_complete_callback
= &transport_xor_callback
;
3259 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3261 case VARIABLE_LENGTH_CMD
:
3262 service_action
= get_unaligned_be16(&cdb
[8]);
3264 * Determine if this is TCM/PSCSI device and we should disable
3265 * internal emulation for this CDB.
3267 passthrough
= (TRANSPORT(dev
)->transport_type
==
3268 TRANSPORT_PLUGIN_PHBA_PDEV
);
3270 switch (service_action
) {
3271 case XDWRITEREAD_32
:
3272 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3274 goto out_unsupported_cdb
;
3275 size
= transport_get_size(sectors
, cdb
, cmd
);
3277 * Use WRITE_32 and READ_32 opcodes for the emulated
3278 * XDWRITE_READ_32 logic.
3280 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3281 T_TASK(cmd
)->t_task_lba
= transport_lba_64_ext(cdb
);
3282 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3285 * Skip the remaining assignments for TCM/PSCSI passthrough
3291 * Setup BIDI XOR callback to be run during
3292 * transport_generic_complete_ok()
3294 cmd
->transport_complete_callback
= &transport_xor_callback
;
3295 T_TASK(cmd
)->t_tasks_fua
= (cdb
[10] & 0x8);
3298 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3300 goto out_unsupported_cdb
;
3301 size
= transport_get_size(sectors
, cdb
, cmd
);
3302 T_TASK(cmd
)->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3303 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3306 * Skip the remaining assignments for TCM/PSCSI passthrough
3311 if ((cdb
[10] & 0x04) || (cdb
[10] & 0x02)) {
3312 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3313 " bits not supported for Block Discard"
3315 goto out_invalid_cdb_field
;
3318 * Currently for the emulated case we only accept
3319 * tpws with the UNMAP=1 bit set.
3321 if (!(cdb
[10] & 0x08)) {
3322 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not"
3323 " supported for Block Discard Emulation\n");
3324 goto out_invalid_cdb_field
;
3328 printk(KERN_ERR
"VARIABLE_LENGTH_CMD service action"
3329 " 0x%04x not supported\n", service_action
);
3330 goto out_unsupported_cdb
;
3334 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3335 /* MAINTENANCE_IN from SCC-2 */
3337 * Check for emulated MI_REPORT_TARGET_PGS.
3339 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3340 cmd
->transport_emulate_cdb
=
3341 (T10_ALUA(su_dev
)->alua_type
==
3342 SPC3_ALUA_EMULATED
) ?
3343 &core_emulate_report_target_port_groups
:
3346 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3347 (cdb
[8] << 8) | cdb
[9];
3349 /* GPCMD_SEND_KEY from multi media commands */
3350 size
= (cdb
[8] << 8) + cdb
[9];
3352 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3356 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3358 case MODE_SELECT_10
:
3359 size
= (cdb
[7] << 8) + cdb
[8];
3360 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3364 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3367 case GPCMD_READ_BUFFER_CAPACITY
:
3368 case GPCMD_SEND_OPC
:
3371 size
= (cdb
[7] << 8) + cdb
[8];
3372 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3374 case READ_BLOCK_LIMITS
:
3375 size
= READ_BLOCK_LEN
;
3376 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3378 case GPCMD_GET_CONFIGURATION
:
3379 case GPCMD_READ_FORMAT_CAPACITIES
:
3380 case GPCMD_READ_DISC_INFO
:
3381 case GPCMD_READ_TRACK_RZONE_INFO
:
3382 size
= (cdb
[7] << 8) + cdb
[8];
3383 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3385 case PERSISTENT_RESERVE_IN
:
3386 case PERSISTENT_RESERVE_OUT
:
3387 cmd
->transport_emulate_cdb
=
3388 (T10_RES(su_dev
)->res_type
==
3389 SPC3_PERSISTENT_RESERVATIONS
) ?
3390 &core_scsi3_emulate_pr
: NULL
;
3391 size
= (cdb
[7] << 8) + cdb
[8];
3392 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3394 case GPCMD_MECHANISM_STATUS
:
3395 case GPCMD_READ_DVD_STRUCTURE
:
3396 size
= (cdb
[8] << 8) + cdb
[9];
3397 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3400 size
= READ_POSITION_LEN
;
3401 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3404 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3405 /* MAINTENANCE_OUT from SCC-2
3407 * Check for emulated MO_SET_TARGET_PGS.
3409 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3410 cmd
->transport_emulate_cdb
=
3411 (T10_ALUA(su_dev
)->alua_type
==
3412 SPC3_ALUA_EMULATED
) ?
3413 &core_emulate_set_target_port_groups
:
3417 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3418 (cdb
[8] << 8) | cdb
[9];
3420 /* GPCMD_REPORT_KEY from multi media commands */
3421 size
= (cdb
[8] << 8) + cdb
[9];
3423 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3426 size
= (cdb
[3] << 8) + cdb
[4];
3428 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3429 * See spc4r17 section 5.3
3431 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3432 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3433 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3436 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3437 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3440 size
= READ_CAP_LEN
;
3441 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3443 case READ_MEDIA_SERIAL_NUMBER
:
3444 case SECURITY_PROTOCOL_IN
:
3445 case SECURITY_PROTOCOL_OUT
:
3446 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3447 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3449 case SERVICE_ACTION_IN
:
3450 case ACCESS_CONTROL_IN
:
3451 case ACCESS_CONTROL_OUT
:
3453 case READ_ATTRIBUTE
:
3454 case RECEIVE_COPY_RESULTS
:
3455 case WRITE_ATTRIBUTE
:
3456 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3457 (cdb
[12] << 8) | cdb
[13];
3458 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3460 case RECEIVE_DIAGNOSTIC
:
3461 case SEND_DIAGNOSTIC
:
3462 size
= (cdb
[3] << 8) | cdb
[4];
3463 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3465 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3468 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3469 size
= (2336 * sectors
);
3470 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3475 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3479 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3481 case READ_ELEMENT_STATUS
:
3482 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3483 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3486 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3487 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3492 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3493 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3495 if (cdb
[0] == RESERVE_10
)
3496 size
= (cdb
[7] << 8) | cdb
[8];
3498 size
= cmd
->data_length
;
3501 * Setup the legacy emulated handler for SPC-2 and
3502 * >= SPC-3 compatible reservation handling (CRH=1)
3503 * Otherwise, we assume the underlying SCSI logic is
3504 * is running in SPC_PASSTHROUGH, and wants reservations
3505 * emulation disabled.
3507 cmd
->transport_emulate_cdb
=
3508 (T10_RES(su_dev
)->res_type
!=
3510 &core_scsi2_emulate_crh
: NULL
;
3511 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3516 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3517 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3519 if (cdb
[0] == RELEASE_10
)
3520 size
= (cdb
[7] << 8) | cdb
[8];
3522 size
= cmd
->data_length
;
3524 cmd
->transport_emulate_cdb
=
3525 (T10_RES(su_dev
)->res_type
!=
3527 &core_scsi2_emulate_crh
: NULL
;
3528 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3530 case SYNCHRONIZE_CACHE
:
3531 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3533 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3535 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3536 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3537 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3539 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3540 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3543 goto out_unsupported_cdb
;
3545 size
= transport_get_size(sectors
, cdb
, cmd
);
3546 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3549 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3551 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3554 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3555 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3557 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3559 * Check to ensure that LBA + Range does not exceed past end of
3562 if (transport_get_sectors(cmd
) < 0)
3563 goto out_invalid_cdb_field
;
3566 size
= get_unaligned_be16(&cdb
[7]);
3567 passthrough
= (TRANSPORT(dev
)->transport_type
==
3568 TRANSPORT_PLUGIN_PHBA_PDEV
);
3570 * Determine if the received UNMAP used to for direct passthrough
3571 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3572 * signaling the use of internal transport_generic_unmap() emulation
3573 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3574 * subsystem plugin backstores.
3577 cmd
->se_cmd_flags
|= SCF_EMULATE_SYNC_UNMAP
;
3579 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3582 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3584 goto out_unsupported_cdb
;
3585 size
= transport_get_size(sectors
, cdb
, cmd
);
3586 T_TASK(cmd
)->t_task_lba
= get_unaligned_be16(&cdb
[2]);
3587 passthrough
= (TRANSPORT(dev
)->transport_type
==
3588 TRANSPORT_PLUGIN_PHBA_PDEV
);
3590 * Determine if the received WRITE_SAME_16 is used to for direct
3591 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3592 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3593 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3594 * TCM/FILEIO subsystem plugin backstores.
3596 if (!(passthrough
)) {
3597 if ((cdb
[1] & 0x04) || (cdb
[1] & 0x02)) {
3598 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3599 " bits not supported for Block Discard"
3601 goto out_invalid_cdb_field
;
3604 * Currently for the emulated case we only accept
3605 * tpws with the UNMAP=1 bit set.
3607 if (!(cdb
[1] & 0x08)) {
3608 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not "
3609 " supported for Block Discard Emulation\n");
3610 goto out_invalid_cdb_field
;
3613 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3615 case ALLOW_MEDIUM_REMOVAL
:
3616 case GPCMD_CLOSE_TRACK
:
3618 case INITIALIZE_ELEMENT_STATUS
:
3619 case GPCMD_LOAD_UNLOAD
:
3622 case GPCMD_SET_SPEED
:
3625 case TEST_UNIT_READY
:
3627 case WRITE_FILEMARKS
:
3629 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3632 cmd
->transport_emulate_cdb
=
3633 &transport_core_report_lun_response
;
3634 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3636 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3637 * See spc4r17 section 5.3
3639 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3640 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3641 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3644 printk(KERN_WARNING
"TARGET_CORE[%s]: Unsupported SCSI Opcode"
3645 " 0x%02x, sending CHECK_CONDITION.\n",
3646 CMD_TFO(cmd
)->get_fabric_name(), cdb
[0]);
3647 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3648 goto out_unsupported_cdb
;
3651 if (size
!= cmd
->data_length
) {
3652 printk(KERN_WARNING
"TARGET_CORE[%s]: Expected Transfer Length:"
3653 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3654 " 0x%02x\n", CMD_TFO(cmd
)->get_fabric_name(),
3655 cmd
->data_length
, size
, cdb
[0]);
3657 cmd
->cmd_spdtl
= size
;
3659 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3660 printk(KERN_ERR
"Rejecting underflow/overflow"
3662 goto out_invalid_cdb_field
;
3665 * Reject READ_* or WRITE_* with overflow/underflow for
3666 * type SCF_SCSI_DATA_SG_IO_CDB.
3668 if (!(ret
) && (DEV_ATTRIB(dev
)->block_size
!= 512)) {
3669 printk(KERN_ERR
"Failing OVERFLOW/UNDERFLOW for LBA op"
3670 " CDB on non 512-byte sector setup subsystem"
3671 " plugin: %s\n", TRANSPORT(dev
)->name
);
3672 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3673 goto out_invalid_cdb_field
;
3676 if (size
> cmd
->data_length
) {
3677 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3678 cmd
->residual_count
= (size
- cmd
->data_length
);
3680 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3681 cmd
->residual_count
= (cmd
->data_length
- size
);
3683 cmd
->data_length
= size
;
3686 transport_set_supported_SAM_opcode(cmd
);
3689 out_unsupported_cdb
:
3690 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3691 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3693 out_invalid_cdb_field
:
3694 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3695 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3699 static inline void transport_release_tasks(struct se_cmd
*);
3702 * This function will copy a contiguous *src buffer into a destination
3703 * struct scatterlist array.
3705 static void transport_memcpy_write_contig(
3707 struct scatterlist
*sg_d
,
3710 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3713 while (total_length
) {
3714 length
= sg_d
[i
].length
;
3716 if (length
> total_length
)
3717 length
= total_length
;
3719 dst
= sg_virt(&sg_d
[i
]);
3721 memcpy(dst
, src
, length
);
3723 if (!(total_length
-= length
))
3732 * This function will copy a struct scatterlist array *sg_s into a destination
3733 * contiguous *dst buffer.
3735 static void transport_memcpy_read_contig(
3738 struct scatterlist
*sg_s
)
3740 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3743 while (total_length
) {
3744 length
= sg_s
[i
].length
;
3746 if (length
> total_length
)
3747 length
= total_length
;
3749 src
= sg_virt(&sg_s
[i
]);
3751 memcpy(dst
, src
, length
);
3753 if (!(total_length
-= length
))
3761 static void transport_memcpy_se_mem_read_contig(
3764 struct list_head
*se_mem_list
)
3766 struct se_mem
*se_mem
;
3768 u32 length
= 0, total_length
= cmd
->data_length
;
3770 list_for_each_entry(se_mem
, se_mem_list
, se_list
) {
3771 length
= se_mem
->se_len
;
3773 if (length
> total_length
)
3774 length
= total_length
;
3776 src
= page_address(se_mem
->se_page
) + se_mem
->se_off
;
3778 memcpy(dst
, src
, length
);
3780 if (!(total_length
-= length
))
3788 * Called from transport_generic_complete_ok() and
3789 * transport_generic_request_failure() to determine which dormant/delayed
3790 * and ordered cmds need to have their tasks added to the execution queue.
3792 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3794 struct se_device
*dev
= SE_DEV(cmd
);
3795 struct se_cmd
*cmd_p
, *cmd_tmp
;
3796 int new_active_tasks
= 0;
3798 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3799 atomic_dec(&dev
->simple_cmds
);
3800 smp_mb__after_atomic_dec();
3801 dev
->dev_cur_ordered_id
++;
3802 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3803 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3804 cmd
->se_ordered_id
);
3805 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3806 atomic_dec(&dev
->dev_hoq_count
);
3807 smp_mb__after_atomic_dec();
3808 dev
->dev_cur_ordered_id
++;
3809 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3810 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3811 cmd
->se_ordered_id
);
3812 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3813 spin_lock(&dev
->ordered_cmd_lock
);
3814 list_del(&cmd
->se_ordered_list
);
3815 atomic_dec(&dev
->dev_ordered_sync
);
3816 smp_mb__after_atomic_dec();
3817 spin_unlock(&dev
->ordered_cmd_lock
);
3819 dev
->dev_cur_ordered_id
++;
3820 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3821 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3824 * Process all commands up to the last received
3825 * ORDERED task attribute which requires another blocking
3828 spin_lock(&dev
->delayed_cmd_lock
);
3829 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3830 &dev
->delayed_cmd_list
, se_delayed_list
) {
3832 list_del(&cmd_p
->se_delayed_list
);
3833 spin_unlock(&dev
->delayed_cmd_lock
);
3835 DEBUG_STA("Calling add_tasks() for"
3836 " cmd_p: 0x%02x Task Attr: 0x%02x"
3837 " Dormant -> Active, se_ordered_id: %u\n",
3838 T_TASK(cmd_p
)->t_task_cdb
[0],
3839 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3841 transport_add_tasks_from_cmd(cmd_p
);
3844 spin_lock(&dev
->delayed_cmd_lock
);
3845 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3848 spin_unlock(&dev
->delayed_cmd_lock
);
3850 * If new tasks have become active, wake up the transport thread
3851 * to do the processing of the Active tasks.
3853 if (new_active_tasks
!= 0)
3854 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
3857 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3861 * Check if we need to move delayed/dormant tasks from cmds on the
3862 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3865 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3866 transport_complete_task_attr(cmd
);
3868 * Check if we need to retrieve a sense buffer from
3869 * the struct se_cmd in question.
3871 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3872 if (transport_get_sense_data(cmd
) < 0)
3873 reason
= TCM_NON_EXISTENT_LUN
;
3876 * Only set when an struct se_task->task_scsi_status returned
3877 * a non GOOD status.
3879 if (cmd
->scsi_status
) {
3880 transport_send_check_condition_and_sense(
3882 transport_lun_remove_cmd(cmd
);
3883 transport_cmd_check_stop_to_fabric(cmd
);
3888 * Check for a callback, used by amongst other things
3889 * XDWRITE_READ_10 emulation.
3891 if (cmd
->transport_complete_callback
)
3892 cmd
->transport_complete_callback(cmd
);
3894 switch (cmd
->data_direction
) {
3895 case DMA_FROM_DEVICE
:
3896 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3897 if (SE_LUN(cmd
)->lun_sep
) {
3898 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3901 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3903 * If enabled by TCM fabirc module pre-registered SGL
3904 * memory, perform the memcpy() from the TCM internal
3905 * contigious buffer back to the original SGL.
3907 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
3908 transport_memcpy_write_contig(cmd
,
3909 T_TASK(cmd
)->t_task_pt_sgl
,
3910 T_TASK(cmd
)->t_task_buf
);
3912 CMD_TFO(cmd
)->queue_data_in(cmd
);
3915 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3916 if (SE_LUN(cmd
)->lun_sep
) {
3917 SE_LUN(cmd
)->lun_sep
->sep_stats
.rx_data_octets
+=
3920 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3922 * Check if we need to send READ payload for BIDI-COMMAND
3924 if (T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) {
3925 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3926 if (SE_LUN(cmd
)->lun_sep
) {
3927 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3930 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3931 CMD_TFO(cmd
)->queue_data_in(cmd
);
3934 /* Fall through for DMA_TO_DEVICE */
3936 CMD_TFO(cmd
)->queue_status(cmd
);
3942 transport_lun_remove_cmd(cmd
);
3943 transport_cmd_check_stop_to_fabric(cmd
);
3946 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3948 struct se_task
*task
, *task_tmp
;
3949 unsigned long flags
;
3951 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3952 list_for_each_entry_safe(task
, task_tmp
,
3953 &T_TASK(cmd
)->t_task_list
, t_list
) {
3954 if (atomic_read(&task
->task_active
))
3957 kfree(task
->task_sg_bidi
);
3958 kfree(task
->task_sg
);
3960 list_del(&task
->t_list
);
3962 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3964 TRANSPORT(task
->se_dev
)->free_task(task
);
3966 printk(KERN_ERR
"task[%u] - task->se_dev is NULL\n",
3968 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3970 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3973 static inline void transport_free_pages(struct se_cmd
*cmd
)
3975 struct se_mem
*se_mem
, *se_mem_tmp
;
3978 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3980 if (cmd
->se_dev
->transport
->do_se_mem_map
)
3983 if (T_TASK(cmd
)->t_task_buf
) {
3984 kfree(T_TASK(cmd
)->t_task_buf
);
3985 T_TASK(cmd
)->t_task_buf
= NULL
;
3990 * Caller will handle releasing of struct se_mem.
3992 if (cmd
->se_cmd_flags
& SCF_CMD_PASSTHROUGH_NOALLOC
)
3995 if (!(T_TASK(cmd
)->t_tasks_se_num
))
3998 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3999 T_TASK(cmd
)->t_mem_list
, se_list
) {
4001 * We only release call __free_page(struct se_mem->se_page) when
4002 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4005 __free_page(se_mem
->se_page
);
4007 list_del(&se_mem
->se_list
);
4008 kmem_cache_free(se_mem_cache
, se_mem
);
4011 if (T_TASK(cmd
)->t_mem_bidi_list
&& T_TASK(cmd
)->t_tasks_se_bidi_num
) {
4012 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
4013 T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
4015 * We only release call __free_page(struct se_mem->se_page) when
4016 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4019 __free_page(se_mem
->se_page
);
4021 list_del(&se_mem
->se_list
);
4022 kmem_cache_free(se_mem_cache
, se_mem
);
4026 kfree(T_TASK(cmd
)->t_mem_bidi_list
);
4027 T_TASK(cmd
)->t_mem_bidi_list
= NULL
;
4028 kfree(T_TASK(cmd
)->t_mem_list
);
4029 T_TASK(cmd
)->t_mem_list
= NULL
;
4030 T_TASK(cmd
)->t_tasks_se_num
= 0;
4033 static inline void transport_release_tasks(struct se_cmd
*cmd
)
4035 transport_free_dev_tasks(cmd
);
4038 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
4040 unsigned long flags
;
4042 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4043 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
4044 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_fe_count
))) {
4045 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4051 if (atomic_read(&T_TASK(cmd
)->t_se_count
)) {
4052 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_se_count
))) {
4053 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4058 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4063 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
4065 unsigned long flags
;
4067 if (transport_dec_and_check(cmd
))
4070 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4071 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4072 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4075 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4076 transport_all_task_dev_remove_state(cmd
);
4077 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4079 transport_release_tasks(cmd
);
4081 transport_free_pages(cmd
);
4082 transport_free_se_cmd(cmd
);
4083 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4086 static int transport_generic_remove(
4088 int release_to_pool
,
4089 int session_reinstatement
)
4091 unsigned long flags
;
4096 if (transport_dec_and_check(cmd
)) {
4097 if (session_reinstatement
) {
4098 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4099 transport_all_task_dev_remove_state(cmd
);
4100 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4106 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4107 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4108 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4111 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4112 transport_all_task_dev_remove_state(cmd
);
4113 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4115 transport_release_tasks(cmd
);
4117 transport_free_pages(cmd
);
4120 if (release_to_pool
) {
4121 transport_release_cmd_to_pool(cmd
);
4123 transport_free_se_cmd(cmd
);
4124 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4131 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4132 * @cmd: Associated se_cmd descriptor
4133 * @mem: SGL style memory for TCM WRITE / READ
4134 * @sg_mem_num: Number of SGL elements
4135 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4136 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4138 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4141 int transport_generic_map_mem_to_cmd(
4143 struct scatterlist
*mem
,
4145 struct scatterlist
*mem_bidi_in
,
4146 u32 sg_mem_bidi_num
)
4148 u32 se_mem_cnt_out
= 0;
4151 if (!(mem
) || !(sg_mem_num
))
4154 * Passed *mem will contain a list_head containing preformatted
4155 * struct se_mem elements...
4157 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM
)) {
4158 if ((mem_bidi_in
) || (sg_mem_bidi_num
)) {
4159 printk(KERN_ERR
"SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4160 " with BIDI-COMMAND\n");
4164 T_TASK(cmd
)->t_mem_list
= (struct list_head
*)mem
;
4165 T_TASK(cmd
)->t_tasks_se_num
= sg_mem_num
;
4166 cmd
->se_cmd_flags
|= SCF_CMD_PASSTHROUGH_NOALLOC
;
4170 * Otherwise, assume the caller is passing a struct scatterlist
4171 * array from include/linux/scatterlist.h
4173 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
4174 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
4176 * For CDB using TCM struct se_mem linked list scatterlist memory
4177 * processed into a TCM struct se_subsystem_dev, we do the mapping
4178 * from the passed physical memory to struct se_mem->se_page here.
4180 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4181 if (!(T_TASK(cmd
)->t_mem_list
))
4184 ret
= transport_map_sg_to_mem(cmd
,
4185 T_TASK(cmd
)->t_mem_list
, mem
, &se_mem_cnt_out
);
4189 T_TASK(cmd
)->t_tasks_se_num
= se_mem_cnt_out
;
4191 * Setup BIDI READ list of struct se_mem elements
4193 if ((mem_bidi_in
) && (sg_mem_bidi_num
)) {
4194 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4195 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4196 kfree(T_TASK(cmd
)->t_mem_list
);
4201 ret
= transport_map_sg_to_mem(cmd
,
4202 T_TASK(cmd
)->t_mem_bidi_list
, mem_bidi_in
,
4205 kfree(T_TASK(cmd
)->t_mem_list
);
4209 T_TASK(cmd
)->t_tasks_se_bidi_num
= se_mem_cnt_out
;
4211 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
4213 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
4214 if (mem_bidi_in
|| sg_mem_bidi_num
) {
4215 printk(KERN_ERR
"BIDI-Commands not supported using "
4216 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4220 * For incoming CDBs using a contiguous buffer internall with TCM,
4221 * save the passed struct scatterlist memory. After TCM storage object
4222 * processing has completed for this struct se_cmd, TCM core will call
4223 * transport_memcpy_[write,read]_contig() as necessary from
4224 * transport_generic_complete_ok() and transport_write_pending() in order
4225 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4226 * struct scatterlist format.
4228 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_CONTIG_TO_SG
;
4229 T_TASK(cmd
)->t_task_pt_sgl
= mem
;
4234 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
4237 static inline long long transport_dev_end_lba(struct se_device
*dev
)
4239 return dev
->transport
->get_blocks(dev
) + 1;
4242 static int transport_get_sectors(struct se_cmd
*cmd
)
4244 struct se_device
*dev
= SE_DEV(cmd
);
4246 T_TASK(cmd
)->t_tasks_sectors
=
4247 (cmd
->data_length
/ DEV_ATTRIB(dev
)->block_size
);
4248 if (!(T_TASK(cmd
)->t_tasks_sectors
))
4249 T_TASK(cmd
)->t_tasks_sectors
= 1;
4251 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_DISK
)
4254 if ((T_TASK(cmd
)->t_task_lba
+ T_TASK(cmd
)->t_tasks_sectors
) >
4255 transport_dev_end_lba(dev
)) {
4256 printk(KERN_ERR
"LBA: %llu Sectors: %u exceeds"
4257 " transport_dev_end_lba(): %llu\n",
4258 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4259 transport_dev_end_lba(dev
));
4260 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4261 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
4262 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
;
4268 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
4270 struct se_device
*dev
= SE_DEV(cmd
);
4271 u32 task_cdbs
= 0, rc
;
4273 if (!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
4275 T_TASK(cmd
)->t_task_cdbs
++;
4280 * Setup any BIDI READ tasks and memory from
4281 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4282 * are queued first for the non pSCSI passthrough case.
4284 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4285 (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4286 rc
= transport_generic_get_cdb_count(cmd
,
4287 T_TASK(cmd
)->t_task_lba
,
4288 T_TASK(cmd
)->t_tasks_sectors
,
4289 DMA_FROM_DEVICE
, T_TASK(cmd
)->t_mem_bidi_list
,
4292 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4293 cmd
->scsi_sense_reason
=
4294 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4295 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4300 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4301 * Note for BIDI transfers this will contain the WRITE payload
4303 task_cdbs
= transport_generic_get_cdb_count(cmd
,
4304 T_TASK(cmd
)->t_task_lba
,
4305 T_TASK(cmd
)->t_tasks_sectors
,
4306 cmd
->data_direction
, T_TASK(cmd
)->t_mem_list
,
4309 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4310 cmd
->scsi_sense_reason
=
4311 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4312 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4314 T_TASK(cmd
)->t_task_cdbs
+= task_cdbs
;
4317 printk(KERN_INFO
"data_length: %u, LBA: %llu t_tasks_sectors:"
4318 " %u, t_task_cdbs: %u\n", obj_ptr
, cmd
->data_length
,
4319 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4320 T_TASK(cmd
)->t_task_cdbs
);
4324 atomic_set(&T_TASK(cmd
)->t_task_cdbs_left
, task_cdbs
);
4325 atomic_set(&T_TASK(cmd
)->t_task_cdbs_ex_left
, task_cdbs
);
4326 atomic_set(&T_TASK(cmd
)->t_task_cdbs_timeout_left
, task_cdbs
);
4330 static struct list_head
*transport_init_se_mem_list(void)
4332 struct list_head
*se_mem_list
;
4334 se_mem_list
= kzalloc(sizeof(struct list_head
), GFP_KERNEL
);
4335 if (!(se_mem_list
)) {
4336 printk(KERN_ERR
"Unable to allocate memory for se_mem_list\n");
4339 INIT_LIST_HEAD(se_mem_list
);
4345 transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
, u32 dma_size
)
4348 struct se_mem
*se_mem
;
4350 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4351 if (!(T_TASK(cmd
)->t_mem_list
))
4355 * If the device uses memory mapping this is enough.
4357 if (cmd
->se_dev
->transport
->do_se_mem_map
)
4361 * Setup BIDI-COMMAND READ list of struct se_mem elements
4363 if (T_TASK(cmd
)->t_tasks_bidi
) {
4364 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4365 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4366 kfree(T_TASK(cmd
)->t_mem_list
);
4372 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4374 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4378 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4379 se_mem
->se_page
= alloc_pages(GFP_KERNEL
, 0);
4380 if (!(se_mem
->se_page
)) {
4381 printk(KERN_ERR
"alloc_pages() failed\n");
4385 buf
= kmap_atomic(se_mem
->se_page
, KM_IRQ0
);
4387 printk(KERN_ERR
"kmap_atomic() failed\n");
4390 INIT_LIST_HEAD(&se_mem
->se_list
);
4391 se_mem
->se_len
= (length
> dma_size
) ? dma_size
: length
;
4392 memset(buf
, 0, se_mem
->se_len
);
4393 kunmap_atomic(buf
, KM_IRQ0
);
4395 list_add_tail(&se_mem
->se_list
, T_TASK(cmd
)->t_mem_list
);
4396 T_TASK(cmd
)->t_tasks_se_num
++;
4398 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4399 " Offset(%u)\n", se_mem
->se_page
, se_mem
->se_len
,
4402 length
-= se_mem
->se_len
;
4405 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4406 T_TASK(cmd
)->t_tasks_se_num
);
4411 __free_pages(se_mem
->se_page
, 0);
4412 kmem_cache_free(se_mem_cache
, se_mem
);
4416 u32
transport_calc_sg_num(
4417 struct se_task
*task
,
4418 struct se_mem
*in_se_mem
,
4421 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4422 struct se_device
*se_dev
= SE_DEV(se_cmd
);
4423 struct se_mem
*se_mem
= in_se_mem
;
4424 struct target_core_fabric_ops
*tfo
= CMD_TFO(se_cmd
);
4425 u32 sg_length
, task_size
= task
->task_size
, task_sg_num_padded
;
4427 while (task_size
!= 0) {
4428 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4429 " se_mem->se_off(%u) task_offset(%u)\n",
4430 se_mem
->se_page
, se_mem
->se_len
,
4431 se_mem
->se_off
, task_offset
);
4433 if (task_offset
== 0) {
4434 if (task_size
>= se_mem
->se_len
) {
4435 sg_length
= se_mem
->se_len
;
4437 if (!(list_is_last(&se_mem
->se_list
,
4438 T_TASK(se_cmd
)->t_mem_list
)))
4439 se_mem
= list_entry(se_mem
->se_list
.next
,
4440 struct se_mem
, se_list
);
4442 sg_length
= task_size
;
4443 task_size
-= sg_length
;
4447 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4448 sg_length
, task_size
);
4450 if ((se_mem
->se_len
- task_offset
) > task_size
) {
4451 sg_length
= task_size
;
4452 task_size
-= sg_length
;
4455 sg_length
= (se_mem
->se_len
- task_offset
);
4457 if (!(list_is_last(&se_mem
->se_list
,
4458 T_TASK(se_cmd
)->t_mem_list
)))
4459 se_mem
= list_entry(se_mem
->se_list
.next
,
4460 struct se_mem
, se_list
);
4463 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4464 sg_length
, task_size
);
4468 task_size
-= sg_length
;
4470 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4471 task
->task_no
, task_size
);
4473 task
->task_sg_num
++;
4476 * Check if the fabric module driver is requesting that all
4477 * struct se_task->task_sg[] be chained together.. If so,
4478 * then allocate an extra padding SG entry for linking and
4479 * marking the end of the chained SGL.
4481 if (tfo
->task_sg_chaining
) {
4482 task_sg_num_padded
= (task
->task_sg_num
+ 1);
4483 task
->task_padded_sg
= 1;
4485 task_sg_num_padded
= task
->task_sg_num
;
4487 task
->task_sg
= kzalloc(task_sg_num_padded
*
4488 sizeof(struct scatterlist
), GFP_KERNEL
);
4489 if (!(task
->task_sg
)) {
4490 printk(KERN_ERR
"Unable to allocate memory for"
4491 " task->task_sg\n");
4494 sg_init_table(&task
->task_sg
[0], task_sg_num_padded
);
4496 * Setup task->task_sg_bidi for SCSI READ payload for
4497 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4499 if ((T_TASK(se_cmd
)->t_mem_bidi_list
!= NULL
) &&
4500 (TRANSPORT(se_dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4501 task
->task_sg_bidi
= kzalloc(task_sg_num_padded
*
4502 sizeof(struct scatterlist
), GFP_KERNEL
);
4503 if (!(task
->task_sg_bidi
)) {
4504 printk(KERN_ERR
"Unable to allocate memory for"
4505 " task->task_sg_bidi\n");
4508 sg_init_table(&task
->task_sg_bidi
[0], task_sg_num_padded
);
4511 * For the chaining case, setup the proper end of SGL for the
4512 * initial submission struct task into struct se_subsystem_api.
4513 * This will be cleared later by transport_do_task_sg_chain()
4515 if (task
->task_padded_sg
) {
4516 sg_mark_end(&task
->task_sg
[task
->task_sg_num
- 1]);
4518 * Added the 'if' check before marking end of bi-directional
4519 * scatterlist (which gets created only in case of request
4522 if (task
->task_sg_bidi
)
4523 sg_mark_end(&task
->task_sg_bidi
[task
->task_sg_num
- 1]);
4526 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4527 " task_sg_num_padded(%u)\n", task
->task_sg_num
,
4528 task_sg_num_padded
);
4530 return task
->task_sg_num
;
4533 static inline int transport_set_tasks_sectors_disk(
4534 struct se_task
*task
,
4535 struct se_device
*dev
,
4536 unsigned long long lba
,
4538 int *max_sectors_set
)
4540 if ((lba
+ sectors
) > transport_dev_end_lba(dev
)) {
4541 task
->task_sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4543 if (task
->task_sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4544 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4545 *max_sectors_set
= 1;
4548 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4549 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4550 *max_sectors_set
= 1;
4552 task
->task_sectors
= sectors
;
4558 static inline int transport_set_tasks_sectors_non_disk(
4559 struct se_task
*task
,
4560 struct se_device
*dev
,
4561 unsigned long long lba
,
4563 int *max_sectors_set
)
4565 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4566 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4567 *max_sectors_set
= 1;
4569 task
->task_sectors
= sectors
;
4574 static inline int transport_set_tasks_sectors(
4575 struct se_task
*task
,
4576 struct se_device
*dev
,
4577 unsigned long long lba
,
4579 int *max_sectors_set
)
4581 return (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_DISK
) ?
4582 transport_set_tasks_sectors_disk(task
, dev
, lba
, sectors
,
4584 transport_set_tasks_sectors_non_disk(task
, dev
, lba
, sectors
,
4588 static int transport_map_sg_to_mem(
4590 struct list_head
*se_mem_list
,
4594 struct se_mem
*se_mem
;
4595 struct scatterlist
*sg
;
4596 u32 sg_count
= 1, cmd_size
= cmd
->data_length
;
4599 printk(KERN_ERR
"No source scatterlist\n");
4602 sg
= (struct scatterlist
*)in_mem
;
4605 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4607 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4610 INIT_LIST_HEAD(&se_mem
->se_list
);
4611 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4612 " sg_page: %p offset: %d length: %d\n", cmd_size
,
4613 sg_page(sg
), sg
->offset
, sg
->length
);
4615 se_mem
->se_page
= sg_page(sg
);
4616 se_mem
->se_off
= sg
->offset
;
4618 if (cmd_size
> sg
->length
) {
4619 se_mem
->se_len
= sg
->length
;
4623 se_mem
->se_len
= cmd_size
;
4625 cmd_size
-= se_mem
->se_len
;
4627 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4628 *se_mem_cnt
, cmd_size
);
4629 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4630 se_mem
->se_page
, se_mem
->se_off
, se_mem
->se_len
);
4632 list_add_tail(&se_mem
->se_list
, se_mem_list
);
4636 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4637 " struct se_mem\n", sg_count
, *se_mem_cnt
);
4639 if (sg_count
!= *se_mem_cnt
)
4645 /* transport_map_mem_to_sg():
4649 int transport_map_mem_to_sg(
4650 struct se_task
*task
,
4651 struct list_head
*se_mem_list
,
4653 struct se_mem
*in_se_mem
,
4654 struct se_mem
**out_se_mem
,
4658 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4659 struct se_mem
*se_mem
= in_se_mem
;
4660 struct scatterlist
*sg
= (struct scatterlist
*)in_mem
;
4661 u32 task_size
= task
->task_size
, sg_no
= 0;
4664 printk(KERN_ERR
"Unable to locate valid struct"
4665 " scatterlist pointer\n");
4669 while (task_size
!= 0) {
4671 * Setup the contigious array of scatterlists for
4672 * this struct se_task.
4674 sg_assign_page(sg
, se_mem
->se_page
);
4676 if (*task_offset
== 0) {
4677 sg
->offset
= se_mem
->se_off
;
4679 if (task_size
>= se_mem
->se_len
) {
4680 sg
->length
= se_mem
->se_len
;
4682 if (!(list_is_last(&se_mem
->se_list
,
4683 T_TASK(se_cmd
)->t_mem_list
))) {
4684 se_mem
= list_entry(se_mem
->se_list
.next
,
4685 struct se_mem
, se_list
);
4689 sg
->length
= task_size
;
4691 * Determine if we need to calculate an offset
4692 * into the struct se_mem on the next go around..
4694 task_size
-= sg
->length
;
4696 *task_offset
= sg
->length
;
4702 sg
->offset
= (*task_offset
+ se_mem
->se_off
);
4704 if ((se_mem
->se_len
- *task_offset
) > task_size
) {
4705 sg
->length
= task_size
;
4707 * Determine if we need to calculate an offset
4708 * into the struct se_mem on the next go around..
4710 task_size
-= sg
->length
;
4712 *task_offset
+= sg
->length
;
4716 sg
->length
= (se_mem
->se_len
- *task_offset
);
4718 if (!(list_is_last(&se_mem
->se_list
,
4719 T_TASK(se_cmd
)->t_mem_list
))) {
4720 se_mem
= list_entry(se_mem
->se_list
.next
,
4721 struct se_mem
, se_list
);
4728 task_size
-= sg
->length
;
4730 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4731 " task_size to(%u), task_offset: %u\n", task
->task_no
, sg_no
,
4732 sg_page(sg
), sg
->length
, sg
->offset
, task_size
, *task_offset
);
4740 if (task_size
> se_cmd
->data_length
)
4743 *out_se_mem
= se_mem
;
4745 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4746 " SGs\n", task
->task_no
, *se_mem_cnt
, sg_no
);
4752 * This function can be used by HW target mode drivers to create a linked
4753 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4754 * This is intended to be called during the completion path by TCM Core
4755 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4757 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4759 struct scatterlist
*sg_head
= NULL
, *sg_link
= NULL
, *sg_first
= NULL
;
4760 struct scatterlist
*sg_head_cur
= NULL
, *sg_link_cur
= NULL
;
4761 struct scatterlist
*sg
, *sg_end
= NULL
, *sg_end_cur
= NULL
;
4762 struct se_task
*task
;
4763 struct target_core_fabric_ops
*tfo
= CMD_TFO(cmd
);
4764 u32 task_sg_num
= 0, sg_count
= 0;
4767 if (tfo
->task_sg_chaining
== 0) {
4768 printk(KERN_ERR
"task_sg_chaining is diabled for fabric module:"
4769 " %s\n", tfo
->get_fabric_name());
4774 * Walk the struct se_task list and setup scatterlist chains
4775 * for each contiguosly allocated struct se_task->task_sg[].
4777 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
4778 if (!(task
->task_sg
) || !(task
->task_padded_sg
))
4781 if (sg_head
&& sg_link
) {
4782 sg_head_cur
= &task
->task_sg
[0];
4783 sg_link_cur
= &task
->task_sg
[task
->task_sg_num
];
4785 * Either add chain or mark end of scatterlist
4787 if (!(list_is_last(&task
->t_list
,
4788 &T_TASK(cmd
)->t_task_list
))) {
4790 * Clear existing SGL termination bit set in
4791 * transport_calc_sg_num(), see sg_mark_end()
4793 sg_end_cur
= &task
->task_sg
[task
->task_sg_num
- 1];
4794 sg_end_cur
->page_link
&= ~0x02;
4796 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4797 sg_count
+= task
->task_sg_num
;
4798 task_sg_num
= (task
->task_sg_num
+ 1);
4800 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4801 sg_count
+= task
->task_sg_num
;
4802 task_sg_num
= task
->task_sg_num
;
4805 sg_head
= sg_head_cur
;
4806 sg_link
= sg_link_cur
;
4809 sg_head
= sg_first
= &task
->task_sg
[0];
4810 sg_link
= &task
->task_sg
[task
->task_sg_num
];
4812 * Check for single task..
4814 if (!(list_is_last(&task
->t_list
, &T_TASK(cmd
)->t_task_list
))) {
4816 * Clear existing SGL termination bit set in
4817 * transport_calc_sg_num(), see sg_mark_end()
4819 sg_end
= &task
->task_sg
[task
->task_sg_num
- 1];
4820 sg_end
->page_link
&= ~0x02;
4821 sg_count
+= task
->task_sg_num
;
4822 task_sg_num
= (task
->task_sg_num
+ 1);
4824 sg_count
+= task
->task_sg_num
;
4825 task_sg_num
= task
->task_sg_num
;
4829 * Setup the starting pointer and total t_tasks_sg_linked_no including
4830 * padding SGs for linking and to mark the end.
4832 T_TASK(cmd
)->t_tasks_sg_chained
= sg_first
;
4833 T_TASK(cmd
)->t_tasks_sg_chained_no
= sg_count
;
4835 DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4836 " t_tasks_sg_chained_no: %u\n", cmd
, T_TASK(cmd
)->t_tasks_sg_chained
,
4837 T_TASK(cmd
)->t_tasks_sg_chained_no
);
4839 for_each_sg(T_TASK(cmd
)->t_tasks_sg_chained
, sg
,
4840 T_TASK(cmd
)->t_tasks_sg_chained_no
, i
) {
4842 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4843 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
, sg
->sg_magic
);
4844 if (sg_is_chain(sg
))
4845 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg
);
4847 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg
);
4850 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4852 static int transport_do_se_mem_map(
4853 struct se_device
*dev
,
4854 struct se_task
*task
,
4855 struct list_head
*se_mem_list
,
4857 struct se_mem
*in_se_mem
,
4858 struct se_mem
**out_se_mem
,
4860 u32
*task_offset_in
)
4862 u32 task_offset
= *task_offset_in
;
4865 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4866 * has been done by the transport plugin.
4868 if (TRANSPORT(dev
)->do_se_mem_map
) {
4869 ret
= TRANSPORT(dev
)->do_se_mem_map(task
, se_mem_list
,
4870 in_mem
, in_se_mem
, out_se_mem
, se_mem_cnt
,
4873 T_TASK(task
->task_se_cmd
)->t_tasks_se_num
+= *se_mem_cnt
;
4878 BUG_ON(list_empty(se_mem_list
));
4880 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4881 * WRITE payloads.. If we need to do BIDI READ passthrough for
4882 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4883 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4884 * allocation for task->task_sg_bidi, and the subsequent call to
4885 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4887 if (!(task
->task_sg_bidi
)) {
4889 * Assume default that transport plugin speaks preallocated
4892 if (!(transport_calc_sg_num(task
, in_se_mem
, task_offset
)))
4895 * struct se_task->task_sg now contains the struct scatterlist array.
4897 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg
,
4898 in_se_mem
, out_se_mem
, se_mem_cnt
,
4902 * Handle the se_mem_list -> struct task->task_sg_bidi
4903 * memory map for the extra BIDI READ payload
4905 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg_bidi
,
4906 in_se_mem
, out_se_mem
, se_mem_cnt
,
4910 static u32
transport_generic_get_cdb_count(
4912 unsigned long long lba
,
4914 enum dma_data_direction data_direction
,
4915 struct list_head
*mem_list
,
4918 unsigned char *cdb
= NULL
;
4919 struct se_task
*task
;
4920 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
4921 struct se_mem
*se_mem_bidi
= NULL
, *se_mem_bidi_lout
= NULL
;
4922 struct se_device
*dev
= SE_DEV(cmd
);
4923 int max_sectors_set
= 0, ret
;
4924 u32 task_offset_in
= 0, se_mem_cnt
= 0, se_mem_bidi_cnt
= 0, task_cdbs
= 0;
4927 printk(KERN_ERR
"mem_list is NULL in transport_generic_get"
4932 * While using RAMDISK_DR backstores is the only case where
4933 * mem_list will ever be empty at this point.
4935 if (!(list_empty(mem_list
)))
4936 se_mem
= list_entry(mem_list
->next
, struct se_mem
, se_list
);
4938 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4939 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4941 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4942 !(list_empty(T_TASK(cmd
)->t_mem_bidi_list
)) &&
4943 (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
))
4944 se_mem_bidi
= list_entry(T_TASK(cmd
)->t_mem_bidi_list
->next
,
4945 struct se_mem
, se_list
);
4948 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4949 CMD_TFO(cmd
)->get_task_tag(cmd
), lba
, sectors
,
4950 transport_dev_end_lba(dev
));
4952 task
= transport_generic_get_task(cmd
, data_direction
);
4956 transport_set_tasks_sectors(task
, dev
, lba
, sectors
,
4959 task
->task_lba
= lba
;
4960 lba
+= task
->task_sectors
;
4961 sectors
-= task
->task_sectors
;
4962 task
->task_size
= (task
->task_sectors
*
4963 DEV_ATTRIB(dev
)->block_size
);
4965 cdb
= TRANSPORT(dev
)->get_cdb(task
);
4967 memcpy(cdb
, T_TASK(cmd
)->t_task_cdb
,
4968 scsi_command_size(T_TASK(cmd
)->t_task_cdb
));
4969 cmd
->transport_split_cdb(task
->task_lba
,
4970 &task
->task_sectors
, cdb
);
4974 * Perform the SE OBJ plugin and/or Transport plugin specific
4975 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4976 * task->task_sg and if necessary task->task_sg_bidi
4978 ret
= transport_do_se_mem_map(dev
, task
, mem_list
,
4979 NULL
, se_mem
, &se_mem_lout
, &se_mem_cnt
,
4984 se_mem
= se_mem_lout
;
4986 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4987 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4989 * Note that the first call to transport_do_se_mem_map() above will
4990 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4991 * -> transport_calc_sg_num(), and the second here will do the
4992 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4994 if (task
->task_sg_bidi
!= NULL
) {
4995 ret
= transport_do_se_mem_map(dev
, task
,
4996 T_TASK(cmd
)->t_mem_bidi_list
, NULL
,
4997 se_mem_bidi
, &se_mem_bidi_lout
, &se_mem_bidi_cnt
,
5002 se_mem_bidi
= se_mem_bidi_lout
;
5006 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
5007 task_cdbs
, task
->task_sg_num
);
5009 if (max_sectors_set
) {
5010 max_sectors_set
= 0;
5019 atomic_inc(&T_TASK(cmd
)->t_fe_count
);
5020 atomic_inc(&T_TASK(cmd
)->t_se_count
);
5023 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5024 CMD_TFO(cmd
)->get_task_tag(cmd
), (data_direction
== DMA_TO_DEVICE
)
5025 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs
);
5033 transport_map_control_cmd_to_task(struct se_cmd
*cmd
)
5035 struct se_device
*dev
= SE_DEV(cmd
);
5037 struct se_task
*task
;
5040 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
5042 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5044 cdb
= TRANSPORT(dev
)->get_cdb(task
);
5046 memcpy(cdb
, cmd
->t_task
->t_task_cdb
,
5047 scsi_command_size(cmd
->t_task
->t_task_cdb
));
5049 task
->task_size
= cmd
->data_length
;
5051 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) ? 1 : 0;
5053 atomic_inc(&cmd
->t_task
->t_fe_count
);
5054 atomic_inc(&cmd
->t_task
->t_se_count
);
5056 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
5057 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
5058 u32 se_mem_cnt
= 0, task_offset
= 0;
5060 if (!list_empty(T_TASK(cmd
)->t_mem_list
))
5061 se_mem
= list_entry(T_TASK(cmd
)->t_mem_list
->next
,
5062 struct se_mem
, se_list
);
5064 ret
= transport_do_se_mem_map(dev
, task
,
5065 cmd
->t_task
->t_mem_list
, NULL
, se_mem
,
5066 &se_mem_lout
, &se_mem_cnt
, &task_offset
);
5068 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5070 if (dev
->transport
->map_task_SG
)
5071 return dev
->transport
->map_task_SG(task
);
5073 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
5074 if (dev
->transport
->map_task_non_SG
)
5075 return dev
->transport
->map_task_non_SG(task
);
5077 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
5078 if (dev
->transport
->cdb_none
)
5079 return dev
->transport
->cdb_none(task
);
5083 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5087 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5089 * Allocate storage transport resources from a set of values predefined
5090 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5091 * Any non zero return here is treated as an "out of resource' op here.
5094 * Generate struct se_task(s) and/or their payloads for this CDB.
5096 static int transport_generic_new_cmd(struct se_cmd
*cmd
)
5098 struct se_portal_group
*se_tpg
;
5099 struct se_task
*task
;
5100 struct se_device
*dev
= SE_DEV(cmd
);
5104 * Determine is the TCM fabric module has already allocated physical
5105 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5106 * to setup beforehand the linked list of physical memory at
5107 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5109 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)) {
5110 ret
= transport_allocate_resources(cmd
);
5115 ret
= transport_get_sectors(cmd
);
5119 ret
= transport_new_cmd_obj(cmd
);
5124 * Determine if the calling TCM fabric module is talking to
5125 * Linux/NET via kernel sockets and needs to allocate a
5126 * struct iovec array to complete the struct se_cmd
5128 se_tpg
= SE_LUN(cmd
)->lun_sep
->sep_tpg
;
5129 if (TPG_TFO(se_tpg
)->alloc_cmd_iovecs
!= NULL
) {
5130 ret
= TPG_TFO(se_tpg
)->alloc_cmd_iovecs(cmd
);
5132 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5135 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
5136 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
5137 if (atomic_read(&task
->task_sent
))
5139 if (!dev
->transport
->map_task_SG
)
5142 ret
= dev
->transport
->map_task_SG(task
);
5147 ret
= transport_map_control_cmd_to_task(cmd
);
5153 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5154 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5155 * will be added to the struct se_device execution queue after its WRITE
5156 * data has arrived. (ie: It gets handled by the transport processing
5157 * thread a second time)
5159 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5160 transport_add_tasks_to_state_queue(cmd
);
5161 return transport_generic_write_pending(cmd
);
5164 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5165 * to the execution queue.
5167 transport_execute_tasks(cmd
);
5171 /* transport_generic_process_write():
5175 void transport_generic_process_write(struct se_cmd
*cmd
)
5179 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5182 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
5183 if (!T_TASK(cmd
)->t_tasks_se_num
) {
5184 unsigned char *dst
, *buf
=
5185 (unsigned char *)T_TASK(cmd
)->t_task_buf
;
5187 dst
= kzalloc(cmd
->cmd_spdtl
), GFP_KERNEL
);
5189 printk(KERN_ERR
"Unable to allocate memory for"
5190 " WRITE underflow\n");
5191 transport_generic_request_failure(cmd
, NULL
,
5192 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5195 memcpy(dst
, buf
, cmd
->cmd_spdtl
);
5197 kfree(T_TASK(cmd
)->t_task_buf
);
5198 T_TASK(cmd
)->t_task_buf
= dst
;
5200 struct scatterlist
*sg
=
5201 (struct scatterlist
*sg
)T_TASK(cmd
)->t_task_buf
;
5202 struct scatterlist
*orig_sg
;
5204 orig_sg
= kzalloc(sizeof(struct scatterlist
) *
5205 T_TASK(cmd
)->t_tasks_se_num
,
5208 printk(KERN_ERR
"Unable to allocate memory"
5209 " for WRITE underflow\n");
5210 transport_generic_request_failure(cmd
, NULL
,
5211 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5215 memcpy(orig_sg
, T_TASK(cmd
)->t_task_buf
,
5216 sizeof(struct scatterlist
) *
5217 T_TASK(cmd
)->t_tasks_se_num
);
5219 cmd
->data_length
= cmd
->cmd_spdtl
;
5221 * FIXME, clear out original struct se_task and state
5224 if (transport_generic_new_cmd(cmd
) < 0) {
5225 transport_generic_request_failure(cmd
, NULL
,
5226 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5231 transport_memcpy_write_sg(cmd
, orig_sg
);
5235 transport_execute_tasks(cmd
);
5237 EXPORT_SYMBOL(transport_generic_process_write
);
5239 /* transport_generic_write_pending():
5243 static int transport_generic_write_pending(struct se_cmd
*cmd
)
5245 unsigned long flags
;
5248 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5249 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
5250 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5252 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5253 * from the passed Linux/SCSI struct scatterlist located at
5254 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5255 * T_TASK(se_cmd)->t_task_buf.
5257 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
5258 transport_memcpy_read_contig(cmd
,
5259 T_TASK(cmd
)->t_task_buf
,
5260 T_TASK(cmd
)->t_task_pt_sgl
);
5262 * Clear the se_cmd for WRITE_PENDING status in order to set
5263 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5264 * can be called from HW target mode interrupt code. This is safe
5265 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5266 * because the se_cmd->se_lun pointer is not being cleared.
5268 transport_cmd_check_stop(cmd
, 1, 0);
5271 * Call the fabric write_pending function here to let the
5272 * frontend know that WRITE buffers are ready.
5274 ret
= CMD_TFO(cmd
)->write_pending(cmd
);
5278 return PYX_TRANSPORT_WRITE_PENDING
;
5281 /* transport_release_cmd_to_pool():
5285 void transport_release_cmd_to_pool(struct se_cmd
*cmd
)
5287 BUG_ON(!T_TASK(cmd
));
5288 BUG_ON(!CMD_TFO(cmd
));
5290 transport_free_se_cmd(cmd
);
5291 CMD_TFO(cmd
)->release_cmd_to_pool(cmd
);
5293 EXPORT_SYMBOL(transport_release_cmd_to_pool
);
5295 /* transport_generic_free_cmd():
5297 * Called from processing frontend to release storage engine resources
5299 void transport_generic_free_cmd(
5302 int release_to_pool
,
5303 int session_reinstatement
)
5305 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) || !T_TASK(cmd
))
5306 transport_release_cmd_to_pool(cmd
);
5308 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
5312 printk(KERN_INFO
"cmd: %p ITT: 0x%08x contains"
5313 " SE_LUN(cmd)\n", cmd
,
5314 CMD_TFO(cmd
)->get_task_tag(cmd
));
5316 transport_lun_remove_cmd(cmd
);
5319 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
5320 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
5322 transport_free_dev_tasks(cmd
);
5324 transport_generic_remove(cmd
, release_to_pool
,
5325 session_reinstatement
);
5328 EXPORT_SYMBOL(transport_generic_free_cmd
);
5330 static void transport_nop_wait_for_tasks(
5333 int session_reinstatement
)
5338 /* transport_lun_wait_for_tasks():
5340 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5341 * an struct se_lun to be successfully shutdown.
5343 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
5345 unsigned long flags
;
5348 * If the frontend has already requested this struct se_cmd to
5349 * be stopped, we can safely ignore this struct se_cmd.
5351 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5352 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
5353 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5354 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5355 " TRUE, skipping\n", CMD_TFO(cmd
)->get_task_tag(cmd
));
5356 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5357 transport_cmd_check_stop(cmd
, 1, 0);
5360 atomic_set(&T_TASK(cmd
)->transport_lun_fe_stop
, 1);
5361 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5363 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5365 ret
= transport_stop_tasks_for_cmd(cmd
);
5367 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5368 " %d\n", cmd
, T_TASK(cmd
)->t_task_cdbs
, ret
);
5370 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5371 CMD_TFO(cmd
)->get_task_tag(cmd
));
5372 wait_for_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
5373 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5374 CMD_TFO(cmd
)->get_task_tag(cmd
));
5376 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
5381 /* #define DEBUG_CLEAR_LUN */
5382 #ifdef DEBUG_CLEAR_LUN
5383 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5385 #define DEBUG_CLEAR_L(x...)
5388 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
5390 struct se_cmd
*cmd
= NULL
;
5391 unsigned long lun_flags
, cmd_flags
;
5393 * Do exception processing and return CHECK_CONDITION status to the
5396 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5397 while (!list_empty_careful(&lun
->lun_cmd_list
)) {
5398 cmd
= list_entry(lun
->lun_cmd_list
.next
,
5399 struct se_cmd
, se_lun_list
);
5400 list_del(&cmd
->se_lun_list
);
5402 if (!(T_TASK(cmd
))) {
5403 printk(KERN_ERR
"ITT: 0x%08x, T_TASK(cmd) = NULL"
5404 "[i,t]_state: %u/%u\n",
5405 CMD_TFO(cmd
)->get_task_tag(cmd
),
5406 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5409 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
5411 * This will notify iscsi_target_transport.c:
5412 * transport_cmd_check_stop() that a LUN shutdown is in
5413 * progress for the iscsi_cmd_t.
5415 spin_lock(&T_TASK(cmd
)->t_state_lock
);
5416 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5417 "_lun_stop for ITT: 0x%08x\n",
5418 SE_LUN(cmd
)->unpacked_lun
,
5419 CMD_TFO(cmd
)->get_task_tag(cmd
));
5420 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 1);
5421 spin_unlock(&T_TASK(cmd
)->t_state_lock
);
5423 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5425 if (!(SE_LUN(cmd
))) {
5426 printk(KERN_ERR
"ITT: 0x%08x, [i,t]_state: %u/%u\n",
5427 CMD_TFO(cmd
)->get_task_tag(cmd
),
5428 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5432 * If the Storage engine still owns the iscsi_cmd_t, determine
5433 * and/or stop its context.
5435 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5436 "_lun_wait_for_tasks()\n", SE_LUN(cmd
)->unpacked_lun
,
5437 CMD_TFO(cmd
)->get_task_tag(cmd
));
5439 if (transport_lun_wait_for_tasks(cmd
, SE_LUN(cmd
)) < 0) {
5440 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5444 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5445 "_wait_for_tasks(): SUCCESS\n",
5446 SE_LUN(cmd
)->unpacked_lun
,
5447 CMD_TFO(cmd
)->get_task_tag(cmd
));
5449 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5450 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
5451 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5454 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
5455 transport_all_task_dev_remove_state(cmd
);
5456 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5458 transport_free_dev_tasks(cmd
);
5460 * The Storage engine stopped this struct se_cmd before it was
5461 * send to the fabric frontend for delivery back to the
5462 * Initiator Node. Return this SCSI CDB back with an
5463 * CHECK_CONDITION status.
5466 transport_send_check_condition_and_sense(cmd
,
5467 TCM_NON_EXISTENT_LUN
, 0);
5469 * If the fabric frontend is waiting for this iscsi_cmd_t to
5470 * be released, notify the waiting thread now that LU has
5471 * finished accessing it.
5473 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5474 if (atomic_read(&T_TASK(cmd
)->transport_lun_fe_stop
)) {
5475 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5476 " struct se_cmd: %p ITT: 0x%08x\n",
5478 cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5480 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
5482 transport_cmd_check_stop(cmd
, 1, 0);
5483 complete(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5484 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5487 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5488 lun
->unpacked_lun
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5490 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5491 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5493 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5496 static int transport_clear_lun_thread(void *p
)
5498 struct se_lun
*lun
= (struct se_lun
*)p
;
5500 __transport_clear_lun_from_sessions(lun
);
5501 complete(&lun
->lun_shutdown_comp
);
5506 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
5508 struct task_struct
*kt
;
5510 kt
= kthread_run(transport_clear_lun_thread
, (void *)lun
,
5511 "tcm_cl_%u", lun
->unpacked_lun
);
5513 printk(KERN_ERR
"Unable to start clear_lun thread\n");
5516 wait_for_completion(&lun
->lun_shutdown_comp
);
5521 /* transport_generic_wait_for_tasks():
5523 * Called from frontend or passthrough context to wait for storage engine
5524 * to pause and/or release frontend generated struct se_cmd.
5526 static void transport_generic_wait_for_tasks(
5529 int session_reinstatement
)
5531 unsigned long flags
;
5533 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
5536 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5538 * If we are already stopped due to an external event (ie: LUN shutdown)
5539 * sleep until the connection can have the passed struct se_cmd back.
5540 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5541 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5542 * has completed its operation on the struct se_cmd.
5544 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
5546 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5547 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5548 "_stop_comp); for ITT: 0x%08x\n",
5549 CMD_TFO(cmd
)->get_task_tag(cmd
));
5551 * There is a special case for WRITES where a FE exception +
5552 * LUN shutdown means ConfigFS context is still sleeping on
5553 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5554 * We go ahead and up transport_lun_stop_comp just to be sure
5557 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5558 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
5559 wait_for_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5560 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5562 transport_all_task_dev_remove_state(cmd
);
5564 * At this point, the frontend who was the originator of this
5565 * struct se_cmd, now owns the structure and can be released through
5566 * normal means below.
5568 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5569 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5570 "stop_comp); for ITT: 0x%08x\n",
5571 CMD_TFO(cmd
)->get_task_tag(cmd
));
5573 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5575 if (!atomic_read(&T_TASK(cmd
)->t_transport_active
) ||
5576 atomic_read(&T_TASK(cmd
)->t_transport_aborted
))
5579 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 1);
5581 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5582 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5583 " = TRUE\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
5584 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
,
5585 cmd
->deferred_t_state
);
5587 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5589 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5591 wait_for_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
5593 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5594 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
5595 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 0);
5597 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5598 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5599 CMD_TFO(cmd
)->get_task_tag(cmd
));
5601 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5605 transport_generic_free_cmd(cmd
, 0, 0, session_reinstatement
);
5608 static int transport_get_sense_codes(
5613 *asc
= cmd
->scsi_asc
;
5614 *ascq
= cmd
->scsi_ascq
;
5619 static int transport_set_sense_codes(
5624 cmd
->scsi_asc
= asc
;
5625 cmd
->scsi_ascq
= ascq
;
5630 int transport_send_check_condition_and_sense(
5635 unsigned char *buffer
= cmd
->sense_buffer
;
5636 unsigned long flags
;
5638 u8 asc
= 0, ascq
= 0;
5640 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5641 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
5642 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5645 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
5646 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5648 if (!reason
&& from_transport
)
5651 if (!from_transport
)
5652 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
5654 * Data Segment and SenseLength of the fabric response PDU.
5656 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5657 * from include/scsi/scsi_cmnd.h
5659 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
5660 TRANSPORT_SENSE_BUFFER
);
5662 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5663 * SENSE KEY values from include/scsi/scsi.h
5666 case TCM_NON_EXISTENT_LUN
:
5667 case TCM_UNSUPPORTED_SCSI_OPCODE
:
5668 case TCM_SECTOR_COUNT_TOO_MANY
:
5670 buffer
[offset
] = 0x70;
5671 /* ILLEGAL REQUEST */
5672 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5673 /* INVALID COMMAND OPERATION CODE */
5674 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
5676 case TCM_UNKNOWN_MODE_PAGE
:
5678 buffer
[offset
] = 0x70;
5679 /* ILLEGAL REQUEST */
5680 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5681 /* INVALID FIELD IN CDB */
5682 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5684 case TCM_CHECK_CONDITION_ABORT_CMD
:
5686 buffer
[offset
] = 0x70;
5687 /* ABORTED COMMAND */
5688 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5689 /* BUS DEVICE RESET FUNCTION OCCURRED */
5690 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
5691 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
5693 case TCM_INCORRECT_AMOUNT_OF_DATA
:
5695 buffer
[offset
] = 0x70;
5696 /* ABORTED COMMAND */
5697 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5699 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5700 /* NOT ENOUGH UNSOLICITED DATA */
5701 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
5703 case TCM_INVALID_CDB_FIELD
:
5705 buffer
[offset
] = 0x70;
5706 /* ABORTED COMMAND */
5707 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5708 /* INVALID FIELD IN CDB */
5709 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5711 case TCM_INVALID_PARAMETER_LIST
:
5713 buffer
[offset
] = 0x70;
5714 /* ABORTED COMMAND */
5715 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5716 /* INVALID FIELD IN PARAMETER LIST */
5717 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
5719 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
5721 buffer
[offset
] = 0x70;
5722 /* ABORTED COMMAND */
5723 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5725 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5726 /* UNEXPECTED_UNSOLICITED_DATA */
5727 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
5729 case TCM_SERVICE_CRC_ERROR
:
5731 buffer
[offset
] = 0x70;
5732 /* ABORTED COMMAND */
5733 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5734 /* PROTOCOL SERVICE CRC ERROR */
5735 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
5737 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
5739 case TCM_SNACK_REJECTED
:
5741 buffer
[offset
] = 0x70;
5742 /* ABORTED COMMAND */
5743 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5745 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
5746 /* FAILED RETRANSMISSION REQUEST */
5747 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
5749 case TCM_WRITE_PROTECTED
:
5751 buffer
[offset
] = 0x70;
5753 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
5754 /* WRITE PROTECTED */
5755 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
5757 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
5759 buffer
[offset
] = 0x70;
5760 /* UNIT ATTENTION */
5761 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
5762 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
5763 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5764 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5766 case TCM_CHECK_CONDITION_NOT_READY
:
5768 buffer
[offset
] = 0x70;
5770 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
5771 transport_get_sense_codes(cmd
, &asc
, &ascq
);
5772 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5773 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5775 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
5778 buffer
[offset
] = 0x70;
5779 /* ILLEGAL REQUEST */
5780 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5781 /* LOGICAL UNIT COMMUNICATION FAILURE */
5782 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
5786 * This code uses linux/include/scsi/scsi.h SAM status codes!
5788 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
5790 * Automatically padded, this value is encoded in the fabric's
5791 * data_length response PDU containing the SCSI defined sense data.
5793 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
5796 CMD_TFO(cmd
)->queue_status(cmd
);
5799 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
5801 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
5805 if (atomic_read(&T_TASK(cmd
)->t_transport_aborted
) != 0) {
5806 if (!(send_status
) ||
5807 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
5810 printk(KERN_INFO
"Sending delayed SAM_STAT_TASK_ABORTED"
5811 " status for CDB: 0x%02x ITT: 0x%08x\n",
5812 T_TASK(cmd
)->t_task_cdb
[0],
5813 CMD_TFO(cmd
)->get_task_tag(cmd
));
5815 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
5816 CMD_TFO(cmd
)->queue_status(cmd
);
5821 EXPORT_SYMBOL(transport_check_aborted_status
);
5823 void transport_send_task_abort(struct se_cmd
*cmd
)
5826 * If there are still expected incoming fabric WRITEs, we wait
5827 * until until they have completed before sending a TASK_ABORTED
5828 * response. This response with TASK_ABORTED status will be
5829 * queued back to fabric module by transport_check_aborted_status().
5831 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5832 if (CMD_TFO(cmd
)->write_pending_status(cmd
) != 0) {
5833 atomic_inc(&T_TASK(cmd
)->t_transport_aborted
);
5834 smp_mb__after_atomic_inc();
5835 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5836 transport_new_cmd_failure(cmd
);
5840 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5842 printk(KERN_INFO
"Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5843 " ITT: 0x%08x\n", T_TASK(cmd
)->t_task_cdb
[0],
5844 CMD_TFO(cmd
)->get_task_tag(cmd
));
5846 CMD_TFO(cmd
)->queue_status(cmd
);
5849 /* transport_generic_do_tmr():
5853 int transport_generic_do_tmr(struct se_cmd
*cmd
)
5855 struct se_cmd
*ref_cmd
;
5856 struct se_device
*dev
= SE_DEV(cmd
);
5857 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
5860 switch (tmr
->function
) {
5861 case TMR_ABORT_TASK
:
5862 ref_cmd
= tmr
->ref_cmd
;
5863 tmr
->response
= TMR_FUNCTION_REJECTED
;
5865 case TMR_ABORT_TASK_SET
:
5867 case TMR_CLEAR_TASK_SET
:
5868 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
5871 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
5872 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
5873 TMR_FUNCTION_REJECTED
;
5875 case TMR_TARGET_WARM_RESET
:
5876 tmr
->response
= TMR_FUNCTION_REJECTED
;
5878 case TMR_TARGET_COLD_RESET
:
5879 tmr
->response
= TMR_FUNCTION_REJECTED
;
5882 printk(KERN_ERR
"Uknown TMR function: 0x%02x.\n",
5884 tmr
->response
= TMR_FUNCTION_REJECTED
;
5888 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
5889 CMD_TFO(cmd
)->queue_tm_rsp(cmd
);
5891 transport_cmd_check_stop(cmd
, 2, 0);
5896 * Called with spin_lock_irq(&dev->execute_task_lock); held
5899 static struct se_task
*
5900 transport_get_task_from_state_list(struct se_device
*dev
)
5902 struct se_task
*task
;
5904 if (list_empty(&dev
->state_task_list
))
5907 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5910 list_del(&task
->t_state_list
);
5911 atomic_set(&task
->task_state_active
, 0);
5916 static void transport_processing_shutdown(struct se_device
*dev
)
5919 struct se_queue_req
*qr
;
5920 struct se_task
*task
;
5922 unsigned long flags
;
5924 * Empty the struct se_device's struct se_task state list.
5926 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5927 while ((task
= transport_get_task_from_state_list(dev
))) {
5928 if (!(TASK_CMD(task
))) {
5929 printk(KERN_ERR
"TASK_CMD(task) is NULL!\n");
5932 cmd
= TASK_CMD(task
);
5935 printk(KERN_ERR
"T_TASK(cmd) is NULL for task: %p cmd:"
5936 " %p ITT: 0x%08x\n", task
, cmd
,
5937 CMD_TFO(cmd
)->get_task_tag(cmd
));
5940 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5942 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5944 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5945 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5946 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5947 CMD_TFO(cmd
)->get_task_tag(cmd
), cmd
->cmd_sn
,
5948 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->deferred_i_state
,
5949 cmd
->t_state
, cmd
->deferred_t_state
,
5950 T_TASK(cmd
)->t_task_cdb
[0]);
5951 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5952 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5953 " t_transport_stop: %d t_transport_sent: %d\n",
5954 CMD_TFO(cmd
)->get_task_tag(cmd
),
5955 T_TASK(cmd
)->t_task_cdbs
,
5956 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
5957 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
5958 atomic_read(&T_TASK(cmd
)->t_transport_active
),
5959 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
5960 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
5962 if (atomic_read(&task
->task_active
)) {
5963 atomic_set(&task
->task_stop
, 1);
5964 spin_unlock_irqrestore(
5965 &T_TASK(cmd
)->t_state_lock
, flags
);
5967 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5968 " %p\n", task
, dev
);
5969 wait_for_completion(&task
->task_stop_comp
);
5970 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5973 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5974 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
5976 atomic_set(&task
->task_active
, 0);
5977 atomic_set(&task
->task_stop
, 0);
5979 if (atomic_read(&task
->task_execute_queue
) != 0)
5980 transport_remove_task_from_execute_queue(task
, dev
);
5982 __transport_stop_task_timer(task
, &flags
);
5984 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_ex_left
))) {
5985 spin_unlock_irqrestore(
5986 &T_TASK(cmd
)->t_state_lock
, flags
);
5988 DEBUG_DO("Skipping task: %p, dev: %p for"
5989 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5990 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
));
5992 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5996 if (atomic_read(&T_TASK(cmd
)->t_transport_active
)) {
5997 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5998 " %p\n", task
, dev
);
6000 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6001 spin_unlock_irqrestore(
6002 &T_TASK(cmd
)->t_state_lock
, flags
);
6003 transport_send_check_condition_and_sense(
6004 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
6006 transport_remove_cmd_from_queue(cmd
,
6007 SE_DEV(cmd
)->dev_queue_obj
);
6009 transport_lun_remove_cmd(cmd
);
6010 transport_cmd_check_stop(cmd
, 1, 0);
6012 spin_unlock_irqrestore(
6013 &T_TASK(cmd
)->t_state_lock
, flags
);
6015 transport_remove_cmd_from_queue(cmd
,
6016 SE_DEV(cmd
)->dev_queue_obj
);
6018 transport_lun_remove_cmd(cmd
);
6020 if (transport_cmd_check_stop(cmd
, 1, 0))
6021 transport_generic_remove(cmd
, 0, 0);
6024 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6027 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6030 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6031 spin_unlock_irqrestore(
6032 &T_TASK(cmd
)->t_state_lock
, flags
);
6033 transport_send_check_condition_and_sense(cmd
,
6034 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6035 transport_remove_cmd_from_queue(cmd
,
6036 SE_DEV(cmd
)->dev_queue_obj
);
6038 transport_lun_remove_cmd(cmd
);
6039 transport_cmd_check_stop(cmd
, 1, 0);
6041 spin_unlock_irqrestore(
6042 &T_TASK(cmd
)->t_state_lock
, flags
);
6044 transport_remove_cmd_from_queue(cmd
,
6045 SE_DEV(cmd
)->dev_queue_obj
);
6046 transport_lun_remove_cmd(cmd
);
6048 if (transport_cmd_check_stop(cmd
, 1, 0))
6049 transport_generic_remove(cmd
, 0, 0);
6052 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6054 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
6056 * Empty the struct se_device's struct se_cmd list.
6058 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6059 while ((qr
= __transport_get_qr_from_queue(dev
->dev_queue_obj
))) {
6060 spin_unlock_irqrestore(
6061 &dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6062 cmd
= (struct se_cmd
*)qr
->cmd
;
6066 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6069 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6070 transport_send_check_condition_and_sense(cmd
,
6071 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6073 transport_lun_remove_cmd(cmd
);
6074 transport_cmd_check_stop(cmd
, 1, 0);
6076 transport_lun_remove_cmd(cmd
);
6077 if (transport_cmd_check_stop(cmd
, 1, 0))
6078 transport_generic_remove(cmd
, 0, 0);
6080 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6082 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6085 /* transport_processing_thread():
6089 static int transport_processing_thread(void *param
)
6093 struct se_device
*dev
= (struct se_device
*) param
;
6094 struct se_queue_req
*qr
;
6096 set_user_nice(current
, -20);
6098 while (!kthread_should_stop()) {
6099 ret
= wait_event_interruptible(dev
->dev_queue_obj
->thread_wq
,
6100 atomic_read(&dev
->dev_queue_obj
->queue_cnt
) ||
6101 kthread_should_stop());
6105 spin_lock_irq(&dev
->dev_status_lock
);
6106 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
6107 spin_unlock_irq(&dev
->dev_status_lock
);
6108 transport_processing_shutdown(dev
);
6111 spin_unlock_irq(&dev
->dev_status_lock
);
6114 __transport_execute_tasks(dev
);
6116 qr
= transport_get_qr_from_queue(dev
->dev_queue_obj
);
6120 cmd
= (struct se_cmd
*)qr
->cmd
;
6121 t_state
= qr
->state
;
6125 case TRANSPORT_NEW_CMD_MAP
:
6126 if (!(CMD_TFO(cmd
)->new_cmd_map
)) {
6127 printk(KERN_ERR
"CMD_TFO(cmd)->new_cmd_map is"
6128 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6131 ret
= CMD_TFO(cmd
)->new_cmd_map(cmd
);
6133 cmd
->transport_error_status
= ret
;
6134 transport_generic_request_failure(cmd
, NULL
,
6135 0, (cmd
->data_direction
!=
6140 case TRANSPORT_NEW_CMD
:
6141 ret
= transport_generic_new_cmd(cmd
);
6143 cmd
->transport_error_status
= ret
;
6144 transport_generic_request_failure(cmd
, NULL
,
6145 0, (cmd
->data_direction
!=
6149 case TRANSPORT_PROCESS_WRITE
:
6150 transport_generic_process_write(cmd
);
6152 case TRANSPORT_COMPLETE_OK
:
6153 transport_stop_all_task_timers(cmd
);
6154 transport_generic_complete_ok(cmd
);
6156 case TRANSPORT_REMOVE
:
6157 transport_generic_remove(cmd
, 1, 0);
6159 case TRANSPORT_FREE_CMD_INTR
:
6160 transport_generic_free_cmd(cmd
, 0, 1, 0);
6162 case TRANSPORT_PROCESS_TMR
:
6163 transport_generic_do_tmr(cmd
);
6165 case TRANSPORT_COMPLETE_FAILURE
:
6166 transport_generic_request_failure(cmd
, NULL
, 1, 1);
6168 case TRANSPORT_COMPLETE_TIMEOUT
:
6169 transport_stop_all_task_timers(cmd
);
6170 transport_generic_request_timeout(cmd
);
6173 printk(KERN_ERR
"Unknown t_state: %d deferred_t_state:"
6174 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6175 " %u\n", t_state
, cmd
->deferred_t_state
,
6176 CMD_TFO(cmd
)->get_task_tag(cmd
),
6177 CMD_TFO(cmd
)->get_cmd_state(cmd
),
6178 SE_LUN(cmd
)->unpacked_lun
);
6186 transport_release_all_cmds(dev
);
6187 dev
->process_thread
= NULL
;