1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
33 #include <asm/timer.h>
36 #include <asm/irq_regs.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/starfire.h>
43 #include <asm/sections.h>
45 #include <asm/mdesc.h>
47 #include <asm/hypervisor.h>
49 int sparc64_multi_core __read_mostly
;
51 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_NONE
;
52 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_NONE
;
53 DEFINE_PER_CPU(cpumask_t
, cpu_sibling_map
) = CPU_MASK_NONE
;
54 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
=
55 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
57 EXPORT_SYMBOL(cpu_possible_map
);
58 EXPORT_SYMBOL(cpu_online_map
);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
60 EXPORT_SYMBOL(cpu_core_map
);
62 static cpumask_t smp_commenced_mask
;
64 void smp_info(struct seq_file
*m
)
68 seq_printf(m
, "State:\n");
69 for_each_online_cpu(i
)
70 seq_printf(m
, "CPU%d:\t\tonline\n", i
);
73 void smp_bogo(struct seq_file
*m
)
77 for_each_online_cpu(i
)
79 "Cpu%dClkTck\t: %016lx\n",
80 i
, cpu_data(i
).clock_tick
);
83 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(call_lock
);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag
= 0;
89 void __cpuinit
smp_callin(void)
91 int cpuid
= hard_smp_processor_id();
93 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
95 if (tlb_type
== hypervisor
)
96 sun4v_ktsb_register();
100 setup_sparc64_timer();
102 if (cheetah_pcache_forced_on
)
103 cheetah_enable_pcache();
108 __asm__
__volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child
= 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm
.mm_count
);
118 current
->active_mm
= &init_mm
;
120 while (!cpu_isset(cpuid
, smp_commenced_mask
))
123 spin_lock(&call_lock
);
124 cpu_set(cpuid
, cpu_online_map
);
125 spin_unlock(&call_lock
);
127 /* idle thread is expected to have preempt disabled */
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
137 /* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
145 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147 #define NUM_ROUNDS 64 /* magic value */
148 #define NUM_ITERS 5 /* likewise */
150 static DEFINE_SPINLOCK(itc_sync_lock
);
151 static unsigned long go
[SLAVE
+ 1];
153 #define DEBUG_TICK_SYNC 0
155 static inline long get_delta (long *rt
, long *master
)
157 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
158 unsigned long tcenter
, t0
, t1
, tm
;
161 for (i
= 0; i
< NUM_ITERS
; i
++) {
162 t0
= tick_ops
->get_tick();
165 while (!(tm
= go
[SLAVE
]))
169 t1
= tick_ops
->get_tick();
171 if (t1
- t0
< best_t1
- best_t0
)
172 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
175 *rt
= best_t1
- best_t0
;
176 *master
= best_tm
- best_t0
;
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter
= (best_t0
/2 + best_t1
/2);
180 if (best_t0
% 2 + best_t1
% 2 == 2)
182 return tcenter
- best_tm
;
185 void smp_synchronize_tick_client(void)
187 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
188 unsigned long flags
, rt
, master_time_stamp
, bound
;
191 long rt
; /* roundtrip time */
192 long master
; /* master's timestamp */
193 long diff
; /* difference between midpoint and master's timestamp */
194 long lat
; /* estimate of itc adjustment latency */
203 local_irq_save(flags
);
205 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
206 delta
= get_delta(&rt
, &master_time_stamp
);
208 done
= 1; /* let's lock on to this... */
214 adjust_latency
+= -delta
;
215 adj
= -delta
+ adjust_latency
/4;
219 tick_ops
->add_tick(adj
);
223 t
[i
].master
= master_time_stamp
;
225 t
[i
].lat
= adjust_latency
/4;
229 local_irq_restore(flags
);
232 for (i
= 0; i
< NUM_ROUNDS
; i
++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
237 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta
, rt
);
242 static void smp_start_sync_tick_client(int cpu
);
244 static void smp_synchronize_one_tick(int cpu
)
246 unsigned long flags
, i
;
250 smp_start_sync_tick_client(cpu
);
252 /* wait for client to be ready */
256 /* now let the client proceed into his loop */
260 spin_lock_irqsave(&itc_sync_lock
, flags
);
262 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
267 go
[SLAVE
] = tick_ops
->get_tick();
271 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
274 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
275 /* XXX Put this in some common place. XXX */
276 static unsigned long kimage_addr_to_ra(void *p
)
278 unsigned long val
= (unsigned long) p
;
280 return kern_base
+ (val
- KERNBASE
);
283 static void ldom_startcpu_cpuid(unsigned int cpu
, unsigned long thread_reg
)
285 extern unsigned long sparc64_ttable_tl0
;
286 extern unsigned long kern_locked_tte_data
;
287 struct hvtramp_descr
*hdesc
;
288 unsigned long trampoline_ra
;
289 struct trap_per_cpu
*tb
;
290 u64 tte_vaddr
, tte_data
;
291 unsigned long hv_err
;
294 hdesc
= kzalloc(sizeof(*hdesc
) +
295 (sizeof(struct hvtramp_mapping
) *
296 num_kernel_image_mappings
- 1),
299 printk(KERN_ERR
"ldom_startcpu_cpuid: Cannot allocate "
305 hdesc
->num_mappings
= num_kernel_image_mappings
;
307 tb
= &trap_block
[cpu
];
310 hdesc
->fault_info_va
= (unsigned long) &tb
->fault_info
;
311 hdesc
->fault_info_pa
= kimage_addr_to_ra(&tb
->fault_info
);
313 hdesc
->thread_reg
= thread_reg
;
315 tte_vaddr
= (unsigned long) KERNBASE
;
316 tte_data
= kern_locked_tte_data
;
318 for (i
= 0; i
< hdesc
->num_mappings
; i
++) {
319 hdesc
->maps
[i
].vaddr
= tte_vaddr
;
320 hdesc
->maps
[i
].tte
= tte_data
;
321 tte_vaddr
+= 0x400000;
322 tte_data
+= 0x400000;
325 trampoline_ra
= kimage_addr_to_ra(hv_cpu_startup
);
327 hv_err
= sun4v_cpu_start(cpu
, trampoline_ra
,
328 kimage_addr_to_ra(&sparc64_ttable_tl0
),
331 printk(KERN_ERR
"ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err
);
336 extern unsigned long sparc64_cpu_startup
;
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
342 static struct thread_info
*cpu_new_thread
= NULL
;
344 static int __devinit
smp_boot_one_cpu(unsigned int cpu
)
346 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
347 unsigned long entry
=
348 (unsigned long)(&sparc64_cpu_startup
);
349 unsigned long cookie
=
350 (unsigned long)(&cpu_new_thread
);
351 struct task_struct
*p
;
358 cpu_new_thread
= task_thread_info(p
);
360 if (tlb_type
== hypervisor
) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled
)
363 ldom_startcpu_cpuid(cpu
,
364 (unsigned long) cpu_new_thread
);
367 prom_startcpu_cpuid(cpu
, entry
, cookie
);
369 struct device_node
*dp
= of_find_node_by_cpuid(cpu
);
371 prom_startcpu(dp
->node
, entry
, cookie
);
374 for (timeout
= 0; timeout
< 50000; timeout
++) {
383 printk("Processor %d is stuck.\n", cpu
);
386 cpu_new_thread
= NULL
;
396 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
401 if (this_is_starfire
) {
402 /* map to real upaid */
403 cpu
= (((cpu
& 0x3c) << 1) |
404 ((cpu
& 0x40) >> 4) |
408 target
= (cpu
<< 14) | 0x70;
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
418 __asm__
__volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
425 "stxa %%g0, [%7] %3\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
431 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
432 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
433 "r" (0x10), "0" (tmp
)
436 /* NOTE: PSTATE_IE is still clear. */
439 __asm__
__volatile__("ldxa [%%g0] %1, %0"
441 : "i" (ASI_INTR_DISPATCH_STAT
));
443 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
450 } while (result
& 0x1);
451 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
454 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
455 smp_processor_id(), result
);
462 static inline void spitfire_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
467 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
468 for_each_cpu_mask_nr(i
, *mask
)
469 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, i
);
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 static void cheetah_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask_p
)
478 u64 pstate
, ver
, busy_mask
;
479 int nack_busy_id
, is_jbus
, need_more
;
482 if (cpus_empty(*mask_p
))
487 /* Unfortunately, someone at Sun had the brilliant idea to make the
488 * busy/nack fields hard-coded by ITID number for this Ultra-III
489 * derivative processor.
491 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
492 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
493 (ver
>> 32) == __SERRANO_ID
);
495 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
499 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
500 : : "r" (pstate
), "i" (PSTATE_IE
));
502 /* Setup the dispatch data registers. */
503 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
504 "stxa %1, [%4] %6\n\t"
505 "stxa %2, [%5] %6\n\t"
508 : "r" (data0
), "r" (data1
), "r" (data2
),
509 "r" (0x40), "r" (0x50), "r" (0x60),
517 for_each_cpu_mask_nr(i
, mask
) {
518 u64 target
= (i
<< 14) | 0x70;
521 busy_mask
|= (0x1UL
<< (i
* 2));
523 target
|= (nack_busy_id
<< 24);
524 busy_mask
|= (0x1UL
<<
527 __asm__
__volatile__(
528 "stxa %%g0, [%0] %1\n\t"
531 : "r" (target
), "i" (ASI_INTR_W
));
533 if (nack_busy_id
== 32) {
540 /* Now, poll for completion. */
542 u64 dispatch_stat
, nack_mask
;
545 stuck
= 100000 * nack_busy_id
;
546 nack_mask
= busy_mask
<< 1;
548 __asm__
__volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat
)
550 : "i" (ASI_INTR_DISPATCH_STAT
));
551 if (!(dispatch_stat
& (busy_mask
| nack_mask
))) {
552 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
554 if (unlikely(need_more
)) {
556 for_each_cpu_mask_nr(i
, mask
) {
568 } while (dispatch_stat
& busy_mask
);
570 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
573 if (dispatch_stat
& busy_mask
) {
574 /* Busy bits will not clear, continue instead
575 * of freezing up on this cpu.
577 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
578 smp_processor_id(), dispatch_stat
);
580 int i
, this_busy_nack
= 0;
582 /* Delay some random time with interrupts enabled
583 * to prevent deadlock.
585 udelay(2 * nack_busy_id
);
587 /* Clear out the mask bits for cpus which did not
590 for_each_cpu_mask_nr(i
, mask
) {
594 check_mask
= (0x2UL
<< (2*i
));
596 check_mask
= (0x2UL
<<
598 if ((dispatch_stat
& check_mask
) == 0)
601 if (this_busy_nack
== 64)
610 /* Multi-cpu list version. */
611 static void hypervisor_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
613 int cnt
, retries
, this_cpu
, prev_sent
, i
;
614 unsigned long flags
, status
;
615 cpumask_t error_mask
;
616 struct trap_per_cpu
*tb
;
620 if (cpus_empty(*mask
))
623 /* We have to do this whole thing with interrupts fully disabled.
624 * Otherwise if we send an xcall from interrupt context it will
625 * corrupt both our mondo block and cpu list state.
627 * One consequence of this is that we cannot use timeout mechanisms
628 * that depend upon interrupts being delivered locally. So, for
629 * example, we cannot sample jiffies and expect it to advance.
631 * Fortunately, udelay() uses %stick/%tick so we can use that.
633 local_irq_save(flags
);
635 this_cpu
= smp_processor_id();
636 tb
= &trap_block
[this_cpu
];
638 mondo
= __va(tb
->cpu_mondo_block_pa
);
644 cpu_list
= __va(tb
->cpu_list_pa
);
646 /* Setup the initial cpu list. */
648 for_each_cpu_mask_nr(i
, *mask
)
651 cpus_clear(error_mask
);
655 int forward_progress
, n_sent
;
657 status
= sun4v_cpu_mondo_send(cnt
,
659 tb
->cpu_mondo_block_pa
);
661 /* HV_EOK means all cpus received the xcall, we're done. */
662 if (likely(status
== HV_EOK
))
665 /* First, see if we made any forward progress.
667 * The hypervisor indicates successful sends by setting
668 * cpu list entries to the value 0xffff.
671 for (i
= 0; i
< cnt
; i
++) {
672 if (likely(cpu_list
[i
] == 0xffff))
676 forward_progress
= 0;
677 if (n_sent
> prev_sent
)
678 forward_progress
= 1;
682 /* If we get a HV_ECPUERROR, then one or more of the cpus
683 * in the list are in error state. Use the cpu_state()
684 * hypervisor call to find out which cpus are in error state.
686 if (unlikely(status
== HV_ECPUERROR
)) {
687 for (i
= 0; i
< cnt
; i
++) {
695 err
= sun4v_cpu_state(cpu
);
697 err
== HV_CPU_STATE_ERROR
) {
698 cpu_list
[i
] = 0xffff;
699 cpu_set(cpu
, error_mask
);
702 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
703 goto fatal_mondo_error
;
705 /* Don't bother rewriting the CPU list, just leave the
706 * 0xffff and non-0xffff entries in there and the
707 * hypervisor will do the right thing.
709 * Only advance timeout state if we didn't make any
712 if (unlikely(!forward_progress
)) {
713 if (unlikely(++retries
> 10000))
714 goto fatal_mondo_timeout
;
716 /* Delay a little bit to let other cpus catch up
717 * on their cpu mondo queue work.
723 local_irq_restore(flags
);
725 if (unlikely(!cpus_empty(error_mask
)))
726 goto fatal_mondo_cpu_error
;
730 fatal_mondo_cpu_error
:
731 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
732 "were in error state\n",
734 printk(KERN_CRIT
"CPU[%d]: Error mask [ ", this_cpu
);
735 for_each_cpu_mask_nr(i
, error_mask
)
741 local_irq_restore(flags
);
742 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
743 " progress after %d retries.\n",
745 goto dump_cpu_list_and_out
;
748 local_irq_restore(flags
);
749 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
751 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
752 "mondo_block_pa(%lx)\n",
753 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
755 dump_cpu_list_and_out
:
756 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
757 for (i
= 0; i
< cnt
; i
++)
758 printk("%u ", cpu_list
[i
]);
762 static void (*xcall_deliver
)(u64
, u64
, u64
, const cpumask_t
*);
764 /* Send cross call to all processors mentioned in MASK
767 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, cpumask_t mask
)
769 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
770 int this_cpu
= get_cpu();
772 cpus_and(mask
, mask
, cpu_online_map
);
773 cpu_clear(this_cpu
, mask
);
775 xcall_deliver(data0
, data1
, data2
, &mask
);
776 /* NOTE: Caller runs local copy on master. */
781 extern unsigned long xcall_sync_tick
;
783 static void smp_start_sync_tick_client(int cpu
)
785 xcall_deliver((u64
) &xcall_sync_tick
, 0, 0,
786 &cpumask_of_cpu(cpu
));
789 extern unsigned long xcall_call_function
;
791 void arch_send_call_function_ipi(cpumask_t mask
)
793 xcall_deliver((u64
) &xcall_call_function
, 0, 0, &mask
);
796 extern unsigned long xcall_call_function_single
;
798 void arch_send_call_function_single_ipi(int cpu
)
800 xcall_deliver((u64
) &xcall_call_function_single
, 0, 0,
801 &cpumask_of_cpu(cpu
));
804 /* Send cross call to all processors except self. */
805 #define smp_cross_call(func, ctx, data1, data2) \
806 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
808 void smp_call_function_client(int irq
, struct pt_regs
*regs
)
810 clear_softint(1 << irq
);
811 generic_smp_call_function_interrupt();
814 void smp_call_function_single_client(int irq
, struct pt_regs
*regs
)
816 clear_softint(1 << irq
);
817 generic_smp_call_function_single_interrupt();
820 static void tsb_sync(void *info
)
822 struct trap_per_cpu
*tp
= &trap_block
[raw_smp_processor_id()];
823 struct mm_struct
*mm
= info
;
825 /* It is not valid to test "currrent->active_mm == mm" here.
827 * The value of "current" is not changed atomically with
828 * switch_mm(). But that's OK, we just need to check the
829 * current cpu's trap block PGD physical address.
831 if (tp
->pgd_paddr
== __pa(mm
->pgd
))
832 tsb_context_switch(mm
);
835 void smp_tsb_sync(struct mm_struct
*mm
)
837 smp_call_function_mask(mm
->cpu_vm_mask
, tsb_sync
, mm
, 1);
840 extern unsigned long xcall_flush_tlb_mm
;
841 extern unsigned long xcall_flush_tlb_pending
;
842 extern unsigned long xcall_flush_tlb_kernel_range
;
843 #ifdef CONFIG_MAGIC_SYSRQ
844 extern unsigned long xcall_fetch_glob_regs
;
846 extern unsigned long xcall_receive_signal
;
847 extern unsigned long xcall_new_mmu_context_version
;
849 extern unsigned long xcall_kgdb_capture
;
852 #ifdef DCACHE_ALIASING_POSSIBLE
853 extern unsigned long xcall_flush_dcache_page_cheetah
;
855 extern unsigned long xcall_flush_dcache_page_spitfire
;
857 #ifdef CONFIG_DEBUG_DCFLUSH
858 extern atomic_t dcpage_flushes
;
859 extern atomic_t dcpage_flushes_xcall
;
862 static inline void __local_flush_dcache_page(struct page
*page
)
864 #ifdef DCACHE_ALIASING_POSSIBLE
865 __flush_dcache_page(page_address(page
),
866 ((tlb_type
== spitfire
) &&
867 page_mapping(page
) != NULL
));
869 if (page_mapping(page
) != NULL
&&
870 tlb_type
== spitfire
)
871 __flush_icache_page(__pa(page_address(page
)));
875 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
877 cpumask_t mask
= cpumask_of_cpu(cpu
);
880 if (tlb_type
== hypervisor
)
883 #ifdef CONFIG_DEBUG_DCFLUSH
884 atomic_inc(&dcpage_flushes
);
887 this_cpu
= get_cpu();
889 if (cpu
== this_cpu
) {
890 __local_flush_dcache_page(page
);
891 } else if (cpu_online(cpu
)) {
892 void *pg_addr
= page_address(page
);
895 if (tlb_type
== spitfire
) {
896 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
897 if (page_mapping(page
) != NULL
)
898 data0
|= ((u64
)1 << 32);
899 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
900 #ifdef DCACHE_ALIASING_POSSIBLE
901 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
905 xcall_deliver(data0
, __pa(pg_addr
),
906 (u64
) pg_addr
, &mask
);
907 #ifdef CONFIG_DEBUG_DCFLUSH
908 atomic_inc(&dcpage_flushes_xcall
);
916 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
918 cpumask_t mask
= cpu_online_map
;
923 if (tlb_type
== hypervisor
)
926 this_cpu
= get_cpu();
928 cpu_clear(this_cpu
, mask
);
930 #ifdef CONFIG_DEBUG_DCFLUSH
931 atomic_inc(&dcpage_flushes
);
933 if (cpus_empty(mask
))
936 pg_addr
= page_address(page
);
937 if (tlb_type
== spitfire
) {
938 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
939 if (page_mapping(page
) != NULL
)
940 data0
|= ((u64
)1 << 32);
941 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
942 #ifdef DCACHE_ALIASING_POSSIBLE
943 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
947 xcall_deliver(data0
, __pa(pg_addr
),
948 (u64
) pg_addr
, &mask
);
949 #ifdef CONFIG_DEBUG_DCFLUSH
950 atomic_inc(&dcpage_flushes_xcall
);
954 __local_flush_dcache_page(page
);
959 void smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
961 struct mm_struct
*mm
;
964 clear_softint(1 << irq
);
966 /* See if we need to allocate a new TLB context because
967 * the version of the one we are using is now out of date.
969 mm
= current
->active_mm
;
970 if (unlikely(!mm
|| (mm
== &init_mm
)))
973 spin_lock_irqsave(&mm
->context
.lock
, flags
);
975 if (unlikely(!CTX_VALID(mm
->context
)))
976 get_new_mmu_context(mm
);
978 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
980 load_secondary_context(mm
);
981 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
985 void smp_new_mmu_context_version(void)
987 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
991 void kgdb_roundup_cpus(unsigned long flags
)
993 smp_cross_call(&xcall_kgdb_capture
, 0, 0, 0);
997 #ifdef CONFIG_MAGIC_SYSRQ
998 void smp_fetch_global_regs(void)
1000 smp_cross_call(&xcall_fetch_glob_regs
, 0, 0, 0);
1004 /* We know that the window frames of the user have been flushed
1005 * to the stack before we get here because all callers of us
1006 * are flush_tlb_*() routines, and these run after flush_cache_*()
1007 * which performs the flushw.
1009 * The SMP TLB coherency scheme we use works as follows:
1011 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1012 * space has (potentially) executed on, this is the heuristic
1013 * we use to avoid doing cross calls.
1015 * Also, for flushing from kswapd and also for clones, we
1016 * use cpu_vm_mask as the list of cpus to make run the TLB.
1018 * 2) TLB context numbers are shared globally across all processors
1019 * in the system, this allows us to play several games to avoid
1022 * One invariant is that when a cpu switches to a process, and
1023 * that processes tsk->active_mm->cpu_vm_mask does not have the
1024 * current cpu's bit set, that tlb context is flushed locally.
1026 * If the address space is non-shared (ie. mm->count == 1) we avoid
1027 * cross calls when we want to flush the currently running process's
1028 * tlb state. This is done by clearing all cpu bits except the current
1029 * processor's in current->active_mm->cpu_vm_mask and performing the
1030 * flush locally only. This will force any subsequent cpus which run
1031 * this task to flush the context from the local tlb if the process
1032 * migrates to another cpu (again).
1034 * 3) For shared address spaces (threads) and swapping we bite the
1035 * bullet for most cases and perform the cross call (but only to
1036 * the cpus listed in cpu_vm_mask).
1038 * The performance gain from "optimizing" away the cross call for threads is
1039 * questionable (in theory the big win for threads is the massive sharing of
1040 * address space state across processors).
1043 /* This currently is only used by the hugetlb arch pre-fault
1044 * hook on UltraSPARC-III+ and later when changing the pagesize
1045 * bits of the context register for an address space.
1047 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1049 u32 ctx
= CTX_HWBITS(mm
->context
);
1050 int cpu
= get_cpu();
1052 if (atomic_read(&mm
->mm_users
) == 1) {
1053 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1054 goto local_flush_and_out
;
1057 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1061 local_flush_and_out
:
1062 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1067 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1069 u32 ctx
= CTX_HWBITS(mm
->context
);
1070 int cpu
= get_cpu();
1072 if (mm
== current
->active_mm
&& atomic_read(&mm
->mm_users
) == 1)
1073 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1075 smp_cross_call_masked(&xcall_flush_tlb_pending
,
1076 ctx
, nr
, (unsigned long) vaddrs
,
1079 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1084 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1087 end
= PAGE_ALIGN(end
);
1089 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1092 __flush_tlb_kernel_range(start
, end
);
1097 /* #define CAPTURE_DEBUG */
1098 extern unsigned long xcall_capture
;
1100 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1101 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1102 static unsigned long penguins_are_doing_time
;
1104 void smp_capture(void)
1106 int result
= atomic_add_ret(1, &smp_capture_depth
);
1109 int ncpus
= num_online_cpus();
1111 #ifdef CAPTURE_DEBUG
1112 printk("CPU[%d]: Sending penguins to jail...",
1113 smp_processor_id());
1115 penguins_are_doing_time
= 1;
1116 membar_storestore_loadstore();
1117 atomic_inc(&smp_capture_registry
);
1118 smp_cross_call(&xcall_capture
, 0, 0, 0);
1119 while (atomic_read(&smp_capture_registry
) != ncpus
)
1121 #ifdef CAPTURE_DEBUG
1127 void smp_release(void)
1129 if (atomic_dec_and_test(&smp_capture_depth
)) {
1130 #ifdef CAPTURE_DEBUG
1131 printk("CPU[%d]: Giving pardon to "
1132 "imprisoned penguins\n",
1133 smp_processor_id());
1135 penguins_are_doing_time
= 0;
1136 membar_storeload_storestore();
1137 atomic_dec(&smp_capture_registry
);
1141 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1142 * can service tlb flush xcalls...
1144 extern void prom_world(int);
1146 void smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1148 clear_softint(1 << irq
);
1152 __asm__
__volatile__("flushw");
1154 atomic_inc(&smp_capture_registry
);
1155 membar_storeload_storestore();
1156 while (penguins_are_doing_time
)
1158 atomic_dec(&smp_capture_registry
);
1164 /* /proc/profile writes can call this, don't __init it please. */
1165 int setup_profiling_timer(unsigned int multiplier
)
1170 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1174 void __devinit
smp_prepare_boot_cpu(void)
1178 void __init
smp_setup_processor_id(void)
1180 if (tlb_type
== spitfire
)
1181 xcall_deliver
= spitfire_xcall_deliver
;
1182 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1183 xcall_deliver
= cheetah_xcall_deliver
;
1185 xcall_deliver
= hypervisor_xcall_deliver
;
1188 void __devinit
smp_fill_in_sib_core_maps(void)
1192 for_each_present_cpu(i
) {
1195 cpus_clear(cpu_core_map
[i
]);
1196 if (cpu_data(i
).core_id
== 0) {
1197 cpu_set(i
, cpu_core_map
[i
]);
1201 for_each_present_cpu(j
) {
1202 if (cpu_data(i
).core_id
==
1203 cpu_data(j
).core_id
)
1204 cpu_set(j
, cpu_core_map
[i
]);
1208 for_each_present_cpu(i
) {
1211 cpus_clear(per_cpu(cpu_sibling_map
, i
));
1212 if (cpu_data(i
).proc_id
== -1) {
1213 cpu_set(i
, per_cpu(cpu_sibling_map
, i
));
1217 for_each_present_cpu(j
) {
1218 if (cpu_data(i
).proc_id
==
1219 cpu_data(j
).proc_id
)
1220 cpu_set(j
, per_cpu(cpu_sibling_map
, i
));
1225 int __cpuinit
__cpu_up(unsigned int cpu
)
1227 int ret
= smp_boot_one_cpu(cpu
);
1230 cpu_set(cpu
, smp_commenced_mask
);
1231 while (!cpu_isset(cpu
, cpu_online_map
))
1233 if (!cpu_isset(cpu
, cpu_online_map
)) {
1236 /* On SUN4V, writes to %tick and %stick are
1239 if (tlb_type
!= hypervisor
)
1240 smp_synchronize_one_tick(cpu
);
1246 #ifdef CONFIG_HOTPLUG_CPU
1247 void cpu_play_dead(void)
1249 int cpu
= smp_processor_id();
1250 unsigned long pstate
;
1254 if (tlb_type
== hypervisor
) {
1255 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1257 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO
,
1258 tb
->cpu_mondo_pa
, 0);
1259 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO
,
1260 tb
->dev_mondo_pa
, 0);
1261 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR
,
1262 tb
->resum_mondo_pa
, 0);
1263 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR
,
1264 tb
->nonresum_mondo_pa
, 0);
1267 cpu_clear(cpu
, smp_commenced_mask
);
1268 membar_safe("#Sync");
1270 local_irq_disable();
1272 __asm__
__volatile__(
1273 "rdpr %%pstate, %0\n\t"
1274 "wrpr %0, %1, %%pstate"
1282 int __cpu_disable(void)
1284 int cpu
= smp_processor_id();
1288 for_each_cpu_mask(i
, cpu_core_map
[cpu
])
1289 cpu_clear(cpu
, cpu_core_map
[i
]);
1290 cpus_clear(cpu_core_map
[cpu
]);
1292 for_each_cpu_mask(i
, per_cpu(cpu_sibling_map
, cpu
))
1293 cpu_clear(cpu
, per_cpu(cpu_sibling_map
, i
));
1294 cpus_clear(per_cpu(cpu_sibling_map
, cpu
));
1301 spin_lock(&call_lock
);
1302 cpu_clear(cpu
, cpu_online_map
);
1303 spin_unlock(&call_lock
);
1307 /* Make sure no interrupts point to this cpu. */
1312 local_irq_disable();
1317 void __cpu_die(unsigned int cpu
)
1321 for (i
= 0; i
< 100; i
++) {
1323 if (!cpu_isset(cpu
, smp_commenced_mask
))
1327 if (cpu_isset(cpu
, smp_commenced_mask
)) {
1328 printk(KERN_ERR
"CPU %u didn't die...\n", cpu
);
1330 #if defined(CONFIG_SUN_LDOMS)
1331 unsigned long hv_err
;
1335 hv_err
= sun4v_cpu_stop(cpu
);
1336 if (hv_err
== HV_EOK
) {
1337 cpu_clear(cpu
, cpu_present_map
);
1340 } while (--limit
> 0);
1342 printk(KERN_ERR
"sun4v_cpu_stop() fails err=%lu\n",
1350 void __init
smp_cpus_done(unsigned int max_cpus
)
1354 void smp_send_reschedule(int cpu
)
1356 xcall_deliver((u64
) &xcall_receive_signal
, 0, 0,
1357 &cpumask_of_cpu(cpu
));
1360 void smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
1362 clear_softint(1 << irq
);
1365 /* This is a nop because we capture all other cpus
1366 * anyways when making the PROM active.
1368 void smp_send_stop(void)
1372 unsigned long __per_cpu_base __read_mostly
;
1373 unsigned long __per_cpu_shift __read_mostly
;
1375 EXPORT_SYMBOL(__per_cpu_base
);
1376 EXPORT_SYMBOL(__per_cpu_shift
);
1378 void __init
real_setup_per_cpu_areas(void)
1380 unsigned long paddr
, goal
, size
, i
;
1383 /* Copy section for each CPU (we discard the original) */
1384 goal
= PERCPU_ENOUGH_ROOM
;
1386 __per_cpu_shift
= PAGE_SHIFT
;
1387 for (size
= PAGE_SIZE
; size
< goal
; size
<<= 1UL)
1390 paddr
= lmb_alloc(size
* NR_CPUS
, PAGE_SIZE
);
1392 prom_printf("Cannot allocate per-cpu memory.\n");
1397 __per_cpu_base
= ptr
- __per_cpu_start
;
1399 for (i
= 0; i
< NR_CPUS
; i
++, ptr
+= size
)
1400 memcpy(ptr
, __per_cpu_start
, __per_cpu_end
- __per_cpu_start
);
1402 /* Setup %g5 for the boot cpu. */
1403 __local_per_cpu_offset
= __per_cpu_offset(smp_processor_id());