[PATCH] libata: implement ata_exec_internal_sg()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob0a5103b707c686f33eb2f15c2fb8129a6fcdd5ff
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
207 * LOCKING:
208 * caller.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
239 return -1;
243 * ata_tf_read_block - Read block address from ATA taskfile
244 * @tf: ATA taskfile of interest
245 * @dev: ATA device @tf belongs to
247 * LOCKING:
248 * None.
250 * Read block address from @tf. This function can handle all
251 * three address formats - LBA, LBA48 and CHS. tf->protocol and
252 * flags select the address format to use.
254 * RETURNS:
255 * Block address read from @tf.
257 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
259 u64 block = 0;
261 if (tf->flags & ATA_TFLAG_LBA) {
262 if (tf->flags & ATA_TFLAG_LBA48) {
263 block |= (u64)tf->hob_lbah << 40;
264 block |= (u64)tf->hob_lbam << 32;
265 block |= tf->hob_lbal << 24;
266 } else
267 block |= (tf->device & 0xf) << 24;
269 block |= tf->lbah << 16;
270 block |= tf->lbam << 8;
271 block |= tf->lbal;
272 } else {
273 u32 cyl, head, sect;
275 cyl = tf->lbam | (tf->lbah << 8);
276 head = tf->device & 0xf;
277 sect = tf->lbal;
279 block = (cyl * dev->heads + head) * dev->sectors + sect;
282 return block;
286 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
287 * @pio_mask: pio_mask
288 * @mwdma_mask: mwdma_mask
289 * @udma_mask: udma_mask
291 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
292 * unsigned int xfer_mask.
294 * LOCKING:
295 * None.
297 * RETURNS:
298 * Packed xfer_mask.
300 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
301 unsigned int mwdma_mask,
302 unsigned int udma_mask)
304 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
305 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
306 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
310 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
311 * @xfer_mask: xfer_mask to unpack
312 * @pio_mask: resulting pio_mask
313 * @mwdma_mask: resulting mwdma_mask
314 * @udma_mask: resulting udma_mask
316 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
317 * Any NULL distination masks will be ignored.
319 static void ata_unpack_xfermask(unsigned int xfer_mask,
320 unsigned int *pio_mask,
321 unsigned int *mwdma_mask,
322 unsigned int *udma_mask)
324 if (pio_mask)
325 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
326 if (mwdma_mask)
327 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
328 if (udma_mask)
329 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
332 static const struct ata_xfer_ent {
333 int shift, bits;
334 u8 base;
335 } ata_xfer_tbl[] = {
336 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
337 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
338 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
339 { -1, },
343 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
344 * @xfer_mask: xfer_mask of interest
346 * Return matching XFER_* value for @xfer_mask. Only the highest
347 * bit of @xfer_mask is considered.
349 * LOCKING:
350 * None.
352 * RETURNS:
353 * Matching XFER_* value, 0 if no match found.
355 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
357 int highbit = fls(xfer_mask) - 1;
358 const struct ata_xfer_ent *ent;
360 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
361 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
362 return ent->base + highbit - ent->shift;
363 return 0;
367 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
368 * @xfer_mode: XFER_* of interest
370 * Return matching xfer_mask for @xfer_mode.
372 * LOCKING:
373 * None.
375 * RETURNS:
376 * Matching xfer_mask, 0 if no match found.
378 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
380 const struct ata_xfer_ent *ent;
382 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
383 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
384 return 1 << (ent->shift + xfer_mode - ent->base);
385 return 0;
389 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
390 * @xfer_mode: XFER_* of interest
392 * Return matching xfer_shift for @xfer_mode.
394 * LOCKING:
395 * None.
397 * RETURNS:
398 * Matching xfer_shift, -1 if no match found.
400 static int ata_xfer_mode2shift(unsigned int xfer_mode)
402 const struct ata_xfer_ent *ent;
404 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
405 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
406 return ent->shift;
407 return -1;
411 * ata_mode_string - convert xfer_mask to string
412 * @xfer_mask: mask of bits supported; only highest bit counts.
414 * Determine string which represents the highest speed
415 * (highest bit in @modemask).
417 * LOCKING:
418 * None.
420 * RETURNS:
421 * Constant C string representing highest speed listed in
422 * @mode_mask, or the constant C string "<n/a>".
424 static const char *ata_mode_string(unsigned int xfer_mask)
426 static const char * const xfer_mode_str[] = {
427 "PIO0",
428 "PIO1",
429 "PIO2",
430 "PIO3",
431 "PIO4",
432 "PIO5",
433 "PIO6",
434 "MWDMA0",
435 "MWDMA1",
436 "MWDMA2",
437 "MWDMA3",
438 "MWDMA4",
439 "UDMA/16",
440 "UDMA/25",
441 "UDMA/33",
442 "UDMA/44",
443 "UDMA/66",
444 "UDMA/100",
445 "UDMA/133",
446 "UDMA7",
448 int highbit;
450 highbit = fls(xfer_mask) - 1;
451 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
452 return xfer_mode_str[highbit];
453 return "<n/a>";
456 static const char *sata_spd_string(unsigned int spd)
458 static const char * const spd_str[] = {
459 "1.5 Gbps",
460 "3.0 Gbps",
463 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
464 return "<unknown>";
465 return spd_str[spd - 1];
468 void ata_dev_disable(struct ata_device *dev)
470 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
471 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
472 dev->class++;
477 * ata_pio_devchk - PATA device presence detection
478 * @ap: ATA channel to examine
479 * @device: Device to examine (starting at zero)
481 * This technique was originally described in
482 * Hale Landis's ATADRVR (www.ata-atapi.com), and
483 * later found its way into the ATA/ATAPI spec.
485 * Write a pattern to the ATA shadow registers,
486 * and if a device is present, it will respond by
487 * correctly storing and echoing back the
488 * ATA shadow register contents.
490 * LOCKING:
491 * caller.
494 static unsigned int ata_pio_devchk(struct ata_port *ap,
495 unsigned int device)
497 struct ata_ioports *ioaddr = &ap->ioaddr;
498 u8 nsect, lbal;
500 ap->ops->dev_select(ap, device);
502 outb(0x55, ioaddr->nsect_addr);
503 outb(0xaa, ioaddr->lbal_addr);
505 outb(0xaa, ioaddr->nsect_addr);
506 outb(0x55, ioaddr->lbal_addr);
508 outb(0x55, ioaddr->nsect_addr);
509 outb(0xaa, ioaddr->lbal_addr);
511 nsect = inb(ioaddr->nsect_addr);
512 lbal = inb(ioaddr->lbal_addr);
514 if ((nsect == 0x55) && (lbal == 0xaa))
515 return 1; /* we found a device */
517 return 0; /* nothing found */
521 * ata_mmio_devchk - PATA device presence detection
522 * @ap: ATA channel to examine
523 * @device: Device to examine (starting at zero)
525 * This technique was originally described in
526 * Hale Landis's ATADRVR (www.ata-atapi.com), and
527 * later found its way into the ATA/ATAPI spec.
529 * Write a pattern to the ATA shadow registers,
530 * and if a device is present, it will respond by
531 * correctly storing and echoing back the
532 * ATA shadow register contents.
534 * LOCKING:
535 * caller.
538 static unsigned int ata_mmio_devchk(struct ata_port *ap,
539 unsigned int device)
541 struct ata_ioports *ioaddr = &ap->ioaddr;
542 u8 nsect, lbal;
544 ap->ops->dev_select(ap, device);
546 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
547 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
549 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
550 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
552 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
553 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
555 nsect = readb((void __iomem *) ioaddr->nsect_addr);
556 lbal = readb((void __iomem *) ioaddr->lbal_addr);
558 if ((nsect == 0x55) && (lbal == 0xaa))
559 return 1; /* we found a device */
561 return 0; /* nothing found */
565 * ata_devchk - PATA device presence detection
566 * @ap: ATA channel to examine
567 * @device: Device to examine (starting at zero)
569 * Dispatch ATA device presence detection, depending
570 * on whether we are using PIO or MMIO to talk to the
571 * ATA shadow registers.
573 * LOCKING:
574 * caller.
577 static unsigned int ata_devchk(struct ata_port *ap,
578 unsigned int device)
580 if (ap->flags & ATA_FLAG_MMIO)
581 return ata_mmio_devchk(ap, device);
582 return ata_pio_devchk(ap, device);
586 * ata_dev_classify - determine device type based on ATA-spec signature
587 * @tf: ATA taskfile register set for device to be identified
589 * Determine from taskfile register contents whether a device is
590 * ATA or ATAPI, as per "Signature and persistence" section
591 * of ATA/PI spec (volume 1, sect 5.14).
593 * LOCKING:
594 * None.
596 * RETURNS:
597 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
598 * the event of failure.
601 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
603 /* Apple's open source Darwin code hints that some devices only
604 * put a proper signature into the LBA mid/high registers,
605 * So, we only check those. It's sufficient for uniqueness.
608 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
609 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
610 DPRINTK("found ATA device by sig\n");
611 return ATA_DEV_ATA;
614 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
615 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
616 DPRINTK("found ATAPI device by sig\n");
617 return ATA_DEV_ATAPI;
620 DPRINTK("unknown device\n");
621 return ATA_DEV_UNKNOWN;
625 * ata_dev_try_classify - Parse returned ATA device signature
626 * @ap: ATA channel to examine
627 * @device: Device to examine (starting at zero)
628 * @r_err: Value of error register on completion
630 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
631 * an ATA/ATAPI-defined set of values is placed in the ATA
632 * shadow registers, indicating the results of device detection
633 * and diagnostics.
635 * Select the ATA device, and read the values from the ATA shadow
636 * registers. Then parse according to the Error register value,
637 * and the spec-defined values examined by ata_dev_classify().
639 * LOCKING:
640 * caller.
642 * RETURNS:
643 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
646 static unsigned int
647 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
649 struct ata_taskfile tf;
650 unsigned int class;
651 u8 err;
653 ap->ops->dev_select(ap, device);
655 memset(&tf, 0, sizeof(tf));
657 ap->ops->tf_read(ap, &tf);
658 err = tf.feature;
659 if (r_err)
660 *r_err = err;
662 /* see if device passed diags: if master then continue and warn later */
663 if (err == 0 && device == 0)
664 /* diagnostic fail : do nothing _YET_ */
665 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
666 else if (err == 1)
667 /* do nothing */ ;
668 else if ((device == 0) && (err == 0x81))
669 /* do nothing */ ;
670 else
671 return ATA_DEV_NONE;
673 /* determine if device is ATA or ATAPI */
674 class = ata_dev_classify(&tf);
676 if (class == ATA_DEV_UNKNOWN)
677 return ATA_DEV_NONE;
678 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
679 return ATA_DEV_NONE;
680 return class;
684 * ata_id_string - Convert IDENTIFY DEVICE page into string
685 * @id: IDENTIFY DEVICE results we will examine
686 * @s: string into which data is output
687 * @ofs: offset into identify device page
688 * @len: length of string to return. must be an even number.
690 * The strings in the IDENTIFY DEVICE page are broken up into
691 * 16-bit chunks. Run through the string, and output each
692 * 8-bit chunk linearly, regardless of platform.
694 * LOCKING:
695 * caller.
698 void ata_id_string(const u16 *id, unsigned char *s,
699 unsigned int ofs, unsigned int len)
701 unsigned int c;
703 while (len > 0) {
704 c = id[ofs] >> 8;
705 *s = c;
706 s++;
708 c = id[ofs] & 0xff;
709 *s = c;
710 s++;
712 ofs++;
713 len -= 2;
718 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
719 * @id: IDENTIFY DEVICE results we will examine
720 * @s: string into which data is output
721 * @ofs: offset into identify device page
722 * @len: length of string to return. must be an odd number.
724 * This function is identical to ata_id_string except that it
725 * trims trailing spaces and terminates the resulting string with
726 * null. @len must be actual maximum length (even number) + 1.
728 * LOCKING:
729 * caller.
731 void ata_id_c_string(const u16 *id, unsigned char *s,
732 unsigned int ofs, unsigned int len)
734 unsigned char *p;
736 WARN_ON(!(len & 1));
738 ata_id_string(id, s, ofs, len - 1);
740 p = s + strnlen(s, len - 1);
741 while (p > s && p[-1] == ' ')
742 p--;
743 *p = '\0';
746 static u64 ata_id_n_sectors(const u16 *id)
748 if (ata_id_has_lba(id)) {
749 if (ata_id_has_lba48(id))
750 return ata_id_u64(id, 100);
751 else
752 return ata_id_u32(id, 60);
753 } else {
754 if (ata_id_current_chs_valid(id))
755 return ata_id_u32(id, 57);
756 else
757 return id[1] * id[3] * id[6];
762 * ata_noop_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
766 * This function performs no actual function.
768 * May be used as the dev_select() entry in ata_port_operations.
770 * LOCKING:
771 * caller.
773 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
779 * ata_std_dev_select - Select device 0/1 on ATA bus
780 * @ap: ATA channel to manipulate
781 * @device: ATA device (numbered from zero) to select
783 * Use the method defined in the ATA specification to
784 * make either device 0, or device 1, active on the
785 * ATA channel. Works with both PIO and MMIO.
787 * May be used as the dev_select() entry in ata_port_operations.
789 * LOCKING:
790 * caller.
793 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
795 u8 tmp;
797 if (device == 0)
798 tmp = ATA_DEVICE_OBS;
799 else
800 tmp = ATA_DEVICE_OBS | ATA_DEV1;
802 if (ap->flags & ATA_FLAG_MMIO) {
803 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
804 } else {
805 outb(tmp, ap->ioaddr.device_addr);
807 ata_pause(ap); /* needed; also flushes, for mmio */
811 * ata_dev_select - Select device 0/1 on ATA bus
812 * @ap: ATA channel to manipulate
813 * @device: ATA device (numbered from zero) to select
814 * @wait: non-zero to wait for Status register BSY bit to clear
815 * @can_sleep: non-zero if context allows sleeping
817 * Use the method defined in the ATA specification to
818 * make either device 0, or device 1, active on the
819 * ATA channel.
821 * This is a high-level version of ata_std_dev_select(),
822 * which additionally provides the services of inserting
823 * the proper pauses and status polling, where needed.
825 * LOCKING:
826 * caller.
829 void ata_dev_select(struct ata_port *ap, unsigned int device,
830 unsigned int wait, unsigned int can_sleep)
832 if (ata_msg_probe(ap))
833 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
834 "device %u, wait %u\n", ap->id, device, wait);
836 if (wait)
837 ata_wait_idle(ap);
839 ap->ops->dev_select(ap, device);
841 if (wait) {
842 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
843 msleep(150);
844 ata_wait_idle(ap);
849 * ata_dump_id - IDENTIFY DEVICE info debugging output
850 * @id: IDENTIFY DEVICE page to dump
852 * Dump selected 16-bit words from the given IDENTIFY DEVICE
853 * page.
855 * LOCKING:
856 * caller.
859 static inline void ata_dump_id(const u16 *id)
861 DPRINTK("49==0x%04x "
862 "53==0x%04x "
863 "63==0x%04x "
864 "64==0x%04x "
865 "75==0x%04x \n",
866 id[49],
867 id[53],
868 id[63],
869 id[64],
870 id[75]);
871 DPRINTK("80==0x%04x "
872 "81==0x%04x "
873 "82==0x%04x "
874 "83==0x%04x "
875 "84==0x%04x \n",
876 id[80],
877 id[81],
878 id[82],
879 id[83],
880 id[84]);
881 DPRINTK("88==0x%04x "
882 "93==0x%04x\n",
883 id[88],
884 id[93]);
888 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
889 * @id: IDENTIFY data to compute xfer mask from
891 * Compute the xfermask for this device. This is not as trivial
892 * as it seems if we must consider early devices correctly.
894 * FIXME: pre IDE drive timing (do we care ?).
896 * LOCKING:
897 * None.
899 * RETURNS:
900 * Computed xfermask
902 static unsigned int ata_id_xfermask(const u16 *id)
904 unsigned int pio_mask, mwdma_mask, udma_mask;
906 /* Usual case. Word 53 indicates word 64 is valid */
907 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
908 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
909 pio_mask <<= 3;
910 pio_mask |= 0x7;
911 } else {
912 /* If word 64 isn't valid then Word 51 high byte holds
913 * the PIO timing number for the maximum. Turn it into
914 * a mask.
916 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
917 if (mode < 5) /* Valid PIO range */
918 pio_mask = (2 << mode) - 1;
919 else
920 pio_mask = 1;
922 /* But wait.. there's more. Design your standards by
923 * committee and you too can get a free iordy field to
924 * process. However its the speeds not the modes that
925 * are supported... Note drivers using the timing API
926 * will get this right anyway
930 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
932 if (ata_id_is_cfa(id)) {
934 * Process compact flash extended modes
936 int pio = id[163] & 0x7;
937 int dma = (id[163] >> 3) & 7;
939 if (pio)
940 pio_mask |= (1 << 5);
941 if (pio > 1)
942 pio_mask |= (1 << 6);
943 if (dma)
944 mwdma_mask |= (1 << 3);
945 if (dma > 1)
946 mwdma_mask |= (1 << 4);
949 udma_mask = 0;
950 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
951 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
953 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
957 * ata_port_queue_task - Queue port_task
958 * @ap: The ata_port to queue port_task for
959 * @fn: workqueue function to be scheduled
960 * @data: data value to pass to workqueue function
961 * @delay: delay time for workqueue function
963 * Schedule @fn(@data) for execution after @delay jiffies using
964 * port_task. There is one port_task per port and it's the
965 * user(low level driver)'s responsibility to make sure that only
966 * one task is active at any given time.
968 * libata core layer takes care of synchronization between
969 * port_task and EH. ata_port_queue_task() may be ignored for EH
970 * synchronization.
972 * LOCKING:
973 * Inherited from caller.
975 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
976 unsigned long delay)
978 int rc;
980 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
981 return;
983 PREPARE_WORK(&ap->port_task, fn, data);
985 if (!delay)
986 rc = queue_work(ata_wq, &ap->port_task);
987 else
988 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
990 /* rc == 0 means that another user is using port task */
991 WARN_ON(rc == 0);
995 * ata_port_flush_task - Flush port_task
996 * @ap: The ata_port to flush port_task for
998 * After this function completes, port_task is guranteed not to
999 * be running or scheduled.
1001 * LOCKING:
1002 * Kernel thread context (may sleep)
1004 void ata_port_flush_task(struct ata_port *ap)
1006 unsigned long flags;
1008 DPRINTK("ENTER\n");
1010 spin_lock_irqsave(ap->lock, flags);
1011 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1012 spin_unlock_irqrestore(ap->lock, flags);
1014 DPRINTK("flush #1\n");
1015 flush_workqueue(ata_wq);
1018 * At this point, if a task is running, it's guaranteed to see
1019 * the FLUSH flag; thus, it will never queue pio tasks again.
1020 * Cancel and flush.
1022 if (!cancel_delayed_work(&ap->port_task)) {
1023 if (ata_msg_ctl(ap))
1024 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1025 __FUNCTION__);
1026 flush_workqueue(ata_wq);
1029 spin_lock_irqsave(ap->lock, flags);
1030 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1031 spin_unlock_irqrestore(ap->lock, flags);
1033 if (ata_msg_ctl(ap))
1034 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1037 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1039 struct completion *waiting = qc->private_data;
1041 complete(waiting);
1045 * ata_exec_internal_sg - execute libata internal command
1046 * @dev: Device to which the command is sent
1047 * @tf: Taskfile registers for the command and the result
1048 * @cdb: CDB for packet command
1049 * @dma_dir: Data tranfer direction of the command
1050 * @sg: sg list for the data buffer of the command
1051 * @n_elem: Number of sg entries
1053 * Executes libata internal command with timeout. @tf contains
1054 * command on entry and result on return. Timeout and error
1055 * conditions are reported via return value. No recovery action
1056 * is taken after a command times out. It's caller's duty to
1057 * clean up after timeout.
1059 * LOCKING:
1060 * None. Should be called with kernel context, might sleep.
1062 * RETURNS:
1063 * Zero on success, AC_ERR_* mask on failure
1065 unsigned ata_exec_internal_sg(struct ata_device *dev,
1066 struct ata_taskfile *tf, const u8 *cdb,
1067 int dma_dir, struct scatterlist *sg,
1068 unsigned int n_elem)
1070 struct ata_port *ap = dev->ap;
1071 u8 command = tf->command;
1072 struct ata_queued_cmd *qc;
1073 unsigned int tag, preempted_tag;
1074 u32 preempted_sactive, preempted_qc_active;
1075 DECLARE_COMPLETION_ONSTACK(wait);
1076 unsigned long flags;
1077 unsigned int err_mask;
1078 int rc;
1080 spin_lock_irqsave(ap->lock, flags);
1082 /* no internal command while frozen */
1083 if (ap->pflags & ATA_PFLAG_FROZEN) {
1084 spin_unlock_irqrestore(ap->lock, flags);
1085 return AC_ERR_SYSTEM;
1088 /* initialize internal qc */
1090 /* XXX: Tag 0 is used for drivers with legacy EH as some
1091 * drivers choke if any other tag is given. This breaks
1092 * ata_tag_internal() test for those drivers. Don't use new
1093 * EH stuff without converting to it.
1095 if (ap->ops->error_handler)
1096 tag = ATA_TAG_INTERNAL;
1097 else
1098 tag = 0;
1100 if (test_and_set_bit(tag, &ap->qc_allocated))
1101 BUG();
1102 qc = __ata_qc_from_tag(ap, tag);
1104 qc->tag = tag;
1105 qc->scsicmd = NULL;
1106 qc->ap = ap;
1107 qc->dev = dev;
1108 ata_qc_reinit(qc);
1110 preempted_tag = ap->active_tag;
1111 preempted_sactive = ap->sactive;
1112 preempted_qc_active = ap->qc_active;
1113 ap->active_tag = ATA_TAG_POISON;
1114 ap->sactive = 0;
1115 ap->qc_active = 0;
1117 /* prepare & issue qc */
1118 qc->tf = *tf;
1119 if (cdb)
1120 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1121 qc->flags |= ATA_QCFLAG_RESULT_TF;
1122 qc->dma_dir = dma_dir;
1123 if (dma_dir != DMA_NONE) {
1124 unsigned int i, buflen = 0;
1126 for (i = 0; i < n_elem; i++)
1127 buflen += sg[i].length;
1129 ata_sg_init(qc, sg, n_elem);
1130 qc->nsect = buflen / ATA_SECT_SIZE;
1133 qc->private_data = &wait;
1134 qc->complete_fn = ata_qc_complete_internal;
1136 ata_qc_issue(qc);
1138 spin_unlock_irqrestore(ap->lock, flags);
1140 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1142 ata_port_flush_task(ap);
1144 if (!rc) {
1145 spin_lock_irqsave(ap->lock, flags);
1147 /* We're racing with irq here. If we lose, the
1148 * following test prevents us from completing the qc
1149 * twice. If we win, the port is frozen and will be
1150 * cleaned up by ->post_internal_cmd().
1152 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1153 qc->err_mask |= AC_ERR_TIMEOUT;
1155 if (ap->ops->error_handler)
1156 ata_port_freeze(ap);
1157 else
1158 ata_qc_complete(qc);
1160 if (ata_msg_warn(ap))
1161 ata_dev_printk(dev, KERN_WARNING,
1162 "qc timeout (cmd 0x%x)\n", command);
1165 spin_unlock_irqrestore(ap->lock, flags);
1168 /* do post_internal_cmd */
1169 if (ap->ops->post_internal_cmd)
1170 ap->ops->post_internal_cmd(qc);
1172 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1173 if (ata_msg_warn(ap))
1174 ata_dev_printk(dev, KERN_WARNING,
1175 "zero err_mask for failed "
1176 "internal command, assuming AC_ERR_OTHER\n");
1177 qc->err_mask |= AC_ERR_OTHER;
1180 /* finish up */
1181 spin_lock_irqsave(ap->lock, flags);
1183 *tf = qc->result_tf;
1184 err_mask = qc->err_mask;
1186 ata_qc_free(qc);
1187 ap->active_tag = preempted_tag;
1188 ap->sactive = preempted_sactive;
1189 ap->qc_active = preempted_qc_active;
1191 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1192 * Until those drivers are fixed, we detect the condition
1193 * here, fail the command with AC_ERR_SYSTEM and reenable the
1194 * port.
1196 * Note that this doesn't change any behavior as internal
1197 * command failure results in disabling the device in the
1198 * higher layer for LLDDs without new reset/EH callbacks.
1200 * Kill the following code as soon as those drivers are fixed.
1202 if (ap->flags & ATA_FLAG_DISABLED) {
1203 err_mask |= AC_ERR_SYSTEM;
1204 ata_port_probe(ap);
1207 spin_unlock_irqrestore(ap->lock, flags);
1209 return err_mask;
1213 * ata_exec_internal_sg - execute libata internal command
1214 * @dev: Device to which the command is sent
1215 * @tf: Taskfile registers for the command and the result
1216 * @cdb: CDB for packet command
1217 * @dma_dir: Data tranfer direction of the command
1218 * @buf: Data buffer of the command
1219 * @buflen: Length of data buffer
1221 * Wrapper around ata_exec_internal_sg() which takes simple
1222 * buffer instead of sg list.
1224 * LOCKING:
1225 * None. Should be called with kernel context, might sleep.
1227 * RETURNS:
1228 * Zero on success, AC_ERR_* mask on failure
1230 unsigned ata_exec_internal(struct ata_device *dev,
1231 struct ata_taskfile *tf, const u8 *cdb,
1232 int dma_dir, void *buf, unsigned int buflen)
1234 struct scatterlist sg;
1236 sg_init_one(&sg, buf, buflen);
1238 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1242 * ata_do_simple_cmd - execute simple internal command
1243 * @dev: Device to which the command is sent
1244 * @cmd: Opcode to execute
1246 * Execute a 'simple' command, that only consists of the opcode
1247 * 'cmd' itself, without filling any other registers
1249 * LOCKING:
1250 * Kernel thread context (may sleep).
1252 * RETURNS:
1253 * Zero on success, AC_ERR_* mask on failure
1255 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1257 struct ata_taskfile tf;
1259 ata_tf_init(dev, &tf);
1261 tf.command = cmd;
1262 tf.flags |= ATA_TFLAG_DEVICE;
1263 tf.protocol = ATA_PROT_NODATA;
1265 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1269 * ata_pio_need_iordy - check if iordy needed
1270 * @adev: ATA device
1272 * Check if the current speed of the device requires IORDY. Used
1273 * by various controllers for chip configuration.
1276 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1278 int pio;
1279 int speed = adev->pio_mode - XFER_PIO_0;
1281 if (speed < 2)
1282 return 0;
1283 if (speed > 2)
1284 return 1;
1286 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1288 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1289 pio = adev->id[ATA_ID_EIDE_PIO];
1290 /* Is the speed faster than the drive allows non IORDY ? */
1291 if (pio) {
1292 /* This is cycle times not frequency - watch the logic! */
1293 if (pio > 240) /* PIO2 is 240nS per cycle */
1294 return 1;
1295 return 0;
1298 return 0;
1302 * ata_dev_read_id - Read ID data from the specified device
1303 * @dev: target device
1304 * @p_class: pointer to class of the target device (may be changed)
1305 * @flags: ATA_READID_* flags
1306 * @id: buffer to read IDENTIFY data into
1308 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1309 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1310 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1311 * for pre-ATA4 drives.
1313 * LOCKING:
1314 * Kernel thread context (may sleep)
1316 * RETURNS:
1317 * 0 on success, -errno otherwise.
1319 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1320 unsigned int flags, u16 *id)
1322 struct ata_port *ap = dev->ap;
1323 unsigned int class = *p_class;
1324 struct ata_taskfile tf;
1325 unsigned int err_mask = 0;
1326 const char *reason;
1327 int rc;
1329 if (ata_msg_ctl(ap))
1330 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1331 __FUNCTION__, ap->id, dev->devno);
1333 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1335 retry:
1336 ata_tf_init(dev, &tf);
1338 switch (class) {
1339 case ATA_DEV_ATA:
1340 tf.command = ATA_CMD_ID_ATA;
1341 break;
1342 case ATA_DEV_ATAPI:
1343 tf.command = ATA_CMD_ID_ATAPI;
1344 break;
1345 default:
1346 rc = -ENODEV;
1347 reason = "unsupported class";
1348 goto err_out;
1351 tf.protocol = ATA_PROT_PIO;
1353 /* presence detection using polling IDENTIFY? */
1354 if (flags & ATA_READID_DETECT)
1355 tf.flags |= ATA_TFLAG_POLLING;
1357 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1358 id, sizeof(id[0]) * ATA_ID_WORDS);
1359 if (err_mask) {
1360 if ((flags & ATA_READID_DETECT) &&
1361 (err_mask & AC_ERR_NODEV_HINT)) {
1362 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1363 ap->id, dev->devno);
1364 return -ENOENT;
1367 rc = -EIO;
1368 reason = "I/O error";
1369 goto err_out;
1372 swap_buf_le16(id, ATA_ID_WORDS);
1374 /* sanity check */
1375 rc = -EINVAL;
1376 reason = "device reports illegal type";
1378 if (class == ATA_DEV_ATA) {
1379 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1380 goto err_out;
1381 } else {
1382 if (ata_id_is_ata(id))
1383 goto err_out;
1386 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1388 * The exact sequence expected by certain pre-ATA4 drives is:
1389 * SRST RESET
1390 * IDENTIFY
1391 * INITIALIZE DEVICE PARAMETERS
1392 * anything else..
1393 * Some drives were very specific about that exact sequence.
1395 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1396 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1397 if (err_mask) {
1398 rc = -EIO;
1399 reason = "INIT_DEV_PARAMS failed";
1400 goto err_out;
1403 /* current CHS translation info (id[53-58]) might be
1404 * changed. reread the identify device info.
1406 flags &= ~ATA_READID_POSTRESET;
1407 goto retry;
1411 *p_class = class;
1413 return 0;
1415 err_out:
1416 if (ata_msg_warn(ap))
1417 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1418 "(%s, err_mask=0x%x)\n", reason, err_mask);
1419 return rc;
1422 static inline u8 ata_dev_knobble(struct ata_device *dev)
1424 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1427 static void ata_dev_config_ncq(struct ata_device *dev,
1428 char *desc, size_t desc_sz)
1430 struct ata_port *ap = dev->ap;
1431 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1433 if (!ata_id_has_ncq(dev->id)) {
1434 desc[0] = '\0';
1435 return;
1437 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1438 snprintf(desc, desc_sz, "NCQ (not used)");
1439 return;
1441 if (ap->flags & ATA_FLAG_NCQ) {
1442 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1443 dev->flags |= ATA_DFLAG_NCQ;
1446 if (hdepth >= ddepth)
1447 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1448 else
1449 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1452 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1454 int i;
1456 if (ap->scsi_host) {
1457 unsigned int len = 0;
1459 for (i = 0; i < ATA_MAX_DEVICES; i++)
1460 len = max(len, ap->device[i].cdb_len);
1462 ap->scsi_host->max_cmd_len = len;
1467 * ata_dev_configure - Configure the specified ATA/ATAPI device
1468 * @dev: Target device to configure
1470 * Configure @dev according to @dev->id. Generic and low-level
1471 * driver specific fixups are also applied.
1473 * LOCKING:
1474 * Kernel thread context (may sleep)
1476 * RETURNS:
1477 * 0 on success, -errno otherwise
1479 int ata_dev_configure(struct ata_device *dev)
1481 struct ata_port *ap = dev->ap;
1482 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1483 const u16 *id = dev->id;
1484 unsigned int xfer_mask;
1485 char revbuf[7]; /* XYZ-99\0 */
1486 int rc;
1488 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1489 ata_dev_printk(dev, KERN_INFO,
1490 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1491 __FUNCTION__, ap->id, dev->devno);
1492 return 0;
1495 if (ata_msg_probe(ap))
1496 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1497 __FUNCTION__, ap->id, dev->devno);
1499 /* print device capabilities */
1500 if (ata_msg_probe(ap))
1501 ata_dev_printk(dev, KERN_DEBUG,
1502 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1503 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1504 __FUNCTION__,
1505 id[49], id[82], id[83], id[84],
1506 id[85], id[86], id[87], id[88]);
1508 /* initialize to-be-configured parameters */
1509 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1510 dev->max_sectors = 0;
1511 dev->cdb_len = 0;
1512 dev->n_sectors = 0;
1513 dev->cylinders = 0;
1514 dev->heads = 0;
1515 dev->sectors = 0;
1518 * common ATA, ATAPI feature tests
1521 /* find max transfer mode; for printk only */
1522 xfer_mask = ata_id_xfermask(id);
1524 if (ata_msg_probe(ap))
1525 ata_dump_id(id);
1527 /* ATA-specific feature tests */
1528 if (dev->class == ATA_DEV_ATA) {
1529 if (ata_id_is_cfa(id)) {
1530 if (id[162] & 1) /* CPRM may make this media unusable */
1531 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1532 ap->id, dev->devno);
1533 snprintf(revbuf, 7, "CFA");
1535 else
1536 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1538 dev->n_sectors = ata_id_n_sectors(id);
1540 if (ata_id_has_lba(id)) {
1541 const char *lba_desc;
1542 char ncq_desc[20];
1544 lba_desc = "LBA";
1545 dev->flags |= ATA_DFLAG_LBA;
1546 if (ata_id_has_lba48(id)) {
1547 dev->flags |= ATA_DFLAG_LBA48;
1548 lba_desc = "LBA48";
1550 if (dev->n_sectors >= (1UL << 28) &&
1551 ata_id_has_flush_ext(id))
1552 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1555 /* config NCQ */
1556 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1558 /* print device info to dmesg */
1559 if (ata_msg_drv(ap) && print_info)
1560 ata_dev_printk(dev, KERN_INFO, "%s, "
1561 "max %s, %Lu sectors: %s %s\n",
1562 revbuf,
1563 ata_mode_string(xfer_mask),
1564 (unsigned long long)dev->n_sectors,
1565 lba_desc, ncq_desc);
1566 } else {
1567 /* CHS */
1569 /* Default translation */
1570 dev->cylinders = id[1];
1571 dev->heads = id[3];
1572 dev->sectors = id[6];
1574 if (ata_id_current_chs_valid(id)) {
1575 /* Current CHS translation is valid. */
1576 dev->cylinders = id[54];
1577 dev->heads = id[55];
1578 dev->sectors = id[56];
1581 /* print device info to dmesg */
1582 if (ata_msg_drv(ap) && print_info)
1583 ata_dev_printk(dev, KERN_INFO, "%s, "
1584 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1585 revbuf,
1586 ata_mode_string(xfer_mask),
1587 (unsigned long long)dev->n_sectors,
1588 dev->cylinders, dev->heads,
1589 dev->sectors);
1592 if (dev->id[59] & 0x100) {
1593 dev->multi_count = dev->id[59] & 0xff;
1594 if (ata_msg_drv(ap) && print_info)
1595 ata_dev_printk(dev, KERN_INFO,
1596 "ata%u: dev %u multi count %u\n",
1597 ap->id, dev->devno, dev->multi_count);
1600 dev->cdb_len = 16;
1603 /* ATAPI-specific feature tests */
1604 else if (dev->class == ATA_DEV_ATAPI) {
1605 char *cdb_intr_string = "";
1607 rc = atapi_cdb_len(id);
1608 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1609 if (ata_msg_warn(ap))
1610 ata_dev_printk(dev, KERN_WARNING,
1611 "unsupported CDB len\n");
1612 rc = -EINVAL;
1613 goto err_out_nosup;
1615 dev->cdb_len = (unsigned int) rc;
1617 if (ata_id_cdb_intr(dev->id)) {
1618 dev->flags |= ATA_DFLAG_CDB_INTR;
1619 cdb_intr_string = ", CDB intr";
1622 /* print device info to dmesg */
1623 if (ata_msg_drv(ap) && print_info)
1624 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1625 ata_mode_string(xfer_mask),
1626 cdb_intr_string);
1629 /* determine max_sectors */
1630 dev->max_sectors = ATA_MAX_SECTORS;
1631 if (dev->flags & ATA_DFLAG_LBA48)
1632 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1634 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1635 /* Let the user know. We don't want to disallow opens for
1636 rescue purposes, or in case the vendor is just a blithering
1637 idiot */
1638 if (print_info) {
1639 ata_dev_printk(dev, KERN_WARNING,
1640 "Drive reports diagnostics failure. This may indicate a drive\n");
1641 ata_dev_printk(dev, KERN_WARNING,
1642 "fault or invalid emulation. Contact drive vendor for information.\n");
1646 ata_set_port_max_cmd_len(ap);
1648 /* limit bridge transfers to udma5, 200 sectors */
1649 if (ata_dev_knobble(dev)) {
1650 if (ata_msg_drv(ap) && print_info)
1651 ata_dev_printk(dev, KERN_INFO,
1652 "applying bridge limits\n");
1653 dev->udma_mask &= ATA_UDMA5;
1654 dev->max_sectors = ATA_MAX_SECTORS;
1657 if (ap->ops->dev_config)
1658 ap->ops->dev_config(ap, dev);
1660 if (ata_msg_probe(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1662 __FUNCTION__, ata_chk_status(ap));
1663 return 0;
1665 err_out_nosup:
1666 if (ata_msg_probe(ap))
1667 ata_dev_printk(dev, KERN_DEBUG,
1668 "%s: EXIT, err\n", __FUNCTION__);
1669 return rc;
1673 * ata_bus_probe - Reset and probe ATA bus
1674 * @ap: Bus to probe
1676 * Master ATA bus probing function. Initiates a hardware-dependent
1677 * bus reset, then attempts to identify any devices found on
1678 * the bus.
1680 * LOCKING:
1681 * PCI/etc. bus probe sem.
1683 * RETURNS:
1684 * Zero on success, negative errno otherwise.
1687 int ata_bus_probe(struct ata_port *ap)
1689 unsigned int classes[ATA_MAX_DEVICES];
1690 int tries[ATA_MAX_DEVICES];
1691 int i, rc, down_xfermask;
1692 struct ata_device *dev;
1694 ata_port_probe(ap);
1696 for (i = 0; i < ATA_MAX_DEVICES; i++)
1697 tries[i] = ATA_PROBE_MAX_TRIES;
1699 retry:
1700 down_xfermask = 0;
1702 /* reset and determine device classes */
1703 ap->ops->phy_reset(ap);
1705 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1706 dev = &ap->device[i];
1708 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1709 dev->class != ATA_DEV_UNKNOWN)
1710 classes[dev->devno] = dev->class;
1711 else
1712 classes[dev->devno] = ATA_DEV_NONE;
1714 dev->class = ATA_DEV_UNKNOWN;
1717 ata_port_probe(ap);
1719 /* after the reset the device state is PIO 0 and the controller
1720 state is undefined. Record the mode */
1722 for (i = 0; i < ATA_MAX_DEVICES; i++)
1723 ap->device[i].pio_mode = XFER_PIO_0;
1725 /* read IDENTIFY page and configure devices */
1726 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1727 dev = &ap->device[i];
1729 if (tries[i])
1730 dev->class = classes[i];
1732 if (!ata_dev_enabled(dev))
1733 continue;
1735 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1736 dev->id);
1737 if (rc)
1738 goto fail;
1740 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1741 rc = ata_dev_configure(dev);
1742 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1743 if (rc)
1744 goto fail;
1747 /* configure transfer mode */
1748 rc = ata_set_mode(ap, &dev);
1749 if (rc) {
1750 down_xfermask = 1;
1751 goto fail;
1754 for (i = 0; i < ATA_MAX_DEVICES; i++)
1755 if (ata_dev_enabled(&ap->device[i]))
1756 return 0;
1758 /* no device present, disable port */
1759 ata_port_disable(ap);
1760 ap->ops->port_disable(ap);
1761 return -ENODEV;
1763 fail:
1764 switch (rc) {
1765 case -EINVAL:
1766 case -ENODEV:
1767 tries[dev->devno] = 0;
1768 break;
1769 case -EIO:
1770 sata_down_spd_limit(ap);
1771 /* fall through */
1772 default:
1773 tries[dev->devno]--;
1774 if (down_xfermask &&
1775 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1776 tries[dev->devno] = 0;
1779 if (!tries[dev->devno]) {
1780 ata_down_xfermask_limit(dev, 1);
1781 ata_dev_disable(dev);
1784 goto retry;
1788 * ata_port_probe - Mark port as enabled
1789 * @ap: Port for which we indicate enablement
1791 * Modify @ap data structure such that the system
1792 * thinks that the entire port is enabled.
1794 * LOCKING: host lock, or some other form of
1795 * serialization.
1798 void ata_port_probe(struct ata_port *ap)
1800 ap->flags &= ~ATA_FLAG_DISABLED;
1804 * sata_print_link_status - Print SATA link status
1805 * @ap: SATA port to printk link status about
1807 * This function prints link speed and status of a SATA link.
1809 * LOCKING:
1810 * None.
1812 static void sata_print_link_status(struct ata_port *ap)
1814 u32 sstatus, scontrol, tmp;
1816 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1817 return;
1818 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1820 if (ata_port_online(ap)) {
1821 tmp = (sstatus >> 4) & 0xf;
1822 ata_port_printk(ap, KERN_INFO,
1823 "SATA link up %s (SStatus %X SControl %X)\n",
1824 sata_spd_string(tmp), sstatus, scontrol);
1825 } else {
1826 ata_port_printk(ap, KERN_INFO,
1827 "SATA link down (SStatus %X SControl %X)\n",
1828 sstatus, scontrol);
1833 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1834 * @ap: SATA port associated with target SATA PHY.
1836 * This function issues commands to standard SATA Sxxx
1837 * PHY registers, to wake up the phy (and device), and
1838 * clear any reset condition.
1840 * LOCKING:
1841 * PCI/etc. bus probe sem.
1844 void __sata_phy_reset(struct ata_port *ap)
1846 u32 sstatus;
1847 unsigned long timeout = jiffies + (HZ * 5);
1849 if (ap->flags & ATA_FLAG_SATA_RESET) {
1850 /* issue phy wake/reset */
1851 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1852 /* Couldn't find anything in SATA I/II specs, but
1853 * AHCI-1.1 10.4.2 says at least 1 ms. */
1854 mdelay(1);
1856 /* phy wake/clear reset */
1857 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1859 /* wait for phy to become ready, if necessary */
1860 do {
1861 msleep(200);
1862 sata_scr_read(ap, SCR_STATUS, &sstatus);
1863 if ((sstatus & 0xf) != 1)
1864 break;
1865 } while (time_before(jiffies, timeout));
1867 /* print link status */
1868 sata_print_link_status(ap);
1870 /* TODO: phy layer with polling, timeouts, etc. */
1871 if (!ata_port_offline(ap))
1872 ata_port_probe(ap);
1873 else
1874 ata_port_disable(ap);
1876 if (ap->flags & ATA_FLAG_DISABLED)
1877 return;
1879 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1880 ata_port_disable(ap);
1881 return;
1884 ap->cbl = ATA_CBL_SATA;
1888 * sata_phy_reset - Reset SATA bus.
1889 * @ap: SATA port associated with target SATA PHY.
1891 * This function resets the SATA bus, and then probes
1892 * the bus for devices.
1894 * LOCKING:
1895 * PCI/etc. bus probe sem.
1898 void sata_phy_reset(struct ata_port *ap)
1900 __sata_phy_reset(ap);
1901 if (ap->flags & ATA_FLAG_DISABLED)
1902 return;
1903 ata_bus_reset(ap);
1907 * ata_dev_pair - return other device on cable
1908 * @adev: device
1910 * Obtain the other device on the same cable, or if none is
1911 * present NULL is returned
1914 struct ata_device *ata_dev_pair(struct ata_device *adev)
1916 struct ata_port *ap = adev->ap;
1917 struct ata_device *pair = &ap->device[1 - adev->devno];
1918 if (!ata_dev_enabled(pair))
1919 return NULL;
1920 return pair;
1924 * ata_port_disable - Disable port.
1925 * @ap: Port to be disabled.
1927 * Modify @ap data structure such that the system
1928 * thinks that the entire port is disabled, and should
1929 * never attempt to probe or communicate with devices
1930 * on this port.
1932 * LOCKING: host lock, or some other form of
1933 * serialization.
1936 void ata_port_disable(struct ata_port *ap)
1938 ap->device[0].class = ATA_DEV_NONE;
1939 ap->device[1].class = ATA_DEV_NONE;
1940 ap->flags |= ATA_FLAG_DISABLED;
1944 * sata_down_spd_limit - adjust SATA spd limit downward
1945 * @ap: Port to adjust SATA spd limit for
1947 * Adjust SATA spd limit of @ap downward. Note that this
1948 * function only adjusts the limit. The change must be applied
1949 * using sata_set_spd().
1951 * LOCKING:
1952 * Inherited from caller.
1954 * RETURNS:
1955 * 0 on success, negative errno on failure
1957 int sata_down_spd_limit(struct ata_port *ap)
1959 u32 sstatus, spd, mask;
1960 int rc, highbit;
1962 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1963 if (rc)
1964 return rc;
1966 mask = ap->sata_spd_limit;
1967 if (mask <= 1)
1968 return -EINVAL;
1969 highbit = fls(mask) - 1;
1970 mask &= ~(1 << highbit);
1972 spd = (sstatus >> 4) & 0xf;
1973 if (spd <= 1)
1974 return -EINVAL;
1975 spd--;
1976 mask &= (1 << spd) - 1;
1977 if (!mask)
1978 return -EINVAL;
1980 ap->sata_spd_limit = mask;
1982 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1983 sata_spd_string(fls(mask)));
1985 return 0;
1988 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1990 u32 spd, limit;
1992 if (ap->sata_spd_limit == UINT_MAX)
1993 limit = 0;
1994 else
1995 limit = fls(ap->sata_spd_limit);
1997 spd = (*scontrol >> 4) & 0xf;
1998 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2000 return spd != limit;
2004 * sata_set_spd_needed - is SATA spd configuration needed
2005 * @ap: Port in question
2007 * Test whether the spd limit in SControl matches
2008 * @ap->sata_spd_limit. This function is used to determine
2009 * whether hardreset is necessary to apply SATA spd
2010 * configuration.
2012 * LOCKING:
2013 * Inherited from caller.
2015 * RETURNS:
2016 * 1 if SATA spd configuration is needed, 0 otherwise.
2018 int sata_set_spd_needed(struct ata_port *ap)
2020 u32 scontrol;
2022 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2023 return 0;
2025 return __sata_set_spd_needed(ap, &scontrol);
2029 * sata_set_spd - set SATA spd according to spd limit
2030 * @ap: Port to set SATA spd for
2032 * Set SATA spd of @ap according to sata_spd_limit.
2034 * LOCKING:
2035 * Inherited from caller.
2037 * RETURNS:
2038 * 0 if spd doesn't need to be changed, 1 if spd has been
2039 * changed. Negative errno if SCR registers are inaccessible.
2041 int sata_set_spd(struct ata_port *ap)
2043 u32 scontrol;
2044 int rc;
2046 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2047 return rc;
2049 if (!__sata_set_spd_needed(ap, &scontrol))
2050 return 0;
2052 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2053 return rc;
2055 return 1;
2059 * This mode timing computation functionality is ported over from
2060 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2063 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2064 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2065 * for UDMA6, which is currently supported only by Maxtor drives.
2067 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2070 static const struct ata_timing ata_timing[] = {
2072 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2073 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2074 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2075 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2077 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2078 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2079 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2080 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2081 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2083 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2085 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2086 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2087 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2089 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2090 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2091 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2093 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2094 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2095 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2096 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2098 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2099 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2100 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2102 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2104 { 0xFF }
2107 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2108 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2110 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2112 q->setup = EZ(t->setup * 1000, T);
2113 q->act8b = EZ(t->act8b * 1000, T);
2114 q->rec8b = EZ(t->rec8b * 1000, T);
2115 q->cyc8b = EZ(t->cyc8b * 1000, T);
2116 q->active = EZ(t->active * 1000, T);
2117 q->recover = EZ(t->recover * 1000, T);
2118 q->cycle = EZ(t->cycle * 1000, T);
2119 q->udma = EZ(t->udma * 1000, UT);
2122 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2123 struct ata_timing *m, unsigned int what)
2125 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2126 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2127 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2128 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2129 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2130 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2131 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2132 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2135 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2137 const struct ata_timing *t;
2139 for (t = ata_timing; t->mode != speed; t++)
2140 if (t->mode == 0xFF)
2141 return NULL;
2142 return t;
2145 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2146 struct ata_timing *t, int T, int UT)
2148 const struct ata_timing *s;
2149 struct ata_timing p;
2152 * Find the mode.
2155 if (!(s = ata_timing_find_mode(speed)))
2156 return -EINVAL;
2158 memcpy(t, s, sizeof(*s));
2161 * If the drive is an EIDE drive, it can tell us it needs extended
2162 * PIO/MW_DMA cycle timing.
2165 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2166 memset(&p, 0, sizeof(p));
2167 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2168 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2169 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2170 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2171 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2173 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2177 * Convert the timing to bus clock counts.
2180 ata_timing_quantize(t, t, T, UT);
2183 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2184 * S.M.A.R.T * and some other commands. We have to ensure that the
2185 * DMA cycle timing is slower/equal than the fastest PIO timing.
2188 if (speed > XFER_PIO_4) {
2189 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2190 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2194 * Lengthen active & recovery time so that cycle time is correct.
2197 if (t->act8b + t->rec8b < t->cyc8b) {
2198 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2199 t->rec8b = t->cyc8b - t->act8b;
2202 if (t->active + t->recover < t->cycle) {
2203 t->active += (t->cycle - (t->active + t->recover)) / 2;
2204 t->recover = t->cycle - t->active;
2207 return 0;
2211 * ata_down_xfermask_limit - adjust dev xfer masks downward
2212 * @dev: Device to adjust xfer masks
2213 * @force_pio0: Force PIO0
2215 * Adjust xfer masks of @dev downward. Note that this function
2216 * does not apply the change. Invoking ata_set_mode() afterwards
2217 * will apply the limit.
2219 * LOCKING:
2220 * Inherited from caller.
2222 * RETURNS:
2223 * 0 on success, negative errno on failure
2225 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2227 unsigned long xfer_mask;
2228 int highbit;
2230 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2231 dev->udma_mask);
2233 if (!xfer_mask)
2234 goto fail;
2235 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2236 if (xfer_mask & ATA_MASK_UDMA)
2237 xfer_mask &= ~ATA_MASK_MWDMA;
2239 highbit = fls(xfer_mask) - 1;
2240 xfer_mask &= ~(1 << highbit);
2241 if (force_pio0)
2242 xfer_mask &= 1 << ATA_SHIFT_PIO;
2243 if (!xfer_mask)
2244 goto fail;
2246 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2247 &dev->udma_mask);
2249 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2250 ata_mode_string(xfer_mask));
2252 return 0;
2254 fail:
2255 return -EINVAL;
2258 static int ata_dev_set_mode(struct ata_device *dev)
2260 struct ata_eh_context *ehc = &dev->ap->eh_context;
2261 unsigned int err_mask;
2262 int rc;
2264 dev->flags &= ~ATA_DFLAG_PIO;
2265 if (dev->xfer_shift == ATA_SHIFT_PIO)
2266 dev->flags |= ATA_DFLAG_PIO;
2268 err_mask = ata_dev_set_xfermode(dev);
2269 if (err_mask) {
2270 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2271 "(err_mask=0x%x)\n", err_mask);
2272 return -EIO;
2275 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2276 rc = ata_dev_revalidate(dev, 0);
2277 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2278 if (rc)
2279 return rc;
2281 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2282 dev->xfer_shift, (int)dev->xfer_mode);
2284 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2285 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2286 return 0;
2290 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2291 * @ap: port on which timings will be programmed
2292 * @r_failed_dev: out paramter for failed device
2294 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2295 * ata_set_mode() fails, pointer to the failing device is
2296 * returned in @r_failed_dev.
2298 * LOCKING:
2299 * PCI/etc. bus probe sem.
2301 * RETURNS:
2302 * 0 on success, negative errno otherwise
2304 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2306 struct ata_device *dev;
2307 int i, rc = 0, used_dma = 0, found = 0;
2309 /* has private set_mode? */
2310 if (ap->ops->set_mode) {
2311 /* FIXME: make ->set_mode handle no device case and
2312 * return error code and failing device on failure.
2314 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2315 if (ata_dev_ready(&ap->device[i])) {
2316 ap->ops->set_mode(ap);
2317 break;
2320 return 0;
2323 /* step 1: calculate xfer_mask */
2324 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2325 unsigned int pio_mask, dma_mask;
2327 dev = &ap->device[i];
2329 if (!ata_dev_enabled(dev))
2330 continue;
2332 ata_dev_xfermask(dev);
2334 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2335 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2336 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2337 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2339 found = 1;
2340 if (dev->dma_mode)
2341 used_dma = 1;
2343 if (!found)
2344 goto out;
2346 /* step 2: always set host PIO timings */
2347 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2348 dev = &ap->device[i];
2349 if (!ata_dev_enabled(dev))
2350 continue;
2352 if (!dev->pio_mode) {
2353 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2354 rc = -EINVAL;
2355 goto out;
2358 dev->xfer_mode = dev->pio_mode;
2359 dev->xfer_shift = ATA_SHIFT_PIO;
2360 if (ap->ops->set_piomode)
2361 ap->ops->set_piomode(ap, dev);
2364 /* step 3: set host DMA timings */
2365 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2366 dev = &ap->device[i];
2368 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2369 continue;
2371 dev->xfer_mode = dev->dma_mode;
2372 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2373 if (ap->ops->set_dmamode)
2374 ap->ops->set_dmamode(ap, dev);
2377 /* step 4: update devices' xfer mode */
2378 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2379 dev = &ap->device[i];
2381 /* don't udpate suspended devices' xfer mode */
2382 if (!ata_dev_ready(dev))
2383 continue;
2385 rc = ata_dev_set_mode(dev);
2386 if (rc)
2387 goto out;
2390 /* Record simplex status. If we selected DMA then the other
2391 * host channels are not permitted to do so.
2393 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2394 ap->host->simplex_claimed = 1;
2396 /* step5: chip specific finalisation */
2397 if (ap->ops->post_set_mode)
2398 ap->ops->post_set_mode(ap);
2400 out:
2401 if (rc)
2402 *r_failed_dev = dev;
2403 return rc;
2407 * ata_tf_to_host - issue ATA taskfile to host controller
2408 * @ap: port to which command is being issued
2409 * @tf: ATA taskfile register set
2411 * Issues ATA taskfile register set to ATA host controller,
2412 * with proper synchronization with interrupt handler and
2413 * other threads.
2415 * LOCKING:
2416 * spin_lock_irqsave(host lock)
2419 static inline void ata_tf_to_host(struct ata_port *ap,
2420 const struct ata_taskfile *tf)
2422 ap->ops->tf_load(ap, tf);
2423 ap->ops->exec_command(ap, tf);
2427 * ata_busy_sleep - sleep until BSY clears, or timeout
2428 * @ap: port containing status register to be polled
2429 * @tmout_pat: impatience timeout
2430 * @tmout: overall timeout
2432 * Sleep until ATA Status register bit BSY clears,
2433 * or a timeout occurs.
2435 * LOCKING:
2436 * Kernel thread context (may sleep).
2438 * RETURNS:
2439 * 0 on success, -errno otherwise.
2441 int ata_busy_sleep(struct ata_port *ap,
2442 unsigned long tmout_pat, unsigned long tmout)
2444 unsigned long timer_start, timeout;
2445 u8 status;
2447 status = ata_busy_wait(ap, ATA_BUSY, 300);
2448 timer_start = jiffies;
2449 timeout = timer_start + tmout_pat;
2450 while (status != 0xff && (status & ATA_BUSY) &&
2451 time_before(jiffies, timeout)) {
2452 msleep(50);
2453 status = ata_busy_wait(ap, ATA_BUSY, 3);
2456 if (status != 0xff && (status & ATA_BUSY))
2457 ata_port_printk(ap, KERN_WARNING,
2458 "port is slow to respond, please be patient "
2459 "(Status 0x%x)\n", status);
2461 timeout = timer_start + tmout;
2462 while (status != 0xff && (status & ATA_BUSY) &&
2463 time_before(jiffies, timeout)) {
2464 msleep(50);
2465 status = ata_chk_status(ap);
2468 if (status == 0xff)
2469 return -ENODEV;
2471 if (status & ATA_BUSY) {
2472 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2473 "(%lu secs, Status 0x%x)\n",
2474 tmout / HZ, status);
2475 return -EBUSY;
2478 return 0;
2481 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2483 struct ata_ioports *ioaddr = &ap->ioaddr;
2484 unsigned int dev0 = devmask & (1 << 0);
2485 unsigned int dev1 = devmask & (1 << 1);
2486 unsigned long timeout;
2488 /* if device 0 was found in ata_devchk, wait for its
2489 * BSY bit to clear
2491 if (dev0)
2492 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2494 /* if device 1 was found in ata_devchk, wait for
2495 * register access, then wait for BSY to clear
2497 timeout = jiffies + ATA_TMOUT_BOOT;
2498 while (dev1) {
2499 u8 nsect, lbal;
2501 ap->ops->dev_select(ap, 1);
2502 if (ap->flags & ATA_FLAG_MMIO) {
2503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2505 } else {
2506 nsect = inb(ioaddr->nsect_addr);
2507 lbal = inb(ioaddr->lbal_addr);
2509 if ((nsect == 1) && (lbal == 1))
2510 break;
2511 if (time_after(jiffies, timeout)) {
2512 dev1 = 0;
2513 break;
2515 msleep(50); /* give drive a breather */
2517 if (dev1)
2518 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2520 /* is all this really necessary? */
2521 ap->ops->dev_select(ap, 0);
2522 if (dev1)
2523 ap->ops->dev_select(ap, 1);
2524 if (dev0)
2525 ap->ops->dev_select(ap, 0);
2528 static unsigned int ata_bus_softreset(struct ata_port *ap,
2529 unsigned int devmask)
2531 struct ata_ioports *ioaddr = &ap->ioaddr;
2533 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2535 /* software reset. causes dev0 to be selected */
2536 if (ap->flags & ATA_FLAG_MMIO) {
2537 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2538 udelay(20); /* FIXME: flush */
2539 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2540 udelay(20); /* FIXME: flush */
2541 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2542 } else {
2543 outb(ap->ctl, ioaddr->ctl_addr);
2544 udelay(10);
2545 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2546 udelay(10);
2547 outb(ap->ctl, ioaddr->ctl_addr);
2550 /* spec mandates ">= 2ms" before checking status.
2551 * We wait 150ms, because that was the magic delay used for
2552 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2553 * between when the ATA command register is written, and then
2554 * status is checked. Because waiting for "a while" before
2555 * checking status is fine, post SRST, we perform this magic
2556 * delay here as well.
2558 * Old drivers/ide uses the 2mS rule and then waits for ready
2560 msleep(150);
2562 /* Before we perform post reset processing we want to see if
2563 * the bus shows 0xFF because the odd clown forgets the D7
2564 * pulldown resistor.
2566 if (ata_check_status(ap) == 0xFF)
2567 return 0;
2569 ata_bus_post_reset(ap, devmask);
2571 return 0;
2575 * ata_bus_reset - reset host port and associated ATA channel
2576 * @ap: port to reset
2578 * This is typically the first time we actually start issuing
2579 * commands to the ATA channel. We wait for BSY to clear, then
2580 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2581 * result. Determine what devices, if any, are on the channel
2582 * by looking at the device 0/1 error register. Look at the signature
2583 * stored in each device's taskfile registers, to determine if
2584 * the device is ATA or ATAPI.
2586 * LOCKING:
2587 * PCI/etc. bus probe sem.
2588 * Obtains host lock.
2590 * SIDE EFFECTS:
2591 * Sets ATA_FLAG_DISABLED if bus reset fails.
2594 void ata_bus_reset(struct ata_port *ap)
2596 struct ata_ioports *ioaddr = &ap->ioaddr;
2597 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2598 u8 err;
2599 unsigned int dev0, dev1 = 0, devmask = 0;
2601 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2603 /* determine if device 0/1 are present */
2604 if (ap->flags & ATA_FLAG_SATA_RESET)
2605 dev0 = 1;
2606 else {
2607 dev0 = ata_devchk(ap, 0);
2608 if (slave_possible)
2609 dev1 = ata_devchk(ap, 1);
2612 if (dev0)
2613 devmask |= (1 << 0);
2614 if (dev1)
2615 devmask |= (1 << 1);
2617 /* select device 0 again */
2618 ap->ops->dev_select(ap, 0);
2620 /* issue bus reset */
2621 if (ap->flags & ATA_FLAG_SRST)
2622 if (ata_bus_softreset(ap, devmask))
2623 goto err_out;
2626 * determine by signature whether we have ATA or ATAPI devices
2628 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2629 if ((slave_possible) && (err != 0x81))
2630 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2632 /* re-enable interrupts */
2633 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2634 ata_irq_on(ap);
2636 /* is double-select really necessary? */
2637 if (ap->device[1].class != ATA_DEV_NONE)
2638 ap->ops->dev_select(ap, 1);
2639 if (ap->device[0].class != ATA_DEV_NONE)
2640 ap->ops->dev_select(ap, 0);
2642 /* if no devices were detected, disable this port */
2643 if ((ap->device[0].class == ATA_DEV_NONE) &&
2644 (ap->device[1].class == ATA_DEV_NONE))
2645 goto err_out;
2647 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2648 /* set up device control for ATA_FLAG_SATA_RESET */
2649 if (ap->flags & ATA_FLAG_MMIO)
2650 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2651 else
2652 outb(ap->ctl, ioaddr->ctl_addr);
2655 DPRINTK("EXIT\n");
2656 return;
2658 err_out:
2659 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2660 ap->ops->port_disable(ap);
2662 DPRINTK("EXIT\n");
2666 * sata_phy_debounce - debounce SATA phy status
2667 * @ap: ATA port to debounce SATA phy status for
2668 * @params: timing parameters { interval, duratinon, timeout } in msec
2670 * Make sure SStatus of @ap reaches stable state, determined by
2671 * holding the same value where DET is not 1 for @duration polled
2672 * every @interval, before @timeout. Timeout constraints the
2673 * beginning of the stable state. Because, after hot unplugging,
2674 * DET gets stuck at 1 on some controllers, this functions waits
2675 * until timeout then returns 0 if DET is stable at 1.
2677 * LOCKING:
2678 * Kernel thread context (may sleep)
2680 * RETURNS:
2681 * 0 on success, -errno on failure.
2683 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2685 unsigned long interval_msec = params[0];
2686 unsigned long duration = params[1] * HZ / 1000;
2687 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2688 unsigned long last_jiffies;
2689 u32 last, cur;
2690 int rc;
2692 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2693 return rc;
2694 cur &= 0xf;
2696 last = cur;
2697 last_jiffies = jiffies;
2699 while (1) {
2700 msleep(interval_msec);
2701 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2702 return rc;
2703 cur &= 0xf;
2705 /* DET stable? */
2706 if (cur == last) {
2707 if (cur == 1 && time_before(jiffies, timeout))
2708 continue;
2709 if (time_after(jiffies, last_jiffies + duration))
2710 return 0;
2711 continue;
2714 /* unstable, start over */
2715 last = cur;
2716 last_jiffies = jiffies;
2718 /* check timeout */
2719 if (time_after(jiffies, timeout))
2720 return -EBUSY;
2725 * sata_phy_resume - resume SATA phy
2726 * @ap: ATA port to resume SATA phy for
2727 * @params: timing parameters { interval, duratinon, timeout } in msec
2729 * Resume SATA phy of @ap and debounce it.
2731 * LOCKING:
2732 * Kernel thread context (may sleep)
2734 * RETURNS:
2735 * 0 on success, -errno on failure.
2737 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2739 u32 scontrol;
2740 int rc;
2742 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2743 return rc;
2745 scontrol = (scontrol & 0x0f0) | 0x300;
2747 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2748 return rc;
2750 /* Some PHYs react badly if SStatus is pounded immediately
2751 * after resuming. Delay 200ms before debouncing.
2753 msleep(200);
2755 return sata_phy_debounce(ap, params);
2758 static void ata_wait_spinup(struct ata_port *ap)
2760 struct ata_eh_context *ehc = &ap->eh_context;
2761 unsigned long end, secs;
2762 int rc;
2764 /* first, debounce phy if SATA */
2765 if (ap->cbl == ATA_CBL_SATA) {
2766 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2768 /* if debounced successfully and offline, no need to wait */
2769 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2770 return;
2773 /* okay, let's give the drive time to spin up */
2774 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2775 secs = ((end - jiffies) + HZ - 1) / HZ;
2777 if (time_after(jiffies, end))
2778 return;
2780 if (secs > 5)
2781 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2782 "(%lu secs)\n", secs);
2784 schedule_timeout_uninterruptible(end - jiffies);
2788 * ata_std_prereset - prepare for reset
2789 * @ap: ATA port to be reset
2791 * @ap is about to be reset. Initialize it.
2793 * LOCKING:
2794 * Kernel thread context (may sleep)
2796 * RETURNS:
2797 * 0 on success, -errno otherwise.
2799 int ata_std_prereset(struct ata_port *ap)
2801 struct ata_eh_context *ehc = &ap->eh_context;
2802 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2803 int rc;
2805 /* handle link resume & hotplug spinup */
2806 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2807 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2808 ehc->i.action |= ATA_EH_HARDRESET;
2810 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2811 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2812 ata_wait_spinup(ap);
2814 /* if we're about to do hardreset, nothing more to do */
2815 if (ehc->i.action & ATA_EH_HARDRESET)
2816 return 0;
2818 /* if SATA, resume phy */
2819 if (ap->cbl == ATA_CBL_SATA) {
2820 rc = sata_phy_resume(ap, timing);
2821 if (rc && rc != -EOPNOTSUPP) {
2822 /* phy resume failed */
2823 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2824 "link for reset (errno=%d)\n", rc);
2825 return rc;
2829 /* Wait for !BSY if the controller can wait for the first D2H
2830 * Reg FIS and we don't know that no device is attached.
2832 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2833 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2835 return 0;
2839 * ata_std_softreset - reset host port via ATA SRST
2840 * @ap: port to reset
2841 * @classes: resulting classes of attached devices
2843 * Reset host port using ATA SRST.
2845 * LOCKING:
2846 * Kernel thread context (may sleep)
2848 * RETURNS:
2849 * 0 on success, -errno otherwise.
2851 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2853 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2854 unsigned int devmask = 0, err_mask;
2855 u8 err;
2857 DPRINTK("ENTER\n");
2859 if (ata_port_offline(ap)) {
2860 classes[0] = ATA_DEV_NONE;
2861 goto out;
2864 /* determine if device 0/1 are present */
2865 if (ata_devchk(ap, 0))
2866 devmask |= (1 << 0);
2867 if (slave_possible && ata_devchk(ap, 1))
2868 devmask |= (1 << 1);
2870 /* select device 0 again */
2871 ap->ops->dev_select(ap, 0);
2873 /* issue bus reset */
2874 DPRINTK("about to softreset, devmask=%x\n", devmask);
2875 err_mask = ata_bus_softreset(ap, devmask);
2876 if (err_mask) {
2877 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2878 err_mask);
2879 return -EIO;
2882 /* determine by signature whether we have ATA or ATAPI devices */
2883 classes[0] = ata_dev_try_classify(ap, 0, &err);
2884 if (slave_possible && err != 0x81)
2885 classes[1] = ata_dev_try_classify(ap, 1, &err);
2887 out:
2888 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2889 return 0;
2893 * sata_port_hardreset - reset port via SATA phy reset
2894 * @ap: port to reset
2895 * @timing: timing parameters { interval, duratinon, timeout } in msec
2897 * SATA phy-reset host port using DET bits of SControl register.
2899 * LOCKING:
2900 * Kernel thread context (may sleep)
2902 * RETURNS:
2903 * 0 on success, -errno otherwise.
2905 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2907 u32 scontrol;
2908 int rc;
2910 DPRINTK("ENTER\n");
2912 if (sata_set_spd_needed(ap)) {
2913 /* SATA spec says nothing about how to reconfigure
2914 * spd. To be on the safe side, turn off phy during
2915 * reconfiguration. This works for at least ICH7 AHCI
2916 * and Sil3124.
2918 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2919 goto out;
2921 scontrol = (scontrol & 0x0f0) | 0x304;
2923 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2924 goto out;
2926 sata_set_spd(ap);
2929 /* issue phy wake/reset */
2930 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2931 goto out;
2933 scontrol = (scontrol & 0x0f0) | 0x301;
2935 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2936 goto out;
2938 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2939 * 10.4.2 says at least 1 ms.
2941 msleep(1);
2943 /* bring phy back */
2944 rc = sata_phy_resume(ap, timing);
2945 out:
2946 DPRINTK("EXIT, rc=%d\n", rc);
2947 return rc;
2951 * sata_std_hardreset - reset host port via SATA phy reset
2952 * @ap: port to reset
2953 * @class: resulting class of attached device
2955 * SATA phy-reset host port using DET bits of SControl register,
2956 * wait for !BSY and classify the attached device.
2958 * LOCKING:
2959 * Kernel thread context (may sleep)
2961 * RETURNS:
2962 * 0 on success, -errno otherwise.
2964 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2966 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2967 int rc;
2969 DPRINTK("ENTER\n");
2971 /* do hardreset */
2972 rc = sata_port_hardreset(ap, timing);
2973 if (rc) {
2974 ata_port_printk(ap, KERN_ERR,
2975 "COMRESET failed (errno=%d)\n", rc);
2976 return rc;
2979 /* TODO: phy layer with polling, timeouts, etc. */
2980 if (ata_port_offline(ap)) {
2981 *class = ATA_DEV_NONE;
2982 DPRINTK("EXIT, link offline\n");
2983 return 0;
2986 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2987 ata_port_printk(ap, KERN_ERR,
2988 "COMRESET failed (device not ready)\n");
2989 return -EIO;
2992 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2994 *class = ata_dev_try_classify(ap, 0, NULL);
2996 DPRINTK("EXIT, class=%u\n", *class);
2997 return 0;
3001 * ata_std_postreset - standard postreset callback
3002 * @ap: the target ata_port
3003 * @classes: classes of attached devices
3005 * This function is invoked after a successful reset. Note that
3006 * the device might have been reset more than once using
3007 * different reset methods before postreset is invoked.
3009 * LOCKING:
3010 * Kernel thread context (may sleep)
3012 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3014 u32 serror;
3016 DPRINTK("ENTER\n");
3018 /* print link status */
3019 sata_print_link_status(ap);
3021 /* clear SError */
3022 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3023 sata_scr_write(ap, SCR_ERROR, serror);
3025 /* re-enable interrupts */
3026 if (!ap->ops->error_handler) {
3027 /* FIXME: hack. create a hook instead */
3028 if (ap->ioaddr.ctl_addr)
3029 ata_irq_on(ap);
3032 /* is double-select really necessary? */
3033 if (classes[0] != ATA_DEV_NONE)
3034 ap->ops->dev_select(ap, 1);
3035 if (classes[1] != ATA_DEV_NONE)
3036 ap->ops->dev_select(ap, 0);
3038 /* bail out if no device is present */
3039 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3040 DPRINTK("EXIT, no device\n");
3041 return;
3044 /* set up device control */
3045 if (ap->ioaddr.ctl_addr) {
3046 if (ap->flags & ATA_FLAG_MMIO)
3047 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3048 else
3049 outb(ap->ctl, ap->ioaddr.ctl_addr);
3052 DPRINTK("EXIT\n");
3056 * ata_dev_same_device - Determine whether new ID matches configured device
3057 * @dev: device to compare against
3058 * @new_class: class of the new device
3059 * @new_id: IDENTIFY page of the new device
3061 * Compare @new_class and @new_id against @dev and determine
3062 * whether @dev is the device indicated by @new_class and
3063 * @new_id.
3065 * LOCKING:
3066 * None.
3068 * RETURNS:
3069 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3071 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3072 const u16 *new_id)
3074 const u16 *old_id = dev->id;
3075 unsigned char model[2][41], serial[2][21];
3076 u64 new_n_sectors;
3078 if (dev->class != new_class) {
3079 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3080 dev->class, new_class);
3081 return 0;
3084 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3085 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3086 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3087 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3088 new_n_sectors = ata_id_n_sectors(new_id);
3090 if (strcmp(model[0], model[1])) {
3091 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3092 "'%s' != '%s'\n", model[0], model[1]);
3093 return 0;
3096 if (strcmp(serial[0], serial[1])) {
3097 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3098 "'%s' != '%s'\n", serial[0], serial[1]);
3099 return 0;
3102 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3103 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3104 "%llu != %llu\n",
3105 (unsigned long long)dev->n_sectors,
3106 (unsigned long long)new_n_sectors);
3107 return 0;
3110 return 1;
3114 * ata_dev_revalidate - Revalidate ATA device
3115 * @dev: device to revalidate
3116 * @readid_flags: read ID flags
3118 * Re-read IDENTIFY page and make sure @dev is still attached to
3119 * the port.
3121 * LOCKING:
3122 * Kernel thread context (may sleep)
3124 * RETURNS:
3125 * 0 on success, negative errno otherwise
3127 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3129 unsigned int class = dev->class;
3130 u16 *id = (void *)dev->ap->sector_buf;
3131 int rc;
3133 if (!ata_dev_enabled(dev)) {
3134 rc = -ENODEV;
3135 goto fail;
3138 /* read ID data */
3139 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3140 if (rc)
3141 goto fail;
3143 /* is the device still there? */
3144 if (!ata_dev_same_device(dev, class, id)) {
3145 rc = -ENODEV;
3146 goto fail;
3149 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3151 /* configure device according to the new ID */
3152 rc = ata_dev_configure(dev);
3153 if (rc == 0)
3154 return 0;
3156 fail:
3157 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3158 return rc;
3161 struct ata_blacklist_entry {
3162 const char *model_num;
3163 const char *model_rev;
3164 unsigned long horkage;
3167 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3168 /* Devices with DMA related problems under Linux */
3169 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3170 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3171 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3172 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3173 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3174 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3175 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3176 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3177 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3178 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3179 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3180 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3181 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3182 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3183 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3184 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3185 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3186 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3187 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3188 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3189 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3190 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3191 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3192 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3193 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3194 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3195 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3196 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3197 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3198 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3200 /* Devices we expect to fail diagnostics */
3202 /* Devices where NCQ should be avoided */
3203 /* NCQ is slow */
3204 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3206 /* Devices with NCQ limits */
3208 /* End Marker */
3212 static int ata_strim(char *s, size_t len)
3214 len = strnlen(s, len);
3216 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3217 while ((len > 0) && (s[len - 1] == ' ')) {
3218 len--;
3219 s[len] = 0;
3221 return len;
3224 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3226 unsigned char model_num[40];
3227 unsigned char model_rev[16];
3228 unsigned int nlen, rlen;
3229 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3231 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3232 sizeof(model_num));
3233 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3234 sizeof(model_rev));
3235 nlen = ata_strim(model_num, sizeof(model_num));
3236 rlen = ata_strim(model_rev, sizeof(model_rev));
3238 while (ad->model_num) {
3239 if (!strncmp(ad->model_num, model_num, nlen)) {
3240 if (ad->model_rev == NULL)
3241 return ad->horkage;
3242 if (!strncmp(ad->model_rev, model_rev, rlen))
3243 return ad->horkage;
3245 ad++;
3247 return 0;
3250 static int ata_dma_blacklisted(const struct ata_device *dev)
3252 /* We don't support polling DMA.
3253 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3254 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3256 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3257 (dev->flags & ATA_DFLAG_CDB_INTR))
3258 return 1;
3259 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3263 * ata_dev_xfermask - Compute supported xfermask of the given device
3264 * @dev: Device to compute xfermask for
3266 * Compute supported xfermask of @dev and store it in
3267 * dev->*_mask. This function is responsible for applying all
3268 * known limits including host controller limits, device
3269 * blacklist, etc...
3271 * LOCKING:
3272 * None.
3274 static void ata_dev_xfermask(struct ata_device *dev)
3276 struct ata_port *ap = dev->ap;
3277 struct ata_host *host = ap->host;
3278 unsigned long xfer_mask;
3280 /* controller modes available */
3281 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3282 ap->mwdma_mask, ap->udma_mask);
3284 /* Apply cable rule here. Don't apply it early because when
3285 * we handle hot plug the cable type can itself change.
3287 if (ap->cbl == ATA_CBL_PATA40)
3288 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3289 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3290 * host side are checked drive side as well. Cases where we know a
3291 * 40wire cable is used safely for 80 are not checked here.
3293 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3294 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3297 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3298 dev->mwdma_mask, dev->udma_mask);
3299 xfer_mask &= ata_id_xfermask(dev->id);
3302 * CFA Advanced TrueIDE timings are not allowed on a shared
3303 * cable
3305 if (ata_dev_pair(dev)) {
3306 /* No PIO5 or PIO6 */
3307 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3308 /* No MWDMA3 or MWDMA 4 */
3309 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3312 if (ata_dma_blacklisted(dev)) {
3313 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3314 ata_dev_printk(dev, KERN_WARNING,
3315 "device is on DMA blacklist, disabling DMA\n");
3318 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3319 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3320 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3321 "other device, disabling DMA\n");
3324 if (ap->ops->mode_filter)
3325 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3327 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3328 &dev->mwdma_mask, &dev->udma_mask);
3332 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3333 * @dev: Device to which command will be sent
3335 * Issue SET FEATURES - XFER MODE command to device @dev
3336 * on port @ap.
3338 * LOCKING:
3339 * PCI/etc. bus probe sem.
3341 * RETURNS:
3342 * 0 on success, AC_ERR_* mask otherwise.
3345 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3347 struct ata_taskfile tf;
3348 unsigned int err_mask;
3350 /* set up set-features taskfile */
3351 DPRINTK("set features - xfer mode\n");
3353 ata_tf_init(dev, &tf);
3354 tf.command = ATA_CMD_SET_FEATURES;
3355 tf.feature = SETFEATURES_XFER;
3356 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3357 tf.protocol = ATA_PROT_NODATA;
3358 tf.nsect = dev->xfer_mode;
3360 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3362 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3363 return err_mask;
3367 * ata_dev_init_params - Issue INIT DEV PARAMS command
3368 * @dev: Device to which command will be sent
3369 * @heads: Number of heads (taskfile parameter)
3370 * @sectors: Number of sectors (taskfile parameter)
3372 * LOCKING:
3373 * Kernel thread context (may sleep)
3375 * RETURNS:
3376 * 0 on success, AC_ERR_* mask otherwise.
3378 static unsigned int ata_dev_init_params(struct ata_device *dev,
3379 u16 heads, u16 sectors)
3381 struct ata_taskfile tf;
3382 unsigned int err_mask;
3384 /* Number of sectors per track 1-255. Number of heads 1-16 */
3385 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3386 return AC_ERR_INVALID;
3388 /* set up init dev params taskfile */
3389 DPRINTK("init dev params \n");
3391 ata_tf_init(dev, &tf);
3392 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3393 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3394 tf.protocol = ATA_PROT_NODATA;
3395 tf.nsect = sectors;
3396 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3398 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3400 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3401 return err_mask;
3405 * ata_sg_clean - Unmap DMA memory associated with command
3406 * @qc: Command containing DMA memory to be released
3408 * Unmap all mapped DMA memory associated with this command.
3410 * LOCKING:
3411 * spin_lock_irqsave(host lock)
3414 static void ata_sg_clean(struct ata_queued_cmd *qc)
3416 struct ata_port *ap = qc->ap;
3417 struct scatterlist *sg = qc->__sg;
3418 int dir = qc->dma_dir;
3419 void *pad_buf = NULL;
3421 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3422 WARN_ON(sg == NULL);
3424 if (qc->flags & ATA_QCFLAG_SINGLE)
3425 WARN_ON(qc->n_elem > 1);
3427 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3429 /* if we padded the buffer out to 32-bit bound, and data
3430 * xfer direction is from-device, we must copy from the
3431 * pad buffer back into the supplied buffer
3433 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3434 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3436 if (qc->flags & ATA_QCFLAG_SG) {
3437 if (qc->n_elem)
3438 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3439 /* restore last sg */
3440 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3441 if (pad_buf) {
3442 struct scatterlist *psg = &qc->pad_sgent;
3443 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3444 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3445 kunmap_atomic(addr, KM_IRQ0);
3447 } else {
3448 if (qc->n_elem)
3449 dma_unmap_single(ap->dev,
3450 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3451 dir);
3452 /* restore sg */
3453 sg->length += qc->pad_len;
3454 if (pad_buf)
3455 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3456 pad_buf, qc->pad_len);
3459 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3460 qc->__sg = NULL;
3464 * ata_fill_sg - Fill PCI IDE PRD table
3465 * @qc: Metadata associated with taskfile to be transferred
3467 * Fill PCI IDE PRD (scatter-gather) table with segments
3468 * associated with the current disk command.
3470 * LOCKING:
3471 * spin_lock_irqsave(host lock)
3474 static void ata_fill_sg(struct ata_queued_cmd *qc)
3476 struct ata_port *ap = qc->ap;
3477 struct scatterlist *sg;
3478 unsigned int idx;
3480 WARN_ON(qc->__sg == NULL);
3481 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3483 idx = 0;
3484 ata_for_each_sg(sg, qc) {
3485 u32 addr, offset;
3486 u32 sg_len, len;
3488 /* determine if physical DMA addr spans 64K boundary.
3489 * Note h/w doesn't support 64-bit, so we unconditionally
3490 * truncate dma_addr_t to u32.
3492 addr = (u32) sg_dma_address(sg);
3493 sg_len = sg_dma_len(sg);
3495 while (sg_len) {
3496 offset = addr & 0xffff;
3497 len = sg_len;
3498 if ((offset + sg_len) > 0x10000)
3499 len = 0x10000 - offset;
3501 ap->prd[idx].addr = cpu_to_le32(addr);
3502 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3503 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3505 idx++;
3506 sg_len -= len;
3507 addr += len;
3511 if (idx)
3512 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3515 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3516 * @qc: Metadata associated with taskfile to check
3518 * Allow low-level driver to filter ATA PACKET commands, returning
3519 * a status indicating whether or not it is OK to use DMA for the
3520 * supplied PACKET command.
3522 * LOCKING:
3523 * spin_lock_irqsave(host lock)
3525 * RETURNS: 0 when ATAPI DMA can be used
3526 * nonzero otherwise
3528 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3530 struct ata_port *ap = qc->ap;
3531 int rc = 0; /* Assume ATAPI DMA is OK by default */
3533 if (ap->ops->check_atapi_dma)
3534 rc = ap->ops->check_atapi_dma(qc);
3536 return rc;
3539 * ata_qc_prep - Prepare taskfile for submission
3540 * @qc: Metadata associated with taskfile to be prepared
3542 * Prepare ATA taskfile for submission.
3544 * LOCKING:
3545 * spin_lock_irqsave(host lock)
3547 void ata_qc_prep(struct ata_queued_cmd *qc)
3549 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3550 return;
3552 ata_fill_sg(qc);
3555 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3558 * ata_sg_init_one - Associate command with memory buffer
3559 * @qc: Command to be associated
3560 * @buf: Memory buffer
3561 * @buflen: Length of memory buffer, in bytes.
3563 * Initialize the data-related elements of queued_cmd @qc
3564 * to point to a single memory buffer, @buf of byte length @buflen.
3566 * LOCKING:
3567 * spin_lock_irqsave(host lock)
3570 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3572 qc->flags |= ATA_QCFLAG_SINGLE;
3574 qc->__sg = &qc->sgent;
3575 qc->n_elem = 1;
3576 qc->orig_n_elem = 1;
3577 qc->buf_virt = buf;
3578 qc->nbytes = buflen;
3580 sg_init_one(&qc->sgent, buf, buflen);
3584 * ata_sg_init - Associate command with scatter-gather table.
3585 * @qc: Command to be associated
3586 * @sg: Scatter-gather table.
3587 * @n_elem: Number of elements in s/g table.
3589 * Initialize the data-related elements of queued_cmd @qc
3590 * to point to a scatter-gather table @sg, containing @n_elem
3591 * elements.
3593 * LOCKING:
3594 * spin_lock_irqsave(host lock)
3597 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3598 unsigned int n_elem)
3600 qc->flags |= ATA_QCFLAG_SG;
3601 qc->__sg = sg;
3602 qc->n_elem = n_elem;
3603 qc->orig_n_elem = n_elem;
3607 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3608 * @qc: Command with memory buffer to be mapped.
3610 * DMA-map the memory buffer associated with queued_cmd @qc.
3612 * LOCKING:
3613 * spin_lock_irqsave(host lock)
3615 * RETURNS:
3616 * Zero on success, negative on error.
3619 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3621 struct ata_port *ap = qc->ap;
3622 int dir = qc->dma_dir;
3623 struct scatterlist *sg = qc->__sg;
3624 dma_addr_t dma_address;
3625 int trim_sg = 0;
3627 /* we must lengthen transfers to end on a 32-bit boundary */
3628 qc->pad_len = sg->length & 3;
3629 if (qc->pad_len) {
3630 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3631 struct scatterlist *psg = &qc->pad_sgent;
3633 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3635 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3637 if (qc->tf.flags & ATA_TFLAG_WRITE)
3638 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3639 qc->pad_len);
3641 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3642 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3643 /* trim sg */
3644 sg->length -= qc->pad_len;
3645 if (sg->length == 0)
3646 trim_sg = 1;
3648 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3649 sg->length, qc->pad_len);
3652 if (trim_sg) {
3653 qc->n_elem--;
3654 goto skip_map;
3657 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3658 sg->length, dir);
3659 if (dma_mapping_error(dma_address)) {
3660 /* restore sg */
3661 sg->length += qc->pad_len;
3662 return -1;
3665 sg_dma_address(sg) = dma_address;
3666 sg_dma_len(sg) = sg->length;
3668 skip_map:
3669 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3670 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3672 return 0;
3676 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3677 * @qc: Command with scatter-gather table to be mapped.
3679 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3681 * LOCKING:
3682 * spin_lock_irqsave(host lock)
3684 * RETURNS:
3685 * Zero on success, negative on error.
3689 static int ata_sg_setup(struct ata_queued_cmd *qc)
3691 struct ata_port *ap = qc->ap;
3692 struct scatterlist *sg = qc->__sg;
3693 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3694 int n_elem, pre_n_elem, dir, trim_sg = 0;
3696 VPRINTK("ENTER, ata%u\n", ap->id);
3697 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3699 /* we must lengthen transfers to end on a 32-bit boundary */
3700 qc->pad_len = lsg->length & 3;
3701 if (qc->pad_len) {
3702 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3703 struct scatterlist *psg = &qc->pad_sgent;
3704 unsigned int offset;
3706 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3708 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3711 * psg->page/offset are used to copy to-be-written
3712 * data in this function or read data in ata_sg_clean.
3714 offset = lsg->offset + lsg->length - qc->pad_len;
3715 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3716 psg->offset = offset_in_page(offset);
3718 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3719 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3720 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3721 kunmap_atomic(addr, KM_IRQ0);
3724 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3725 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3726 /* trim last sg */
3727 lsg->length -= qc->pad_len;
3728 if (lsg->length == 0)
3729 trim_sg = 1;
3731 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3732 qc->n_elem - 1, lsg->length, qc->pad_len);
3735 pre_n_elem = qc->n_elem;
3736 if (trim_sg && pre_n_elem)
3737 pre_n_elem--;
3739 if (!pre_n_elem) {
3740 n_elem = 0;
3741 goto skip_map;
3744 dir = qc->dma_dir;
3745 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3746 if (n_elem < 1) {
3747 /* restore last sg */
3748 lsg->length += qc->pad_len;
3749 return -1;
3752 DPRINTK("%d sg elements mapped\n", n_elem);
3754 skip_map:
3755 qc->n_elem = n_elem;
3757 return 0;
3761 * swap_buf_le16 - swap halves of 16-bit words in place
3762 * @buf: Buffer to swap
3763 * @buf_words: Number of 16-bit words in buffer.
3765 * Swap halves of 16-bit words if needed to convert from
3766 * little-endian byte order to native cpu byte order, or
3767 * vice-versa.
3769 * LOCKING:
3770 * Inherited from caller.
3772 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3774 #ifdef __BIG_ENDIAN
3775 unsigned int i;
3777 for (i = 0; i < buf_words; i++)
3778 buf[i] = le16_to_cpu(buf[i]);
3779 #endif /* __BIG_ENDIAN */
3783 * ata_mmio_data_xfer - Transfer data by MMIO
3784 * @adev: device for this I/O
3785 * @buf: data buffer
3786 * @buflen: buffer length
3787 * @write_data: read/write
3789 * Transfer data from/to the device data register by MMIO.
3791 * LOCKING:
3792 * Inherited from caller.
3795 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3796 unsigned int buflen, int write_data)
3798 struct ata_port *ap = adev->ap;
3799 unsigned int i;
3800 unsigned int words = buflen >> 1;
3801 u16 *buf16 = (u16 *) buf;
3802 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3804 /* Transfer multiple of 2 bytes */
3805 if (write_data) {
3806 for (i = 0; i < words; i++)
3807 writew(le16_to_cpu(buf16[i]), mmio);
3808 } else {
3809 for (i = 0; i < words; i++)
3810 buf16[i] = cpu_to_le16(readw(mmio));
3813 /* Transfer trailing 1 byte, if any. */
3814 if (unlikely(buflen & 0x01)) {
3815 u16 align_buf[1] = { 0 };
3816 unsigned char *trailing_buf = buf + buflen - 1;
3818 if (write_data) {
3819 memcpy(align_buf, trailing_buf, 1);
3820 writew(le16_to_cpu(align_buf[0]), mmio);
3821 } else {
3822 align_buf[0] = cpu_to_le16(readw(mmio));
3823 memcpy(trailing_buf, align_buf, 1);
3829 * ata_pio_data_xfer - Transfer data by PIO
3830 * @adev: device to target
3831 * @buf: data buffer
3832 * @buflen: buffer length
3833 * @write_data: read/write
3835 * Transfer data from/to the device data register by PIO.
3837 * LOCKING:
3838 * Inherited from caller.
3841 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3842 unsigned int buflen, int write_data)
3844 struct ata_port *ap = adev->ap;
3845 unsigned int words = buflen >> 1;
3847 /* Transfer multiple of 2 bytes */
3848 if (write_data)
3849 outsw(ap->ioaddr.data_addr, buf, words);
3850 else
3851 insw(ap->ioaddr.data_addr, buf, words);
3853 /* Transfer trailing 1 byte, if any. */
3854 if (unlikely(buflen & 0x01)) {
3855 u16 align_buf[1] = { 0 };
3856 unsigned char *trailing_buf = buf + buflen - 1;
3858 if (write_data) {
3859 memcpy(align_buf, trailing_buf, 1);
3860 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3861 } else {
3862 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3863 memcpy(trailing_buf, align_buf, 1);
3869 * ata_pio_data_xfer_noirq - Transfer data by PIO
3870 * @adev: device to target
3871 * @buf: data buffer
3872 * @buflen: buffer length
3873 * @write_data: read/write
3875 * Transfer data from/to the device data register by PIO. Do the
3876 * transfer with interrupts disabled.
3878 * LOCKING:
3879 * Inherited from caller.
3882 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3883 unsigned int buflen, int write_data)
3885 unsigned long flags;
3886 local_irq_save(flags);
3887 ata_pio_data_xfer(adev, buf, buflen, write_data);
3888 local_irq_restore(flags);
3893 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3894 * @qc: Command on going
3896 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3898 * LOCKING:
3899 * Inherited from caller.
3902 static void ata_pio_sector(struct ata_queued_cmd *qc)
3904 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3905 struct scatterlist *sg = qc->__sg;
3906 struct ata_port *ap = qc->ap;
3907 struct page *page;
3908 unsigned int offset;
3909 unsigned char *buf;
3911 if (qc->cursect == (qc->nsect - 1))
3912 ap->hsm_task_state = HSM_ST_LAST;
3914 page = sg[qc->cursg].page;
3915 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3917 /* get the current page and offset */
3918 page = nth_page(page, (offset >> PAGE_SHIFT));
3919 offset %= PAGE_SIZE;
3921 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3923 if (PageHighMem(page)) {
3924 unsigned long flags;
3926 /* FIXME: use a bounce buffer */
3927 local_irq_save(flags);
3928 buf = kmap_atomic(page, KM_IRQ0);
3930 /* do the actual data transfer */
3931 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3933 kunmap_atomic(buf, KM_IRQ0);
3934 local_irq_restore(flags);
3935 } else {
3936 buf = page_address(page);
3937 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3940 qc->cursect++;
3941 qc->cursg_ofs++;
3943 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3944 qc->cursg++;
3945 qc->cursg_ofs = 0;
3950 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3951 * @qc: Command on going
3953 * Transfer one or many ATA_SECT_SIZE of data from/to the
3954 * ATA device for the DRQ request.
3956 * LOCKING:
3957 * Inherited from caller.
3960 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3962 if (is_multi_taskfile(&qc->tf)) {
3963 /* READ/WRITE MULTIPLE */
3964 unsigned int nsect;
3966 WARN_ON(qc->dev->multi_count == 0);
3968 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3969 while (nsect--)
3970 ata_pio_sector(qc);
3971 } else
3972 ata_pio_sector(qc);
3976 * atapi_send_cdb - Write CDB bytes to hardware
3977 * @ap: Port to which ATAPI device is attached.
3978 * @qc: Taskfile currently active
3980 * When device has indicated its readiness to accept
3981 * a CDB, this function is called. Send the CDB.
3983 * LOCKING:
3984 * caller.
3987 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3989 /* send SCSI cdb */
3990 DPRINTK("send cdb\n");
3991 WARN_ON(qc->dev->cdb_len < 12);
3993 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3994 ata_altstatus(ap); /* flush */
3996 switch (qc->tf.protocol) {
3997 case ATA_PROT_ATAPI:
3998 ap->hsm_task_state = HSM_ST;
3999 break;
4000 case ATA_PROT_ATAPI_NODATA:
4001 ap->hsm_task_state = HSM_ST_LAST;
4002 break;
4003 case ATA_PROT_ATAPI_DMA:
4004 ap->hsm_task_state = HSM_ST_LAST;
4005 /* initiate bmdma */
4006 ap->ops->bmdma_start(qc);
4007 break;
4012 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4013 * @qc: Command on going
4014 * @bytes: number of bytes
4016 * Transfer Transfer data from/to the ATAPI device.
4018 * LOCKING:
4019 * Inherited from caller.
4023 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4025 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4026 struct scatterlist *sg = qc->__sg;
4027 struct ata_port *ap = qc->ap;
4028 struct page *page;
4029 unsigned char *buf;
4030 unsigned int offset, count;
4032 if (qc->curbytes + bytes >= qc->nbytes)
4033 ap->hsm_task_state = HSM_ST_LAST;
4035 next_sg:
4036 if (unlikely(qc->cursg >= qc->n_elem)) {
4038 * The end of qc->sg is reached and the device expects
4039 * more data to transfer. In order not to overrun qc->sg
4040 * and fulfill length specified in the byte count register,
4041 * - for read case, discard trailing data from the device
4042 * - for write case, padding zero data to the device
4044 u16 pad_buf[1] = { 0 };
4045 unsigned int words = bytes >> 1;
4046 unsigned int i;
4048 if (words) /* warning if bytes > 1 */
4049 ata_dev_printk(qc->dev, KERN_WARNING,
4050 "%u bytes trailing data\n", bytes);
4052 for (i = 0; i < words; i++)
4053 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4055 ap->hsm_task_state = HSM_ST_LAST;
4056 return;
4059 sg = &qc->__sg[qc->cursg];
4061 page = sg->page;
4062 offset = sg->offset + qc->cursg_ofs;
4064 /* get the current page and offset */
4065 page = nth_page(page, (offset >> PAGE_SHIFT));
4066 offset %= PAGE_SIZE;
4068 /* don't overrun current sg */
4069 count = min(sg->length - qc->cursg_ofs, bytes);
4071 /* don't cross page boundaries */
4072 count = min(count, (unsigned int)PAGE_SIZE - offset);
4074 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4076 if (PageHighMem(page)) {
4077 unsigned long flags;
4079 /* FIXME: use bounce buffer */
4080 local_irq_save(flags);
4081 buf = kmap_atomic(page, KM_IRQ0);
4083 /* do the actual data transfer */
4084 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4086 kunmap_atomic(buf, KM_IRQ0);
4087 local_irq_restore(flags);
4088 } else {
4089 buf = page_address(page);
4090 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4093 bytes -= count;
4094 qc->curbytes += count;
4095 qc->cursg_ofs += count;
4097 if (qc->cursg_ofs == sg->length) {
4098 qc->cursg++;
4099 qc->cursg_ofs = 0;
4102 if (bytes)
4103 goto next_sg;
4107 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4108 * @qc: Command on going
4110 * Transfer Transfer data from/to the ATAPI device.
4112 * LOCKING:
4113 * Inherited from caller.
4116 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4118 struct ata_port *ap = qc->ap;
4119 struct ata_device *dev = qc->dev;
4120 unsigned int ireason, bc_lo, bc_hi, bytes;
4121 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4123 /* Abuse qc->result_tf for temp storage of intermediate TF
4124 * here to save some kernel stack usage.
4125 * For normal completion, qc->result_tf is not relevant. For
4126 * error, qc->result_tf is later overwritten by ata_qc_complete().
4127 * So, the correctness of qc->result_tf is not affected.
4129 ap->ops->tf_read(ap, &qc->result_tf);
4130 ireason = qc->result_tf.nsect;
4131 bc_lo = qc->result_tf.lbam;
4132 bc_hi = qc->result_tf.lbah;
4133 bytes = (bc_hi << 8) | bc_lo;
4135 /* shall be cleared to zero, indicating xfer of data */
4136 if (ireason & (1 << 0))
4137 goto err_out;
4139 /* make sure transfer direction matches expected */
4140 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4141 if (do_write != i_write)
4142 goto err_out;
4144 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4146 __atapi_pio_bytes(qc, bytes);
4148 return;
4150 err_out:
4151 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4152 qc->err_mask |= AC_ERR_HSM;
4153 ap->hsm_task_state = HSM_ST_ERR;
4157 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4158 * @ap: the target ata_port
4159 * @qc: qc on going
4161 * RETURNS:
4162 * 1 if ok in workqueue, 0 otherwise.
4165 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4167 if (qc->tf.flags & ATA_TFLAG_POLLING)
4168 return 1;
4170 if (ap->hsm_task_state == HSM_ST_FIRST) {
4171 if (qc->tf.protocol == ATA_PROT_PIO &&
4172 (qc->tf.flags & ATA_TFLAG_WRITE))
4173 return 1;
4175 if (is_atapi_taskfile(&qc->tf) &&
4176 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4177 return 1;
4180 return 0;
4184 * ata_hsm_qc_complete - finish a qc running on standard HSM
4185 * @qc: Command to complete
4186 * @in_wq: 1 if called from workqueue, 0 otherwise
4188 * Finish @qc which is running on standard HSM.
4190 * LOCKING:
4191 * If @in_wq is zero, spin_lock_irqsave(host lock).
4192 * Otherwise, none on entry and grabs host lock.
4194 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4196 struct ata_port *ap = qc->ap;
4197 unsigned long flags;
4199 if (ap->ops->error_handler) {
4200 if (in_wq) {
4201 spin_lock_irqsave(ap->lock, flags);
4203 /* EH might have kicked in while host lock is
4204 * released.
4206 qc = ata_qc_from_tag(ap, qc->tag);
4207 if (qc) {
4208 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4209 ata_irq_on(ap);
4210 ata_qc_complete(qc);
4211 } else
4212 ata_port_freeze(ap);
4215 spin_unlock_irqrestore(ap->lock, flags);
4216 } else {
4217 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4218 ata_qc_complete(qc);
4219 else
4220 ata_port_freeze(ap);
4222 } else {
4223 if (in_wq) {
4224 spin_lock_irqsave(ap->lock, flags);
4225 ata_irq_on(ap);
4226 ata_qc_complete(qc);
4227 spin_unlock_irqrestore(ap->lock, flags);
4228 } else
4229 ata_qc_complete(qc);
4232 ata_altstatus(ap); /* flush */
4236 * ata_hsm_move - move the HSM to the next state.
4237 * @ap: the target ata_port
4238 * @qc: qc on going
4239 * @status: current device status
4240 * @in_wq: 1 if called from workqueue, 0 otherwise
4242 * RETURNS:
4243 * 1 when poll next status needed, 0 otherwise.
4245 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4246 u8 status, int in_wq)
4248 unsigned long flags = 0;
4249 int poll_next;
4251 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4253 /* Make sure ata_qc_issue_prot() does not throw things
4254 * like DMA polling into the workqueue. Notice that
4255 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4257 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4259 fsm_start:
4260 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4261 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4263 switch (ap->hsm_task_state) {
4264 case HSM_ST_FIRST:
4265 /* Send first data block or PACKET CDB */
4267 /* If polling, we will stay in the work queue after
4268 * sending the data. Otherwise, interrupt handler
4269 * takes over after sending the data.
4271 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4273 /* check device status */
4274 if (unlikely((status & ATA_DRQ) == 0)) {
4275 /* handle BSY=0, DRQ=0 as error */
4276 if (likely(status & (ATA_ERR | ATA_DF)))
4277 /* device stops HSM for abort/error */
4278 qc->err_mask |= AC_ERR_DEV;
4279 else
4280 /* HSM violation. Let EH handle this */
4281 qc->err_mask |= AC_ERR_HSM;
4283 ap->hsm_task_state = HSM_ST_ERR;
4284 goto fsm_start;
4287 /* Device should not ask for data transfer (DRQ=1)
4288 * when it finds something wrong.
4289 * We ignore DRQ here and stop the HSM by
4290 * changing hsm_task_state to HSM_ST_ERR and
4291 * let the EH abort the command or reset the device.
4293 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4294 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4295 ap->id, status);
4296 qc->err_mask |= AC_ERR_HSM;
4297 ap->hsm_task_state = HSM_ST_ERR;
4298 goto fsm_start;
4301 /* Send the CDB (atapi) or the first data block (ata pio out).
4302 * During the state transition, interrupt handler shouldn't
4303 * be invoked before the data transfer is complete and
4304 * hsm_task_state is changed. Hence, the following locking.
4306 if (in_wq)
4307 spin_lock_irqsave(ap->lock, flags);
4309 if (qc->tf.protocol == ATA_PROT_PIO) {
4310 /* PIO data out protocol.
4311 * send first data block.
4314 /* ata_pio_sectors() might change the state
4315 * to HSM_ST_LAST. so, the state is changed here
4316 * before ata_pio_sectors().
4318 ap->hsm_task_state = HSM_ST;
4319 ata_pio_sectors(qc);
4320 ata_altstatus(ap); /* flush */
4321 } else
4322 /* send CDB */
4323 atapi_send_cdb(ap, qc);
4325 if (in_wq)
4326 spin_unlock_irqrestore(ap->lock, flags);
4328 /* if polling, ata_pio_task() handles the rest.
4329 * otherwise, interrupt handler takes over from here.
4331 break;
4333 case HSM_ST:
4334 /* complete command or read/write the data register */
4335 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4336 /* ATAPI PIO protocol */
4337 if ((status & ATA_DRQ) == 0) {
4338 /* No more data to transfer or device error.
4339 * Device error will be tagged in HSM_ST_LAST.
4341 ap->hsm_task_state = HSM_ST_LAST;
4342 goto fsm_start;
4345 /* Device should not ask for data transfer (DRQ=1)
4346 * when it finds something wrong.
4347 * We ignore DRQ here and stop the HSM by
4348 * changing hsm_task_state to HSM_ST_ERR and
4349 * let the EH abort the command or reset the device.
4351 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4352 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4353 ap->id, status);
4354 qc->err_mask |= AC_ERR_HSM;
4355 ap->hsm_task_state = HSM_ST_ERR;
4356 goto fsm_start;
4359 atapi_pio_bytes(qc);
4361 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4362 /* bad ireason reported by device */
4363 goto fsm_start;
4365 } else {
4366 /* ATA PIO protocol */
4367 if (unlikely((status & ATA_DRQ) == 0)) {
4368 /* handle BSY=0, DRQ=0 as error */
4369 if (likely(status & (ATA_ERR | ATA_DF)))
4370 /* device stops HSM for abort/error */
4371 qc->err_mask |= AC_ERR_DEV;
4372 else
4373 /* HSM violation. Let EH handle this.
4374 * Phantom devices also trigger this
4375 * condition. Mark hint.
4377 qc->err_mask |= AC_ERR_HSM |
4378 AC_ERR_NODEV_HINT;
4380 ap->hsm_task_state = HSM_ST_ERR;
4381 goto fsm_start;
4384 /* For PIO reads, some devices may ask for
4385 * data transfer (DRQ=1) alone with ERR=1.
4386 * We respect DRQ here and transfer one
4387 * block of junk data before changing the
4388 * hsm_task_state to HSM_ST_ERR.
4390 * For PIO writes, ERR=1 DRQ=1 doesn't make
4391 * sense since the data block has been
4392 * transferred to the device.
4394 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4395 /* data might be corrputed */
4396 qc->err_mask |= AC_ERR_DEV;
4398 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4399 ata_pio_sectors(qc);
4400 ata_altstatus(ap);
4401 status = ata_wait_idle(ap);
4404 if (status & (ATA_BUSY | ATA_DRQ))
4405 qc->err_mask |= AC_ERR_HSM;
4407 /* ata_pio_sectors() might change the
4408 * state to HSM_ST_LAST. so, the state
4409 * is changed after ata_pio_sectors().
4411 ap->hsm_task_state = HSM_ST_ERR;
4412 goto fsm_start;
4415 ata_pio_sectors(qc);
4417 if (ap->hsm_task_state == HSM_ST_LAST &&
4418 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4419 /* all data read */
4420 ata_altstatus(ap);
4421 status = ata_wait_idle(ap);
4422 goto fsm_start;
4426 ata_altstatus(ap); /* flush */
4427 poll_next = 1;
4428 break;
4430 case HSM_ST_LAST:
4431 if (unlikely(!ata_ok(status))) {
4432 qc->err_mask |= __ac_err_mask(status);
4433 ap->hsm_task_state = HSM_ST_ERR;
4434 goto fsm_start;
4437 /* no more data to transfer */
4438 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4439 ap->id, qc->dev->devno, status);
4441 WARN_ON(qc->err_mask);
4443 ap->hsm_task_state = HSM_ST_IDLE;
4445 /* complete taskfile transaction */
4446 ata_hsm_qc_complete(qc, in_wq);
4448 poll_next = 0;
4449 break;
4451 case HSM_ST_ERR:
4452 /* make sure qc->err_mask is available to
4453 * know what's wrong and recover
4455 WARN_ON(qc->err_mask == 0);
4457 ap->hsm_task_state = HSM_ST_IDLE;
4459 /* complete taskfile transaction */
4460 ata_hsm_qc_complete(qc, in_wq);
4462 poll_next = 0;
4463 break;
4464 default:
4465 poll_next = 0;
4466 BUG();
4469 return poll_next;
4472 static void ata_pio_task(void *_data)
4474 struct ata_queued_cmd *qc = _data;
4475 struct ata_port *ap = qc->ap;
4476 u8 status;
4477 int poll_next;
4479 fsm_start:
4480 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4483 * This is purely heuristic. This is a fast path.
4484 * Sometimes when we enter, BSY will be cleared in
4485 * a chk-status or two. If not, the drive is probably seeking
4486 * or something. Snooze for a couple msecs, then
4487 * chk-status again. If still busy, queue delayed work.
4489 status = ata_busy_wait(ap, ATA_BUSY, 5);
4490 if (status & ATA_BUSY) {
4491 msleep(2);
4492 status = ata_busy_wait(ap, ATA_BUSY, 10);
4493 if (status & ATA_BUSY) {
4494 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4495 return;
4499 /* move the HSM */
4500 poll_next = ata_hsm_move(ap, qc, status, 1);
4502 /* another command or interrupt handler
4503 * may be running at this point.
4505 if (poll_next)
4506 goto fsm_start;
4510 * ata_qc_new - Request an available ATA command, for queueing
4511 * @ap: Port associated with device @dev
4512 * @dev: Device from whom we request an available command structure
4514 * LOCKING:
4515 * None.
4518 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4520 struct ata_queued_cmd *qc = NULL;
4521 unsigned int i;
4523 /* no command while frozen */
4524 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4525 return NULL;
4527 /* the last tag is reserved for internal command. */
4528 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4529 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4530 qc = __ata_qc_from_tag(ap, i);
4531 break;
4534 if (qc)
4535 qc->tag = i;
4537 return qc;
4541 * ata_qc_new_init - Request an available ATA command, and initialize it
4542 * @dev: Device from whom we request an available command structure
4544 * LOCKING:
4545 * None.
4548 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4550 struct ata_port *ap = dev->ap;
4551 struct ata_queued_cmd *qc;
4553 qc = ata_qc_new(ap);
4554 if (qc) {
4555 qc->scsicmd = NULL;
4556 qc->ap = ap;
4557 qc->dev = dev;
4559 ata_qc_reinit(qc);
4562 return qc;
4566 * ata_qc_free - free unused ata_queued_cmd
4567 * @qc: Command to complete
4569 * Designed to free unused ata_queued_cmd object
4570 * in case something prevents using it.
4572 * LOCKING:
4573 * spin_lock_irqsave(host lock)
4575 void ata_qc_free(struct ata_queued_cmd *qc)
4577 struct ata_port *ap = qc->ap;
4578 unsigned int tag;
4580 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4582 qc->flags = 0;
4583 tag = qc->tag;
4584 if (likely(ata_tag_valid(tag))) {
4585 qc->tag = ATA_TAG_POISON;
4586 clear_bit(tag, &ap->qc_allocated);
4590 void __ata_qc_complete(struct ata_queued_cmd *qc)
4592 struct ata_port *ap = qc->ap;
4594 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4595 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4597 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4598 ata_sg_clean(qc);
4600 /* command should be marked inactive atomically with qc completion */
4601 if (qc->tf.protocol == ATA_PROT_NCQ)
4602 ap->sactive &= ~(1 << qc->tag);
4603 else
4604 ap->active_tag = ATA_TAG_POISON;
4606 /* atapi: mark qc as inactive to prevent the interrupt handler
4607 * from completing the command twice later, before the error handler
4608 * is called. (when rc != 0 and atapi request sense is needed)
4610 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4611 ap->qc_active &= ~(1 << qc->tag);
4613 /* call completion callback */
4614 qc->complete_fn(qc);
4617 static void fill_result_tf(struct ata_queued_cmd *qc)
4619 struct ata_port *ap = qc->ap;
4621 ap->ops->tf_read(ap, &qc->result_tf);
4622 qc->result_tf.flags = qc->tf.flags;
4626 * ata_qc_complete - Complete an active ATA command
4627 * @qc: Command to complete
4628 * @err_mask: ATA Status register contents
4630 * Indicate to the mid and upper layers that an ATA
4631 * command has completed, with either an ok or not-ok status.
4633 * LOCKING:
4634 * spin_lock_irqsave(host lock)
4636 void ata_qc_complete(struct ata_queued_cmd *qc)
4638 struct ata_port *ap = qc->ap;
4640 /* XXX: New EH and old EH use different mechanisms to
4641 * synchronize EH with regular execution path.
4643 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4644 * Normal execution path is responsible for not accessing a
4645 * failed qc. libata core enforces the rule by returning NULL
4646 * from ata_qc_from_tag() for failed qcs.
4648 * Old EH depends on ata_qc_complete() nullifying completion
4649 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4650 * not synchronize with interrupt handler. Only PIO task is
4651 * taken care of.
4653 if (ap->ops->error_handler) {
4654 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4656 if (unlikely(qc->err_mask))
4657 qc->flags |= ATA_QCFLAG_FAILED;
4659 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4660 if (!ata_tag_internal(qc->tag)) {
4661 /* always fill result TF for failed qc */
4662 fill_result_tf(qc);
4663 ata_qc_schedule_eh(qc);
4664 return;
4668 /* read result TF if requested */
4669 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4670 fill_result_tf(qc);
4672 __ata_qc_complete(qc);
4673 } else {
4674 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4675 return;
4677 /* read result TF if failed or requested */
4678 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4679 fill_result_tf(qc);
4681 __ata_qc_complete(qc);
4686 * ata_qc_complete_multiple - Complete multiple qcs successfully
4687 * @ap: port in question
4688 * @qc_active: new qc_active mask
4689 * @finish_qc: LLDD callback invoked before completing a qc
4691 * Complete in-flight commands. This functions is meant to be
4692 * called from low-level driver's interrupt routine to complete
4693 * requests normally. ap->qc_active and @qc_active is compared
4694 * and commands are completed accordingly.
4696 * LOCKING:
4697 * spin_lock_irqsave(host lock)
4699 * RETURNS:
4700 * Number of completed commands on success, -errno otherwise.
4702 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4703 void (*finish_qc)(struct ata_queued_cmd *))
4705 int nr_done = 0;
4706 u32 done_mask;
4707 int i;
4709 done_mask = ap->qc_active ^ qc_active;
4711 if (unlikely(done_mask & qc_active)) {
4712 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4713 "(%08x->%08x)\n", ap->qc_active, qc_active);
4714 return -EINVAL;
4717 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4718 struct ata_queued_cmd *qc;
4720 if (!(done_mask & (1 << i)))
4721 continue;
4723 if ((qc = ata_qc_from_tag(ap, i))) {
4724 if (finish_qc)
4725 finish_qc(qc);
4726 ata_qc_complete(qc);
4727 nr_done++;
4731 return nr_done;
4734 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4736 struct ata_port *ap = qc->ap;
4738 switch (qc->tf.protocol) {
4739 case ATA_PROT_NCQ:
4740 case ATA_PROT_DMA:
4741 case ATA_PROT_ATAPI_DMA:
4742 return 1;
4744 case ATA_PROT_ATAPI:
4745 case ATA_PROT_PIO:
4746 if (ap->flags & ATA_FLAG_PIO_DMA)
4747 return 1;
4749 /* fall through */
4751 default:
4752 return 0;
4755 /* never reached */
4759 * ata_qc_issue - issue taskfile to device
4760 * @qc: command to issue to device
4762 * Prepare an ATA command to submission to device.
4763 * This includes mapping the data into a DMA-able
4764 * area, filling in the S/G table, and finally
4765 * writing the taskfile to hardware, starting the command.
4767 * LOCKING:
4768 * spin_lock_irqsave(host lock)
4770 void ata_qc_issue(struct ata_queued_cmd *qc)
4772 struct ata_port *ap = qc->ap;
4774 /* Make sure only one non-NCQ command is outstanding. The
4775 * check is skipped for old EH because it reuses active qc to
4776 * request ATAPI sense.
4778 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4780 if (qc->tf.protocol == ATA_PROT_NCQ) {
4781 WARN_ON(ap->sactive & (1 << qc->tag));
4782 ap->sactive |= 1 << qc->tag;
4783 } else {
4784 WARN_ON(ap->sactive);
4785 ap->active_tag = qc->tag;
4788 qc->flags |= ATA_QCFLAG_ACTIVE;
4789 ap->qc_active |= 1 << qc->tag;
4791 if (ata_should_dma_map(qc)) {
4792 if (qc->flags & ATA_QCFLAG_SG) {
4793 if (ata_sg_setup(qc))
4794 goto sg_err;
4795 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4796 if (ata_sg_setup_one(qc))
4797 goto sg_err;
4799 } else {
4800 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4803 ap->ops->qc_prep(qc);
4805 qc->err_mask |= ap->ops->qc_issue(qc);
4806 if (unlikely(qc->err_mask))
4807 goto err;
4808 return;
4810 sg_err:
4811 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4812 qc->err_mask |= AC_ERR_SYSTEM;
4813 err:
4814 ata_qc_complete(qc);
4818 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4819 * @qc: command to issue to device
4821 * Using various libata functions and hooks, this function
4822 * starts an ATA command. ATA commands are grouped into
4823 * classes called "protocols", and issuing each type of protocol
4824 * is slightly different.
4826 * May be used as the qc_issue() entry in ata_port_operations.
4828 * LOCKING:
4829 * spin_lock_irqsave(host lock)
4831 * RETURNS:
4832 * Zero on success, AC_ERR_* mask on failure
4835 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4837 struct ata_port *ap = qc->ap;
4839 /* Use polling pio if the LLD doesn't handle
4840 * interrupt driven pio and atapi CDB interrupt.
4842 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4843 switch (qc->tf.protocol) {
4844 case ATA_PROT_PIO:
4845 case ATA_PROT_ATAPI:
4846 case ATA_PROT_ATAPI_NODATA:
4847 qc->tf.flags |= ATA_TFLAG_POLLING;
4848 break;
4849 case ATA_PROT_ATAPI_DMA:
4850 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4851 /* see ata_dma_blacklisted() */
4852 BUG();
4853 break;
4854 default:
4855 break;
4859 /* Some controllers show flaky interrupt behavior after
4860 * setting xfer mode. Use polling instead.
4862 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4863 qc->tf.feature == SETFEATURES_XFER) &&
4864 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4865 qc->tf.flags |= ATA_TFLAG_POLLING;
4867 /* select the device */
4868 ata_dev_select(ap, qc->dev->devno, 1, 0);
4870 /* start the command */
4871 switch (qc->tf.protocol) {
4872 case ATA_PROT_NODATA:
4873 if (qc->tf.flags & ATA_TFLAG_POLLING)
4874 ata_qc_set_polling(qc);
4876 ata_tf_to_host(ap, &qc->tf);
4877 ap->hsm_task_state = HSM_ST_LAST;
4879 if (qc->tf.flags & ATA_TFLAG_POLLING)
4880 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4882 break;
4884 case ATA_PROT_DMA:
4885 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4887 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4888 ap->ops->bmdma_setup(qc); /* set up bmdma */
4889 ap->ops->bmdma_start(qc); /* initiate bmdma */
4890 ap->hsm_task_state = HSM_ST_LAST;
4891 break;
4893 case ATA_PROT_PIO:
4894 if (qc->tf.flags & ATA_TFLAG_POLLING)
4895 ata_qc_set_polling(qc);
4897 ata_tf_to_host(ap, &qc->tf);
4899 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4900 /* PIO data out protocol */
4901 ap->hsm_task_state = HSM_ST_FIRST;
4902 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4904 /* always send first data block using
4905 * the ata_pio_task() codepath.
4907 } else {
4908 /* PIO data in protocol */
4909 ap->hsm_task_state = HSM_ST;
4911 if (qc->tf.flags & ATA_TFLAG_POLLING)
4912 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4914 /* if polling, ata_pio_task() handles the rest.
4915 * otherwise, interrupt handler takes over from here.
4919 break;
4921 case ATA_PROT_ATAPI:
4922 case ATA_PROT_ATAPI_NODATA:
4923 if (qc->tf.flags & ATA_TFLAG_POLLING)
4924 ata_qc_set_polling(qc);
4926 ata_tf_to_host(ap, &qc->tf);
4928 ap->hsm_task_state = HSM_ST_FIRST;
4930 /* send cdb by polling if no cdb interrupt */
4931 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4932 (qc->tf.flags & ATA_TFLAG_POLLING))
4933 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4934 break;
4936 case ATA_PROT_ATAPI_DMA:
4937 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4939 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4940 ap->ops->bmdma_setup(qc); /* set up bmdma */
4941 ap->hsm_task_state = HSM_ST_FIRST;
4943 /* send cdb by polling if no cdb interrupt */
4944 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4945 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4946 break;
4948 default:
4949 WARN_ON(1);
4950 return AC_ERR_SYSTEM;
4953 return 0;
4957 * ata_host_intr - Handle host interrupt for given (port, task)
4958 * @ap: Port on which interrupt arrived (possibly...)
4959 * @qc: Taskfile currently active in engine
4961 * Handle host interrupt for given queued command. Currently,
4962 * only DMA interrupts are handled. All other commands are
4963 * handled via polling with interrupts disabled (nIEN bit).
4965 * LOCKING:
4966 * spin_lock_irqsave(host lock)
4968 * RETURNS:
4969 * One if interrupt was handled, zero if not (shared irq).
4972 inline unsigned int ata_host_intr (struct ata_port *ap,
4973 struct ata_queued_cmd *qc)
4975 struct ata_eh_info *ehi = &ap->eh_info;
4976 u8 status, host_stat = 0;
4978 VPRINTK("ata%u: protocol %d task_state %d\n",
4979 ap->id, qc->tf.protocol, ap->hsm_task_state);
4981 /* Check whether we are expecting interrupt in this state */
4982 switch (ap->hsm_task_state) {
4983 case HSM_ST_FIRST:
4984 /* Some pre-ATAPI-4 devices assert INTRQ
4985 * at this state when ready to receive CDB.
4988 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4989 * The flag was turned on only for atapi devices.
4990 * No need to check is_atapi_taskfile(&qc->tf) again.
4992 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4993 goto idle_irq;
4994 break;
4995 case HSM_ST_LAST:
4996 if (qc->tf.protocol == ATA_PROT_DMA ||
4997 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4998 /* check status of DMA engine */
4999 host_stat = ap->ops->bmdma_status(ap);
5000 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5002 /* if it's not our irq... */
5003 if (!(host_stat & ATA_DMA_INTR))
5004 goto idle_irq;
5006 /* before we do anything else, clear DMA-Start bit */
5007 ap->ops->bmdma_stop(qc);
5009 if (unlikely(host_stat & ATA_DMA_ERR)) {
5010 /* error when transfering data to/from memory */
5011 qc->err_mask |= AC_ERR_HOST_BUS;
5012 ap->hsm_task_state = HSM_ST_ERR;
5015 break;
5016 case HSM_ST:
5017 break;
5018 default:
5019 goto idle_irq;
5022 /* check altstatus */
5023 status = ata_altstatus(ap);
5024 if (status & ATA_BUSY)
5025 goto idle_irq;
5027 /* check main status, clearing INTRQ */
5028 status = ata_chk_status(ap);
5029 if (unlikely(status & ATA_BUSY))
5030 goto idle_irq;
5032 /* ack bmdma irq events */
5033 ap->ops->irq_clear(ap);
5035 ata_hsm_move(ap, qc, status, 0);
5037 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5038 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5039 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5041 return 1; /* irq handled */
5043 idle_irq:
5044 ap->stats.idle_irq++;
5046 #ifdef ATA_IRQ_TRAP
5047 if ((ap->stats.idle_irq % 1000) == 0) {
5048 ata_irq_ack(ap, 0); /* debug trap */
5049 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5050 return 1;
5052 #endif
5053 return 0; /* irq not handled */
5057 * ata_interrupt - Default ATA host interrupt handler
5058 * @irq: irq line (unused)
5059 * @dev_instance: pointer to our ata_host information structure
5061 * Default interrupt handler for PCI IDE devices. Calls
5062 * ata_host_intr() for each port that is not disabled.
5064 * LOCKING:
5065 * Obtains host lock during operation.
5067 * RETURNS:
5068 * IRQ_NONE or IRQ_HANDLED.
5071 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5073 struct ata_host *host = dev_instance;
5074 unsigned int i;
5075 unsigned int handled = 0;
5076 unsigned long flags;
5078 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5079 spin_lock_irqsave(&host->lock, flags);
5081 for (i = 0; i < host->n_ports; i++) {
5082 struct ata_port *ap;
5084 ap = host->ports[i];
5085 if (ap &&
5086 !(ap->flags & ATA_FLAG_DISABLED)) {
5087 struct ata_queued_cmd *qc;
5089 qc = ata_qc_from_tag(ap, ap->active_tag);
5090 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5091 (qc->flags & ATA_QCFLAG_ACTIVE))
5092 handled |= ata_host_intr(ap, qc);
5096 spin_unlock_irqrestore(&host->lock, flags);
5098 return IRQ_RETVAL(handled);
5102 * sata_scr_valid - test whether SCRs are accessible
5103 * @ap: ATA port to test SCR accessibility for
5105 * Test whether SCRs are accessible for @ap.
5107 * LOCKING:
5108 * None.
5110 * RETURNS:
5111 * 1 if SCRs are accessible, 0 otherwise.
5113 int sata_scr_valid(struct ata_port *ap)
5115 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5119 * sata_scr_read - read SCR register of the specified port
5120 * @ap: ATA port to read SCR for
5121 * @reg: SCR to read
5122 * @val: Place to store read value
5124 * Read SCR register @reg of @ap into *@val. This function is
5125 * guaranteed to succeed if the cable type of the port is SATA
5126 * and the port implements ->scr_read.
5128 * LOCKING:
5129 * None.
5131 * RETURNS:
5132 * 0 on success, negative errno on failure.
5134 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5136 if (sata_scr_valid(ap)) {
5137 *val = ap->ops->scr_read(ap, reg);
5138 return 0;
5140 return -EOPNOTSUPP;
5144 * sata_scr_write - write SCR register of the specified port
5145 * @ap: ATA port to write SCR for
5146 * @reg: SCR to write
5147 * @val: value to write
5149 * Write @val to SCR register @reg of @ap. This function is
5150 * guaranteed to succeed if the cable type of the port is SATA
5151 * and the port implements ->scr_read.
5153 * LOCKING:
5154 * None.
5156 * RETURNS:
5157 * 0 on success, negative errno on failure.
5159 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5161 if (sata_scr_valid(ap)) {
5162 ap->ops->scr_write(ap, reg, val);
5163 return 0;
5165 return -EOPNOTSUPP;
5169 * sata_scr_write_flush - write SCR register of the specified port and flush
5170 * @ap: ATA port to write SCR for
5171 * @reg: SCR to write
5172 * @val: value to write
5174 * This function is identical to sata_scr_write() except that this
5175 * function performs flush after writing to the register.
5177 * LOCKING:
5178 * None.
5180 * RETURNS:
5181 * 0 on success, negative errno on failure.
5183 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5185 if (sata_scr_valid(ap)) {
5186 ap->ops->scr_write(ap, reg, val);
5187 ap->ops->scr_read(ap, reg);
5188 return 0;
5190 return -EOPNOTSUPP;
5194 * ata_port_online - test whether the given port is online
5195 * @ap: ATA port to test
5197 * Test whether @ap is online. Note that this function returns 0
5198 * if online status of @ap cannot be obtained, so
5199 * ata_port_online(ap) != !ata_port_offline(ap).
5201 * LOCKING:
5202 * None.
5204 * RETURNS:
5205 * 1 if the port online status is available and online.
5207 int ata_port_online(struct ata_port *ap)
5209 u32 sstatus;
5211 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5212 return 1;
5213 return 0;
5217 * ata_port_offline - test whether the given port is offline
5218 * @ap: ATA port to test
5220 * Test whether @ap is offline. Note that this function returns
5221 * 0 if offline status of @ap cannot be obtained, so
5222 * ata_port_online(ap) != !ata_port_offline(ap).
5224 * LOCKING:
5225 * None.
5227 * RETURNS:
5228 * 1 if the port offline status is available and offline.
5230 int ata_port_offline(struct ata_port *ap)
5232 u32 sstatus;
5234 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5235 return 1;
5236 return 0;
5239 int ata_flush_cache(struct ata_device *dev)
5241 unsigned int err_mask;
5242 u8 cmd;
5244 if (!ata_try_flush_cache(dev))
5245 return 0;
5247 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5248 cmd = ATA_CMD_FLUSH_EXT;
5249 else
5250 cmd = ATA_CMD_FLUSH;
5252 err_mask = ata_do_simple_cmd(dev, cmd);
5253 if (err_mask) {
5254 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5255 return -EIO;
5258 return 0;
5261 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5262 unsigned int action, unsigned int ehi_flags,
5263 int wait)
5265 unsigned long flags;
5266 int i, rc;
5268 for (i = 0; i < host->n_ports; i++) {
5269 struct ata_port *ap = host->ports[i];
5271 /* Previous resume operation might still be in
5272 * progress. Wait for PM_PENDING to clear.
5274 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5275 ata_port_wait_eh(ap);
5276 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 /* request PM ops to EH */
5280 spin_lock_irqsave(ap->lock, flags);
5282 ap->pm_mesg = mesg;
5283 if (wait) {
5284 rc = 0;
5285 ap->pm_result = &rc;
5288 ap->pflags |= ATA_PFLAG_PM_PENDING;
5289 ap->eh_info.action |= action;
5290 ap->eh_info.flags |= ehi_flags;
5292 ata_port_schedule_eh(ap);
5294 spin_unlock_irqrestore(ap->lock, flags);
5296 /* wait and check result */
5297 if (wait) {
5298 ata_port_wait_eh(ap);
5299 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5300 if (rc)
5301 return rc;
5305 return 0;
5309 * ata_host_suspend - suspend host
5310 * @host: host to suspend
5311 * @mesg: PM message
5313 * Suspend @host. Actual operation is performed by EH. This
5314 * function requests EH to perform PM operations and waits for EH
5315 * to finish.
5317 * LOCKING:
5318 * Kernel thread context (may sleep).
5320 * RETURNS:
5321 * 0 on success, -errno on failure.
5323 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5325 int i, j, rc;
5327 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5328 if (rc)
5329 goto fail;
5331 /* EH is quiescent now. Fail if we have any ready device.
5332 * This happens if hotplug occurs between completion of device
5333 * suspension and here.
5335 for (i = 0; i < host->n_ports; i++) {
5336 struct ata_port *ap = host->ports[i];
5338 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5339 struct ata_device *dev = &ap->device[j];
5341 if (ata_dev_ready(dev)) {
5342 ata_port_printk(ap, KERN_WARNING,
5343 "suspend failed, device %d "
5344 "still active\n", dev->devno);
5345 rc = -EBUSY;
5346 goto fail;
5351 host->dev->power.power_state = mesg;
5352 return 0;
5354 fail:
5355 ata_host_resume(host);
5356 return rc;
5360 * ata_host_resume - resume host
5361 * @host: host to resume
5363 * Resume @host. Actual operation is performed by EH. This
5364 * function requests EH to perform PM operations and returns.
5365 * Note that all resume operations are performed parallely.
5367 * LOCKING:
5368 * Kernel thread context (may sleep).
5370 void ata_host_resume(struct ata_host *host)
5372 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5373 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5374 host->dev->power.power_state = PMSG_ON;
5378 * ata_port_start - Set port up for dma.
5379 * @ap: Port to initialize
5381 * Called just after data structures for each port are
5382 * initialized. Allocates space for PRD table.
5384 * May be used as the port_start() entry in ata_port_operations.
5386 * LOCKING:
5387 * Inherited from caller.
5390 int ata_port_start (struct ata_port *ap)
5392 struct device *dev = ap->dev;
5393 int rc;
5395 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5396 if (!ap->prd)
5397 return -ENOMEM;
5399 rc = ata_pad_alloc(ap, dev);
5400 if (rc) {
5401 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5402 return rc;
5405 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5407 return 0;
5412 * ata_port_stop - Undo ata_port_start()
5413 * @ap: Port to shut down
5415 * Frees the PRD table.
5417 * May be used as the port_stop() entry in ata_port_operations.
5419 * LOCKING:
5420 * Inherited from caller.
5423 void ata_port_stop (struct ata_port *ap)
5425 struct device *dev = ap->dev;
5427 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5428 ata_pad_free(ap, dev);
5431 void ata_host_stop (struct ata_host *host)
5433 if (host->mmio_base)
5434 iounmap(host->mmio_base);
5438 * ata_dev_init - Initialize an ata_device structure
5439 * @dev: Device structure to initialize
5441 * Initialize @dev in preparation for probing.
5443 * LOCKING:
5444 * Inherited from caller.
5446 void ata_dev_init(struct ata_device *dev)
5448 struct ata_port *ap = dev->ap;
5449 unsigned long flags;
5451 /* SATA spd limit is bound to the first device */
5452 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5454 /* High bits of dev->flags are used to record warm plug
5455 * requests which occur asynchronously. Synchronize using
5456 * host lock.
5458 spin_lock_irqsave(ap->lock, flags);
5459 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5460 spin_unlock_irqrestore(ap->lock, flags);
5462 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5463 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5464 dev->pio_mask = UINT_MAX;
5465 dev->mwdma_mask = UINT_MAX;
5466 dev->udma_mask = UINT_MAX;
5470 * ata_port_init - Initialize an ata_port structure
5471 * @ap: Structure to initialize
5472 * @host: Collection of hosts to which @ap belongs
5473 * @ent: Probe information provided by low-level driver
5474 * @port_no: Port number associated with this ata_port
5476 * Initialize a new ata_port structure.
5478 * LOCKING:
5479 * Inherited from caller.
5481 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5482 const struct ata_probe_ent *ent, unsigned int port_no)
5484 unsigned int i;
5486 ap->lock = &host->lock;
5487 ap->flags = ATA_FLAG_DISABLED;
5488 ap->id = ata_unique_id++;
5489 ap->ctl = ATA_DEVCTL_OBS;
5490 ap->host = host;
5491 ap->dev = ent->dev;
5492 ap->port_no = port_no;
5493 if (port_no == 1 && ent->pinfo2) {
5494 ap->pio_mask = ent->pinfo2->pio_mask;
5495 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5496 ap->udma_mask = ent->pinfo2->udma_mask;
5497 ap->flags |= ent->pinfo2->flags;
5498 ap->ops = ent->pinfo2->port_ops;
5499 } else {
5500 ap->pio_mask = ent->pio_mask;
5501 ap->mwdma_mask = ent->mwdma_mask;
5502 ap->udma_mask = ent->udma_mask;
5503 ap->flags |= ent->port_flags;
5504 ap->ops = ent->port_ops;
5506 ap->hw_sata_spd_limit = UINT_MAX;
5507 ap->active_tag = ATA_TAG_POISON;
5508 ap->last_ctl = 0xFF;
5510 #if defined(ATA_VERBOSE_DEBUG)
5511 /* turn on all debugging levels */
5512 ap->msg_enable = 0x00FF;
5513 #elif defined(ATA_DEBUG)
5514 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5515 #else
5516 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5517 #endif
5519 INIT_WORK(&ap->port_task, NULL, NULL);
5520 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5521 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5522 INIT_LIST_HEAD(&ap->eh_done_q);
5523 init_waitqueue_head(&ap->eh_wait_q);
5525 /* set cable type */
5526 ap->cbl = ATA_CBL_NONE;
5527 if (ap->flags & ATA_FLAG_SATA)
5528 ap->cbl = ATA_CBL_SATA;
5530 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5531 struct ata_device *dev = &ap->device[i];
5532 dev->ap = ap;
5533 dev->devno = i;
5534 ata_dev_init(dev);
5537 #ifdef ATA_IRQ_TRAP
5538 ap->stats.unhandled_irq = 1;
5539 ap->stats.idle_irq = 1;
5540 #endif
5542 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5546 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5547 * @ap: ATA port to initialize SCSI host for
5548 * @shost: SCSI host associated with @ap
5550 * Initialize SCSI host @shost associated with ATA port @ap.
5552 * LOCKING:
5553 * Inherited from caller.
5555 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5557 ap->scsi_host = shost;
5559 shost->unique_id = ap->id;
5560 shost->max_id = 16;
5561 shost->max_lun = 1;
5562 shost->max_channel = 1;
5563 shost->max_cmd_len = 12;
5567 * ata_port_add - Attach low-level ATA driver to system
5568 * @ent: Information provided by low-level driver
5569 * @host: Collections of ports to which we add
5570 * @port_no: Port number associated with this host
5572 * Attach low-level ATA driver to system.
5574 * LOCKING:
5575 * PCI/etc. bus probe sem.
5577 * RETURNS:
5578 * New ata_port on success, for NULL on error.
5580 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5581 struct ata_host *host,
5582 unsigned int port_no)
5584 struct Scsi_Host *shost;
5585 struct ata_port *ap;
5587 DPRINTK("ENTER\n");
5589 if (!ent->port_ops->error_handler &&
5590 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5591 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5592 port_no);
5593 return NULL;
5596 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5597 if (!shost)
5598 return NULL;
5600 shost->transportt = &ata_scsi_transport_template;
5602 ap = ata_shost_to_port(shost);
5604 ata_port_init(ap, host, ent, port_no);
5605 ata_port_init_shost(ap, shost);
5607 return ap;
5611 * ata_sas_host_init - Initialize a host struct
5612 * @host: host to initialize
5613 * @dev: device host is attached to
5614 * @flags: host flags
5615 * @ops: port_ops
5617 * LOCKING:
5618 * PCI/etc. bus probe sem.
5622 void ata_host_init(struct ata_host *host, struct device *dev,
5623 unsigned long flags, const struct ata_port_operations *ops)
5625 spin_lock_init(&host->lock);
5626 host->dev = dev;
5627 host->flags = flags;
5628 host->ops = ops;
5632 * ata_device_add - Register hardware device with ATA and SCSI layers
5633 * @ent: Probe information describing hardware device to be registered
5635 * This function processes the information provided in the probe
5636 * information struct @ent, allocates the necessary ATA and SCSI
5637 * host information structures, initializes them, and registers
5638 * everything with requisite kernel subsystems.
5640 * This function requests irqs, probes the ATA bus, and probes
5641 * the SCSI bus.
5643 * LOCKING:
5644 * PCI/etc. bus probe sem.
5646 * RETURNS:
5647 * Number of ports registered. Zero on error (no ports registered).
5649 int ata_device_add(const struct ata_probe_ent *ent)
5651 unsigned int i;
5652 struct device *dev = ent->dev;
5653 struct ata_host *host;
5654 int rc;
5656 DPRINTK("ENTER\n");
5658 if (ent->irq == 0) {
5659 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5660 return 0;
5662 /* alloc a container for our list of ATA ports (buses) */
5663 host = kzalloc(sizeof(struct ata_host) +
5664 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5665 if (!host)
5666 return 0;
5668 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5669 host->n_ports = ent->n_ports;
5670 host->irq = ent->irq;
5671 host->irq2 = ent->irq2;
5672 host->mmio_base = ent->mmio_base;
5673 host->private_data = ent->private_data;
5675 /* register each port bound to this device */
5676 for (i = 0; i < host->n_ports; i++) {
5677 struct ata_port *ap;
5678 unsigned long xfer_mode_mask;
5679 int irq_line = ent->irq;
5681 ap = ata_port_add(ent, host, i);
5682 host->ports[i] = ap;
5683 if (!ap)
5684 goto err_out;
5686 /* dummy? */
5687 if (ent->dummy_port_mask & (1 << i)) {
5688 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5689 ap->ops = &ata_dummy_port_ops;
5690 continue;
5693 /* start port */
5694 rc = ap->ops->port_start(ap);
5695 if (rc) {
5696 host->ports[i] = NULL;
5697 scsi_host_put(ap->scsi_host);
5698 goto err_out;
5701 /* Report the secondary IRQ for second channel legacy */
5702 if (i == 1 && ent->irq2)
5703 irq_line = ent->irq2;
5705 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5706 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5707 (ap->pio_mask << ATA_SHIFT_PIO);
5709 /* print per-port info to dmesg */
5710 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5711 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5712 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5713 ata_mode_string(xfer_mode_mask),
5714 ap->ioaddr.cmd_addr,
5715 ap->ioaddr.ctl_addr,
5716 ap->ioaddr.bmdma_addr,
5717 irq_line);
5719 /* freeze port before requesting IRQ */
5720 ata_eh_freeze_port(ap);
5723 /* obtain irq, that may be shared between channels */
5724 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5725 DRV_NAME, host);
5726 if (rc) {
5727 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5728 ent->irq, rc);
5729 goto err_out;
5732 /* do we have a second IRQ for the other channel, eg legacy mode */
5733 if (ent->irq2) {
5734 /* We will get weird core code crashes later if this is true
5735 so trap it now */
5736 BUG_ON(ent->irq == ent->irq2);
5738 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5739 DRV_NAME, host);
5740 if (rc) {
5741 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5742 ent->irq2, rc);
5743 goto err_out_free_irq;
5747 /* perform each probe synchronously */
5748 DPRINTK("probe begin\n");
5749 for (i = 0; i < host->n_ports; i++) {
5750 struct ata_port *ap = host->ports[i];
5751 u32 scontrol;
5752 int rc;
5754 /* init sata_spd_limit to the current value */
5755 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5756 int spd = (scontrol >> 4) & 0xf;
5757 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5759 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5761 rc = scsi_add_host(ap->scsi_host, dev);
5762 if (rc) {
5763 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5764 /* FIXME: do something useful here */
5765 /* FIXME: handle unconditional calls to
5766 * scsi_scan_host and ata_host_remove, below,
5767 * at the very least
5771 if (ap->ops->error_handler) {
5772 struct ata_eh_info *ehi = &ap->eh_info;
5773 unsigned long flags;
5775 ata_port_probe(ap);
5777 /* kick EH for boot probing */
5778 spin_lock_irqsave(ap->lock, flags);
5780 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5781 ehi->action |= ATA_EH_SOFTRESET;
5782 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5784 ap->pflags |= ATA_PFLAG_LOADING;
5785 ata_port_schedule_eh(ap);
5787 spin_unlock_irqrestore(ap->lock, flags);
5789 /* wait for EH to finish */
5790 ata_port_wait_eh(ap);
5791 } else {
5792 DPRINTK("ata%u: bus probe begin\n", ap->id);
5793 rc = ata_bus_probe(ap);
5794 DPRINTK("ata%u: bus probe end\n", ap->id);
5796 if (rc) {
5797 /* FIXME: do something useful here?
5798 * Current libata behavior will
5799 * tear down everything when
5800 * the module is removed
5801 * or the h/w is unplugged.
5807 /* probes are done, now scan each port's disk(s) */
5808 DPRINTK("host probe begin\n");
5809 for (i = 0; i < host->n_ports; i++) {
5810 struct ata_port *ap = host->ports[i];
5812 ata_scsi_scan_host(ap);
5815 dev_set_drvdata(dev, host);
5817 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5818 return ent->n_ports; /* success */
5820 err_out_free_irq:
5821 free_irq(ent->irq, host);
5822 err_out:
5823 for (i = 0; i < host->n_ports; i++) {
5824 struct ata_port *ap = host->ports[i];
5825 if (ap) {
5826 ap->ops->port_stop(ap);
5827 scsi_host_put(ap->scsi_host);
5831 kfree(host);
5832 VPRINTK("EXIT, returning 0\n");
5833 return 0;
5837 * ata_port_detach - Detach ATA port in prepration of device removal
5838 * @ap: ATA port to be detached
5840 * Detach all ATA devices and the associated SCSI devices of @ap;
5841 * then, remove the associated SCSI host. @ap is guaranteed to
5842 * be quiescent on return from this function.
5844 * LOCKING:
5845 * Kernel thread context (may sleep).
5847 void ata_port_detach(struct ata_port *ap)
5849 unsigned long flags;
5850 int i;
5852 if (!ap->ops->error_handler)
5853 goto skip_eh;
5855 /* tell EH we're leaving & flush EH */
5856 spin_lock_irqsave(ap->lock, flags);
5857 ap->pflags |= ATA_PFLAG_UNLOADING;
5858 spin_unlock_irqrestore(ap->lock, flags);
5860 ata_port_wait_eh(ap);
5862 /* EH is now guaranteed to see UNLOADING, so no new device
5863 * will be attached. Disable all existing devices.
5865 spin_lock_irqsave(ap->lock, flags);
5867 for (i = 0; i < ATA_MAX_DEVICES; i++)
5868 ata_dev_disable(&ap->device[i]);
5870 spin_unlock_irqrestore(ap->lock, flags);
5872 /* Final freeze & EH. All in-flight commands are aborted. EH
5873 * will be skipped and retrials will be terminated with bad
5874 * target.
5876 spin_lock_irqsave(ap->lock, flags);
5877 ata_port_freeze(ap); /* won't be thawed */
5878 spin_unlock_irqrestore(ap->lock, flags);
5880 ata_port_wait_eh(ap);
5882 /* Flush hotplug task. The sequence is similar to
5883 * ata_port_flush_task().
5885 flush_workqueue(ata_aux_wq);
5886 cancel_delayed_work(&ap->hotplug_task);
5887 flush_workqueue(ata_aux_wq);
5889 skip_eh:
5890 /* remove the associated SCSI host */
5891 scsi_remove_host(ap->scsi_host);
5895 * ata_host_remove - PCI layer callback for device removal
5896 * @host: ATA host set that was removed
5898 * Unregister all objects associated with this host set. Free those
5899 * objects.
5901 * LOCKING:
5902 * Inherited from calling layer (may sleep).
5905 void ata_host_remove(struct ata_host *host)
5907 unsigned int i;
5909 for (i = 0; i < host->n_ports; i++)
5910 ata_port_detach(host->ports[i]);
5912 free_irq(host->irq, host);
5913 if (host->irq2)
5914 free_irq(host->irq2, host);
5916 for (i = 0; i < host->n_ports; i++) {
5917 struct ata_port *ap = host->ports[i];
5919 ata_scsi_release(ap->scsi_host);
5921 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5922 struct ata_ioports *ioaddr = &ap->ioaddr;
5924 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5925 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5926 release_region(ATA_PRIMARY_CMD, 8);
5927 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5928 release_region(ATA_SECONDARY_CMD, 8);
5931 scsi_host_put(ap->scsi_host);
5934 if (host->ops->host_stop)
5935 host->ops->host_stop(host);
5937 kfree(host);
5941 * ata_scsi_release - SCSI layer callback hook for host unload
5942 * @shost: libata host to be unloaded
5944 * Performs all duties necessary to shut down a libata port...
5945 * Kill port kthread, disable port, and release resources.
5947 * LOCKING:
5948 * Inherited from SCSI layer.
5950 * RETURNS:
5951 * One.
5954 int ata_scsi_release(struct Scsi_Host *shost)
5956 struct ata_port *ap = ata_shost_to_port(shost);
5958 DPRINTK("ENTER\n");
5960 ap->ops->port_disable(ap);
5961 ap->ops->port_stop(ap);
5963 DPRINTK("EXIT\n");
5964 return 1;
5967 struct ata_probe_ent *
5968 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5970 struct ata_probe_ent *probe_ent;
5972 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5973 if (!probe_ent) {
5974 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5975 kobject_name(&(dev->kobj)));
5976 return NULL;
5979 INIT_LIST_HEAD(&probe_ent->node);
5980 probe_ent->dev = dev;
5982 probe_ent->sht = port->sht;
5983 probe_ent->port_flags = port->flags;
5984 probe_ent->pio_mask = port->pio_mask;
5985 probe_ent->mwdma_mask = port->mwdma_mask;
5986 probe_ent->udma_mask = port->udma_mask;
5987 probe_ent->port_ops = port->port_ops;
5988 probe_ent->private_data = port->private_data;
5990 return probe_ent;
5994 * ata_std_ports - initialize ioaddr with standard port offsets.
5995 * @ioaddr: IO address structure to be initialized
5997 * Utility function which initializes data_addr, error_addr,
5998 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5999 * device_addr, status_addr, and command_addr to standard offsets
6000 * relative to cmd_addr.
6002 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6005 void ata_std_ports(struct ata_ioports *ioaddr)
6007 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6008 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6009 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6010 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6011 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6012 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6013 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6014 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6015 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6016 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6020 #ifdef CONFIG_PCI
6022 void ata_pci_host_stop (struct ata_host *host)
6024 struct pci_dev *pdev = to_pci_dev(host->dev);
6026 pci_iounmap(pdev, host->mmio_base);
6030 * ata_pci_remove_one - PCI layer callback for device removal
6031 * @pdev: PCI device that was removed
6033 * PCI layer indicates to libata via this hook that
6034 * hot-unplug or module unload event has occurred.
6035 * Handle this by unregistering all objects associated
6036 * with this PCI device. Free those objects. Then finally
6037 * release PCI resources and disable device.
6039 * LOCKING:
6040 * Inherited from PCI layer (may sleep).
6043 void ata_pci_remove_one (struct pci_dev *pdev)
6045 struct device *dev = pci_dev_to_dev(pdev);
6046 struct ata_host *host = dev_get_drvdata(dev);
6048 ata_host_remove(host);
6050 pci_release_regions(pdev);
6051 pci_disable_device(pdev);
6052 dev_set_drvdata(dev, NULL);
6055 /* move to PCI subsystem */
6056 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6058 unsigned long tmp = 0;
6060 switch (bits->width) {
6061 case 1: {
6062 u8 tmp8 = 0;
6063 pci_read_config_byte(pdev, bits->reg, &tmp8);
6064 tmp = tmp8;
6065 break;
6067 case 2: {
6068 u16 tmp16 = 0;
6069 pci_read_config_word(pdev, bits->reg, &tmp16);
6070 tmp = tmp16;
6071 break;
6073 case 4: {
6074 u32 tmp32 = 0;
6075 pci_read_config_dword(pdev, bits->reg, &tmp32);
6076 tmp = tmp32;
6077 break;
6080 default:
6081 return -EINVAL;
6084 tmp &= bits->mask;
6086 return (tmp == bits->val) ? 1 : 0;
6089 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6091 pci_save_state(pdev);
6093 if (mesg.event == PM_EVENT_SUSPEND) {
6094 pci_disable_device(pdev);
6095 pci_set_power_state(pdev, PCI_D3hot);
6099 void ata_pci_device_do_resume(struct pci_dev *pdev)
6101 pci_set_power_state(pdev, PCI_D0);
6102 pci_restore_state(pdev);
6103 pci_enable_device(pdev);
6104 pci_set_master(pdev);
6107 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6109 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6110 int rc = 0;
6112 rc = ata_host_suspend(host, mesg);
6113 if (rc)
6114 return rc;
6116 ata_pci_device_do_suspend(pdev, mesg);
6118 return 0;
6121 int ata_pci_device_resume(struct pci_dev *pdev)
6123 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6125 ata_pci_device_do_resume(pdev);
6126 ata_host_resume(host);
6127 return 0;
6129 #endif /* CONFIG_PCI */
6132 static int __init ata_init(void)
6134 ata_probe_timeout *= HZ;
6135 ata_wq = create_workqueue("ata");
6136 if (!ata_wq)
6137 return -ENOMEM;
6139 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6140 if (!ata_aux_wq) {
6141 destroy_workqueue(ata_wq);
6142 return -ENOMEM;
6145 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6146 return 0;
6149 static void __exit ata_exit(void)
6151 destroy_workqueue(ata_wq);
6152 destroy_workqueue(ata_aux_wq);
6155 subsys_initcall(ata_init);
6156 module_exit(ata_exit);
6158 static unsigned long ratelimit_time;
6159 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6161 int ata_ratelimit(void)
6163 int rc;
6164 unsigned long flags;
6166 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6168 if (time_after(jiffies, ratelimit_time)) {
6169 rc = 1;
6170 ratelimit_time = jiffies + (HZ/5);
6171 } else
6172 rc = 0;
6174 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6176 return rc;
6180 * ata_wait_register - wait until register value changes
6181 * @reg: IO-mapped register
6182 * @mask: Mask to apply to read register value
6183 * @val: Wait condition
6184 * @interval_msec: polling interval in milliseconds
6185 * @timeout_msec: timeout in milliseconds
6187 * Waiting for some bits of register to change is a common
6188 * operation for ATA controllers. This function reads 32bit LE
6189 * IO-mapped register @reg and tests for the following condition.
6191 * (*@reg & mask) != val
6193 * If the condition is met, it returns; otherwise, the process is
6194 * repeated after @interval_msec until timeout.
6196 * LOCKING:
6197 * Kernel thread context (may sleep)
6199 * RETURNS:
6200 * The final register value.
6202 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6203 unsigned long interval_msec,
6204 unsigned long timeout_msec)
6206 unsigned long timeout;
6207 u32 tmp;
6209 tmp = ioread32(reg);
6211 /* Calculate timeout _after_ the first read to make sure
6212 * preceding writes reach the controller before starting to
6213 * eat away the timeout.
6215 timeout = jiffies + (timeout_msec * HZ) / 1000;
6217 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6218 msleep(interval_msec);
6219 tmp = ioread32(reg);
6222 return tmp;
6226 * Dummy port_ops
6228 static void ata_dummy_noret(struct ata_port *ap) { }
6229 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6230 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6232 static u8 ata_dummy_check_status(struct ata_port *ap)
6234 return ATA_DRDY;
6237 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6239 return AC_ERR_SYSTEM;
6242 const struct ata_port_operations ata_dummy_port_ops = {
6243 .port_disable = ata_port_disable,
6244 .check_status = ata_dummy_check_status,
6245 .check_altstatus = ata_dummy_check_status,
6246 .dev_select = ata_noop_dev_select,
6247 .qc_prep = ata_noop_qc_prep,
6248 .qc_issue = ata_dummy_qc_issue,
6249 .freeze = ata_dummy_noret,
6250 .thaw = ata_dummy_noret,
6251 .error_handler = ata_dummy_noret,
6252 .post_internal_cmd = ata_dummy_qc_noret,
6253 .irq_clear = ata_dummy_noret,
6254 .port_start = ata_dummy_ret0,
6255 .port_stop = ata_dummy_noret,
6259 * libata is essentially a library of internal helper functions for
6260 * low-level ATA host controller drivers. As such, the API/ABI is
6261 * likely to change as new drivers are added and updated.
6262 * Do not depend on ABI/API stability.
6265 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6266 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6267 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6268 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6269 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6270 EXPORT_SYMBOL_GPL(ata_std_ports);
6271 EXPORT_SYMBOL_GPL(ata_host_init);
6272 EXPORT_SYMBOL_GPL(ata_device_add);
6273 EXPORT_SYMBOL_GPL(ata_port_detach);
6274 EXPORT_SYMBOL_GPL(ata_host_remove);
6275 EXPORT_SYMBOL_GPL(ata_sg_init);
6276 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6277 EXPORT_SYMBOL_GPL(ata_hsm_move);
6278 EXPORT_SYMBOL_GPL(ata_qc_complete);
6279 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6280 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6281 EXPORT_SYMBOL_GPL(ata_tf_load);
6282 EXPORT_SYMBOL_GPL(ata_tf_read);
6283 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6284 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6285 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6286 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6287 EXPORT_SYMBOL_GPL(ata_check_status);
6288 EXPORT_SYMBOL_GPL(ata_altstatus);
6289 EXPORT_SYMBOL_GPL(ata_exec_command);
6290 EXPORT_SYMBOL_GPL(ata_port_start);
6291 EXPORT_SYMBOL_GPL(ata_port_stop);
6292 EXPORT_SYMBOL_GPL(ata_host_stop);
6293 EXPORT_SYMBOL_GPL(ata_interrupt);
6294 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6295 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6296 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6297 EXPORT_SYMBOL_GPL(ata_qc_prep);
6298 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6299 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6300 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6301 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6302 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6303 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6304 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6305 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6306 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6307 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6308 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6309 EXPORT_SYMBOL_GPL(ata_port_probe);
6310 EXPORT_SYMBOL_GPL(sata_set_spd);
6311 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6312 EXPORT_SYMBOL_GPL(sata_phy_resume);
6313 EXPORT_SYMBOL_GPL(sata_phy_reset);
6314 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6315 EXPORT_SYMBOL_GPL(ata_bus_reset);
6316 EXPORT_SYMBOL_GPL(ata_std_prereset);
6317 EXPORT_SYMBOL_GPL(ata_std_softreset);
6318 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6319 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6320 EXPORT_SYMBOL_GPL(ata_std_postreset);
6321 EXPORT_SYMBOL_GPL(ata_dev_classify);
6322 EXPORT_SYMBOL_GPL(ata_dev_pair);
6323 EXPORT_SYMBOL_GPL(ata_port_disable);
6324 EXPORT_SYMBOL_GPL(ata_ratelimit);
6325 EXPORT_SYMBOL_GPL(ata_wait_register);
6326 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6327 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6328 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6329 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6330 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6331 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6332 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6333 EXPORT_SYMBOL_GPL(ata_scsi_release);
6334 EXPORT_SYMBOL_GPL(ata_host_intr);
6335 EXPORT_SYMBOL_GPL(sata_scr_valid);
6336 EXPORT_SYMBOL_GPL(sata_scr_read);
6337 EXPORT_SYMBOL_GPL(sata_scr_write);
6338 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6339 EXPORT_SYMBOL_GPL(ata_port_online);
6340 EXPORT_SYMBOL_GPL(ata_port_offline);
6341 EXPORT_SYMBOL_GPL(ata_host_suspend);
6342 EXPORT_SYMBOL_GPL(ata_host_resume);
6343 EXPORT_SYMBOL_GPL(ata_id_string);
6344 EXPORT_SYMBOL_GPL(ata_id_c_string);
6345 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6346 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6348 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6349 EXPORT_SYMBOL_GPL(ata_timing_compute);
6350 EXPORT_SYMBOL_GPL(ata_timing_merge);
6352 #ifdef CONFIG_PCI
6353 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6354 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6355 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6356 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6357 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6358 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6359 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6360 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6361 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6362 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6363 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6364 #endif /* CONFIG_PCI */
6366 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6367 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6369 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6370 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6371 EXPORT_SYMBOL_GPL(ata_port_abort);
6372 EXPORT_SYMBOL_GPL(ata_port_freeze);
6373 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6374 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6375 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6376 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6377 EXPORT_SYMBOL_GPL(ata_do_eh);