tty.h: make tty_port_get() static inline
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sunhme.c
blob6762f1c6ec8a939da2d7f8c346fa48f4e7691c47
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 * 2006, 2008 David S. Miller (davem@davemloft.net)
8 * Changes :
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <asm/uaccess.h>
55 #include <asm/pgtable.h>
56 #include <asm/irq.h>
58 #ifdef CONFIG_PCI
59 #include <linux/pci.h>
60 #endif
62 #include "sunhme.h"
64 #define DRV_NAME "sunhme"
65 #define DRV_VERSION "3.10"
66 #define DRV_RELDATE "August 26, 2008"
67 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
69 static char version[] =
70 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
72 MODULE_VERSION(DRV_VERSION);
73 MODULE_AUTHOR(DRV_AUTHOR);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
77 static int macaddr[6];
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr, int, NULL, 0);
81 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
83 #ifdef CONFIG_SBUS
84 static struct quattro *qfe_sbus_list;
85 #endif
87 #ifdef CONFIG_PCI
88 static struct quattro *qfe_pci_list;
89 #endif
91 #undef HMEDEBUG
92 #undef SXDEBUG
93 #undef RXDEBUG
94 #undef TXDEBUG
95 #undef TXLOGGING
97 #ifdef TXLOGGING
98 struct hme_tx_logent {
99 unsigned int tstamp;
100 int tx_new, tx_old;
101 unsigned int action;
102 #define TXLOG_ACTION_IRQ 0x01
103 #define TXLOG_ACTION_TXMIT 0x02
104 #define TXLOG_ACTION_TBUSY 0x04
105 #define TXLOG_ACTION_NBUFS 0x08
106 unsigned int status;
108 #define TX_LOG_LEN 128
109 static struct hme_tx_logent tx_log[TX_LOG_LEN];
110 static int txlog_cur_entry;
111 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
113 struct hme_tx_logent *tlp;
114 unsigned long flags;
116 local_irq_save(flags);
117 tlp = &tx_log[txlog_cur_entry];
118 tlp->tstamp = (unsigned int)jiffies;
119 tlp->tx_new = hp->tx_new;
120 tlp->tx_old = hp->tx_old;
121 tlp->action = a;
122 tlp->status = s;
123 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124 local_irq_restore(flags);
126 static __inline__ void tx_dump_log(void)
128 int i, this;
130 this = txlog_cur_entry;
131 for (i = 0; i < TX_LOG_LEN; i++) {
132 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133 tx_log[this].tstamp,
134 tx_log[this].tx_new, tx_log[this].tx_old,
135 tx_log[this].action, tx_log[this].status);
136 this = (this + 1) & (TX_LOG_LEN - 1);
139 static __inline__ void tx_dump_ring(struct happy_meal *hp)
141 struct hmeal_init_block *hb = hp->happy_block;
142 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
143 int i;
145 for (i = 0; i < TX_RING_SIZE; i+=4) {
146 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 i, i + 4,
148 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
154 #else
155 #define tx_add_log(hp, a, s) do { } while(0)
156 #define tx_dump_log() do { } while(0)
157 #define tx_dump_ring(hp) do { } while(0)
158 #endif
160 #ifdef HMEDEBUG
161 #define HMD(x) printk x
162 #else
163 #define HMD(x)
164 #endif
166 /* #define AUTO_SWITCH_DEBUG */
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x) printk x
170 #else
171 #define ASD(x)
172 #endif
174 #define DEFAULT_IPG0 16 /* For lance-mode only */
175 #define DEFAULT_IPG1 8 /* For all modes */
176 #define DEFAULT_IPG2 4 /* For all modes */
177 #define DEFAULT_JAMSIZE 4 /* Toe jam */
179 /* NOTE: In the descriptor writes one _must_ write the address
180 * member _first_. The card must not be allowed to see
181 * the updated descriptor flags until the address is
182 * correct. I've added a write memory barrier between
183 * the two stores so that I can sleep well at night... -DaveM
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem *reg, u32 val)
189 sbus_writel(val, reg);
192 static u32 sbus_hme_read32(void __iomem *reg)
194 return sbus_readl(reg);
197 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
199 rxd->rx_addr = (__force hme32)addr;
200 wmb();
201 rxd->rx_flags = (__force hme32)flags;
204 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
206 txd->tx_addr = (__force hme32)addr;
207 wmb();
208 txd->tx_flags = (__force hme32)flags;
211 static u32 sbus_hme_read_desc32(hme32 *p)
213 return (__force u32)*p;
216 static void pci_hme_write32(void __iomem *reg, u32 val)
218 writel(val, reg);
221 static u32 pci_hme_read32(void __iomem *reg)
223 return readl(reg);
226 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
228 rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
229 wmb();
230 rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
233 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
235 txd->tx_addr = (__force hme32)cpu_to_le32(addr);
236 wmb();
237 txd->tx_flags = (__force hme32)cpu_to_le32(flags);
240 static u32 pci_hme_read_desc32(hme32 *p)
242 return le32_to_cpup((__le32 *)p);
245 #define hme_write32(__hp, __reg, __val) \
246 ((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 ((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 ((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 ((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
263 #else
264 #ifdef CONFIG_SBUS
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
269 sbus_readl(__reg)
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 wmb(); \
273 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274 } while(0)
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 wmb(); \
278 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279 } while(0)
280 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289 #else
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
294 readl(__reg)
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 wmb(); \
298 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299 } while(0)
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 wmb(); \
303 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304 } while(0)
305 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
307 return le32_to_cpup((__le32 *)p);
309 #define hme_dma_map(__hp, __ptr, __size, __dir) \
310 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
317 #endif
318 #endif
321 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
322 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
324 hme_write32(hp, tregs + TCVR_BBDATA, bit);
325 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
329 #if 0
330 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
332 u32 ret;
334 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
335 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
336 ret = hme_read32(hp, tregs + TCVR_CFG);
337 if (internal)
338 ret &= TCV_CFG_MDIO0;
339 else
340 ret &= TCV_CFG_MDIO1;
342 return ret;
344 #endif
346 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
348 u32 retval;
350 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 udelay(1);
352 retval = hme_read32(hp, tregs + TCVR_CFG);
353 if (internal)
354 retval &= TCV_CFG_MDIO0;
355 else
356 retval &= TCV_CFG_MDIO1;
357 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
359 return retval;
362 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
364 static int happy_meal_bb_read(struct happy_meal *hp,
365 void __iomem *tregs, int reg)
367 u32 tmp;
368 int retval = 0;
369 int i;
371 ASD(("happy_meal_bb_read: reg=%d ", reg));
373 /* Enable the MIF BitBang outputs. */
374 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
376 /* Force BitBang into the idle state. */
377 for (i = 0; i < 32; i++)
378 BB_PUT_BIT(hp, tregs, 1);
380 /* Give it the read sequence. */
381 BB_PUT_BIT(hp, tregs, 0);
382 BB_PUT_BIT(hp, tregs, 1);
383 BB_PUT_BIT(hp, tregs, 1);
384 BB_PUT_BIT(hp, tregs, 0);
386 /* Give it the PHY address. */
387 tmp = hp->paddr & 0xff;
388 for (i = 4; i >= 0; i--)
389 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
391 /* Tell it what register we want to read. */
392 tmp = (reg & 0xff);
393 for (i = 4; i >= 0; i--)
394 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
396 /* Close down the MIF BitBang outputs. */
397 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
399 /* Now read in the value. */
400 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
401 for (i = 15; i >= 0; i--)
402 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
406 ASD(("value=%x\n", retval));
407 return retval;
410 static void happy_meal_bb_write(struct happy_meal *hp,
411 void __iomem *tregs, int reg,
412 unsigned short value)
414 u32 tmp;
415 int i;
417 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
419 /* Enable the MIF BitBang outputs. */
420 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
422 /* Force BitBang into the idle state. */
423 for (i = 0; i < 32; i++)
424 BB_PUT_BIT(hp, tregs, 1);
426 /* Give it write sequence. */
427 BB_PUT_BIT(hp, tregs, 0);
428 BB_PUT_BIT(hp, tregs, 1);
429 BB_PUT_BIT(hp, tregs, 0);
430 BB_PUT_BIT(hp, tregs, 1);
432 /* Give it the PHY address. */
433 tmp = (hp->paddr & 0xff);
434 for (i = 4; i >= 0; i--)
435 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
437 /* Tell it what register we will be writing. */
438 tmp = (reg & 0xff);
439 for (i = 4; i >= 0; i--)
440 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
442 /* Tell it to become ready for the bits. */
443 BB_PUT_BIT(hp, tregs, 1);
444 BB_PUT_BIT(hp, tregs, 0);
446 for (i = 15; i >= 0; i--)
447 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
449 /* Close down the MIF BitBang outputs. */
450 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
453 #define TCVR_READ_TRIES 16
455 static int happy_meal_tcvr_read(struct happy_meal *hp,
456 void __iomem *tregs, int reg)
458 int tries = TCVR_READ_TRIES;
459 int retval;
461 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
462 if (hp->tcvr_type == none) {
463 ASD(("no transceiver, value=TCVR_FAILURE\n"));
464 return TCVR_FAILURE;
467 if (!(hp->happy_flags & HFLAG_FENABLE)) {
468 ASD(("doing bit bang\n"));
469 return happy_meal_bb_read(hp, tregs, reg);
472 hme_write32(hp, tregs + TCVR_FRAME,
473 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
474 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
475 udelay(20);
476 if (!tries) {
477 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
478 return TCVR_FAILURE;
480 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
481 ASD(("value=%04x\n", retval));
482 return retval;
485 #define TCVR_WRITE_TRIES 16
487 static void happy_meal_tcvr_write(struct happy_meal *hp,
488 void __iomem *tregs, int reg,
489 unsigned short value)
491 int tries = TCVR_WRITE_TRIES;
493 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
495 /* Welcome to Sun Microsystems, can I take your order please? */
496 if (!(hp->happy_flags & HFLAG_FENABLE)) {
497 happy_meal_bb_write(hp, tregs, reg, value);
498 return;
501 /* Would you like fries with that? */
502 hme_write32(hp, tregs + TCVR_FRAME,
503 (FRAME_WRITE | (hp->paddr << 23) |
504 ((reg & 0xff) << 18) | (value & 0xffff)));
505 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
506 udelay(20);
508 /* Anything else? */
509 if (!tries)
510 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
512 /* Fifty-two cents is your change, have a nice day. */
515 /* Auto negotiation. The scheme is very simple. We have a timer routine
516 * that keeps watching the auto negotiation process as it progresses.
517 * The DP83840 is first told to start doing it's thing, we set up the time
518 * and place the timer state machine in it's initial state.
520 * Here the timer peeks at the DP83840 status registers at each click to see
521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
522 * will time out at some point and just tell us what (didn't) happen. For
523 * complete coverage we only allow so many of the ticks at this level to run,
524 * when this has expired we print a warning message and try another strategy.
525 * This "other" strategy is to force the interface into various speed/duplex
526 * configurations and we stop when we see a link-up condition before the
527 * maximum number of "peek" ticks have occurred.
529 * Once a valid link status has been detected we configure the BigMAC and
530 * the rest of the Happy Meal to speak the most efficient protocol we could
531 * get a clean link for. The priority for link configurations, highest first
532 * is:
533 * 100 Base-T Full Duplex
534 * 100 Base-T Half Duplex
535 * 10 Base-T Full Duplex
536 * 10 Base-T Half Duplex
538 * We start a new timer now, after a successful auto negotiation status has
539 * been detected. This timer just waits for the link-up bit to get set in
540 * the BMCR of the DP83840. When this occurs we print a kernel log message
541 * describing the link type in use and the fact that it is up.
543 * If a fatal error of some sort is signalled and detected in the interrupt
544 * service routine, and the chip is reset, or the link is ifconfig'd down
545 * and then back up, this entire process repeats itself all over again.
547 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
549 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
551 /* Downgrade from full to half duplex. Only possible
552 * via ethtool.
554 if (hp->sw_bmcr & BMCR_FULLDPLX) {
555 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
556 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
557 return 0;
560 /* Downgrade from 100 to 10. */
561 if (hp->sw_bmcr & BMCR_SPEED100) {
562 hp->sw_bmcr &= ~(BMCR_SPEED100);
563 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
564 return 0;
567 /* We've tried everything. */
568 return -1;
571 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
573 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
574 if (hp->tcvr_type == external)
575 printk("external ");
576 else
577 printk("internal ");
578 printk("transceiver at ");
579 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
580 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
581 if (hp->sw_lpa & LPA_100FULL)
582 printk("100Mb/s, Full Duplex.\n");
583 else
584 printk("100Mb/s, Half Duplex.\n");
585 } else {
586 if (hp->sw_lpa & LPA_10FULL)
587 printk("10Mb/s, Full Duplex.\n");
588 else
589 printk("10Mb/s, Half Duplex.\n");
593 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
595 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
596 if (hp->tcvr_type == external)
597 printk("external ");
598 else
599 printk("internal ");
600 printk("transceiver at ");
601 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
602 if (hp->sw_bmcr & BMCR_SPEED100)
603 printk("100Mb/s, ");
604 else
605 printk("10Mb/s, ");
606 if (hp->sw_bmcr & BMCR_FULLDPLX)
607 printk("Full Duplex.\n");
608 else
609 printk("Half Duplex.\n");
612 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
614 int full;
616 /* All we care about is making sure the bigmac tx_cfg has a
617 * proper duplex setting.
619 if (hp->timer_state == arbwait) {
620 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
621 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
622 goto no_response;
623 if (hp->sw_lpa & LPA_100FULL)
624 full = 1;
625 else if (hp->sw_lpa & LPA_100HALF)
626 full = 0;
627 else if (hp->sw_lpa & LPA_10FULL)
628 full = 1;
629 else
630 full = 0;
631 } else {
632 /* Forcing a link mode. */
633 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
634 if (hp->sw_bmcr & BMCR_FULLDPLX)
635 full = 1;
636 else
637 full = 0;
640 /* Before changing other bits in the tx_cfg register, and in
641 * general any of other the TX config registers too, you
642 * must:
643 * 1) Clear Enable
644 * 2) Poll with reads until that bit reads back as zero
645 * 3) Make TX configuration changes
646 * 4) Set Enable once more
648 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
649 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
650 ~(BIGMAC_TXCFG_ENABLE));
651 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
652 barrier();
653 if (full) {
654 hp->happy_flags |= HFLAG_FULL;
655 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
656 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
657 BIGMAC_TXCFG_FULLDPLX);
658 } else {
659 hp->happy_flags &= ~(HFLAG_FULL);
660 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
661 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
662 ~(BIGMAC_TXCFG_FULLDPLX));
664 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
666 BIGMAC_TXCFG_ENABLE);
667 return 0;
668 no_response:
669 return 1;
672 static int happy_meal_init(struct happy_meal *hp);
674 static int is_lucent_phy(struct happy_meal *hp)
676 void __iomem *tregs = hp->tcvregs;
677 unsigned short mr2, mr3;
678 int ret = 0;
680 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
681 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
682 if ((mr2 & 0xffff) == 0x0180 &&
683 ((mr3 & 0xffff) >> 10) == 0x1d)
684 ret = 1;
686 return ret;
689 static void happy_meal_timer(unsigned long data)
691 struct happy_meal *hp = (struct happy_meal *) data;
692 void __iomem *tregs = hp->tcvregs;
693 int restart_timer = 0;
695 spin_lock_irq(&hp->happy_lock);
697 hp->timer_ticks++;
698 switch(hp->timer_state) {
699 case arbwait:
700 /* Only allow for 5 ticks, thats 10 seconds and much too
701 * long to wait for arbitration to complete.
703 if (hp->timer_ticks >= 10) {
704 /* Enter force mode. */
705 do_force_mode:
706 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
707 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 hp->dev->name);
709 hp->sw_bmcr = BMCR_SPEED100;
710 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
712 if (!is_lucent_phy(hp)) {
713 /* OK, seems we need do disable the transceiver for the first
714 * tick to make sure we get an accurate link state at the
715 * second tick.
717 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
718 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
719 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
721 hp->timer_state = ltrywait;
722 hp->timer_ticks = 0;
723 restart_timer = 1;
724 } else {
725 /* Anything interesting happen? */
726 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
727 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
728 int ret;
730 /* Just what we've been waiting for... */
731 ret = set_happy_link_modes(hp, tregs);
732 if (ret) {
733 /* Ooops, something bad happened, go to force
734 * mode.
736 * XXX Broken hubs which don't support 802.3u
737 * XXX auto-negotiation make this happen as well.
739 goto do_force_mode;
742 /* Success, at least so far, advance our state engine. */
743 hp->timer_state = lupwait;
744 restart_timer = 1;
745 } else {
746 restart_timer = 1;
749 break;
751 case lupwait:
752 /* Auto negotiation was successful and we are awaiting a
753 * link up status. I have decided to let this timer run
754 * forever until some sort of error is signalled, reporting
755 * a message to the user at 10 second intervals.
757 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
758 if (hp->sw_bmsr & BMSR_LSTATUS) {
759 /* Wheee, it's up, display the link mode in use and put
760 * the timer to sleep.
762 display_link_mode(hp, tregs);
763 hp->timer_state = asleep;
764 restart_timer = 0;
765 } else {
766 if (hp->timer_ticks >= 10) {
767 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
768 "not completely up.\n", hp->dev->name);
769 hp->timer_ticks = 0;
770 restart_timer = 1;
771 } else {
772 restart_timer = 1;
775 break;
777 case ltrywait:
778 /* Making the timeout here too long can make it take
779 * annoyingly long to attempt all of the link mode
780 * permutations, but then again this is essentially
781 * error recovery code for the most part.
783 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
784 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
785 if (hp->timer_ticks == 1) {
786 if (!is_lucent_phy(hp)) {
787 /* Re-enable transceiver, we'll re-enable the transceiver next
788 * tick, then check link state on the following tick.
790 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
791 happy_meal_tcvr_write(hp, tregs,
792 DP83840_CSCONFIG, hp->sw_csconfig);
794 restart_timer = 1;
795 break;
797 if (hp->timer_ticks == 2) {
798 if (!is_lucent_phy(hp)) {
799 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
800 happy_meal_tcvr_write(hp, tregs,
801 DP83840_CSCONFIG, hp->sw_csconfig);
803 restart_timer = 1;
804 break;
806 if (hp->sw_bmsr & BMSR_LSTATUS) {
807 /* Force mode selection success. */
808 display_forced_link_mode(hp, tregs);
809 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
810 hp->timer_state = asleep;
811 restart_timer = 0;
812 } else {
813 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
814 int ret;
816 ret = try_next_permutation(hp, tregs);
817 if (ret == -1) {
818 /* Aieee, tried them all, reset the
819 * chip and try all over again.
822 /* Let the user know... */
823 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
824 hp->dev->name);
826 ret = happy_meal_init(hp);
827 if (ret) {
828 /* ho hum... */
829 printk(KERN_ERR "%s: Error, cannot re-init the "
830 "Happy Meal.\n", hp->dev->name);
832 goto out;
834 if (!is_lucent_phy(hp)) {
835 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
836 DP83840_CSCONFIG);
837 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
838 happy_meal_tcvr_write(hp, tregs,
839 DP83840_CSCONFIG, hp->sw_csconfig);
841 hp->timer_ticks = 0;
842 restart_timer = 1;
843 } else {
844 restart_timer = 1;
847 break;
849 case asleep:
850 default:
851 /* Can't happens.... */
852 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
853 hp->dev->name);
854 restart_timer = 0;
855 hp->timer_ticks = 0;
856 hp->timer_state = asleep; /* foo on you */
857 break;
860 if (restart_timer) {
861 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
862 add_timer(&hp->happy_timer);
865 out:
866 spin_unlock_irq(&hp->happy_lock);
869 #define TX_RESET_TRIES 32
870 #define RX_RESET_TRIES 32
872 /* hp->happy_lock must be held */
873 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
875 int tries = TX_RESET_TRIES;
877 HMD(("happy_meal_tx_reset: reset, "));
879 /* Would you like to try our SMCC Delux? */
880 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
881 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
882 udelay(20);
884 /* Lettuce, tomato, buggy hardware (no extra charge)? */
885 if (!tries)
886 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
888 /* Take care. */
889 HMD(("done\n"));
892 /* hp->happy_lock must be held */
893 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
895 int tries = RX_RESET_TRIES;
897 HMD(("happy_meal_rx_reset: reset, "));
899 /* We have a special on GNU/Viking hardware bugs today. */
900 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
901 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
902 udelay(20);
904 /* Will that be all? */
905 if (!tries)
906 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
908 /* Don't forget your vik_1137125_wa. Have a nice day. */
909 HMD(("done\n"));
912 #define STOP_TRIES 16
914 /* hp->happy_lock must be held */
915 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
917 int tries = STOP_TRIES;
919 HMD(("happy_meal_stop: reset, "));
921 /* We're consolidating our STB products, it's your lucky day. */
922 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
923 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
924 udelay(20);
926 /* Come back next week when we are "Sun Microelectronics". */
927 if (!tries)
928 printk(KERN_ERR "happy meal: Fry guys.");
930 /* Remember: "Different name, same old buggy as shit hardware." */
931 HMD(("done\n"));
934 /* hp->happy_lock must be held */
935 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
937 struct net_device_stats *stats = &hp->net_stats;
939 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
940 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
942 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
943 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
945 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
946 hme_write32(hp, bregs + BMAC_GLECTR, 0);
948 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
950 stats->collisions +=
951 (hme_read32(hp, bregs + BMAC_EXCTR) +
952 hme_read32(hp, bregs + BMAC_LTCTR));
953 hme_write32(hp, bregs + BMAC_EXCTR, 0);
954 hme_write32(hp, bregs + BMAC_LTCTR, 0);
957 /* hp->happy_lock must be held */
958 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
960 ASD(("happy_meal_poll_stop: "));
962 /* If polling disabled or not polling already, nothing to do. */
963 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
964 (HFLAG_POLLENABLE | HFLAG_POLL)) {
965 HMD(("not polling, return\n"));
966 return;
969 /* Shut up the MIF. */
970 ASD(("were polling, mif ints off, "));
971 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
973 /* Turn off polling. */
974 ASD(("polling off, "));
975 hme_write32(hp, tregs + TCVR_CFG,
976 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
978 /* We are no longer polling. */
979 hp->happy_flags &= ~(HFLAG_POLL);
981 /* Let the bits set. */
982 udelay(200);
983 ASD(("done\n"));
986 /* Only Sun can take such nice parts and fuck up the programming interface
987 * like this. Good job guys...
989 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
990 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
992 /* hp->happy_lock must be held */
993 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
995 u32 tconfig;
996 int result, tries = TCVR_RESET_TRIES;
998 tconfig = hme_read32(hp, tregs + TCVR_CFG);
999 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000 if (hp->tcvr_type == external) {
1001 ASD(("external<"));
1002 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003 hp->tcvr_type = internal;
1004 hp->paddr = TCV_PADDR_ITX;
1005 ASD(("ISOLATE,"));
1006 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009 if (result == TCVR_FAILURE) {
1010 ASD(("phyread_fail>\n"));
1011 return -1;
1013 ASD(("phyread_ok,PSELECT>"));
1014 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015 hp->tcvr_type = external;
1016 hp->paddr = TCV_PADDR_ETX;
1017 } else {
1018 if (tconfig & TCV_CFG_MDIO1) {
1019 ASD(("internal<PSELECT,"));
1020 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021 ASD(("ISOLATE,"));
1022 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025 if (result == TCVR_FAILURE) {
1026 ASD(("phyread_fail>\n"));
1027 return -1;
1029 ASD(("phyread_ok,~PSELECT>"));
1030 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031 hp->tcvr_type = internal;
1032 hp->paddr = TCV_PADDR_ITX;
1036 ASD(("BMCR_RESET "));
1037 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1039 while (--tries) {
1040 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041 if (result == TCVR_FAILURE)
1042 return -1;
1043 hp->sw_bmcr = result;
1044 if (!(result & BMCR_RESET))
1045 break;
1046 udelay(20);
1048 if (!tries) {
1049 ASD(("BMCR RESET FAILED!\n"));
1050 return -1;
1052 ASD(("RESET_OK\n"));
1054 /* Get fresh copies of the PHY registers. */
1055 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1060 ASD(("UNISOLATE"));
1061 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1064 tries = TCVR_UNISOLATE_TRIES;
1065 while (--tries) {
1066 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067 if (result == TCVR_FAILURE)
1068 return -1;
1069 if (!(result & BMCR_ISOLATE))
1070 break;
1071 udelay(20);
1073 if (!tries) {
1074 ASD((" FAILED!\n"));
1075 return -1;
1077 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 if (!is_lucent_phy(hp)) {
1079 result = happy_meal_tcvr_read(hp, tregs,
1080 DP83840_CSCONFIG);
1081 happy_meal_tcvr_write(hp, tregs,
1082 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1084 return 0;
1087 /* Figure out whether we have an internal or external transceiver.
1089 * hp->happy_lock must be held
1091 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1093 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1095 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096 if (hp->happy_flags & HFLAG_POLL) {
1097 /* If we are polling, we must stop to get the transceiver type. */
1098 ASD(("<polling> "));
1099 if (hp->tcvr_type == internal) {
1100 if (tconfig & TCV_CFG_MDIO1) {
1101 ASD(("<internal> <poll stop> "));
1102 happy_meal_poll_stop(hp, tregs);
1103 hp->paddr = TCV_PADDR_ETX;
1104 hp->tcvr_type = external;
1105 ASD(("<external>\n"));
1106 tconfig &= ~(TCV_CFG_PENABLE);
1107 tconfig |= TCV_CFG_PSELECT;
1108 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1110 } else {
1111 if (hp->tcvr_type == external) {
1112 ASD(("<external> "));
1113 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114 ASD(("<poll stop> "));
1115 happy_meal_poll_stop(hp, tregs);
1116 hp->paddr = TCV_PADDR_ITX;
1117 hp->tcvr_type = internal;
1118 ASD(("<internal>\n"));
1119 hme_write32(hp, tregs + TCVR_CFG,
1120 hme_read32(hp, tregs + TCVR_CFG) &
1121 ~(TCV_CFG_PSELECT));
1123 ASD(("\n"));
1124 } else {
1125 ASD(("<none>\n"));
1128 } else {
1129 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1131 /* Else we can just work off of the MDIO bits. */
1132 ASD(("<not polling> "));
1133 if (reread & TCV_CFG_MDIO1) {
1134 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135 hp->paddr = TCV_PADDR_ETX;
1136 hp->tcvr_type = external;
1137 ASD(("<external>\n"));
1138 } else {
1139 if (reread & TCV_CFG_MDIO0) {
1140 hme_write32(hp, tregs + TCVR_CFG,
1141 tconfig & ~(TCV_CFG_PSELECT));
1142 hp->paddr = TCV_PADDR_ITX;
1143 hp->tcvr_type = internal;
1144 ASD(("<internal>\n"));
1145 } else {
1146 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147 hp->tcvr_type = none; /* Grrr... */
1148 ASD(("<none>\n"));
1154 /* The receive ring buffers are a bit tricky to get right. Here goes...
1156 * The buffers we dma into must be 64 byte aligned. So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158 * we really need.
1160 * We use skb_reserve() to align the data block we get in the skb. We
1161 * also program the etxregs->cfg register to use an offset of 2. This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1164 * protocol layers.
1166 * The numbers work out to:
1168 * Max ethernet frame size 1518
1169 * Ethernet header size 14
1170 * Happy Meal base offset 2
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary. We now have 0xf001b040 as our skb data address. We
1177 * plug this into the receive descriptor address.
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042. When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length. Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1191 * flags, thus:
1193 * skb->csum = rxd->rx_flags & 0xffff;
1194 * skb->ip_summed = CHECKSUM_COMPLETE;
1196 * before sending off the skb to the protocols, and we are good as gold.
1198 static void happy_meal_clean_rings(struct happy_meal *hp)
1200 int i;
1202 for (i = 0; i < RX_RING_SIZE; i++) {
1203 if (hp->rx_skbs[i] != NULL) {
1204 struct sk_buff *skb = hp->rx_skbs[i];
1205 struct happy_meal_rxd *rxd;
1206 u32 dma_addr;
1208 rxd = &hp->happy_block->happy_meal_rxd[i];
1209 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210 dma_unmap_single(hp->dma_dev, dma_addr,
1211 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212 dev_kfree_skb_any(skb);
1213 hp->rx_skbs[i] = NULL;
1217 for (i = 0; i < TX_RING_SIZE; i++) {
1218 if (hp->tx_skbs[i] != NULL) {
1219 struct sk_buff *skb = hp->tx_skbs[i];
1220 struct happy_meal_txd *txd;
1221 u32 dma_addr;
1222 int frag;
1224 hp->tx_skbs[i] = NULL;
1226 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227 txd = &hp->happy_block->happy_meal_txd[i];
1228 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229 if (!frag)
1230 dma_unmap_single(hp->dma_dev, dma_addr,
1231 (hme_read_desc32(hp, &txd->tx_flags)
1232 & TXFLAG_SIZE),
1233 DMA_TO_DEVICE);
1234 else
1235 dma_unmap_page(hp->dma_dev, dma_addr,
1236 (hme_read_desc32(hp, &txd->tx_flags)
1237 & TXFLAG_SIZE),
1238 DMA_TO_DEVICE);
1240 if (frag != skb_shinfo(skb)->nr_frags)
1241 i++;
1244 dev_kfree_skb_any(skb);
1249 /* hp->happy_lock must be held */
1250 static void happy_meal_init_rings(struct happy_meal *hp)
1252 struct hmeal_init_block *hb = hp->happy_block;
1253 struct net_device *dev = hp->dev;
1254 int i;
1256 HMD(("happy_meal_init_rings: counters to zero, "));
1257 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1259 /* Free any skippy bufs left around in the rings. */
1260 HMD(("clean, "));
1261 happy_meal_clean_rings(hp);
1263 /* Now get new skippy bufs for the receive ring. */
1264 HMD(("init rxring, "));
1265 for (i = 0; i < RX_RING_SIZE; i++) {
1266 struct sk_buff *skb;
1268 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269 if (!skb) {
1270 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271 continue;
1273 hp->rx_skbs[i] = skb;
1274 skb->dev = dev;
1276 /* Because we reserve afterwards. */
1277 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1278 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1279 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1280 dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1281 DMA_FROM_DEVICE));
1282 skb_reserve(skb, RX_OFFSET);
1285 HMD(("init txring, "));
1286 for (i = 0; i < TX_RING_SIZE; i++)
1287 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1289 HMD(("done\n"));
1292 /* hp->happy_lock must be held */
1293 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1294 void __iomem *tregs,
1295 struct ethtool_cmd *ep)
1297 int timeout;
1299 /* Read all of the registers we are interested in now. */
1300 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1301 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1302 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1303 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1305 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1307 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1308 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1309 /* Advertise everything we can support. */
1310 if (hp->sw_bmsr & BMSR_10HALF)
1311 hp->sw_advertise |= (ADVERTISE_10HALF);
1312 else
1313 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1315 if (hp->sw_bmsr & BMSR_10FULL)
1316 hp->sw_advertise |= (ADVERTISE_10FULL);
1317 else
1318 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1319 if (hp->sw_bmsr & BMSR_100HALF)
1320 hp->sw_advertise |= (ADVERTISE_100HALF);
1321 else
1322 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1323 if (hp->sw_bmsr & BMSR_100FULL)
1324 hp->sw_advertise |= (ADVERTISE_100FULL);
1325 else
1326 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1327 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1329 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1330 * XXX and this is because the DP83840 does not support it, changes
1331 * XXX would need to be made to the tx/rx logic in the driver as well
1332 * XXX so I completely skip checking for it in the BMSR for now.
1335 #ifdef AUTO_SWITCH_DEBUG
1336 ASD(("%s: Advertising [ ", hp->dev->name));
1337 if (hp->sw_advertise & ADVERTISE_10HALF)
1338 ASD(("10H "));
1339 if (hp->sw_advertise & ADVERTISE_10FULL)
1340 ASD(("10F "));
1341 if (hp->sw_advertise & ADVERTISE_100HALF)
1342 ASD(("100H "));
1343 if (hp->sw_advertise & ADVERTISE_100FULL)
1344 ASD(("100F "));
1345 #endif
1347 /* Enable Auto-Negotiation, this is usually on already... */
1348 hp->sw_bmcr |= BMCR_ANENABLE;
1349 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1351 /* Restart it to make sure it is going. */
1352 hp->sw_bmcr |= BMCR_ANRESTART;
1353 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1355 /* BMCR_ANRESTART self clears when the process has begun. */
1357 timeout = 64; /* More than enough. */
1358 while (--timeout) {
1359 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1360 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1361 break; /* got it. */
1362 udelay(10);
1364 if (!timeout) {
1365 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1366 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1367 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1368 hp->dev->name);
1369 goto force_link;
1370 } else {
1371 hp->timer_state = arbwait;
1373 } else {
1374 force_link:
1375 /* Force the link up, trying first a particular mode.
1376 * Either we are here at the request of ethtool or
1377 * because the Happy Meal would not start to autoneg.
1380 /* Disable auto-negotiation in BMCR, enable the duplex and
1381 * speed setting, init the timer state machine, and fire it off.
1383 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1384 hp->sw_bmcr = BMCR_SPEED100;
1385 } else {
1386 if (ep->speed == SPEED_100)
1387 hp->sw_bmcr = BMCR_SPEED100;
1388 else
1389 hp->sw_bmcr = 0;
1390 if (ep->duplex == DUPLEX_FULL)
1391 hp->sw_bmcr |= BMCR_FULLDPLX;
1393 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1395 if (!is_lucent_phy(hp)) {
1396 /* OK, seems we need do disable the transceiver for the first
1397 * tick to make sure we get an accurate link state at the
1398 * second tick.
1400 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1401 DP83840_CSCONFIG);
1402 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1403 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1404 hp->sw_csconfig);
1406 hp->timer_state = ltrywait;
1409 hp->timer_ticks = 0;
1410 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1411 hp->happy_timer.data = (unsigned long) hp;
1412 hp->happy_timer.function = &happy_meal_timer;
1413 add_timer(&hp->happy_timer);
1416 /* hp->happy_lock must be held */
1417 static int happy_meal_init(struct happy_meal *hp)
1419 void __iomem *gregs = hp->gregs;
1420 void __iomem *etxregs = hp->etxregs;
1421 void __iomem *erxregs = hp->erxregs;
1422 void __iomem *bregs = hp->bigmacregs;
1423 void __iomem *tregs = hp->tcvregs;
1424 u32 regtmp, rxcfg;
1425 unsigned char *e = &hp->dev->dev_addr[0];
1427 /* If auto-negotiation timer is running, kill it. */
1428 del_timer(&hp->happy_timer);
1430 HMD(("happy_meal_init: happy_flags[%08x] ",
1431 hp->happy_flags));
1432 if (!(hp->happy_flags & HFLAG_INIT)) {
1433 HMD(("set HFLAG_INIT, "));
1434 hp->happy_flags |= HFLAG_INIT;
1435 happy_meal_get_counters(hp, bregs);
1438 /* Stop polling. */
1439 HMD(("to happy_meal_poll_stop\n"));
1440 happy_meal_poll_stop(hp, tregs);
1442 /* Stop transmitter and receiver. */
1443 HMD(("happy_meal_init: to happy_meal_stop\n"));
1444 happy_meal_stop(hp, gregs);
1446 /* Alloc and reset the tx/rx descriptor chains. */
1447 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1448 happy_meal_init_rings(hp);
1450 /* Shut up the MIF. */
1451 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1452 hme_read32(hp, tregs + TCVR_IMASK)));
1453 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1455 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1456 if (hp->happy_flags & HFLAG_FENABLE) {
1457 HMD(("use frame old[%08x], ",
1458 hme_read32(hp, tregs + TCVR_CFG)));
1459 hme_write32(hp, tregs + TCVR_CFG,
1460 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1461 } else {
1462 HMD(("use bitbang old[%08x], ",
1463 hme_read32(hp, tregs + TCVR_CFG)));
1464 hme_write32(hp, tregs + TCVR_CFG,
1465 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1468 /* Check the state of the transceiver. */
1469 HMD(("to happy_meal_transceiver_check\n"));
1470 happy_meal_transceiver_check(hp, tregs);
1472 /* Put the Big Mac into a sane state. */
1473 HMD(("happy_meal_init: "));
1474 switch(hp->tcvr_type) {
1475 case none:
1476 /* Cannot operate if we don't know the transceiver type! */
1477 HMD(("AAIEEE no transceiver type, EAGAIN"));
1478 return -EAGAIN;
1480 case internal:
1481 /* Using the MII buffers. */
1482 HMD(("internal, using MII, "));
1483 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1484 break;
1486 case external:
1487 /* Not using the MII, disable it. */
1488 HMD(("external, disable MII, "));
1489 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1490 break;
1493 if (happy_meal_tcvr_reset(hp, tregs))
1494 return -EAGAIN;
1496 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1497 HMD(("tx/rx reset, "));
1498 happy_meal_tx_reset(hp, bregs);
1499 happy_meal_rx_reset(hp, bregs);
1501 /* Set jam size and inter-packet gaps to reasonable defaults. */
1502 HMD(("jsize/ipg1/ipg2, "));
1503 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1504 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1505 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1507 /* Load up the MAC address and random seed. */
1508 HMD(("rseed/macaddr, "));
1510 /* The docs recommend to use the 10LSB of our MAC here. */
1511 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1513 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1514 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1515 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1517 HMD(("htable, "));
1518 if ((hp->dev->flags & IFF_ALLMULTI) ||
1519 (hp->dev->mc_count > 64)) {
1520 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1521 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1522 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1523 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1524 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1525 u16 hash_table[4];
1526 struct dev_mc_list *dmi = hp->dev->mc_list;
1527 char *addrs;
1528 int i;
1529 u32 crc;
1531 for (i = 0; i < 4; i++)
1532 hash_table[i] = 0;
1534 for (i = 0; i < hp->dev->mc_count; i++) {
1535 addrs = dmi->dmi_addr;
1536 dmi = dmi->next;
1538 if (!(*addrs & 1))
1539 continue;
1541 crc = ether_crc_le(6, addrs);
1542 crc >>= 26;
1543 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1545 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1546 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1547 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1548 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1549 } else {
1550 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1551 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1552 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1553 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1556 /* Set the RX and TX ring ptrs. */
1557 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1558 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1559 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1560 hme_write32(hp, erxregs + ERX_RING,
1561 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1562 hme_write32(hp, etxregs + ETX_RING,
1563 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1565 /* Parity issues in the ERX unit of some HME revisions can cause some
1566 * registers to not be written unless their parity is even. Detect such
1567 * lost writes and simply rewrite with a low bit set (which will be ignored
1568 * since the rxring needs to be 2K aligned).
1570 if (hme_read32(hp, erxregs + ERX_RING) !=
1571 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1572 hme_write32(hp, erxregs + ERX_RING,
1573 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1574 | 0x4);
1576 /* Set the supported burst sizes. */
1577 HMD(("happy_meal_init: old[%08x] bursts<",
1578 hme_read32(hp, gregs + GREG_CFG)));
1580 #ifndef CONFIG_SPARC
1581 /* It is always PCI and can handle 64byte bursts. */
1582 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1583 #else
1584 if ((hp->happy_bursts & DMA_BURST64) &&
1585 ((hp->happy_flags & HFLAG_PCI) != 0
1586 #ifdef CONFIG_SBUS
1587 || sbus_can_burst64()
1588 #endif
1589 || 0)) {
1590 u32 gcfg = GREG_CFG_BURST64;
1592 /* I have no idea if I should set the extended
1593 * transfer mode bit for Cheerio, so for now I
1594 * do not. -DaveM
1596 #ifdef CONFIG_SBUS
1597 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1598 struct of_device *op = hp->happy_dev;
1599 if (sbus_can_dma_64bit()) {
1600 sbus_set_sbus64(&op->dev,
1601 hp->happy_bursts);
1602 gcfg |= GREG_CFG_64BIT;
1605 #endif
1607 HMD(("64>"));
1608 hme_write32(hp, gregs + GREG_CFG, gcfg);
1609 } else if (hp->happy_bursts & DMA_BURST32) {
1610 HMD(("32>"));
1611 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1612 } else if (hp->happy_bursts & DMA_BURST16) {
1613 HMD(("16>"));
1614 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1615 } else {
1616 HMD(("XXX>"));
1617 hme_write32(hp, gregs + GREG_CFG, 0);
1619 #endif /* CONFIG_SPARC */
1621 /* Turn off interrupts we do not want to hear. */
1622 HMD((", enable global interrupts, "));
1623 hme_write32(hp, gregs + GREG_IMASK,
1624 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1625 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1627 /* Set the transmit ring buffer size. */
1628 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1629 hme_read32(hp, etxregs + ETX_RSIZE)));
1630 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1632 /* Enable transmitter DVMA. */
1633 HMD(("tx dma enable old[%08x], ",
1634 hme_read32(hp, etxregs + ETX_CFG)));
1635 hme_write32(hp, etxregs + ETX_CFG,
1636 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1638 /* This chip really rots, for the receiver sometimes when you
1639 * write to its control registers not all the bits get there
1640 * properly. I cannot think of a sane way to provide complete
1641 * coverage for this hardware bug yet.
1643 HMD(("erx regs bug old[%08x]\n",
1644 hme_read32(hp, erxregs + ERX_CFG)));
1645 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1646 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1647 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1648 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1649 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1650 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1651 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1652 /* XXX Should return failure here... */
1655 /* Enable Big Mac hash table filter. */
1656 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1657 hme_read32(hp, bregs + BMAC_RXCFG)));
1658 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1659 if (hp->dev->flags & IFF_PROMISC)
1660 rxcfg |= BIGMAC_RXCFG_PMISC;
1661 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1663 /* Let the bits settle in the chip. */
1664 udelay(10);
1666 /* Ok, configure the Big Mac transmitter. */
1667 HMD(("BIGMAC init, "));
1668 regtmp = 0;
1669 if (hp->happy_flags & HFLAG_FULL)
1670 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1672 /* Don't turn on the "don't give up" bit for now. It could cause hme
1673 * to deadlock with the PHY if a Jabber occurs.
1675 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1677 /* Give up after 16 TX attempts. */
1678 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1680 /* Enable the output drivers no matter what. */
1681 regtmp = BIGMAC_XCFG_ODENABLE;
1683 /* If card can do lance mode, enable it. */
1684 if (hp->happy_flags & HFLAG_LANCE)
1685 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1687 /* Disable the MII buffers if using external transceiver. */
1688 if (hp->tcvr_type == external)
1689 regtmp |= BIGMAC_XCFG_MIIDISAB;
1691 HMD(("XIF config old[%08x], ",
1692 hme_read32(hp, bregs + BMAC_XIFCFG)));
1693 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1695 /* Start things up. */
1696 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1697 hme_read32(hp, bregs + BMAC_TXCFG),
1698 hme_read32(hp, bregs + BMAC_RXCFG)));
1700 /* Set larger TX/RX size to allow for 802.1q */
1701 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1702 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1704 hme_write32(hp, bregs + BMAC_TXCFG,
1705 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1706 hme_write32(hp, bregs + BMAC_RXCFG,
1707 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1709 /* Get the autonegotiation started, and the watch timer ticking. */
1710 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1712 /* Success. */
1713 return 0;
1716 /* hp->happy_lock must be held */
1717 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1719 void __iomem *tregs = hp->tcvregs;
1720 void __iomem *bregs = hp->bigmacregs;
1721 void __iomem *gregs = hp->gregs;
1723 happy_meal_stop(hp, gregs);
1724 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1725 if (hp->happy_flags & HFLAG_FENABLE)
1726 hme_write32(hp, tregs + TCVR_CFG,
1727 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1728 else
1729 hme_write32(hp, tregs + TCVR_CFG,
1730 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1731 happy_meal_transceiver_check(hp, tregs);
1732 switch(hp->tcvr_type) {
1733 case none:
1734 return;
1735 case internal:
1736 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1737 break;
1738 case external:
1739 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1740 break;
1742 if (happy_meal_tcvr_reset(hp, tregs))
1743 return;
1745 /* Latch PHY registers as of now. */
1746 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1747 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1749 /* Advertise everything we can support. */
1750 if (hp->sw_bmsr & BMSR_10HALF)
1751 hp->sw_advertise |= (ADVERTISE_10HALF);
1752 else
1753 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1755 if (hp->sw_bmsr & BMSR_10FULL)
1756 hp->sw_advertise |= (ADVERTISE_10FULL);
1757 else
1758 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1759 if (hp->sw_bmsr & BMSR_100HALF)
1760 hp->sw_advertise |= (ADVERTISE_100HALF);
1761 else
1762 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1763 if (hp->sw_bmsr & BMSR_100FULL)
1764 hp->sw_advertise |= (ADVERTISE_100FULL);
1765 else
1766 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1768 /* Update the PHY advertisement register. */
1769 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1772 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1773 * the hardware, so we cannot re-read it and get a correct value.
1775 * hp->happy_lock must be held
1777 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1779 int reset = 0;
1781 /* Only print messages for non-counter related interrupts. */
1782 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1783 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1784 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1785 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1786 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1787 GREG_STAT_SLVPERR))
1788 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1789 hp->dev->name, status);
1791 if (status & GREG_STAT_RFIFOVF) {
1792 /* Receive FIFO overflow is harmless and the hardware will take
1793 care of it, just some packets are lost. Who cares. */
1794 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1797 if (status & GREG_STAT_STSTERR) {
1798 /* BigMAC SQE link test failed. */
1799 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1800 reset = 1;
1803 if (status & GREG_STAT_TFIFO_UND) {
1804 /* Transmit FIFO underrun, again DMA error likely. */
1805 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1806 hp->dev->name);
1807 reset = 1;
1810 if (status & GREG_STAT_MAXPKTERR) {
1811 /* Driver error, tried to transmit something larger
1812 * than ethernet max mtu.
1814 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1815 reset = 1;
1818 if (status & GREG_STAT_NORXD) {
1819 /* This is harmless, it just means the system is
1820 * quite loaded and the incoming packet rate was
1821 * faster than the interrupt handler could keep up
1822 * with.
1824 printk(KERN_INFO "%s: Happy Meal out of receive "
1825 "descriptors, packet dropped.\n",
1826 hp->dev->name);
1829 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1830 /* All sorts of DMA receive errors. */
1831 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1832 if (status & GREG_STAT_RXERR)
1833 printk("GenericError ");
1834 if (status & GREG_STAT_RXPERR)
1835 printk("ParityError ");
1836 if (status & GREG_STAT_RXTERR)
1837 printk("RxTagBotch ");
1838 printk("]\n");
1839 reset = 1;
1842 if (status & GREG_STAT_EOPERR) {
1843 /* Driver bug, didn't set EOP bit in tx descriptor given
1844 * to the happy meal.
1846 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1847 hp->dev->name);
1848 reset = 1;
1851 if (status & GREG_STAT_MIFIRQ) {
1852 /* MIF signalled an interrupt, were we polling it? */
1853 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1856 if (status &
1857 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1858 /* All sorts of transmit DMA errors. */
1859 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1860 if (status & GREG_STAT_TXEACK)
1861 printk("GenericError ");
1862 if (status & GREG_STAT_TXLERR)
1863 printk("LateError ");
1864 if (status & GREG_STAT_TXPERR)
1865 printk("ParityErro ");
1866 if (status & GREG_STAT_TXTERR)
1867 printk("TagBotch ");
1868 printk("]\n");
1869 reset = 1;
1872 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1873 /* Bus or parity error when cpu accessed happy meal registers
1874 * or it's internal FIFO's. Should never see this.
1876 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1877 hp->dev->name,
1878 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1879 reset = 1;
1882 if (reset) {
1883 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1884 happy_meal_init(hp);
1885 return 1;
1887 return 0;
1890 /* hp->happy_lock must be held */
1891 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1893 void __iomem *tregs = hp->tcvregs;
1895 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1896 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1897 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1899 /* Use the fastest transmission protocol possible. */
1900 if (hp->sw_lpa & LPA_100FULL) {
1901 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1902 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1903 } else if (hp->sw_lpa & LPA_100HALF) {
1904 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1905 hp->sw_bmcr |= BMCR_SPEED100;
1906 } else if (hp->sw_lpa & LPA_10FULL) {
1907 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1908 hp->sw_bmcr |= BMCR_FULLDPLX;
1909 } else {
1910 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1912 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1914 /* Finally stop polling and shut up the MIF. */
1915 happy_meal_poll_stop(hp, tregs);
1918 #ifdef TXDEBUG
1919 #define TXD(x) printk x
1920 #else
1921 #define TXD(x)
1922 #endif
1924 /* hp->happy_lock must be held */
1925 static void happy_meal_tx(struct happy_meal *hp)
1927 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1928 struct happy_meal_txd *this;
1929 struct net_device *dev = hp->dev;
1930 int elem;
1932 elem = hp->tx_old;
1933 TXD(("TX<"));
1934 while (elem != hp->tx_new) {
1935 struct sk_buff *skb;
1936 u32 flags, dma_addr, dma_len;
1937 int frag;
1939 TXD(("[%d]", elem));
1940 this = &txbase[elem];
1941 flags = hme_read_desc32(hp, &this->tx_flags);
1942 if (flags & TXFLAG_OWN)
1943 break;
1944 skb = hp->tx_skbs[elem];
1945 if (skb_shinfo(skb)->nr_frags) {
1946 int last;
1948 last = elem + skb_shinfo(skb)->nr_frags;
1949 last &= (TX_RING_SIZE - 1);
1950 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1951 if (flags & TXFLAG_OWN)
1952 break;
1954 hp->tx_skbs[elem] = NULL;
1955 hp->net_stats.tx_bytes += skb->len;
1957 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1958 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1959 dma_len = hme_read_desc32(hp, &this->tx_flags);
1961 dma_len &= TXFLAG_SIZE;
1962 if (!frag)
1963 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1964 else
1965 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1967 elem = NEXT_TX(elem);
1968 this = &txbase[elem];
1971 dev_kfree_skb_irq(skb);
1972 hp->net_stats.tx_packets++;
1974 hp->tx_old = elem;
1975 TXD((">"));
1977 if (netif_queue_stopped(dev) &&
1978 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1979 netif_wake_queue(dev);
1982 #ifdef RXDEBUG
1983 #define RXD(x) printk x
1984 #else
1985 #define RXD(x)
1986 #endif
1988 /* Originally I used to handle the allocation failure by just giving back just
1989 * that one ring buffer to the happy meal. Problem is that usually when that
1990 * condition is triggered, the happy meal expects you to do something reasonable
1991 * with all of the packets it has DMA'd in. So now I just drop the entire
1992 * ring when we cannot get a new skb and give them all back to the happy meal,
1993 * maybe things will be "happier" now.
1995 * hp->happy_lock must be held
1997 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1999 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
2000 struct happy_meal_rxd *this;
2001 int elem = hp->rx_new, drops = 0;
2002 u32 flags;
2004 RXD(("RX<"));
2005 this = &rxbase[elem];
2006 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2007 struct sk_buff *skb;
2008 int len = flags >> 16;
2009 u16 csum = flags & RXFLAG_CSUM;
2010 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2012 RXD(("[%d ", elem));
2014 /* Check for errors. */
2015 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2016 RXD(("ERR(%08x)]", flags));
2017 hp->net_stats.rx_errors++;
2018 if (len < ETH_ZLEN)
2019 hp->net_stats.rx_length_errors++;
2020 if (len & (RXFLAG_OVERFLOW >> 16)) {
2021 hp->net_stats.rx_over_errors++;
2022 hp->net_stats.rx_fifo_errors++;
2025 /* Return it to the Happy meal. */
2026 drop_it:
2027 hp->net_stats.rx_dropped++;
2028 hme_write_rxd(hp, this,
2029 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2030 dma_addr);
2031 goto next;
2033 skb = hp->rx_skbs[elem];
2034 if (len > RX_COPY_THRESHOLD) {
2035 struct sk_buff *new_skb;
2037 /* Now refill the entry, if we can. */
2038 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2039 if (new_skb == NULL) {
2040 drops++;
2041 goto drop_it;
2043 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2044 hp->rx_skbs[elem] = new_skb;
2045 new_skb->dev = dev;
2046 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2047 hme_write_rxd(hp, this,
2048 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2049 dma_map_single(hp->dma_dev, new_skb->data, RX_BUF_ALLOC_SIZE,
2050 DMA_FROM_DEVICE));
2051 skb_reserve(new_skb, RX_OFFSET);
2053 /* Trim the original skb for the netif. */
2054 skb_trim(skb, len);
2055 } else {
2056 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2058 if (copy_skb == NULL) {
2059 drops++;
2060 goto drop_it;
2063 skb_reserve(copy_skb, 2);
2064 skb_put(copy_skb, len);
2065 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2066 skb_copy_from_linear_data(skb, copy_skb->data, len);
2067 dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068 /* Reuse original ring buffer. */
2069 hme_write_rxd(hp, this,
2070 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2071 dma_addr);
2073 skb = copy_skb;
2076 /* This card is _fucking_ hot... */
2077 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2078 skb->ip_summed = CHECKSUM_COMPLETE;
2080 RXD(("len=%d csum=%4x]", len, csum));
2081 skb->protocol = eth_type_trans(skb, dev);
2082 netif_rx(skb);
2084 hp->net_stats.rx_packets++;
2085 hp->net_stats.rx_bytes += len;
2086 next:
2087 elem = NEXT_RX(elem);
2088 this = &rxbase[elem];
2090 hp->rx_new = elem;
2091 if (drops)
2092 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2093 RXD((">"));
2096 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2098 struct net_device *dev = dev_id;
2099 struct happy_meal *hp = netdev_priv(dev);
2100 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2102 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2104 spin_lock(&hp->happy_lock);
2106 if (happy_status & GREG_STAT_ERRORS) {
2107 HMD(("ERRORS "));
2108 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2109 goto out;
2112 if (happy_status & GREG_STAT_MIFIRQ) {
2113 HMD(("MIFIRQ "));
2114 happy_meal_mif_interrupt(hp);
2117 if (happy_status & GREG_STAT_TXALL) {
2118 HMD(("TXALL "));
2119 happy_meal_tx(hp);
2122 if (happy_status & GREG_STAT_RXTOHOST) {
2123 HMD(("RXTOHOST "));
2124 happy_meal_rx(hp, dev);
2127 HMD(("done\n"));
2128 out:
2129 spin_unlock(&hp->happy_lock);
2131 return IRQ_HANDLED;
2134 #ifdef CONFIG_SBUS
2135 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2137 struct quattro *qp = (struct quattro *) cookie;
2138 int i;
2140 for (i = 0; i < 4; i++) {
2141 struct net_device *dev = qp->happy_meals[i];
2142 struct happy_meal *hp = netdev_priv(dev);
2143 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2145 HMD(("quattro_interrupt: status=%08x ", happy_status));
2147 if (!(happy_status & (GREG_STAT_ERRORS |
2148 GREG_STAT_MIFIRQ |
2149 GREG_STAT_TXALL |
2150 GREG_STAT_RXTOHOST)))
2151 continue;
2153 spin_lock(&hp->happy_lock);
2155 if (happy_status & GREG_STAT_ERRORS) {
2156 HMD(("ERRORS "));
2157 if (happy_meal_is_not_so_happy(hp, happy_status))
2158 goto next;
2161 if (happy_status & GREG_STAT_MIFIRQ) {
2162 HMD(("MIFIRQ "));
2163 happy_meal_mif_interrupt(hp);
2166 if (happy_status & GREG_STAT_TXALL) {
2167 HMD(("TXALL "));
2168 happy_meal_tx(hp);
2171 if (happy_status & GREG_STAT_RXTOHOST) {
2172 HMD(("RXTOHOST "));
2173 happy_meal_rx(hp, dev);
2176 next:
2177 spin_unlock(&hp->happy_lock);
2179 HMD(("done\n"));
2181 return IRQ_HANDLED;
2183 #endif
2185 static int happy_meal_open(struct net_device *dev)
2187 struct happy_meal *hp = netdev_priv(dev);
2188 int res;
2190 HMD(("happy_meal_open: "));
2192 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2193 * into a single source which we register handling at probe time.
2195 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2196 if (request_irq(dev->irq, happy_meal_interrupt,
2197 IRQF_SHARED, dev->name, (void *)dev)) {
2198 HMD(("EAGAIN\n"));
2199 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2200 dev->irq);
2202 return -EAGAIN;
2206 HMD(("to happy_meal_init\n"));
2208 spin_lock_irq(&hp->happy_lock);
2209 res = happy_meal_init(hp);
2210 spin_unlock_irq(&hp->happy_lock);
2212 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2213 free_irq(dev->irq, dev);
2214 return res;
2217 static int happy_meal_close(struct net_device *dev)
2219 struct happy_meal *hp = netdev_priv(dev);
2221 spin_lock_irq(&hp->happy_lock);
2222 happy_meal_stop(hp, hp->gregs);
2223 happy_meal_clean_rings(hp);
2225 /* If auto-negotiation timer is running, kill it. */
2226 del_timer(&hp->happy_timer);
2228 spin_unlock_irq(&hp->happy_lock);
2230 /* On Quattro QFE cards, all hme interrupts are concentrated
2231 * into a single source which we register handling at probe
2232 * time and never unregister.
2234 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2235 free_irq(dev->irq, dev);
2237 return 0;
2240 #ifdef SXDEBUG
2241 #define SXD(x) printk x
2242 #else
2243 #define SXD(x)
2244 #endif
2246 static void happy_meal_tx_timeout(struct net_device *dev)
2248 struct happy_meal *hp = netdev_priv(dev);
2250 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2251 tx_dump_log();
2252 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2253 hme_read32(hp, hp->gregs + GREG_STAT),
2254 hme_read32(hp, hp->etxregs + ETX_CFG),
2255 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2257 spin_lock_irq(&hp->happy_lock);
2258 happy_meal_init(hp);
2259 spin_unlock_irq(&hp->happy_lock);
2261 netif_wake_queue(dev);
2264 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2265 struct net_device *dev)
2267 struct happy_meal *hp = netdev_priv(dev);
2268 int entry;
2269 u32 tx_flags;
2271 tx_flags = TXFLAG_OWN;
2272 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2273 const u32 csum_start_off = skb_transport_offset(skb);
2274 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2276 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2277 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2278 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2281 spin_lock_irq(&hp->happy_lock);
2283 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2284 netif_stop_queue(dev);
2285 spin_unlock_irq(&hp->happy_lock);
2286 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2287 dev->name);
2288 return NETDEV_TX_BUSY;
2291 entry = hp->tx_new;
2292 SXD(("SX<l[%d]e[%d]>", len, entry));
2293 hp->tx_skbs[entry] = skb;
2295 if (skb_shinfo(skb)->nr_frags == 0) {
2296 u32 mapping, len;
2298 len = skb->len;
2299 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2300 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2301 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2302 (tx_flags | (len & TXFLAG_SIZE)),
2303 mapping);
2304 entry = NEXT_TX(entry);
2305 } else {
2306 u32 first_len, first_mapping;
2307 int frag, first_entry = entry;
2309 /* We must give this initial chunk to the device last.
2310 * Otherwise we could race with the device.
2312 first_len = skb_headlen(skb);
2313 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2314 DMA_TO_DEVICE);
2315 entry = NEXT_TX(entry);
2317 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2318 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2319 u32 len, mapping, this_txflags;
2321 len = this_frag->size;
2322 mapping = dma_map_page(hp->dma_dev, this_frag->page,
2323 this_frag->page_offset, len,
2324 DMA_TO_DEVICE);
2325 this_txflags = tx_flags;
2326 if (frag == skb_shinfo(skb)->nr_frags - 1)
2327 this_txflags |= TXFLAG_EOP;
2328 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2329 (this_txflags | (len & TXFLAG_SIZE)),
2330 mapping);
2331 entry = NEXT_TX(entry);
2333 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2334 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2335 first_mapping);
2338 hp->tx_new = entry;
2340 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2341 netif_stop_queue(dev);
2343 /* Get it going. */
2344 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2346 spin_unlock_irq(&hp->happy_lock);
2348 dev->trans_start = jiffies;
2350 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2351 return NETDEV_TX_OK;
2354 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2356 struct happy_meal *hp = netdev_priv(dev);
2358 spin_lock_irq(&hp->happy_lock);
2359 happy_meal_get_counters(hp, hp->bigmacregs);
2360 spin_unlock_irq(&hp->happy_lock);
2362 return &hp->net_stats;
2365 static void happy_meal_set_multicast(struct net_device *dev)
2367 struct happy_meal *hp = netdev_priv(dev);
2368 void __iomem *bregs = hp->bigmacregs;
2369 struct dev_mc_list *dmi = dev->mc_list;
2370 char *addrs;
2371 int i;
2372 u32 crc;
2374 spin_lock_irq(&hp->happy_lock);
2376 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2377 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2378 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2379 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2380 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2381 } else if (dev->flags & IFF_PROMISC) {
2382 hme_write32(hp, bregs + BMAC_RXCFG,
2383 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2384 } else {
2385 u16 hash_table[4];
2387 for (i = 0; i < 4; i++)
2388 hash_table[i] = 0;
2390 for (i = 0; i < dev->mc_count; i++) {
2391 addrs = dmi->dmi_addr;
2392 dmi = dmi->next;
2394 if (!(*addrs & 1))
2395 continue;
2397 crc = ether_crc_le(6, addrs);
2398 crc >>= 26;
2399 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2401 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2402 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2403 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2404 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2407 spin_unlock_irq(&hp->happy_lock);
2410 /* Ethtool support... */
2411 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2413 struct happy_meal *hp = netdev_priv(dev);
2415 cmd->supported =
2416 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2417 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2418 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2420 /* XXX hardcoded stuff for now */
2421 cmd->port = PORT_TP; /* XXX no MII support */
2422 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2423 cmd->phy_address = 0; /* XXX fixed PHYAD */
2425 /* Record PHY settings. */
2426 spin_lock_irq(&hp->happy_lock);
2427 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2428 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2429 spin_unlock_irq(&hp->happy_lock);
2431 if (hp->sw_bmcr & BMCR_ANENABLE) {
2432 cmd->autoneg = AUTONEG_ENABLE;
2433 cmd->speed =
2434 (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2435 SPEED_100 : SPEED_10;
2436 if (cmd->speed == SPEED_100)
2437 cmd->duplex =
2438 (hp->sw_lpa & (LPA_100FULL)) ?
2439 DUPLEX_FULL : DUPLEX_HALF;
2440 else
2441 cmd->duplex =
2442 (hp->sw_lpa & (LPA_10FULL)) ?
2443 DUPLEX_FULL : DUPLEX_HALF;
2444 } else {
2445 cmd->autoneg = AUTONEG_DISABLE;
2446 cmd->speed =
2447 (hp->sw_bmcr & BMCR_SPEED100) ?
2448 SPEED_100 : SPEED_10;
2449 cmd->duplex =
2450 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2451 DUPLEX_FULL : DUPLEX_HALF;
2453 return 0;
2456 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2458 struct happy_meal *hp = netdev_priv(dev);
2460 /* Verify the settings we care about. */
2461 if (cmd->autoneg != AUTONEG_ENABLE &&
2462 cmd->autoneg != AUTONEG_DISABLE)
2463 return -EINVAL;
2464 if (cmd->autoneg == AUTONEG_DISABLE &&
2465 ((cmd->speed != SPEED_100 &&
2466 cmd->speed != SPEED_10) ||
2467 (cmd->duplex != DUPLEX_HALF &&
2468 cmd->duplex != DUPLEX_FULL)))
2469 return -EINVAL;
2471 /* Ok, do it to it. */
2472 spin_lock_irq(&hp->happy_lock);
2473 del_timer(&hp->happy_timer);
2474 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2475 spin_unlock_irq(&hp->happy_lock);
2477 return 0;
2480 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2482 struct happy_meal *hp = netdev_priv(dev);
2484 strcpy(info->driver, "sunhme");
2485 strcpy(info->version, "2.02");
2486 if (hp->happy_flags & HFLAG_PCI) {
2487 struct pci_dev *pdev = hp->happy_dev;
2488 strcpy(info->bus_info, pci_name(pdev));
2490 #ifdef CONFIG_SBUS
2491 else {
2492 const struct linux_prom_registers *regs;
2493 struct of_device *op = hp->happy_dev;
2494 regs = of_get_property(op->node, "regs", NULL);
2495 if (regs)
2496 sprintf(info->bus_info, "SBUS:%d",
2497 regs->which_io);
2499 #endif
2502 static u32 hme_get_link(struct net_device *dev)
2504 struct happy_meal *hp = netdev_priv(dev);
2506 spin_lock_irq(&hp->happy_lock);
2507 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2508 spin_unlock_irq(&hp->happy_lock);
2510 return (hp->sw_bmsr & BMSR_LSTATUS);
2513 static const struct ethtool_ops hme_ethtool_ops = {
2514 .get_settings = hme_get_settings,
2515 .set_settings = hme_set_settings,
2516 .get_drvinfo = hme_get_drvinfo,
2517 .get_link = hme_get_link,
2520 static int hme_version_printed;
2522 #ifdef CONFIG_SBUS
2523 /* Given a happy meal sbus device, find it's quattro parent.
2524 * If none exist, allocate and return a new one.
2526 * Return NULL on failure.
2528 static struct quattro * __devinit quattro_sbus_find(struct of_device *child)
2530 struct device *parent = child->dev.parent;
2531 struct of_device *op;
2532 struct quattro *qp;
2534 op = to_of_device(parent);
2535 qp = dev_get_drvdata(&op->dev);
2536 if (qp)
2537 return qp;
2539 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2540 if (qp != NULL) {
2541 int i;
2543 for (i = 0; i < 4; i++)
2544 qp->happy_meals[i] = NULL;
2546 qp->quattro_dev = child;
2547 qp->next = qfe_sbus_list;
2548 qfe_sbus_list = qp;
2550 dev_set_drvdata(&op->dev, qp);
2552 return qp;
2555 /* After all quattro cards have been probed, we call these functions
2556 * to register the IRQ handlers for the cards that have been
2557 * successfully probed and skip the cards that failed to initialize
2559 static int __init quattro_sbus_register_irqs(void)
2561 struct quattro *qp;
2563 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2564 struct of_device *op = qp->quattro_dev;
2565 int err, qfe_slot, skip = 0;
2567 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2568 if (!qp->happy_meals[qfe_slot])
2569 skip = 1;
2571 if (skip)
2572 continue;
2574 err = request_irq(op->irqs[0],
2575 quattro_sbus_interrupt,
2576 IRQF_SHARED, "Quattro",
2577 qp);
2578 if (err != 0) {
2579 printk(KERN_ERR "Quattro HME: IRQ registration "
2580 "error %d.\n", err);
2581 return err;
2585 return 0;
2588 static void quattro_sbus_free_irqs(void)
2590 struct quattro *qp;
2592 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2593 struct of_device *op = qp->quattro_dev;
2594 int qfe_slot, skip = 0;
2596 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2597 if (!qp->happy_meals[qfe_slot])
2598 skip = 1;
2600 if (skip)
2601 continue;
2603 free_irq(op->irqs[0], qp);
2606 #endif /* CONFIG_SBUS */
2608 #ifdef CONFIG_PCI
2609 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2611 struct pci_dev *bdev = pdev->bus->self;
2612 struct quattro *qp;
2614 if (!bdev) return NULL;
2615 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2616 struct pci_dev *qpdev = qp->quattro_dev;
2618 if (qpdev == bdev)
2619 return qp;
2621 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2622 if (qp != NULL) {
2623 int i;
2625 for (i = 0; i < 4; i++)
2626 qp->happy_meals[i] = NULL;
2628 qp->quattro_dev = bdev;
2629 qp->next = qfe_pci_list;
2630 qfe_pci_list = qp;
2632 /* No range tricks necessary on PCI. */
2633 qp->nranges = 0;
2635 return qp;
2637 #endif /* CONFIG_PCI */
2639 static const struct net_device_ops hme_netdev_ops = {
2640 .ndo_open = happy_meal_open,
2641 .ndo_stop = happy_meal_close,
2642 .ndo_start_xmit = happy_meal_start_xmit,
2643 .ndo_tx_timeout = happy_meal_tx_timeout,
2644 .ndo_get_stats = happy_meal_get_stats,
2645 .ndo_set_multicast_list = happy_meal_set_multicast,
2646 .ndo_change_mtu = eth_change_mtu,
2647 .ndo_set_mac_address = eth_mac_addr,
2648 .ndo_validate_addr = eth_validate_addr,
2651 #ifdef CONFIG_SBUS
2652 static int __devinit happy_meal_sbus_probe_one(struct of_device *op, int is_qfe)
2654 struct device_node *dp = op->node, *sbus_dp;
2655 struct quattro *qp = NULL;
2656 struct happy_meal *hp;
2657 struct net_device *dev;
2658 int i, qfe_slot = -1;
2659 int err = -ENODEV;
2661 sbus_dp = to_of_device(op->dev.parent)->node;
2663 /* We can match PCI devices too, do not accept those here. */
2664 if (strcmp(sbus_dp->name, "sbus"))
2665 return err;
2667 if (is_qfe) {
2668 qp = quattro_sbus_find(op);
2669 if (qp == NULL)
2670 goto err_out;
2671 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2672 if (qp->happy_meals[qfe_slot] == NULL)
2673 break;
2674 if (qfe_slot == 4)
2675 goto err_out;
2678 err = -ENOMEM;
2679 dev = alloc_etherdev(sizeof(struct happy_meal));
2680 if (!dev)
2681 goto err_out;
2682 SET_NETDEV_DEV(dev, &op->dev);
2684 if (hme_version_printed++ == 0)
2685 printk(KERN_INFO "%s", version);
2687 /* If user did not specify a MAC address specifically, use
2688 * the Quattro local-mac-address property...
2690 for (i = 0; i < 6; i++) {
2691 if (macaddr[i] != 0)
2692 break;
2694 if (i < 6) { /* a mac address was given */
2695 for (i = 0; i < 6; i++)
2696 dev->dev_addr[i] = macaddr[i];
2697 macaddr[5]++;
2698 } else {
2699 const unsigned char *addr;
2700 int len;
2702 addr = of_get_property(dp, "local-mac-address", &len);
2704 if (qfe_slot != -1 && addr && len == 6)
2705 memcpy(dev->dev_addr, addr, 6);
2706 else
2707 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2710 hp = netdev_priv(dev);
2712 hp->happy_dev = op;
2713 hp->dma_dev = &op->dev;
2715 spin_lock_init(&hp->happy_lock);
2717 err = -ENODEV;
2718 if (qp != NULL) {
2719 hp->qfe_parent = qp;
2720 hp->qfe_ent = qfe_slot;
2721 qp->happy_meals[qfe_slot] = dev;
2724 hp->gregs = of_ioremap(&op->resource[0], 0,
2725 GREG_REG_SIZE, "HME Global Regs");
2726 if (!hp->gregs) {
2727 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2728 goto err_out_free_netdev;
2731 hp->etxregs = of_ioremap(&op->resource[1], 0,
2732 ETX_REG_SIZE, "HME TX Regs");
2733 if (!hp->etxregs) {
2734 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2735 goto err_out_iounmap;
2738 hp->erxregs = of_ioremap(&op->resource[2], 0,
2739 ERX_REG_SIZE, "HME RX Regs");
2740 if (!hp->erxregs) {
2741 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2742 goto err_out_iounmap;
2745 hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2746 BMAC_REG_SIZE, "HME BIGMAC Regs");
2747 if (!hp->bigmacregs) {
2748 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2749 goto err_out_iounmap;
2752 hp->tcvregs = of_ioremap(&op->resource[4], 0,
2753 TCVR_REG_SIZE, "HME Tranceiver Regs");
2754 if (!hp->tcvregs) {
2755 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2756 goto err_out_iounmap;
2759 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2760 if (hp->hm_revision == 0xff)
2761 hp->hm_revision = 0xa0;
2763 /* Now enable the feature flags we can. */
2764 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2765 hp->happy_flags = HFLAG_20_21;
2766 else if (hp->hm_revision != 0xa0)
2767 hp->happy_flags = HFLAG_NOT_A0;
2769 if (qp != NULL)
2770 hp->happy_flags |= HFLAG_QUATTRO;
2772 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2773 hp->happy_bursts = of_getintprop_default(sbus_dp,
2774 "burst-sizes", 0x00);
2776 hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2777 PAGE_SIZE,
2778 &hp->hblock_dvma,
2779 GFP_ATOMIC);
2780 err = -ENOMEM;
2781 if (!hp->happy_block) {
2782 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2783 goto err_out_iounmap;
2786 /* Force check of the link first time we are brought up. */
2787 hp->linkcheck = 0;
2789 /* Force timer state to 'asleep' with count of zero. */
2790 hp->timer_state = asleep;
2791 hp->timer_ticks = 0;
2793 init_timer(&hp->happy_timer);
2795 hp->dev = dev;
2796 dev->netdev_ops = &hme_netdev_ops;
2797 dev->watchdog_timeo = 5*HZ;
2798 dev->ethtool_ops = &hme_ethtool_ops;
2800 /* Happy Meal can do it all... */
2801 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
2803 dev->irq = op->irqs[0];
2805 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2806 /* Hook up SBUS register/descriptor accessors. */
2807 hp->read_desc32 = sbus_hme_read_desc32;
2808 hp->write_txd = sbus_hme_write_txd;
2809 hp->write_rxd = sbus_hme_write_rxd;
2810 hp->read32 = sbus_hme_read32;
2811 hp->write32 = sbus_hme_write32;
2812 #endif
2814 /* Grrr, Happy Meal comes up by default not advertising
2815 * full duplex 100baseT capabilities, fix this.
2817 spin_lock_irq(&hp->happy_lock);
2818 happy_meal_set_initial_advertisement(hp);
2819 spin_unlock_irq(&hp->happy_lock);
2821 if (register_netdev(hp->dev)) {
2822 printk(KERN_ERR "happymeal: Cannot register net device, "
2823 "aborting.\n");
2824 goto err_out_free_coherent;
2827 dev_set_drvdata(&op->dev, hp);
2829 if (qfe_slot != -1)
2830 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2831 dev->name, qfe_slot);
2832 else
2833 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2834 dev->name);
2836 printk("%pM\n", dev->dev_addr);
2838 return 0;
2840 err_out_free_coherent:
2841 dma_free_coherent(hp->dma_dev,
2842 PAGE_SIZE,
2843 hp->happy_block,
2844 hp->hblock_dvma);
2846 err_out_iounmap:
2847 if (hp->gregs)
2848 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2849 if (hp->etxregs)
2850 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2851 if (hp->erxregs)
2852 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2853 if (hp->bigmacregs)
2854 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2855 if (hp->tcvregs)
2856 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2858 if (qp)
2859 qp->happy_meals[qfe_slot] = NULL;
2861 err_out_free_netdev:
2862 free_netdev(dev);
2864 err_out:
2865 return err;
2867 #endif
2869 #ifdef CONFIG_PCI
2870 #ifndef CONFIG_SPARC
2871 static int is_quattro_p(struct pci_dev *pdev)
2873 struct pci_dev *busdev = pdev->bus->self;
2874 struct list_head *tmp;
2875 int n_hmes;
2877 if (busdev == NULL ||
2878 busdev->vendor != PCI_VENDOR_ID_DEC ||
2879 busdev->device != PCI_DEVICE_ID_DEC_21153)
2880 return 0;
2882 n_hmes = 0;
2883 tmp = pdev->bus->devices.next;
2884 while (tmp != &pdev->bus->devices) {
2885 struct pci_dev *this_pdev = pci_dev_b(tmp);
2887 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2888 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2889 n_hmes++;
2891 tmp = tmp->next;
2894 if (n_hmes != 4)
2895 return 0;
2897 return 1;
2900 /* Fetch MAC address from vital product data of PCI ROM. */
2901 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2903 int this_offset;
2905 for (this_offset = 0x20; this_offset < len; this_offset++) {
2906 void __iomem *p = rom_base + this_offset;
2908 if (readb(p + 0) != 0x90 ||
2909 readb(p + 1) != 0x00 ||
2910 readb(p + 2) != 0x09 ||
2911 readb(p + 3) != 0x4e ||
2912 readb(p + 4) != 0x41 ||
2913 readb(p + 5) != 0x06)
2914 continue;
2916 this_offset += 6;
2917 p += 6;
2919 if (index == 0) {
2920 int i;
2922 for (i = 0; i < 6; i++)
2923 dev_addr[i] = readb(p + i);
2924 return 1;
2926 index--;
2928 return 0;
2931 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2933 size_t size;
2934 void __iomem *p = pci_map_rom(pdev, &size);
2936 if (p) {
2937 int index = 0;
2938 int found;
2940 if (is_quattro_p(pdev))
2941 index = PCI_SLOT(pdev->devfn);
2943 found = readb(p) == 0x55 &&
2944 readb(p + 1) == 0xaa &&
2945 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2946 pci_unmap_rom(pdev, p);
2947 if (found)
2948 return;
2951 /* Sun MAC prefix then 3 random bytes. */
2952 dev_addr[0] = 0x08;
2953 dev_addr[1] = 0x00;
2954 dev_addr[2] = 0x20;
2955 get_random_bytes(&dev_addr[3], 3);
2956 return;
2958 #endif /* !(CONFIG_SPARC) */
2960 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2961 const struct pci_device_id *ent)
2963 struct quattro *qp = NULL;
2964 #ifdef CONFIG_SPARC
2965 struct device_node *dp;
2966 #endif
2967 struct happy_meal *hp;
2968 struct net_device *dev;
2969 void __iomem *hpreg_base;
2970 unsigned long hpreg_res;
2971 int i, qfe_slot = -1;
2972 char prom_name[64];
2973 int err;
2975 /* Now make sure pci_dev cookie is there. */
2976 #ifdef CONFIG_SPARC
2977 dp = pci_device_to_OF_node(pdev);
2978 strcpy(prom_name, dp->name);
2979 #else
2980 if (is_quattro_p(pdev))
2981 strcpy(prom_name, "SUNW,qfe");
2982 else
2983 strcpy(prom_name, "SUNW,hme");
2984 #endif
2986 err = -ENODEV;
2988 if (pci_enable_device(pdev))
2989 goto err_out;
2990 pci_set_master(pdev);
2992 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2993 qp = quattro_pci_find(pdev);
2994 if (qp == NULL)
2995 goto err_out;
2996 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2997 if (qp->happy_meals[qfe_slot] == NULL)
2998 break;
2999 if (qfe_slot == 4)
3000 goto err_out;
3003 dev = alloc_etherdev(sizeof(struct happy_meal));
3004 err = -ENOMEM;
3005 if (!dev)
3006 goto err_out;
3007 SET_NETDEV_DEV(dev, &pdev->dev);
3009 if (hme_version_printed++ == 0)
3010 printk(KERN_INFO "%s", version);
3012 dev->base_addr = (long) pdev;
3014 hp = netdev_priv(dev);
3015 memset(hp, 0, sizeof(*hp));
3017 hp->happy_dev = pdev;
3018 hp->dma_dev = &pdev->dev;
3020 spin_lock_init(&hp->happy_lock);
3022 if (qp != NULL) {
3023 hp->qfe_parent = qp;
3024 hp->qfe_ent = qfe_slot;
3025 qp->happy_meals[qfe_slot] = dev;
3028 hpreg_res = pci_resource_start(pdev, 0);
3029 err = -ENODEV;
3030 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3031 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3032 goto err_out_clear_quattro;
3034 if (pci_request_regions(pdev, DRV_NAME)) {
3035 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3036 "aborting.\n");
3037 goto err_out_clear_quattro;
3040 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3041 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3042 goto err_out_free_res;
3045 for (i = 0; i < 6; i++) {
3046 if (macaddr[i] != 0)
3047 break;
3049 if (i < 6) { /* a mac address was given */
3050 for (i = 0; i < 6; i++)
3051 dev->dev_addr[i] = macaddr[i];
3052 macaddr[5]++;
3053 } else {
3054 #ifdef CONFIG_SPARC
3055 const unsigned char *addr;
3056 int len;
3058 if (qfe_slot != -1 &&
3059 (addr = of_get_property(dp, "local-mac-address", &len))
3060 != NULL &&
3061 len == 6) {
3062 memcpy(dev->dev_addr, addr, 6);
3063 } else {
3064 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3066 #else
3067 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3068 #endif
3071 /* Layout registers. */
3072 hp->gregs = (hpreg_base + 0x0000UL);
3073 hp->etxregs = (hpreg_base + 0x2000UL);
3074 hp->erxregs = (hpreg_base + 0x4000UL);
3075 hp->bigmacregs = (hpreg_base + 0x6000UL);
3076 hp->tcvregs = (hpreg_base + 0x7000UL);
3078 #ifdef CONFIG_SPARC
3079 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3080 if (hp->hm_revision == 0xff)
3081 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3082 #else
3083 /* works with this on non-sparc hosts */
3084 hp->hm_revision = 0x20;
3085 #endif
3087 /* Now enable the feature flags we can. */
3088 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3089 hp->happy_flags = HFLAG_20_21;
3090 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3091 hp->happy_flags = HFLAG_NOT_A0;
3093 if (qp != NULL)
3094 hp->happy_flags |= HFLAG_QUATTRO;
3096 /* And of course, indicate this is PCI. */
3097 hp->happy_flags |= HFLAG_PCI;
3099 #ifdef CONFIG_SPARC
3100 /* Assume PCI happy meals can handle all burst sizes. */
3101 hp->happy_bursts = DMA_BURSTBITS;
3102 #endif
3104 hp->happy_block = (struct hmeal_init_block *)
3105 dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &hp->hblock_dvma, GFP_KERNEL);
3107 err = -ENODEV;
3108 if (!hp->happy_block) {
3109 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3110 goto err_out_iounmap;
3113 hp->linkcheck = 0;
3114 hp->timer_state = asleep;
3115 hp->timer_ticks = 0;
3117 init_timer(&hp->happy_timer);
3119 hp->dev = dev;
3120 dev->netdev_ops = &hme_netdev_ops;
3121 dev->watchdog_timeo = 5*HZ;
3122 dev->ethtool_ops = &hme_ethtool_ops;
3123 dev->irq = pdev->irq;
3124 dev->dma = 0;
3126 /* Happy Meal can do it all... */
3127 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3129 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3130 /* Hook up PCI register/descriptor accessors. */
3131 hp->read_desc32 = pci_hme_read_desc32;
3132 hp->write_txd = pci_hme_write_txd;
3133 hp->write_rxd = pci_hme_write_rxd;
3134 hp->read32 = pci_hme_read32;
3135 hp->write32 = pci_hme_write32;
3136 #endif
3138 /* Grrr, Happy Meal comes up by default not advertising
3139 * full duplex 100baseT capabilities, fix this.
3141 spin_lock_irq(&hp->happy_lock);
3142 happy_meal_set_initial_advertisement(hp);
3143 spin_unlock_irq(&hp->happy_lock);
3145 if (register_netdev(hp->dev)) {
3146 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3147 "aborting.\n");
3148 goto err_out_iounmap;
3151 dev_set_drvdata(&pdev->dev, hp);
3153 if (!qfe_slot) {
3154 struct pci_dev *qpdev = qp->quattro_dev;
3156 prom_name[0] = 0;
3157 if (!strncmp(dev->name, "eth", 3)) {
3158 int i = simple_strtoul(dev->name + 3, NULL, 10);
3159 sprintf(prom_name, "-%d", i + 3);
3161 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3162 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3163 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3164 printk("DEC 21153 PCI Bridge\n");
3165 else
3166 printk("unknown bridge %04x.%04x\n",
3167 qpdev->vendor, qpdev->device);
3170 if (qfe_slot != -1)
3171 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3172 dev->name, qfe_slot);
3173 else
3174 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3175 dev->name);
3177 printk("%pM\n", dev->dev_addr);
3179 return 0;
3181 err_out_iounmap:
3182 iounmap(hp->gregs);
3184 err_out_free_res:
3185 pci_release_regions(pdev);
3187 err_out_clear_quattro:
3188 if (qp != NULL)
3189 qp->happy_meals[qfe_slot] = NULL;
3191 free_netdev(dev);
3193 err_out:
3194 return err;
3197 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3199 struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3200 struct net_device *net_dev = hp->dev;
3202 unregister_netdev(net_dev);
3204 dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3205 hp->happy_block, hp->hblock_dvma);
3206 iounmap(hp->gregs);
3207 pci_release_regions(hp->happy_dev);
3209 free_netdev(net_dev);
3211 dev_set_drvdata(&pdev->dev, NULL);
3214 static struct pci_device_id happymeal_pci_ids[] = {
3215 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3216 { } /* Terminating entry */
3219 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3221 static struct pci_driver hme_pci_driver = {
3222 .name = "hme",
3223 .id_table = happymeal_pci_ids,
3224 .probe = happy_meal_pci_probe,
3225 .remove = __devexit_p(happy_meal_pci_remove),
3228 static int __init happy_meal_pci_init(void)
3230 return pci_register_driver(&hme_pci_driver);
3233 static void happy_meal_pci_exit(void)
3235 pci_unregister_driver(&hme_pci_driver);
3237 while (qfe_pci_list) {
3238 struct quattro *qfe = qfe_pci_list;
3239 struct quattro *next = qfe->next;
3241 kfree(qfe);
3243 qfe_pci_list = next;
3247 #endif
3249 #ifdef CONFIG_SBUS
3250 static int __devinit hme_sbus_probe(struct of_device *op, const struct of_device_id *match)
3252 struct device_node *dp = op->node;
3253 const char *model = of_get_property(dp, "model", NULL);
3254 int is_qfe = (match->data != NULL);
3256 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3257 is_qfe = 1;
3259 return happy_meal_sbus_probe_one(op, is_qfe);
3262 static int __devexit hme_sbus_remove(struct of_device *op)
3264 struct happy_meal *hp = dev_get_drvdata(&op->dev);
3265 struct net_device *net_dev = hp->dev;
3267 unregister_netdev(net_dev);
3269 /* XXX qfe parent interrupt... */
3271 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3272 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3273 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3274 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3275 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3276 dma_free_coherent(hp->dma_dev,
3277 PAGE_SIZE,
3278 hp->happy_block,
3279 hp->hblock_dvma);
3281 free_netdev(net_dev);
3283 dev_set_drvdata(&op->dev, NULL);
3285 return 0;
3288 static const struct of_device_id hme_sbus_match[] = {
3290 .name = "SUNW,hme",
3293 .name = "SUNW,qfe",
3294 .data = (void *) 1,
3297 .name = "qfe",
3298 .data = (void *) 1,
3303 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3305 static struct of_platform_driver hme_sbus_driver = {
3306 .name = "hme",
3307 .match_table = hme_sbus_match,
3308 .probe = hme_sbus_probe,
3309 .remove = __devexit_p(hme_sbus_remove),
3312 static int __init happy_meal_sbus_init(void)
3314 int err;
3316 err = of_register_driver(&hme_sbus_driver, &of_bus_type);
3317 if (!err)
3318 err = quattro_sbus_register_irqs();
3320 return err;
3323 static void happy_meal_sbus_exit(void)
3325 of_unregister_driver(&hme_sbus_driver);
3326 quattro_sbus_free_irqs();
3328 while (qfe_sbus_list) {
3329 struct quattro *qfe = qfe_sbus_list;
3330 struct quattro *next = qfe->next;
3332 kfree(qfe);
3334 qfe_sbus_list = next;
3337 #endif
3339 static int __init happy_meal_probe(void)
3341 int err = 0;
3343 #ifdef CONFIG_SBUS
3344 err = happy_meal_sbus_init();
3345 #endif
3346 #ifdef CONFIG_PCI
3347 if (!err) {
3348 err = happy_meal_pci_init();
3349 #ifdef CONFIG_SBUS
3350 if (err)
3351 happy_meal_sbus_exit();
3352 #endif
3354 #endif
3356 return err;
3360 static void __exit happy_meal_exit(void)
3362 #ifdef CONFIG_SBUS
3363 happy_meal_sbus_exit();
3364 #endif
3365 #ifdef CONFIG_PCI
3366 happy_meal_pci_exit();
3367 #endif
3370 module_init(happy_meal_probe);
3371 module_exit(happy_meal_exit);