ath9k: fix max phy rate at rate control init
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / rc.c
blob297d762dc2532dbebdf7a7348e8ab09abb125b4f
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2011 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
20 #include "ath9k.h"
22 static const struct ath_rate_table ar5416_11na_ratetable = {
23 68,
24 8, /* MCS start */
26 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
27 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
28 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
29 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
30 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
31 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
32 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
33 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
34 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
35 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
36 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
37 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
38 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
39 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
40 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
41 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
42 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
43 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
44 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
45 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
46 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
47 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
48 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
49 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
50 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
51 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
52 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
53 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
54 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
55 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
56 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
57 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
58 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
59 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
60 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
61 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
62 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
63 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
64 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
65 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
66 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
67 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
68 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
70 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
71 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
72 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
73 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
74 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
75 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
76 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
77 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
78 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
79 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
80 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
81 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
82 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
83 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
84 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
85 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
86 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
87 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
88 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
89 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
90 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
91 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
92 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
93 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
94 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
95 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
96 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
97 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
98 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
99 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
100 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
101 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
102 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
103 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
104 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
105 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
106 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
107 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
108 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
109 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
110 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
111 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
112 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
113 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
114 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
115 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
116 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
117 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
118 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
119 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
120 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
121 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
122 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
123 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
124 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
125 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
126 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
127 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
128 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
129 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
130 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
131 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
132 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
133 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
134 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
135 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
136 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
137 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
138 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
139 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
140 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
141 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
142 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
143 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
144 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
145 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
146 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
147 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
148 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
149 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
150 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
151 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
152 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
153 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
154 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
155 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
156 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
157 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
158 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
159 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
160 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
161 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
163 50, /* probe interval */
164 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
167 /* 4ms frame limit not used for NG mode. The values filled
168 * for HT are the 64K max aggregate limit */
170 static const struct ath_rate_table ar5416_11ng_ratetable = {
172 12, /* MCS start */
174 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
175 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
176 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
177 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
178 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
179 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
180 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
181 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
182 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
183 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
184 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
185 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
186 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
187 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
188 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
189 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
190 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
191 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
192 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
193 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
194 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
195 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
196 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
197 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
198 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
199 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
200 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
201 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
202 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
203 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
204 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
205 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
206 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
207 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
208 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
209 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
210 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
211 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
212 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
213 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
214 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
215 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
216 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
217 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
218 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
219 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
220 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
221 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
222 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
223 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
224 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
225 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
226 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
227 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
228 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
229 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
230 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
231 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
232 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
233 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
234 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
235 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
236 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
237 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
238 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
239 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
240 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
241 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
242 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
243 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
244 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
245 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
246 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
247 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
248 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
249 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
250 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
251 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
252 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
253 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
254 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
255 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
256 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
257 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
258 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
259 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
260 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
261 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
262 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
263 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
264 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
265 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
266 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
267 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
268 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
269 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
270 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
271 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
272 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
273 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
274 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
275 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
276 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
277 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
278 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
279 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
280 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
281 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
282 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
283 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
284 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
285 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
286 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
287 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
288 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
289 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
290 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
291 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
292 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
293 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
294 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
295 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
296 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
297 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
298 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
299 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
300 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
301 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
302 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
303 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
304 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
305 224700, 20, 20, 8, 64, 65, 65 }, /* 270 Mb */
306 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
307 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
308 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
309 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
310 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
311 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
312 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
313 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
314 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
315 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
316 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
317 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
319 50, /* probe interval */
320 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
323 static const struct ath_rate_table ar5416_11a_ratetable = {
327 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
328 5400, 0, 12, 0},
329 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
330 7800, 1, 18, 0},
331 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
332 10000, 2, 24, 2},
333 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
334 13900, 3, 36, 2},
335 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
336 17300, 4, 48, 4},
337 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
338 23000, 5, 72, 4},
339 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
340 27400, 6, 96, 4},
341 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
342 29300, 7, 108, 4},
344 50, /* probe interval */
345 0, /* Phy rates allowed initially */
348 static const struct ath_rate_table ar5416_11g_ratetable = {
352 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
353 900, 0, 2, 0},
354 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
355 1900, 1, 4, 1},
356 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
357 4900, 2, 11, 2},
358 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
359 8100, 3, 22, 3},
360 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
361 5400, 4, 12, 4},
362 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
363 7800, 5, 18, 4},
364 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
365 10000, 6, 24, 6},
366 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
367 13900, 7, 36, 6},
368 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
369 17300, 8, 48, 8},
370 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
371 23000, 9, 72, 8},
372 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
373 27400, 10, 96, 8},
374 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 11, 108, 8},
377 50, /* probe interval */
378 0, /* Phy rates allowed initially */
381 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
382 struct ieee80211_tx_rate *rate)
384 int rix = 0, i = 0;
385 static const int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
387 if (!(rate->flags & IEEE80211_TX_RC_MCS))
388 return rate->idx;
390 while (i < ARRAY_SIZE(mcs_rix_off) && rate->idx > mcs_rix_off[i]) {
391 rix++; i++;
394 rix += rate->idx + rate_table->mcs_start;
396 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
397 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
398 rix = rate_table->info[rix].ht_index;
399 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
400 rix = rate_table->info[rix].sgi_index;
401 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
402 rix = rate_table->info[rix].cw40index;
404 return rix;
407 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
408 struct ath_rate_priv *ath_rc_priv)
410 u8 i, j, idx, idx_next;
412 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
413 for (j = 0; j <= i-1; j++) {
414 idx = ath_rc_priv->valid_rate_index[j];
415 idx_next = ath_rc_priv->valid_rate_index[j+1];
417 if (rate_table->info[idx].ratekbps >
418 rate_table->info[idx_next].ratekbps) {
419 ath_rc_priv->valid_rate_index[j] = idx_next;
420 ath_rc_priv->valid_rate_index[j+1] = idx;
426 static void ath_rc_init_valid_rate_idx(struct ath_rate_priv *ath_rc_priv)
428 u8 i;
430 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
431 ath_rc_priv->valid_rate_index[i] = 0;
434 static inline void ath_rc_set_valid_rate_idx(struct ath_rate_priv *ath_rc_priv,
435 u8 index, int valid_tx_rate)
437 BUG_ON(index > ath_rc_priv->rate_table_size);
438 ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
441 static inline
442 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
443 struct ath_rate_priv *ath_rc_priv,
444 u8 cur_valid_txrate,
445 u8 *next_idx)
447 u8 i;
449 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
450 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
451 *next_idx = ath_rc_priv->valid_rate_index[i+1];
452 return 1;
456 /* No more valid rates */
457 *next_idx = 0;
459 return 0;
462 /* Return true only for single stream */
464 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
466 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
467 return 0;
468 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
469 return 0;
470 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
471 return 0;
472 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
473 return 0;
474 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
475 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
476 return 0;
477 return 1;
480 static inline int
481 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
482 struct ath_rate_priv *ath_rc_priv,
483 u8 cur_valid_txrate, u8 *next_idx)
485 int8_t i;
487 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
488 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
489 *next_idx = ath_rc_priv->valid_rate_index[i-1];
490 return 1;
494 return 0;
497 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
498 const struct ath_rate_table *rate_table,
499 u32 capflag)
501 u8 i, hi = 0;
503 for (i = 0; i < rate_table->rate_cnt; i++) {
504 if (rate_table->info[i].rate_flags & RC_LEGACY) {
505 u32 phy = rate_table->info[i].phy;
506 u8 valid_rate_count = 0;
508 if (!ath_rc_valid_phyrate(phy, capflag, 0))
509 continue;
511 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
513 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
514 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
515 ath_rc_set_valid_rate_idx(ath_rc_priv, i, 1);
516 hi = i;
520 return hi;
523 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
524 const struct ath_rate_table *rate_table,
525 struct ath_rateset *rateset,
526 u32 capflag)
528 u8 i, j, hi = 0;
530 /* Use intersection of working rates and valid rates */
531 for (i = 0; i < rateset->rs_nrates; i++) {
532 for (j = 0; j < rate_table->rate_cnt; j++) {
533 u32 phy = rate_table->info[j].phy;
534 u16 rate_flags = rate_table->info[j].rate_flags;
535 u8 rate = rateset->rs_rates[i];
536 u8 dot11rate = rate_table->info[j].dot11rate;
538 /* We allow a rate only if its valid and the
539 * capflag matches one of the validity
540 * (VALID/VALID_20/VALID_40) flags */
542 if ((rate == dot11rate) &&
543 (rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
544 WLAN_RC_CAP_MODE(capflag) &&
545 (rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
546 !WLAN_RC_PHY_HT(phy)) {
547 u8 valid_rate_count = 0;
549 if (!ath_rc_valid_phyrate(phy, capflag, 0))
550 continue;
552 valid_rate_count =
553 ath_rc_priv->valid_phy_ratecnt[phy];
555 ath_rc_priv->valid_phy_rateidx[phy]
556 [valid_rate_count] = j;
557 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
558 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
559 hi = max(hi, j);
564 return hi;
567 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
568 const struct ath_rate_table *rate_table,
569 u8 *mcs_set, u32 capflag)
571 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
573 u8 i, j, hi = 0;
575 /* Use intersection of working rates and valid rates */
576 for (i = 0; i < rateset->rs_nrates; i++) {
577 for (j = 0; j < rate_table->rate_cnt; j++) {
578 u32 phy = rate_table->info[j].phy;
579 u16 rate_flags = rate_table->info[j].rate_flags;
580 u8 rate = rateset->rs_rates[i];
581 u8 dot11rate = rate_table->info[j].dot11rate;
583 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
584 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
585 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
586 continue;
588 if (!ath_rc_valid_phyrate(phy, capflag, 0))
589 continue;
591 ath_rc_priv->valid_phy_rateidx[phy]
592 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
593 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
594 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
595 hi = max(hi, j);
599 return hi;
602 /* Finds the highest rate index we can use */
603 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
604 struct ath_rate_priv *ath_rc_priv,
605 const struct ath_rate_table *rate_table,
606 int *is_probing)
608 u32 best_thruput, this_thruput, now_msec;
609 u8 rate, next_rate, best_rate, maxindex, minindex;
610 int8_t index = 0;
612 now_msec = jiffies_to_msecs(jiffies);
613 *is_probing = 0;
614 best_thruput = 0;
615 maxindex = ath_rc_priv->max_valid_rate-1;
616 minindex = 0;
617 best_rate = minindex;
620 * Try the higher rate first. It will reduce memory moving time
621 * if we have very good channel characteristics.
623 for (index = maxindex; index >= minindex ; index--) {
624 u8 per_thres;
626 rate = ath_rc_priv->valid_rate_index[index];
627 if (rate > ath_rc_priv->rate_max_phy)
628 continue;
631 * For TCP the average collision rate is around 11%,
632 * so we ignore PERs less than this. This is to
633 * prevent the rate we are currently using (whose
634 * PER might be in the 10-15 range because of TCP
635 * collisions) looking worse than the next lower
636 * rate whose PER has decayed close to 0. If we
637 * used to next lower rate, its PER would grow to
638 * 10-15 and we would be worse off then staying
639 * at the current rate.
641 per_thres = ath_rc_priv->per[rate];
642 if (per_thres < 12)
643 per_thres = 12;
645 this_thruput = rate_table->info[rate].user_ratekbps *
646 (100 - per_thres);
648 if (best_thruput <= this_thruput) {
649 best_thruput = this_thruput;
650 best_rate = rate;
654 rate = best_rate;
657 * Must check the actual rate (ratekbps) to account for
658 * non-monoticity of 11g's rate table
661 if (rate >= ath_rc_priv->rate_max_phy) {
662 rate = ath_rc_priv->rate_max_phy;
664 /* Probe the next allowed phy state */
665 if (ath_rc_get_nextvalid_txrate(rate_table,
666 ath_rc_priv, rate, &next_rate) &&
667 (now_msec - ath_rc_priv->probe_time >
668 rate_table->probe_interval) &&
669 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
670 rate = next_rate;
671 ath_rc_priv->probe_rate = rate;
672 ath_rc_priv->probe_time = now_msec;
673 ath_rc_priv->hw_maxretry_pktcnt = 0;
674 *is_probing = 1;
678 if (rate > (ath_rc_priv->rate_table_size - 1))
679 rate = ath_rc_priv->rate_table_size - 1;
681 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
682 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
683 return rate;
685 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
686 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
687 return rate;
689 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
690 return rate;
692 /* This should not happen */
693 WARN_ON(1);
695 rate = ath_rc_priv->valid_rate_index[0];
697 return rate;
700 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
701 struct ieee80211_tx_rate *rate,
702 struct ieee80211_tx_rate_control *txrc,
703 u8 tries, u8 rix, int rtsctsenable)
705 rate->count = tries;
706 rate->idx = rate_table->info[rix].ratecode;
708 if (txrc->short_preamble)
709 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
710 if (txrc->rts || rtsctsenable)
711 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
713 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
714 rate->flags |= IEEE80211_TX_RC_MCS;
715 if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
716 conf_is_ht40(&txrc->hw->conf))
717 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
718 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
719 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
723 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
724 const struct ath_rate_table *rate_table,
725 struct ieee80211_tx_info *tx_info)
727 struct ieee80211_tx_rate *rates = tx_info->control.rates;
728 int i = 0, rix = 0, cix, enable_g_protection = 0;
730 /* get the cix for the lowest valid rix */
731 for (i = 3; i >= 0; i--) {
732 if (rates[i].count && (rates[i].idx >= 0)) {
733 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
734 break;
737 cix = rate_table->info[rix].ctrl_rate;
739 /* All protection frames are transmited at 2Mb/s for 802.11g,
740 * otherwise we transmit them at 1Mb/s */
741 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
742 !conf_is_ht(&sc->hw->conf))
743 enable_g_protection = 1;
746 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
747 * just CTS. Note that this is only done for OFDM/HT unicast frames.
749 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
750 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
751 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
752 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
753 cix = rate_table->info[enable_g_protection].ctrl_rate;
756 tx_info->control.rts_cts_rate_idx = cix;
759 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
760 struct ieee80211_tx_rate_control *txrc)
762 struct ath_softc *sc = priv;
763 struct ath_rate_priv *ath_rc_priv = priv_sta;
764 const struct ath_rate_table *rate_table;
765 struct sk_buff *skb = txrc->skb;
766 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
767 struct ieee80211_tx_rate *rates = tx_info->control.rates;
768 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
769 __le16 fc = hdr->frame_control;
770 u8 try_per_rate, i = 0, rix;
771 int is_probe = 0;
773 if (rate_control_send_low(sta, priv_sta, txrc))
774 return;
777 * For Multi Rate Retry we use a different number of
778 * retry attempt counts. This ends up looking like this:
780 * MRR[0] = 4
781 * MRR[1] = 4
782 * MRR[2] = 4
783 * MRR[3] = 8
786 try_per_rate = 4;
788 rate_table = ath_rc_priv->rate_table;
789 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
792 * If we're in HT mode and both us and our peer supports LDPC.
793 * We don't need to check our own device's capabilities as our own
794 * ht capabilities would have already been intersected with our peer's.
796 if (conf_is_ht(&sc->hw->conf) &&
797 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
798 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
800 if (conf_is_ht(&sc->hw->conf) &&
801 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
802 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
804 if (is_probe) {
805 /* set one try for probe rates. For the
806 * probes don't enable rts */
807 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
808 1, rix, 0);
810 /* Get the next tried/allowed rate. No RTS for the next series
811 * after the probe rate
813 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
814 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
815 try_per_rate, rix, 0);
817 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
818 } else {
819 /* Set the chosen rate. No RTS for first series entry. */
820 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
821 try_per_rate, rix, 0);
824 /* Fill in the other rates for multirate retry */
825 for ( ; i < 4; i++) {
826 /* Use twice the number of tries for the last MRR segment. */
827 if (i + 1 == 4)
828 try_per_rate = 8;
830 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
831 /* All other rates in the series have RTS enabled */
832 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
833 try_per_rate, rix, 1);
837 * NB:Change rate series to enable aggregation when operating
838 * at lower MCS rates. When first rate in series is MCS2
839 * in HT40 @ 2.4GHz, series should look like:
841 * {MCS2, MCS1, MCS0, MCS0}.
843 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
844 * look like:
846 * {MCS3, MCS2, MCS1, MCS1}
848 * So, set fourth rate in series to be same as third one for
849 * above conditions.
851 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
852 (conf_is_ht(&sc->hw->conf))) {
853 u8 dot11rate = rate_table->info[rix].dot11rate;
854 u8 phy = rate_table->info[rix].phy;
855 if (i == 4 &&
856 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
857 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
858 rates[3].idx = rates[2].idx;
859 rates[3].flags = rates[2].flags;
864 * Force hardware to use computed duration for next
865 * fragment by disabling multi-rate retry, which
866 * updates duration based on the multi-rate duration table.
868 * FIXME: Fix duration
870 if (ieee80211_has_morefrags(fc) ||
871 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
872 rates[1].count = rates[2].count = rates[3].count = 0;
873 rates[1].idx = rates[2].idx = rates[3].idx = 0;
874 rates[0].count = ATH_TXMAXTRY;
877 /* Setup RTS/CTS */
878 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
881 static void ath_rc_update_per(struct ath_softc *sc,
882 const struct ath_rate_table *rate_table,
883 struct ath_rate_priv *ath_rc_priv,
884 struct ieee80211_tx_info *tx_info,
885 int tx_rate, int xretries, int retries,
886 u32 now_msec)
888 int count, n_bad_frames;
889 u8 last_per;
890 static const u32 nretry_to_per_lookup[10] = {
891 100 * 0 / 1,
892 100 * 1 / 4,
893 100 * 1 / 2,
894 100 * 3 / 4,
895 100 * 4 / 5,
896 100 * 5 / 6,
897 100 * 6 / 7,
898 100 * 7 / 8,
899 100 * 8 / 9,
900 100 * 9 / 10
903 last_per = ath_rc_priv->per[tx_rate];
904 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
906 if (xretries) {
907 if (xretries == 1) {
908 ath_rc_priv->per[tx_rate] += 30;
909 if (ath_rc_priv->per[tx_rate] > 100)
910 ath_rc_priv->per[tx_rate] = 100;
911 } else {
912 /* xretries == 2 */
913 count = ARRAY_SIZE(nretry_to_per_lookup);
914 if (retries >= count)
915 retries = count - 1;
917 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
918 ath_rc_priv->per[tx_rate] =
919 (u8)(last_per - (last_per >> 3) + (100 >> 3));
922 /* xretries == 1 or 2 */
924 if (ath_rc_priv->probe_rate == tx_rate)
925 ath_rc_priv->probe_rate = 0;
927 } else { /* xretries == 0 */
928 count = ARRAY_SIZE(nretry_to_per_lookup);
929 if (retries >= count)
930 retries = count - 1;
932 if (n_bad_frames) {
933 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
934 * Assuming that n_frames is not 0. The current PER
935 * from the retries is 100 * retries / (retries+1),
936 * since the first retries attempts failed, and the
937 * next one worked. For the one that worked,
938 * n_bad_frames subframes out of n_frames wored,
939 * so the PER for that part is
940 * 100 * n_bad_frames / n_frames, and it contributes
941 * 100 * n_bad_frames / (n_frames * (retries+1)) to
942 * the above PER. The expression below is a
943 * simplified version of the sum of these two terms.
945 if (tx_info->status.ampdu_len > 0) {
946 int n_frames, n_bad_tries;
947 u8 cur_per, new_per;
949 n_bad_tries = retries * tx_info->status.ampdu_len +
950 n_bad_frames;
951 n_frames = tx_info->status.ampdu_len * (retries + 1);
952 cur_per = (100 * n_bad_tries / n_frames) >> 3;
953 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
954 ath_rc_priv->per[tx_rate] = new_per;
956 } else {
957 ath_rc_priv->per[tx_rate] =
958 (u8)(last_per - (last_per >> 3) +
959 (nretry_to_per_lookup[retries] >> 3));
964 * If we got at most one retry then increase the max rate if
965 * this was a probe. Otherwise, ignore the probe.
967 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
968 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
970 * Since we probed with just a single attempt,
971 * any retries means the probe failed. Also,
972 * if the attempt worked, but more than half
973 * the subframes were bad then also consider
974 * the probe a failure.
976 ath_rc_priv->probe_rate = 0;
977 } else {
978 u8 probe_rate = 0;
980 ath_rc_priv->rate_max_phy =
981 ath_rc_priv->probe_rate;
982 probe_rate = ath_rc_priv->probe_rate;
984 if (ath_rc_priv->per[probe_rate] > 30)
985 ath_rc_priv->per[probe_rate] = 20;
987 ath_rc_priv->probe_rate = 0;
990 * Since this probe succeeded, we allow the next
991 * probe twice as soon. This allows the maxRate
992 * to move up faster if the probes are
993 * successful.
995 ath_rc_priv->probe_time =
996 now_msec - rate_table->probe_interval / 2;
1000 if (retries > 0) {
1002 * Don't update anything. We don't know if
1003 * this was because of collisions or poor signal.
1005 ath_rc_priv->hw_maxretry_pktcnt = 0;
1006 } else {
1008 * It worked with no retries. First ignore bogus (small)
1009 * rssi_ack values.
1011 if (tx_rate == ath_rc_priv->rate_max_phy &&
1012 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1013 ath_rc_priv->hw_maxretry_pktcnt++;
1020 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
1021 int xretries, int retries, u8 per)
1023 struct ath_rc_stats *stats = &rc->rcstats[rix];
1025 stats->xretries += xretries;
1026 stats->retries += retries;
1027 stats->per = per;
1030 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1031 If you can make sense of all this, you really need to go out more. */
1033 static void ath_rc_update_ht(struct ath_softc *sc,
1034 struct ath_rate_priv *ath_rc_priv,
1035 struct ieee80211_tx_info *tx_info,
1036 int tx_rate, int xretries, int retries)
1038 u32 now_msec = jiffies_to_msecs(jiffies);
1039 int rate;
1040 u8 last_per;
1041 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1042 int size = ath_rc_priv->rate_table_size;
1044 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1045 return;
1047 last_per = ath_rc_priv->per[tx_rate];
1049 /* Update PER first */
1050 ath_rc_update_per(sc, rate_table, ath_rc_priv,
1051 tx_info, tx_rate, xretries,
1052 retries, now_msec);
1055 * If this rate looks bad (high PER) then stop using it for
1056 * a while (except if we are probing).
1058 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1059 rate_table->info[tx_rate].ratekbps <=
1060 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1061 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1062 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1064 /* Don't probe for a little while. */
1065 ath_rc_priv->probe_time = now_msec;
1068 /* Make sure the rates below this have lower PER */
1069 /* Monotonicity is kept only for rates below the current rate. */
1070 if (ath_rc_priv->per[tx_rate] < last_per) {
1071 for (rate = tx_rate - 1; rate >= 0; rate--) {
1073 if (ath_rc_priv->per[rate] >
1074 ath_rc_priv->per[rate+1]) {
1075 ath_rc_priv->per[rate] =
1076 ath_rc_priv->per[rate+1];
1081 /* Maintain monotonicity for rates above the current rate */
1082 for (rate = tx_rate; rate < size - 1; rate++) {
1083 if (ath_rc_priv->per[rate+1] <
1084 ath_rc_priv->per[rate])
1085 ath_rc_priv->per[rate+1] =
1086 ath_rc_priv->per[rate];
1089 /* Every so often, we reduce the thresholds
1090 * and PER (different for CCK and OFDM). */
1091 if (now_msec - ath_rc_priv->per_down_time >=
1092 rate_table->probe_interval) {
1093 for (rate = 0; rate < size; rate++) {
1094 ath_rc_priv->per[rate] =
1095 7 * ath_rc_priv->per[rate] / 8;
1098 ath_rc_priv->per_down_time = now_msec;
1101 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1102 ath_rc_priv->per[tx_rate]);
1107 static void ath_rc_tx_status(struct ath_softc *sc,
1108 struct ath_rate_priv *ath_rc_priv,
1109 struct ieee80211_tx_info *tx_info,
1110 int final_ts_idx, int xretries, int long_retry)
1112 const struct ath_rate_table *rate_table;
1113 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1114 u8 flags;
1115 u32 i = 0, rix;
1117 rate_table = ath_rc_priv->rate_table;
1120 * If the first rate is not the final index, there
1121 * are intermediate rate failures to be processed.
1123 if (final_ts_idx != 0) {
1124 /* Process intermediate rates that failed.*/
1125 for (i = 0; i < final_ts_idx ; i++) {
1126 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1127 flags = rates[i].flags;
1129 /* If HT40 and we have switched mode from
1130 * 40 to 20 => don't update */
1132 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1133 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1134 return;
1136 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1137 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1138 rix, xretries ? 1 : 2,
1139 rates[i].count);
1142 } else {
1144 * Handle the special case of MIMO PS burst, where the second
1145 * aggregate is sent out with only one rate and one try.
1146 * Treating it as an excessive retry penalizes the rate
1147 * inordinately.
1149 if (rates[0].count == 1 && xretries == 1)
1150 xretries = 2;
1153 flags = rates[i].flags;
1155 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1156 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1157 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1158 return;
1160 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1161 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1164 static const
1165 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1166 enum ieee80211_band band,
1167 bool is_ht)
1169 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1171 switch(band) {
1172 case IEEE80211_BAND_2GHZ:
1173 if (is_ht)
1174 return &ar5416_11ng_ratetable;
1175 return &ar5416_11g_ratetable;
1176 case IEEE80211_BAND_5GHZ:
1177 if (is_ht)
1178 return &ar5416_11na_ratetable;
1179 return &ar5416_11a_ratetable;
1180 default:
1181 ath_dbg(common, ATH_DBG_CONFIG, "Invalid band\n");
1182 return NULL;
1186 static void ath_rc_init(struct ath_softc *sc,
1187 struct ath_rate_priv *ath_rc_priv,
1188 struct ieee80211_supported_band *sband,
1189 struct ieee80211_sta *sta,
1190 const struct ath_rate_table *rate_table)
1192 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1193 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1194 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1195 u8 i, j, k, hi = 0, hthi = 0;
1197 /* Initial rate table size. Will change depending
1198 * on the working rate set */
1199 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1201 /* Initialize thresholds according to the global rate table */
1202 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1203 ath_rc_priv->per[i] = 0;
1206 /* Determine the valid rates */
1207 ath_rc_init_valid_rate_idx(ath_rc_priv);
1209 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1210 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1211 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1212 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1215 if (!rateset->rs_nrates) {
1216 /* No working rate, just initialize valid rates */
1217 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1218 ath_rc_priv->ht_cap);
1219 } else {
1220 /* Use intersection of working rates and valid rates */
1221 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1222 rateset, ath_rc_priv->ht_cap);
1223 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1224 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1225 rate_table,
1226 ht_mcs,
1227 ath_rc_priv->ht_cap);
1229 hi = max(hi, hthi);
1232 ath_rc_priv->rate_table_size = hi + 1;
1233 ath_rc_priv->rate_max_phy = 0;
1234 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1236 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1237 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1238 ath_rc_priv->valid_rate_index[k++] =
1239 ath_rc_priv->valid_phy_rateidx[i][j];
1242 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1243 || !ath_rc_priv->valid_phy_ratecnt[i])
1244 continue;
1246 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1248 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1249 BUG_ON(k > RATE_TABLE_SIZE);
1251 ath_rc_priv->max_valid_rate = k;
1252 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1253 ath_rc_priv->rate_max_phy = (k > 4) ?
1254 ath_rc_priv->valid_rate_index[k-4] :
1255 ath_rc_priv->valid_rate_index[k-1];
1256 ath_rc_priv->rate_table = rate_table;
1258 ath_dbg(common, ATH_DBG_CONFIG,
1259 "RC Initialized with capabilities: 0x%x\n",
1260 ath_rc_priv->ht_cap);
1263 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1264 bool is_cw40, bool is_sgi)
1266 u8 caps = 0;
1268 if (sta->ht_cap.ht_supported) {
1269 caps = WLAN_RC_HT_FLAG;
1270 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1271 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1272 else if (sta->ht_cap.mcs.rx_mask[1])
1273 caps |= WLAN_RC_DS_FLAG;
1274 if (is_cw40)
1275 caps |= WLAN_RC_40_FLAG;
1276 if (is_sgi)
1277 caps |= WLAN_RC_SGI_FLAG;
1280 return caps;
1283 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an,
1284 u8 tidno)
1286 struct ath_atx_tid *txtid;
1288 if (!(sc->sc_flags & SC_OP_TXAGGR))
1289 return false;
1291 txtid = ATH_AN_2_TID(an, tidno);
1293 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1294 return true;
1295 return false;
1299 /***********************************/
1300 /* mac80211 Rate Control callbacks */
1301 /***********************************/
1303 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1305 struct ath_rc_stats *stats;
1307 stats = &rc->rcstats[final_rate];
1308 stats->success++;
1312 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1313 struct ieee80211_sta *sta, void *priv_sta,
1314 struct sk_buff *skb)
1316 struct ath_softc *sc = priv;
1317 struct ath_rate_priv *ath_rc_priv = priv_sta;
1318 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1319 struct ieee80211_hdr *hdr;
1320 int final_ts_idx = 0, tx_status = 0;
1321 int long_retry = 0;
1322 __le16 fc;
1323 int i;
1325 hdr = (struct ieee80211_hdr *)skb->data;
1326 fc = hdr->frame_control;
1327 for (i = 0; i < sc->hw->max_rates; i++) {
1328 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1329 if (!rate->count)
1330 break;
1332 final_ts_idx = i;
1333 long_retry = rate->count - 1;
1336 if (!priv_sta || !ieee80211_is_data(fc))
1337 return;
1339 /* This packet was aggregated but doesn't carry status info */
1340 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1341 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1342 return;
1344 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1345 return;
1347 if (!(tx_info->flags & IEEE80211_TX_STAT_AMPDU)) {
1348 tx_info->status.ampdu_ack_len =
1349 (tx_info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1350 tx_info->status.ampdu_len = 1;
1353 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1354 tx_status = 1;
1356 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1357 long_retry);
1359 /* Check if aggregation has to be enabled for this tid */
1360 if (conf_is_ht(&sc->hw->conf) &&
1361 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1362 if (ieee80211_is_data_qos(fc) &&
1363 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1364 u8 *qc, tid;
1365 struct ath_node *an;
1367 qc = ieee80211_get_qos_ctl(hdr);
1368 tid = qc[0] & 0xf;
1369 an = (struct ath_node *)sta->drv_priv;
1371 if(ath_tx_aggr_check(sc, an, tid))
1372 ieee80211_start_tx_ba_session(sta, tid, 0);
1376 ath_debug_stat_rc(ath_rc_priv,
1377 ath_rc_get_rateindex(ath_rc_priv->rate_table,
1378 &tx_info->status.rates[final_ts_idx]));
1381 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1382 struct ieee80211_sta *sta, void *priv_sta)
1384 struct ath_softc *sc = priv;
1385 struct ath_rate_priv *ath_rc_priv = priv_sta;
1386 const struct ath_rate_table *rate_table;
1387 bool is_cw40, is_sgi = false;
1388 int i, j = 0;
1390 for (i = 0; i < sband->n_bitrates; i++) {
1391 if (sta->supp_rates[sband->band] & BIT(i)) {
1392 ath_rc_priv->neg_rates.rs_rates[j]
1393 = (sband->bitrates[i].bitrate * 2) / 10;
1394 j++;
1397 ath_rc_priv->neg_rates.rs_nrates = j;
1399 if (sta->ht_cap.ht_supported) {
1400 for (i = 0, j = 0; i < 77; i++) {
1401 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1402 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1403 if (j == ATH_RATE_MAX)
1404 break;
1406 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1409 is_cw40 = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40);
1411 if (is_cw40)
1412 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1413 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1414 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1416 /* Choose rate table first */
1418 rate_table = ath_choose_rate_table(sc, sband->band,
1419 sta->ht_cap.ht_supported);
1421 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
1422 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1425 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1426 struct ieee80211_sta *sta, void *priv_sta,
1427 u32 changed, enum nl80211_channel_type oper_chan_type)
1429 struct ath_softc *sc = priv;
1430 struct ath_rate_priv *ath_rc_priv = priv_sta;
1431 const struct ath_rate_table *rate_table = NULL;
1432 bool oper_cw40 = false, oper_sgi;
1433 bool local_cw40 = !!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1434 bool local_sgi = !!(ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG);
1436 /* FIXME: Handle AP mode later when we support CWM */
1438 if (changed & IEEE80211_RC_HT_CHANGED) {
1439 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1440 return;
1442 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1443 oper_chan_type == NL80211_CHAN_HT40PLUS)
1444 oper_cw40 = true;
1446 if (oper_cw40)
1447 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1448 true : false;
1449 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1450 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1451 true : false;
1452 else
1453 oper_sgi = false;
1455 if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
1456 rate_table = ath_choose_rate_table(sc, sband->band,
1457 sta->ht_cap.ht_supported);
1458 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1459 oper_cw40, oper_sgi);
1460 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1462 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1463 "Operating HT Bandwidth changed to: %d\n",
1464 sc->hw->conf.channel_type);
1469 #ifdef CONFIG_ATH9K_DEBUGFS
1471 static int ath9k_debugfs_open(struct inode *inode, struct file *file)
1473 file->private_data = inode->i_private;
1474 return 0;
1477 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1478 size_t count, loff_t *ppos)
1480 struct ath_rate_priv *rc = file->private_data;
1481 char *buf;
1482 unsigned int len = 0, max;
1483 int i = 0;
1484 ssize_t retval;
1486 if (rc->rate_table == NULL)
1487 return 0;
1489 max = 80 + rc->rate_table->rate_cnt * 1024 + 1;
1490 buf = kmalloc(max, GFP_KERNEL);
1491 if (buf == NULL)
1492 return -ENOMEM;
1494 len += sprintf(buf, "%6s %6s %6s "
1495 "%10s %10s %10s %10s\n",
1496 "HT", "MCS", "Rate",
1497 "Success", "Retries", "XRetries", "PER");
1499 for (i = 0; i < rc->rate_table->rate_cnt; i++) {
1500 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1501 struct ath_rc_stats *stats = &rc->rcstats[i];
1502 char mcs[5];
1503 char htmode[5];
1504 int used_mcs = 0, used_htmode = 0;
1506 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1507 used_mcs = snprintf(mcs, 5, "%d",
1508 rc->rate_table->info[i].ratecode);
1510 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1511 used_htmode = snprintf(htmode, 5, "HT40");
1512 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1513 used_htmode = snprintf(htmode, 5, "HT20");
1514 else
1515 used_htmode = snprintf(htmode, 5, "????");
1518 mcs[used_mcs] = '\0';
1519 htmode[used_htmode] = '\0';
1521 len += snprintf(buf + len, max - len,
1522 "%6s %6s %3u.%d: "
1523 "%10u %10u %10u %10u\n",
1524 htmode,
1525 mcs,
1526 ratekbps / 1000,
1527 (ratekbps % 1000) / 100,
1528 stats->success,
1529 stats->retries,
1530 stats->xretries,
1531 stats->per);
1534 if (len > max)
1535 len = max;
1537 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1538 kfree(buf);
1539 return retval;
1542 static const struct file_operations fops_rcstat = {
1543 .read = read_file_rcstat,
1544 .open = ath9k_debugfs_open,
1545 .owner = THIS_MODULE
1548 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1549 struct dentry *dir)
1551 struct ath_rate_priv *rc = priv_sta;
1552 debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1555 #endif /* CONFIG_ATH9K_DEBUGFS */
1557 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1559 return hw->priv;
1562 static void ath_rate_free(void *priv)
1564 return;
1567 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1569 struct ath_softc *sc = priv;
1570 struct ath_rate_priv *rate_priv;
1572 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1573 if (!rate_priv) {
1574 ath_err(ath9k_hw_common(sc->sc_ah),
1575 "Unable to allocate private rc structure\n");
1576 return NULL;
1579 return rate_priv;
1582 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1583 void *priv_sta)
1585 struct ath_rate_priv *rate_priv = priv_sta;
1586 kfree(rate_priv);
1589 static struct rate_control_ops ath_rate_ops = {
1590 .module = NULL,
1591 .name = "ath9k_rate_control",
1592 .tx_status = ath_tx_status,
1593 .get_rate = ath_get_rate,
1594 .rate_init = ath_rate_init,
1595 .rate_update = ath_rate_update,
1596 .alloc = ath_rate_alloc,
1597 .free = ath_rate_free,
1598 .alloc_sta = ath_rate_alloc_sta,
1599 .free_sta = ath_rate_free_sta,
1600 #ifdef CONFIG_ATH9K_DEBUGFS
1601 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1602 #endif
1605 int ath_rate_control_register(void)
1607 return ieee80211_rate_control_register(&ath_rate_ops);
1610 void ath_rate_control_unregister(void)
1612 ieee80211_rate_control_unregister(&ath_rate_ops);