2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
22 #include "transaction.h"
23 #include "print-tree.h"
26 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
27 *root
, struct btrfs_path
*path
, int level
);
28 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_key
*ins_key
,
30 struct btrfs_path
*path
, int data_size
, int extend
);
31 static int push_node_left(struct btrfs_trans_handle
*trans
,
32 struct btrfs_root
*root
, struct extent_buffer
*dst
,
33 struct extent_buffer
*src
, int empty
);
34 static int balance_node_right(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
,
36 struct extent_buffer
*dst_buf
,
37 struct extent_buffer
*src_buf
);
38 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
39 struct btrfs_path
*path
, int level
, int slot
);
40 static int setup_items_for_insert(struct btrfs_trans_handle
*trans
,
41 struct btrfs_root
*root
, struct btrfs_path
*path
,
42 struct btrfs_key
*cpu_key
, u32
*data_size
,
43 u32 total_data
, u32 total_size
, int nr
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 struct btrfs_path
*path
;
49 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
56 * set all locked nodes in the path to blocking locks. This should
57 * be done before scheduling
59 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
62 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
63 if (p
->nodes
[i
] && p
->locks
[i
])
64 btrfs_set_lock_blocking(p
->nodes
[i
]);
69 * reset all the locked nodes in the patch to spinning locks.
71 * held is used to keep lockdep happy, when lockdep is enabled
72 * we set held to a blocking lock before we go around and
73 * retake all the spinlocks in the path. You can safely use NULL
76 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
77 struct extent_buffer
*held
)
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82 /* lockdep really cares that we take all of these spinlocks
83 * in the right order. If any of the locks in the path are not
84 * currently blocking, it is going to complain. So, make really
85 * really sure by forcing the path to blocking before we clear
89 btrfs_set_lock_blocking(held
);
90 btrfs_set_path_blocking(p
);
93 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
94 if (p
->nodes
[i
] && p
->locks
[i
])
95 btrfs_clear_lock_blocking(p
->nodes
[i
]);
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 btrfs_clear_lock_blocking(held
);
104 /* this also releases the path */
105 void btrfs_free_path(struct btrfs_path
*p
)
107 btrfs_release_path(NULL
, p
);
108 kmem_cache_free(btrfs_path_cachep
, p
);
112 * path release drops references on the extent buffers in the path
113 * and it drops any locks held by this path
115 * It is safe to call this on paths that no locks or extent buffers held.
117 noinline
void btrfs_release_path(struct btrfs_root
*root
, struct btrfs_path
*p
)
121 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
126 btrfs_tree_unlock(p
->nodes
[i
]);
129 free_extent_buffer(p
->nodes
[i
]);
135 * safely gets a reference on the root node of a tree. A lock
136 * is not taken, so a concurrent writer may put a different node
137 * at the root of the tree. See btrfs_lock_root_node for the
140 * The extent buffer returned by this has a reference taken, so
141 * it won't disappear. It may stop being the root of the tree
142 * at any time because there are no locks held.
144 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
146 struct extent_buffer
*eb
;
147 spin_lock(&root
->node_lock
);
149 extent_buffer_get(eb
);
150 spin_unlock(&root
->node_lock
);
154 /* loop around taking references on and locking the root node of the
155 * tree until you end up with a lock on the root. A locked buffer
156 * is returned, with a reference held.
158 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
160 struct extent_buffer
*eb
;
163 eb
= btrfs_root_node(root
);
166 spin_lock(&root
->node_lock
);
167 if (eb
== root
->node
) {
168 spin_unlock(&root
->node_lock
);
171 spin_unlock(&root
->node_lock
);
173 btrfs_tree_unlock(eb
);
174 free_extent_buffer(eb
);
179 /* cowonly root (everything not a reference counted cow subvolume), just get
180 * put onto a simple dirty list. transaction.c walks this to make sure they
181 * get properly updated on disk.
183 static void add_root_to_dirty_list(struct btrfs_root
*root
)
185 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
186 list_add(&root
->dirty_list
,
187 &root
->fs_info
->dirty_cowonly_roots
);
192 * used by snapshot creation to make a copy of a root for a tree with
193 * a given objectid. The buffer with the new root node is returned in
194 * cow_ret, and this func returns zero on success or a negative error code.
196 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
197 struct btrfs_root
*root
,
198 struct extent_buffer
*buf
,
199 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
201 struct extent_buffer
*cow
;
205 struct btrfs_disk_key disk_key
;
207 WARN_ON(root
->ref_cows
&& trans
->transid
!=
208 root
->fs_info
->running_transaction
->transid
);
209 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
211 level
= btrfs_header_level(buf
);
212 nritems
= btrfs_header_nritems(buf
);
214 btrfs_item_key(buf
, &disk_key
, 0);
216 btrfs_node_key(buf
, &disk_key
, 0);
218 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
219 new_root_objectid
, &disk_key
, level
,
224 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
225 btrfs_set_header_bytenr(cow
, cow
->start
);
226 btrfs_set_header_generation(cow
, trans
->transid
);
227 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
228 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
229 BTRFS_HEADER_FLAG_RELOC
);
230 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
231 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
233 btrfs_set_header_owner(cow
, new_root_objectid
);
235 write_extent_buffer(cow
, root
->fs_info
->fsid
,
236 (unsigned long)btrfs_header_fsid(cow
),
239 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
240 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
241 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
243 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
248 btrfs_mark_buffer_dirty(cow
);
254 * check if the tree block can be shared by multiple trees
256 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
257 struct extent_buffer
*buf
)
260 * Tree blocks not in refernece counted trees and tree roots
261 * are never shared. If a block was allocated after the last
262 * snapshot and the block was not allocated by tree relocation,
263 * we know the block is not shared.
265 if (root
->ref_cows
&&
266 buf
!= root
->node
&& buf
!= root
->commit_root
&&
267 (btrfs_header_generation(buf
) <=
268 btrfs_root_last_snapshot(&root
->root_item
) ||
269 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
271 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
272 if (root
->ref_cows
&&
273 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
279 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
280 struct btrfs_root
*root
,
281 struct extent_buffer
*buf
,
282 struct extent_buffer
*cow
)
291 * Backrefs update rules:
293 * Always use full backrefs for extent pointers in tree block
294 * allocated by tree relocation.
296 * If a shared tree block is no longer referenced by its owner
297 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
298 * use full backrefs for extent pointers in tree block.
300 * If a tree block is been relocating
301 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
302 * use full backrefs for extent pointers in tree block.
303 * The reason for this is some operations (such as drop tree)
304 * are only allowed for blocks use full backrefs.
307 if (btrfs_block_can_be_shared(root
, buf
)) {
308 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
309 buf
->len
, &refs
, &flags
);
314 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
315 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
316 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
321 owner
= btrfs_header_owner(buf
);
322 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
323 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
326 if ((owner
== root
->root_key
.objectid
||
327 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
328 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
329 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
332 if (root
->root_key
.objectid
==
333 BTRFS_TREE_RELOC_OBJECTID
) {
334 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
336 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
339 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
342 if (root
->root_key
.objectid
==
343 BTRFS_TREE_RELOC_OBJECTID
)
344 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
346 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
349 if (new_flags
!= 0) {
350 ret
= btrfs_set_disk_extent_flags(trans
, root
,
357 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
358 if (root
->root_key
.objectid
==
359 BTRFS_TREE_RELOC_OBJECTID
)
360 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
362 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
364 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
367 clean_tree_block(trans
, root
, buf
);
373 * does the dirty work in cow of a single block. The parent block (if
374 * supplied) is updated to point to the new cow copy. The new buffer is marked
375 * dirty and returned locked. If you modify the block it needs to be marked
378 * search_start -- an allocation hint for the new block
380 * empty_size -- a hint that you plan on doing more cow. This is the size in
381 * bytes the allocator should try to find free next to the block it returns.
382 * This is just a hint and may be ignored by the allocator.
384 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
385 struct btrfs_root
*root
,
386 struct extent_buffer
*buf
,
387 struct extent_buffer
*parent
, int parent_slot
,
388 struct extent_buffer
**cow_ret
,
389 u64 search_start
, u64 empty_size
)
391 struct btrfs_disk_key disk_key
;
392 struct extent_buffer
*cow
;
400 btrfs_assert_tree_locked(buf
);
402 WARN_ON(root
->ref_cows
&& trans
->transid
!=
403 root
->fs_info
->running_transaction
->transid
);
404 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
406 level
= btrfs_header_level(buf
);
409 btrfs_item_key(buf
, &disk_key
, 0);
411 btrfs_node_key(buf
, &disk_key
, 0);
413 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
415 parent_start
= parent
->start
;
421 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
422 root
->root_key
.objectid
, &disk_key
,
423 level
, search_start
, empty_size
);
427 /* cow is set to blocking by btrfs_init_new_buffer */
429 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
430 btrfs_set_header_bytenr(cow
, cow
->start
);
431 btrfs_set_header_generation(cow
, trans
->transid
);
432 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
433 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
434 BTRFS_HEADER_FLAG_RELOC
);
435 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
436 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
438 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
440 write_extent_buffer(cow
, root
->fs_info
->fsid
,
441 (unsigned long)btrfs_header_fsid(cow
),
444 update_ref_for_cow(trans
, root
, buf
, cow
);
446 if (buf
== root
->node
) {
447 WARN_ON(parent
&& parent
!= buf
);
448 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
449 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
450 parent_start
= buf
->start
;
454 spin_lock(&root
->node_lock
);
456 extent_buffer_get(cow
);
457 spin_unlock(&root
->node_lock
);
459 btrfs_free_tree_block(trans
, root
, buf
->start
, buf
->len
,
460 parent_start
, root
->root_key
.objectid
, level
);
461 free_extent_buffer(buf
);
462 add_root_to_dirty_list(root
);
464 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
465 parent_start
= parent
->start
;
469 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
470 btrfs_set_node_blockptr(parent
, parent_slot
,
472 btrfs_set_node_ptr_generation(parent
, parent_slot
,
474 btrfs_mark_buffer_dirty(parent
);
475 btrfs_free_tree_block(trans
, root
, buf
->start
, buf
->len
,
476 parent_start
, root
->root_key
.objectid
, level
);
479 btrfs_tree_unlock(buf
);
480 free_extent_buffer(buf
);
481 btrfs_mark_buffer_dirty(cow
);
486 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
487 struct btrfs_root
*root
,
488 struct extent_buffer
*buf
)
490 if (btrfs_header_generation(buf
) == trans
->transid
&&
491 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
492 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
493 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
499 * cows a single block, see __btrfs_cow_block for the real work.
500 * This version of it has extra checks so that a block isn't cow'd more than
501 * once per transaction, as long as it hasn't been written yet
503 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
504 struct btrfs_root
*root
, struct extent_buffer
*buf
,
505 struct extent_buffer
*parent
, int parent_slot
,
506 struct extent_buffer
**cow_ret
)
511 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
512 printk(KERN_CRIT
"trans %llu running %llu\n",
513 (unsigned long long)trans
->transid
,
515 root
->fs_info
->running_transaction
->transid
);
518 if (trans
->transid
!= root
->fs_info
->generation
) {
519 printk(KERN_CRIT
"trans %llu running %llu\n",
520 (unsigned long long)trans
->transid
,
521 (unsigned long long)root
->fs_info
->generation
);
525 if (!should_cow_block(trans
, root
, buf
)) {
530 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
533 btrfs_set_lock_blocking(parent
);
534 btrfs_set_lock_blocking(buf
);
536 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
537 parent_slot
, cow_ret
, search_start
, 0);
542 * helper function for defrag to decide if two blocks pointed to by a
543 * node are actually close by
545 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
547 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
549 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
555 * compare two keys in a memcmp fashion
557 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
561 btrfs_disk_key_to_cpu(&k1
, disk
);
563 return btrfs_comp_cpu_keys(&k1
, k2
);
567 * same as comp_keys only with two btrfs_key's
569 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
571 if (k1
->objectid
> k2
->objectid
)
573 if (k1
->objectid
< k2
->objectid
)
575 if (k1
->type
> k2
->type
)
577 if (k1
->type
< k2
->type
)
579 if (k1
->offset
> k2
->offset
)
581 if (k1
->offset
< k2
->offset
)
587 * this is used by the defrag code to go through all the
588 * leaves pointed to by a node and reallocate them so that
589 * disk order is close to key order
591 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
592 struct btrfs_root
*root
, struct extent_buffer
*parent
,
593 int start_slot
, int cache_only
, u64
*last_ret
,
594 struct btrfs_key
*progress
)
596 struct extent_buffer
*cur
;
599 u64 search_start
= *last_ret
;
609 int progress_passed
= 0;
610 struct btrfs_disk_key disk_key
;
612 parent_level
= btrfs_header_level(parent
);
613 if (cache_only
&& parent_level
!= 1)
616 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
618 if (trans
->transid
!= root
->fs_info
->generation
)
621 parent_nritems
= btrfs_header_nritems(parent
);
622 blocksize
= btrfs_level_size(root
, parent_level
- 1);
623 end_slot
= parent_nritems
;
625 if (parent_nritems
== 1)
628 btrfs_set_lock_blocking(parent
);
630 for (i
= start_slot
; i
< end_slot
; i
++) {
633 if (!parent
->map_token
) {
634 map_extent_buffer(parent
,
635 btrfs_node_key_ptr_offset(i
),
636 sizeof(struct btrfs_key_ptr
),
637 &parent
->map_token
, &parent
->kaddr
,
638 &parent
->map_start
, &parent
->map_len
,
641 btrfs_node_key(parent
, &disk_key
, i
);
642 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
646 blocknr
= btrfs_node_blockptr(parent
, i
);
647 gen
= btrfs_node_ptr_generation(parent
, i
);
649 last_block
= blocknr
;
652 other
= btrfs_node_blockptr(parent
, i
- 1);
653 close
= close_blocks(blocknr
, other
, blocksize
);
655 if (!close
&& i
< end_slot
- 2) {
656 other
= btrfs_node_blockptr(parent
, i
+ 1);
657 close
= close_blocks(blocknr
, other
, blocksize
);
660 last_block
= blocknr
;
663 if (parent
->map_token
) {
664 unmap_extent_buffer(parent
, parent
->map_token
,
666 parent
->map_token
= NULL
;
669 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
671 uptodate
= btrfs_buffer_uptodate(cur
, gen
);
674 if (!cur
|| !uptodate
) {
676 free_extent_buffer(cur
);
680 cur
= read_tree_block(root
, blocknr
,
682 } else if (!uptodate
) {
683 btrfs_read_buffer(cur
, gen
);
686 if (search_start
== 0)
687 search_start
= last_block
;
689 btrfs_tree_lock(cur
);
690 btrfs_set_lock_blocking(cur
);
691 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
694 (end_slot
- i
) * blocksize
));
696 btrfs_tree_unlock(cur
);
697 free_extent_buffer(cur
);
700 search_start
= cur
->start
;
701 last_block
= cur
->start
;
702 *last_ret
= search_start
;
703 btrfs_tree_unlock(cur
);
704 free_extent_buffer(cur
);
706 if (parent
->map_token
) {
707 unmap_extent_buffer(parent
, parent
->map_token
,
709 parent
->map_token
= NULL
;
715 * The leaf data grows from end-to-front in the node.
716 * this returns the address of the start of the last item,
717 * which is the stop of the leaf data stack
719 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
720 struct extent_buffer
*leaf
)
722 u32 nr
= btrfs_header_nritems(leaf
);
724 return BTRFS_LEAF_DATA_SIZE(root
);
725 return btrfs_item_offset_nr(leaf
, nr
- 1);
729 * extra debugging checks to make sure all the items in a key are
730 * well formed and in the proper order
732 static int check_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
735 struct extent_buffer
*parent
= NULL
;
736 struct extent_buffer
*node
= path
->nodes
[level
];
737 struct btrfs_disk_key parent_key
;
738 struct btrfs_disk_key node_key
;
741 struct btrfs_key cpukey
;
742 u32 nritems
= btrfs_header_nritems(node
);
744 if (path
->nodes
[level
+ 1])
745 parent
= path
->nodes
[level
+ 1];
747 slot
= path
->slots
[level
];
748 BUG_ON(nritems
== 0);
750 parent_slot
= path
->slots
[level
+ 1];
751 btrfs_node_key(parent
, &parent_key
, parent_slot
);
752 btrfs_node_key(node
, &node_key
, 0);
753 BUG_ON(memcmp(&parent_key
, &node_key
,
754 sizeof(struct btrfs_disk_key
)));
755 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
756 btrfs_header_bytenr(node
));
758 BUG_ON(nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
));
760 btrfs_node_key_to_cpu(node
, &cpukey
, slot
- 1);
761 btrfs_node_key(node
, &node_key
, slot
);
762 BUG_ON(comp_keys(&node_key
, &cpukey
) <= 0);
764 if (slot
< nritems
- 1) {
765 btrfs_node_key_to_cpu(node
, &cpukey
, slot
+ 1);
766 btrfs_node_key(node
, &node_key
, slot
);
767 BUG_ON(comp_keys(&node_key
, &cpukey
) >= 0);
773 * extra checking to make sure all the items in a leaf are
774 * well formed and in the proper order
776 static int check_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
779 struct extent_buffer
*leaf
= path
->nodes
[level
];
780 struct extent_buffer
*parent
= NULL
;
782 struct btrfs_key cpukey
;
783 struct btrfs_disk_key parent_key
;
784 struct btrfs_disk_key leaf_key
;
785 int slot
= path
->slots
[0];
787 u32 nritems
= btrfs_header_nritems(leaf
);
789 if (path
->nodes
[level
+ 1])
790 parent
= path
->nodes
[level
+ 1];
796 parent_slot
= path
->slots
[level
+ 1];
797 btrfs_node_key(parent
, &parent_key
, parent_slot
);
798 btrfs_item_key(leaf
, &leaf_key
, 0);
800 BUG_ON(memcmp(&parent_key
, &leaf_key
,
801 sizeof(struct btrfs_disk_key
)));
802 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
803 btrfs_header_bytenr(leaf
));
805 if (slot
!= 0 && slot
< nritems
- 1) {
806 btrfs_item_key(leaf
, &leaf_key
, slot
);
807 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
- 1);
808 if (comp_keys(&leaf_key
, &cpukey
) <= 0) {
809 btrfs_print_leaf(root
, leaf
);
810 printk(KERN_CRIT
"slot %d offset bad key\n", slot
);
813 if (btrfs_item_offset_nr(leaf
, slot
- 1) !=
814 btrfs_item_end_nr(leaf
, slot
)) {
815 btrfs_print_leaf(root
, leaf
);
816 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
820 if (slot
< nritems
- 1) {
821 btrfs_item_key(leaf
, &leaf_key
, slot
);
822 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
+ 1);
823 BUG_ON(comp_keys(&leaf_key
, &cpukey
) >= 0);
824 if (btrfs_item_offset_nr(leaf
, slot
) !=
825 btrfs_item_end_nr(leaf
, slot
+ 1)) {
826 btrfs_print_leaf(root
, leaf
);
827 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
831 BUG_ON(btrfs_item_offset_nr(leaf
, 0) +
832 btrfs_item_size_nr(leaf
, 0) != BTRFS_LEAF_DATA_SIZE(root
));
836 static noinline
int check_block(struct btrfs_root
*root
,
837 struct btrfs_path
*path
, int level
)
841 return check_leaf(root
, path
, level
);
842 return check_node(root
, path
, level
);
846 * search for key in the extent_buffer. The items start at offset p,
847 * and they are item_size apart. There are 'max' items in p.
849 * the slot in the array is returned via slot, and it points to
850 * the place where you would insert key if it is not found in
853 * slot may point to max if the key is bigger than all of the keys
855 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
857 int item_size
, struct btrfs_key
*key
,
864 struct btrfs_disk_key
*tmp
= NULL
;
865 struct btrfs_disk_key unaligned
;
866 unsigned long offset
;
867 char *map_token
= NULL
;
869 unsigned long map_start
= 0;
870 unsigned long map_len
= 0;
874 mid
= (low
+ high
) / 2;
875 offset
= p
+ mid
* item_size
;
877 if (!map_token
|| offset
< map_start
||
878 (offset
+ sizeof(struct btrfs_disk_key
)) >
879 map_start
+ map_len
) {
881 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
885 err
= map_private_extent_buffer(eb
, offset
,
886 sizeof(struct btrfs_disk_key
),
888 &map_start
, &map_len
, KM_USER0
);
891 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
894 read_extent_buffer(eb
, &unaligned
,
895 offset
, sizeof(unaligned
));
900 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
903 ret
= comp_keys(tmp
, key
);
912 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
918 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
923 * simple bin_search frontend that does the right thing for
926 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
927 int level
, int *slot
)
930 return generic_bin_search(eb
,
931 offsetof(struct btrfs_leaf
, items
),
932 sizeof(struct btrfs_item
),
933 key
, btrfs_header_nritems(eb
),
936 return generic_bin_search(eb
,
937 offsetof(struct btrfs_node
, ptrs
),
938 sizeof(struct btrfs_key_ptr
),
939 key
, btrfs_header_nritems(eb
),
945 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
946 int level
, int *slot
)
948 return bin_search(eb
, key
, level
, slot
);
951 /* given a node and slot number, this reads the blocks it points to. The
952 * extent buffer is returned with a reference taken (but unlocked).
953 * NULL is returned on error.
955 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
956 struct extent_buffer
*parent
, int slot
)
958 int level
= btrfs_header_level(parent
);
961 if (slot
>= btrfs_header_nritems(parent
))
966 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
967 btrfs_level_size(root
, level
- 1),
968 btrfs_node_ptr_generation(parent
, slot
));
972 * node level balancing, used to make sure nodes are in proper order for
973 * item deletion. We balance from the top down, so we have to make sure
974 * that a deletion won't leave an node completely empty later on.
976 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
977 struct btrfs_root
*root
,
978 struct btrfs_path
*path
, int level
)
980 struct extent_buffer
*right
= NULL
;
981 struct extent_buffer
*mid
;
982 struct extent_buffer
*left
= NULL
;
983 struct extent_buffer
*parent
= NULL
;
987 int orig_slot
= path
->slots
[level
];
988 int err_on_enospc
= 0;
994 mid
= path
->nodes
[level
];
996 WARN_ON(!path
->locks
[level
]);
997 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
999 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1001 if (level
< BTRFS_MAX_LEVEL
- 1)
1002 parent
= path
->nodes
[level
+ 1];
1003 pslot
= path
->slots
[level
+ 1];
1006 * deal with the case where there is only one pointer in the root
1007 * by promoting the node below to a root
1010 struct extent_buffer
*child
;
1012 if (btrfs_header_nritems(mid
) != 1)
1015 /* promote the child to a root */
1016 child
= read_node_slot(root
, mid
, 0);
1018 btrfs_tree_lock(child
);
1019 btrfs_set_lock_blocking(child
);
1020 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1023 spin_lock(&root
->node_lock
);
1025 spin_unlock(&root
->node_lock
);
1027 add_root_to_dirty_list(root
);
1028 btrfs_tree_unlock(child
);
1030 path
->locks
[level
] = 0;
1031 path
->nodes
[level
] = NULL
;
1032 clean_tree_block(trans
, root
, mid
);
1033 btrfs_tree_unlock(mid
);
1034 /* once for the path */
1035 free_extent_buffer(mid
);
1036 ret
= btrfs_free_tree_block(trans
, root
, mid
->start
, mid
->len
,
1037 0, root
->root_key
.objectid
, level
);
1038 /* once for the root ptr */
1039 free_extent_buffer(mid
);
1042 if (btrfs_header_nritems(mid
) >
1043 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1046 if (btrfs_header_nritems(mid
) < 2)
1049 left
= read_node_slot(root
, parent
, pslot
- 1);
1051 btrfs_tree_lock(left
);
1052 btrfs_set_lock_blocking(left
);
1053 wret
= btrfs_cow_block(trans
, root
, left
,
1054 parent
, pslot
- 1, &left
);
1060 right
= read_node_slot(root
, parent
, pslot
+ 1);
1062 btrfs_tree_lock(right
);
1063 btrfs_set_lock_blocking(right
);
1064 wret
= btrfs_cow_block(trans
, root
, right
,
1065 parent
, pslot
+ 1, &right
);
1072 /* first, try to make some room in the middle buffer */
1074 orig_slot
+= btrfs_header_nritems(left
);
1075 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1078 if (btrfs_header_nritems(mid
) < 2)
1083 * then try to empty the right most buffer into the middle
1086 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1087 if (wret
< 0 && wret
!= -ENOSPC
)
1089 if (btrfs_header_nritems(right
) == 0) {
1090 u64 bytenr
= right
->start
;
1091 u32 blocksize
= right
->len
;
1093 clean_tree_block(trans
, root
, right
);
1094 btrfs_tree_unlock(right
);
1095 free_extent_buffer(right
);
1097 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
+
1101 wret
= btrfs_free_tree_block(trans
, root
,
1102 bytenr
, blocksize
, 0,
1103 root
->root_key
.objectid
,
1108 struct btrfs_disk_key right_key
;
1109 btrfs_node_key(right
, &right_key
, 0);
1110 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1111 btrfs_mark_buffer_dirty(parent
);
1114 if (btrfs_header_nritems(mid
) == 1) {
1116 * we're not allowed to leave a node with one item in the
1117 * tree during a delete. A deletion from lower in the tree
1118 * could try to delete the only pointer in this node.
1119 * So, pull some keys from the left.
1120 * There has to be a left pointer at this point because
1121 * otherwise we would have pulled some pointers from the
1125 wret
= balance_node_right(trans
, root
, mid
, left
);
1131 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1137 if (btrfs_header_nritems(mid
) == 0) {
1138 /* we've managed to empty the middle node, drop it */
1139 u64 bytenr
= mid
->start
;
1140 u32 blocksize
= mid
->len
;
1142 clean_tree_block(trans
, root
, mid
);
1143 btrfs_tree_unlock(mid
);
1144 free_extent_buffer(mid
);
1146 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1149 wret
= btrfs_free_tree_block(trans
, root
, bytenr
, blocksize
,
1150 0, root
->root_key
.objectid
, level
);
1154 /* update the parent key to reflect our changes */
1155 struct btrfs_disk_key mid_key
;
1156 btrfs_node_key(mid
, &mid_key
, 0);
1157 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1158 btrfs_mark_buffer_dirty(parent
);
1161 /* update the path */
1163 if (btrfs_header_nritems(left
) > orig_slot
) {
1164 extent_buffer_get(left
);
1165 /* left was locked after cow */
1166 path
->nodes
[level
] = left
;
1167 path
->slots
[level
+ 1] -= 1;
1168 path
->slots
[level
] = orig_slot
;
1170 btrfs_tree_unlock(mid
);
1171 free_extent_buffer(mid
);
1174 orig_slot
-= btrfs_header_nritems(left
);
1175 path
->slots
[level
] = orig_slot
;
1178 /* double check we haven't messed things up */
1179 check_block(root
, path
, level
);
1181 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1185 btrfs_tree_unlock(right
);
1186 free_extent_buffer(right
);
1189 if (path
->nodes
[level
] != left
)
1190 btrfs_tree_unlock(left
);
1191 free_extent_buffer(left
);
1196 /* Node balancing for insertion. Here we only split or push nodes around
1197 * when they are completely full. This is also done top down, so we
1198 * have to be pessimistic.
1200 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1201 struct btrfs_root
*root
,
1202 struct btrfs_path
*path
, int level
)
1204 struct extent_buffer
*right
= NULL
;
1205 struct extent_buffer
*mid
;
1206 struct extent_buffer
*left
= NULL
;
1207 struct extent_buffer
*parent
= NULL
;
1211 int orig_slot
= path
->slots
[level
];
1217 mid
= path
->nodes
[level
];
1218 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1219 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1221 if (level
< BTRFS_MAX_LEVEL
- 1)
1222 parent
= path
->nodes
[level
+ 1];
1223 pslot
= path
->slots
[level
+ 1];
1228 left
= read_node_slot(root
, parent
, pslot
- 1);
1230 /* first, try to make some room in the middle buffer */
1234 btrfs_tree_lock(left
);
1235 btrfs_set_lock_blocking(left
);
1237 left_nr
= btrfs_header_nritems(left
);
1238 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1241 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1246 wret
= push_node_left(trans
, root
,
1253 struct btrfs_disk_key disk_key
;
1254 orig_slot
+= left_nr
;
1255 btrfs_node_key(mid
, &disk_key
, 0);
1256 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1257 btrfs_mark_buffer_dirty(parent
);
1258 if (btrfs_header_nritems(left
) > orig_slot
) {
1259 path
->nodes
[level
] = left
;
1260 path
->slots
[level
+ 1] -= 1;
1261 path
->slots
[level
] = orig_slot
;
1262 btrfs_tree_unlock(mid
);
1263 free_extent_buffer(mid
);
1266 btrfs_header_nritems(left
);
1267 path
->slots
[level
] = orig_slot
;
1268 btrfs_tree_unlock(left
);
1269 free_extent_buffer(left
);
1273 btrfs_tree_unlock(left
);
1274 free_extent_buffer(left
);
1276 right
= read_node_slot(root
, parent
, pslot
+ 1);
1279 * then try to empty the right most buffer into the middle
1284 btrfs_tree_lock(right
);
1285 btrfs_set_lock_blocking(right
);
1287 right_nr
= btrfs_header_nritems(right
);
1288 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1291 ret
= btrfs_cow_block(trans
, root
, right
,
1297 wret
= balance_node_right(trans
, root
,
1304 struct btrfs_disk_key disk_key
;
1306 btrfs_node_key(right
, &disk_key
, 0);
1307 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1308 btrfs_mark_buffer_dirty(parent
);
1310 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1311 path
->nodes
[level
] = right
;
1312 path
->slots
[level
+ 1] += 1;
1313 path
->slots
[level
] = orig_slot
-
1314 btrfs_header_nritems(mid
);
1315 btrfs_tree_unlock(mid
);
1316 free_extent_buffer(mid
);
1318 btrfs_tree_unlock(right
);
1319 free_extent_buffer(right
);
1323 btrfs_tree_unlock(right
);
1324 free_extent_buffer(right
);
1330 * readahead one full node of leaves, finding things that are close
1331 * to the block in 'slot', and triggering ra on them.
1333 static void reada_for_search(struct btrfs_root
*root
,
1334 struct btrfs_path
*path
,
1335 int level
, int slot
, u64 objectid
)
1337 struct extent_buffer
*node
;
1338 struct btrfs_disk_key disk_key
;
1343 int direction
= path
->reada
;
1344 struct extent_buffer
*eb
;
1352 if (!path
->nodes
[level
])
1355 node
= path
->nodes
[level
];
1357 search
= btrfs_node_blockptr(node
, slot
);
1358 blocksize
= btrfs_level_size(root
, level
- 1);
1359 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
1361 free_extent_buffer(eb
);
1367 nritems
= btrfs_header_nritems(node
);
1370 if (direction
< 0) {
1374 } else if (direction
> 0) {
1379 if (path
->reada
< 0 && objectid
) {
1380 btrfs_node_key(node
, &disk_key
, nr
);
1381 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1384 search
= btrfs_node_blockptr(node
, nr
);
1385 if ((search
<= target
&& target
- search
<= 65536) ||
1386 (search
> target
&& search
- target
<= 65536)) {
1387 readahead_tree_block(root
, search
, blocksize
,
1388 btrfs_node_ptr_generation(node
, nr
));
1392 if ((nread
> 65536 || nscan
> 32))
1398 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1401 static noinline
int reada_for_balance(struct btrfs_root
*root
,
1402 struct btrfs_path
*path
, int level
)
1406 struct extent_buffer
*parent
;
1407 struct extent_buffer
*eb
;
1414 parent
= path
->nodes
[level
+ 1];
1418 nritems
= btrfs_header_nritems(parent
);
1419 slot
= path
->slots
[level
+ 1];
1420 blocksize
= btrfs_level_size(root
, level
);
1423 block1
= btrfs_node_blockptr(parent
, slot
- 1);
1424 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
1425 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
1426 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1428 free_extent_buffer(eb
);
1430 if (slot
+ 1 < nritems
) {
1431 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
1432 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
1433 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
1434 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1436 free_extent_buffer(eb
);
1438 if (block1
|| block2
) {
1441 /* release the whole path */
1442 btrfs_release_path(root
, path
);
1444 /* read the blocks */
1446 readahead_tree_block(root
, block1
, blocksize
, 0);
1448 readahead_tree_block(root
, block2
, blocksize
, 0);
1451 eb
= read_tree_block(root
, block1
, blocksize
, 0);
1452 free_extent_buffer(eb
);
1455 eb
= read_tree_block(root
, block2
, blocksize
, 0);
1456 free_extent_buffer(eb
);
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree. The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block. This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1476 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1480 int skip_level
= level
;
1482 struct extent_buffer
*t
;
1484 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1485 if (!path
->nodes
[i
])
1487 if (!path
->locks
[i
])
1489 if (!no_skips
&& path
->slots
[i
] == 0) {
1493 if (!no_skips
&& path
->keep_locks
) {
1496 nritems
= btrfs_header_nritems(t
);
1497 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1502 if (skip_level
< i
&& i
>= lowest_unlock
)
1506 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
1507 btrfs_tree_unlock(t
);
1514 * This releases any locks held in the path starting at level and
1515 * going all the way up to the root.
1517 * btrfs_search_slot will keep the lock held on higher nodes in a few
1518 * corner cases, such as COW of the block at slot zero in the node. This
1519 * ignores those rules, and it should only be called when there are no
1520 * more updates to be done higher up in the tree.
1522 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
1526 if (path
->keep_locks
)
1529 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1530 if (!path
->nodes
[i
])
1532 if (!path
->locks
[i
])
1534 btrfs_tree_unlock(path
->nodes
[i
]);
1540 * helper function for btrfs_search_slot. The goal is to find a block
1541 * in cache without setting the path to blocking. If we find the block
1542 * we return zero and the path is unchanged.
1544 * If we can't find the block, we set the path blocking and do some
1545 * reada. -EAGAIN is returned and the search must be repeated.
1548 read_block_for_search(struct btrfs_trans_handle
*trans
,
1549 struct btrfs_root
*root
, struct btrfs_path
*p
,
1550 struct extent_buffer
**eb_ret
, int level
, int slot
,
1551 struct btrfs_key
*key
)
1556 struct extent_buffer
*b
= *eb_ret
;
1557 struct extent_buffer
*tmp
;
1560 blocknr
= btrfs_node_blockptr(b
, slot
);
1561 gen
= btrfs_node_ptr_generation(b
, slot
);
1562 blocksize
= btrfs_level_size(root
, level
- 1);
1564 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1565 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
1567 * we found an up to date block without sleeping, return
1575 * reduce lock contention at high levels
1576 * of the btree by dropping locks before
1577 * we read. Don't release the lock on the current
1578 * level because we need to walk this node to figure
1579 * out which blocks to read.
1581 btrfs_unlock_up_safe(p
, level
+ 1);
1582 btrfs_set_path_blocking(p
);
1585 free_extent_buffer(tmp
);
1587 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
1589 btrfs_release_path(NULL
, p
);
1592 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
1595 * If the read above didn't mark this buffer up to date,
1596 * it will never end up being up to date. Set ret to EIO now
1597 * and give up so that our caller doesn't loop forever
1600 if (!btrfs_buffer_uptodate(tmp
, 0))
1602 free_extent_buffer(tmp
);
1608 * helper function for btrfs_search_slot. This does all of the checks
1609 * for node-level blocks and does any balancing required based on
1612 * If no extra work was required, zero is returned. If we had to
1613 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1617 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1618 struct btrfs_root
*root
, struct btrfs_path
*p
,
1619 struct extent_buffer
*b
, int level
, int ins_len
)
1622 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1623 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1626 sret
= reada_for_balance(root
, p
, level
);
1630 btrfs_set_path_blocking(p
);
1631 sret
= split_node(trans
, root
, p
, level
);
1632 btrfs_clear_path_blocking(p
, NULL
);
1639 b
= p
->nodes
[level
];
1640 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1641 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
1644 sret
= reada_for_balance(root
, p
, level
);
1648 btrfs_set_path_blocking(p
);
1649 sret
= balance_level(trans
, root
, p
, level
);
1650 btrfs_clear_path_blocking(p
, NULL
);
1656 b
= p
->nodes
[level
];
1658 btrfs_release_path(NULL
, p
);
1661 BUG_ON(btrfs_header_nritems(b
) == 1);
1672 * look for key in the tree. path is filled in with nodes along the way
1673 * if key is found, we return zero and you can find the item in the leaf
1674 * level of the path (level 0)
1676 * If the key isn't found, the path points to the slot where it should
1677 * be inserted, and 1 is returned. If there are other errors during the
1678 * search a negative error number is returned.
1680 * if ins_len > 0, nodes and leaves will be split as we walk down the
1681 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1684 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1685 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1688 struct extent_buffer
*b
;
1693 int lowest_unlock
= 1;
1694 u8 lowest_level
= 0;
1696 lowest_level
= p
->lowest_level
;
1697 WARN_ON(lowest_level
&& ins_len
> 0);
1698 WARN_ON(p
->nodes
[0] != NULL
);
1704 if (p
->search_commit_root
) {
1705 b
= root
->commit_root
;
1706 extent_buffer_get(b
);
1707 if (!p
->skip_locking
)
1710 if (p
->skip_locking
)
1711 b
= btrfs_root_node(root
);
1713 b
= btrfs_lock_root_node(root
);
1717 level
= btrfs_header_level(b
);
1720 * setup the path here so we can release it under lock
1721 * contention with the cow code
1723 p
->nodes
[level
] = b
;
1724 if (!p
->skip_locking
)
1725 p
->locks
[level
] = 1;
1729 * if we don't really need to cow this block
1730 * then we don't want to set the path blocking,
1731 * so we test it here
1733 if (!should_cow_block(trans
, root
, b
))
1736 btrfs_set_path_blocking(p
);
1738 err
= btrfs_cow_block(trans
, root
, b
,
1739 p
->nodes
[level
+ 1],
1740 p
->slots
[level
+ 1], &b
);
1742 free_extent_buffer(b
);
1748 BUG_ON(!cow
&& ins_len
);
1749 if (level
!= btrfs_header_level(b
))
1751 level
= btrfs_header_level(b
);
1753 p
->nodes
[level
] = b
;
1754 if (!p
->skip_locking
)
1755 p
->locks
[level
] = 1;
1757 btrfs_clear_path_blocking(p
, NULL
);
1760 * we have a lock on b and as long as we aren't changing
1761 * the tree, there is no way to for the items in b to change.
1762 * It is safe to drop the lock on our parent before we
1763 * go through the expensive btree search on b.
1765 * If cow is true, then we might be changing slot zero,
1766 * which may require changing the parent. So, we can't
1767 * drop the lock until after we know which slot we're
1771 btrfs_unlock_up_safe(p
, level
+ 1);
1773 ret
= check_block(root
, p
, level
);
1779 ret
= bin_search(b
, key
, level
, &slot
);
1783 if (ret
&& slot
> 0) {
1787 p
->slots
[level
] = slot
;
1788 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
1796 b
= p
->nodes
[level
];
1797 slot
= p
->slots
[level
];
1799 unlock_up(p
, level
, lowest_unlock
);
1801 if (level
== lowest_level
) {
1807 err
= read_block_for_search(trans
, root
, p
,
1808 &b
, level
, slot
, key
);
1816 if (!p
->skip_locking
) {
1817 btrfs_clear_path_blocking(p
, NULL
);
1818 err
= btrfs_try_spin_lock(b
);
1821 btrfs_set_path_blocking(p
);
1823 btrfs_clear_path_blocking(p
, b
);
1827 p
->slots
[level
] = slot
;
1829 btrfs_leaf_free_space(root
, b
) < ins_len
) {
1830 btrfs_set_path_blocking(p
);
1831 err
= split_leaf(trans
, root
, key
,
1832 p
, ins_len
, ret
== 0);
1833 btrfs_clear_path_blocking(p
, NULL
);
1841 if (!p
->search_for_split
)
1842 unlock_up(p
, level
, lowest_unlock
);
1849 * we don't really know what they plan on doing with the path
1850 * from here on, so for now just mark it as blocking
1852 if (!p
->leave_spinning
)
1853 btrfs_set_path_blocking(p
);
1855 btrfs_release_path(root
, p
);
1860 * adjust the pointers going up the tree, starting at level
1861 * making sure the right key of each node is points to 'key'.
1862 * This is used after shifting pointers to the left, so it stops
1863 * fixing up pointers when a given leaf/node is not in slot 0 of the
1866 * If this fails to write a tree block, it returns -1, but continues
1867 * fixing up the blocks in ram so the tree is consistent.
1869 static int fixup_low_keys(struct btrfs_trans_handle
*trans
,
1870 struct btrfs_root
*root
, struct btrfs_path
*path
,
1871 struct btrfs_disk_key
*key
, int level
)
1875 struct extent_buffer
*t
;
1877 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1878 int tslot
= path
->slots
[i
];
1879 if (!path
->nodes
[i
])
1882 btrfs_set_node_key(t
, key
, tslot
);
1883 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1893 * This function isn't completely safe. It's the caller's responsibility
1894 * that the new key won't break the order
1896 int btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
1897 struct btrfs_root
*root
, struct btrfs_path
*path
,
1898 struct btrfs_key
*new_key
)
1900 struct btrfs_disk_key disk_key
;
1901 struct extent_buffer
*eb
;
1904 eb
= path
->nodes
[0];
1905 slot
= path
->slots
[0];
1907 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1908 if (comp_keys(&disk_key
, new_key
) >= 0)
1911 if (slot
< btrfs_header_nritems(eb
) - 1) {
1912 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1913 if (comp_keys(&disk_key
, new_key
) <= 0)
1917 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1918 btrfs_set_item_key(eb
, &disk_key
, slot
);
1919 btrfs_mark_buffer_dirty(eb
);
1921 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
1926 * try to push data from one node into the next node left in the
1929 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1930 * error, and > 0 if there was no room in the left hand block.
1932 static int push_node_left(struct btrfs_trans_handle
*trans
,
1933 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1934 struct extent_buffer
*src
, int empty
)
1941 src_nritems
= btrfs_header_nritems(src
);
1942 dst_nritems
= btrfs_header_nritems(dst
);
1943 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1944 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1945 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1947 if (!empty
&& src_nritems
<= 8)
1950 if (push_items
<= 0)
1954 push_items
= min(src_nritems
, push_items
);
1955 if (push_items
< src_nritems
) {
1956 /* leave at least 8 pointers in the node if
1957 * we aren't going to empty it
1959 if (src_nritems
- push_items
< 8) {
1960 if (push_items
<= 8)
1966 push_items
= min(src_nritems
- 8, push_items
);
1968 copy_extent_buffer(dst
, src
,
1969 btrfs_node_key_ptr_offset(dst_nritems
),
1970 btrfs_node_key_ptr_offset(0),
1971 push_items
* sizeof(struct btrfs_key_ptr
));
1973 if (push_items
< src_nritems
) {
1974 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1975 btrfs_node_key_ptr_offset(push_items
),
1976 (src_nritems
- push_items
) *
1977 sizeof(struct btrfs_key_ptr
));
1979 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1980 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1981 btrfs_mark_buffer_dirty(src
);
1982 btrfs_mark_buffer_dirty(dst
);
1988 * try to push data from one node into the next node right in the
1991 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1992 * error, and > 0 if there was no room in the right hand block.
1994 * this will only push up to 1/2 the contents of the left node over
1996 static int balance_node_right(struct btrfs_trans_handle
*trans
,
1997 struct btrfs_root
*root
,
1998 struct extent_buffer
*dst
,
1999 struct extent_buffer
*src
)
2007 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2008 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2010 src_nritems
= btrfs_header_nritems(src
);
2011 dst_nritems
= btrfs_header_nritems(dst
);
2012 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2013 if (push_items
<= 0)
2016 if (src_nritems
< 4)
2019 max_push
= src_nritems
/ 2 + 1;
2020 /* don't try to empty the node */
2021 if (max_push
>= src_nritems
)
2024 if (max_push
< push_items
)
2025 push_items
= max_push
;
2027 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
2028 btrfs_node_key_ptr_offset(0),
2030 sizeof(struct btrfs_key_ptr
));
2032 copy_extent_buffer(dst
, src
,
2033 btrfs_node_key_ptr_offset(0),
2034 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
2035 push_items
* sizeof(struct btrfs_key_ptr
));
2037 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2038 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2040 btrfs_mark_buffer_dirty(src
);
2041 btrfs_mark_buffer_dirty(dst
);
2047 * helper function to insert a new root level in the tree.
2048 * A new node is allocated, and a single item is inserted to
2049 * point to the existing root
2051 * returns zero on success or < 0 on failure.
2053 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2054 struct btrfs_root
*root
,
2055 struct btrfs_path
*path
, int level
)
2058 struct extent_buffer
*lower
;
2059 struct extent_buffer
*c
;
2060 struct extent_buffer
*old
;
2061 struct btrfs_disk_key lower_key
;
2063 BUG_ON(path
->nodes
[level
]);
2064 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2066 lower
= path
->nodes
[level
-1];
2068 btrfs_item_key(lower
, &lower_key
, 0);
2070 btrfs_node_key(lower
, &lower_key
, 0);
2072 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2073 root
->root_key
.objectid
, &lower_key
,
2074 level
, root
->node
->start
, 0);
2078 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
2079 btrfs_set_header_nritems(c
, 1);
2080 btrfs_set_header_level(c
, level
);
2081 btrfs_set_header_bytenr(c
, c
->start
);
2082 btrfs_set_header_generation(c
, trans
->transid
);
2083 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
2084 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
2086 write_extent_buffer(c
, root
->fs_info
->fsid
,
2087 (unsigned long)btrfs_header_fsid(c
),
2090 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
2091 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
2094 btrfs_set_node_key(c
, &lower_key
, 0);
2095 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2096 lower_gen
= btrfs_header_generation(lower
);
2097 WARN_ON(lower_gen
!= trans
->transid
);
2099 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2101 btrfs_mark_buffer_dirty(c
);
2103 spin_lock(&root
->node_lock
);
2106 spin_unlock(&root
->node_lock
);
2108 /* the super has an extra ref to root->node */
2109 free_extent_buffer(old
);
2111 add_root_to_dirty_list(root
);
2112 extent_buffer_get(c
);
2113 path
->nodes
[level
] = c
;
2114 path
->locks
[level
] = 1;
2115 path
->slots
[level
] = 0;
2120 * worker function to insert a single pointer in a node.
2121 * the node should have enough room for the pointer already
2123 * slot and level indicate where you want the key to go, and
2124 * blocknr is the block the key points to.
2126 * returns zero on success and < 0 on any error
2128 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
2129 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
2130 *key
, u64 bytenr
, int slot
, int level
)
2132 struct extent_buffer
*lower
;
2135 BUG_ON(!path
->nodes
[level
]);
2136 lower
= path
->nodes
[level
];
2137 nritems
= btrfs_header_nritems(lower
);
2138 BUG_ON(slot
> nritems
);
2139 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
2141 if (slot
!= nritems
) {
2142 memmove_extent_buffer(lower
,
2143 btrfs_node_key_ptr_offset(slot
+ 1),
2144 btrfs_node_key_ptr_offset(slot
),
2145 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2147 btrfs_set_node_key(lower
, key
, slot
);
2148 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2149 WARN_ON(trans
->transid
== 0);
2150 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2151 btrfs_set_header_nritems(lower
, nritems
+ 1);
2152 btrfs_mark_buffer_dirty(lower
);
2157 * split the node at the specified level in path in two.
2158 * The path is corrected to point to the appropriate node after the split
2160 * Before splitting this tries to make some room in the node by pushing
2161 * left and right, if either one works, it returns right away.
2163 * returns 0 on success and < 0 on failure
2165 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2166 struct btrfs_root
*root
,
2167 struct btrfs_path
*path
, int level
)
2169 struct extent_buffer
*c
;
2170 struct extent_buffer
*split
;
2171 struct btrfs_disk_key disk_key
;
2177 c
= path
->nodes
[level
];
2178 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
2179 if (c
== root
->node
) {
2180 /* trying to split the root, lets make a new one */
2181 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
2185 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
2186 c
= path
->nodes
[level
];
2187 if (!ret
&& btrfs_header_nritems(c
) <
2188 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
2194 c_nritems
= btrfs_header_nritems(c
);
2195 mid
= (c_nritems
+ 1) / 2;
2196 btrfs_node_key(c
, &disk_key
, mid
);
2198 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2199 root
->root_key
.objectid
,
2200 &disk_key
, level
, c
->start
, 0);
2202 return PTR_ERR(split
);
2204 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
2205 btrfs_set_header_level(split
, btrfs_header_level(c
));
2206 btrfs_set_header_bytenr(split
, split
->start
);
2207 btrfs_set_header_generation(split
, trans
->transid
);
2208 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
2209 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
2210 write_extent_buffer(split
, root
->fs_info
->fsid
,
2211 (unsigned long)btrfs_header_fsid(split
),
2213 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
2214 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
2218 copy_extent_buffer(split
, c
,
2219 btrfs_node_key_ptr_offset(0),
2220 btrfs_node_key_ptr_offset(mid
),
2221 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
2222 btrfs_set_header_nritems(split
, c_nritems
- mid
);
2223 btrfs_set_header_nritems(c
, mid
);
2226 btrfs_mark_buffer_dirty(c
);
2227 btrfs_mark_buffer_dirty(split
);
2229 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
2230 path
->slots
[level
+ 1] + 1,
2235 if (path
->slots
[level
] >= mid
) {
2236 path
->slots
[level
] -= mid
;
2237 btrfs_tree_unlock(c
);
2238 free_extent_buffer(c
);
2239 path
->nodes
[level
] = split
;
2240 path
->slots
[level
+ 1] += 1;
2242 btrfs_tree_unlock(split
);
2243 free_extent_buffer(split
);
2249 * how many bytes are required to store the items in a leaf. start
2250 * and nr indicate which items in the leaf to check. This totals up the
2251 * space used both by the item structs and the item data
2253 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
2256 int nritems
= btrfs_header_nritems(l
);
2257 int end
= min(nritems
, start
+ nr
) - 1;
2261 data_len
= btrfs_item_end_nr(l
, start
);
2262 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
2263 data_len
+= sizeof(struct btrfs_item
) * nr
;
2264 WARN_ON(data_len
< 0);
2269 * The space between the end of the leaf items and
2270 * the start of the leaf data. IOW, how much room
2271 * the leaf has left for both items and data
2273 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
2274 struct extent_buffer
*leaf
)
2276 int nritems
= btrfs_header_nritems(leaf
);
2278 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
2280 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
2281 "used %d nritems %d\n",
2282 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
2283 leaf_space_used(leaf
, 0, nritems
), nritems
);
2288 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
2289 struct btrfs_root
*root
,
2290 struct btrfs_path
*path
,
2291 int data_size
, int empty
,
2292 struct extent_buffer
*right
,
2293 int free_space
, u32 left_nritems
)
2295 struct extent_buffer
*left
= path
->nodes
[0];
2296 struct extent_buffer
*upper
= path
->nodes
[1];
2297 struct btrfs_disk_key disk_key
;
2302 struct btrfs_item
*item
;
2313 if (path
->slots
[0] >= left_nritems
)
2314 push_space
+= data_size
;
2316 slot
= path
->slots
[1];
2317 i
= left_nritems
- 1;
2319 item
= btrfs_item_nr(left
, i
);
2321 if (!empty
&& push_items
> 0) {
2322 if (path
->slots
[0] > i
)
2324 if (path
->slots
[0] == i
) {
2325 int space
= btrfs_leaf_free_space(root
, left
);
2326 if (space
+ push_space
* 2 > free_space
)
2331 if (path
->slots
[0] == i
)
2332 push_space
+= data_size
;
2334 if (!left
->map_token
) {
2335 map_extent_buffer(left
, (unsigned long)item
,
2336 sizeof(struct btrfs_item
),
2337 &left
->map_token
, &left
->kaddr
,
2338 &left
->map_start
, &left
->map_len
,
2342 this_item_size
= btrfs_item_size(left
, item
);
2343 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2347 push_space
+= this_item_size
+ sizeof(*item
);
2352 if (left
->map_token
) {
2353 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2354 left
->map_token
= NULL
;
2357 if (push_items
== 0)
2360 if (!empty
&& push_items
== left_nritems
)
2363 /* push left to right */
2364 right_nritems
= btrfs_header_nritems(right
);
2366 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
2367 push_space
-= leaf_data_end(root
, left
);
2369 /* make room in the right data area */
2370 data_end
= leaf_data_end(root
, right
);
2371 memmove_extent_buffer(right
,
2372 btrfs_leaf_data(right
) + data_end
- push_space
,
2373 btrfs_leaf_data(right
) + data_end
,
2374 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
2376 /* copy from the left data area */
2377 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
2378 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2379 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
2382 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
2383 btrfs_item_nr_offset(0),
2384 right_nritems
* sizeof(struct btrfs_item
));
2386 /* copy the items from left to right */
2387 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
2388 btrfs_item_nr_offset(left_nritems
- push_items
),
2389 push_items
* sizeof(struct btrfs_item
));
2391 /* update the item pointers */
2392 right_nritems
+= push_items
;
2393 btrfs_set_header_nritems(right
, right_nritems
);
2394 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2395 for (i
= 0; i
< right_nritems
; i
++) {
2396 item
= btrfs_item_nr(right
, i
);
2397 if (!right
->map_token
) {
2398 map_extent_buffer(right
, (unsigned long)item
,
2399 sizeof(struct btrfs_item
),
2400 &right
->map_token
, &right
->kaddr
,
2401 &right
->map_start
, &right
->map_len
,
2404 push_space
-= btrfs_item_size(right
, item
);
2405 btrfs_set_item_offset(right
, item
, push_space
);
2408 if (right
->map_token
) {
2409 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2410 right
->map_token
= NULL
;
2412 left_nritems
-= push_items
;
2413 btrfs_set_header_nritems(left
, left_nritems
);
2416 btrfs_mark_buffer_dirty(left
);
2417 btrfs_mark_buffer_dirty(right
);
2419 btrfs_item_key(right
, &disk_key
, 0);
2420 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
2421 btrfs_mark_buffer_dirty(upper
);
2423 /* then fixup the leaf pointer in the path */
2424 if (path
->slots
[0] >= left_nritems
) {
2425 path
->slots
[0] -= left_nritems
;
2426 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2427 clean_tree_block(trans
, root
, path
->nodes
[0]);
2428 btrfs_tree_unlock(path
->nodes
[0]);
2429 free_extent_buffer(path
->nodes
[0]);
2430 path
->nodes
[0] = right
;
2431 path
->slots
[1] += 1;
2433 btrfs_tree_unlock(right
);
2434 free_extent_buffer(right
);
2439 btrfs_tree_unlock(right
);
2440 free_extent_buffer(right
);
2445 * push some data in the path leaf to the right, trying to free up at
2446 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2448 * returns 1 if the push failed because the other node didn't have enough
2449 * room, 0 if everything worked out and < 0 if there were major errors.
2451 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
2452 *root
, struct btrfs_path
*path
, int data_size
,
2455 struct extent_buffer
*left
= path
->nodes
[0];
2456 struct extent_buffer
*right
;
2457 struct extent_buffer
*upper
;
2463 if (!path
->nodes
[1])
2466 slot
= path
->slots
[1];
2467 upper
= path
->nodes
[1];
2468 if (slot
>= btrfs_header_nritems(upper
) - 1)
2471 btrfs_assert_tree_locked(path
->nodes
[1]);
2473 right
= read_node_slot(root
, upper
, slot
+ 1);
2474 btrfs_tree_lock(right
);
2475 btrfs_set_lock_blocking(right
);
2477 free_space
= btrfs_leaf_free_space(root
, right
);
2478 if (free_space
< data_size
)
2481 /* cow and double check */
2482 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
2487 free_space
= btrfs_leaf_free_space(root
, right
);
2488 if (free_space
< data_size
)
2491 left_nritems
= btrfs_header_nritems(left
);
2492 if (left_nritems
== 0)
2495 return __push_leaf_right(trans
, root
, path
, data_size
, empty
,
2496 right
, free_space
, left_nritems
);
2498 btrfs_tree_unlock(right
);
2499 free_extent_buffer(right
);
2504 * push some data in the path leaf to the left, trying to free up at
2505 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2507 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
2508 struct btrfs_root
*root
,
2509 struct btrfs_path
*path
, int data_size
,
2510 int empty
, struct extent_buffer
*left
,
2511 int free_space
, int right_nritems
)
2513 struct btrfs_disk_key disk_key
;
2514 struct extent_buffer
*right
= path
->nodes
[0];
2519 struct btrfs_item
*item
;
2520 u32 old_left_nritems
;
2525 u32 old_left_item_size
;
2527 slot
= path
->slots
[1];
2532 nr
= right_nritems
- 1;
2534 for (i
= 0; i
< nr
; i
++) {
2535 item
= btrfs_item_nr(right
, i
);
2536 if (!right
->map_token
) {
2537 map_extent_buffer(right
, (unsigned long)item
,
2538 sizeof(struct btrfs_item
),
2539 &right
->map_token
, &right
->kaddr
,
2540 &right
->map_start
, &right
->map_len
,
2544 if (!empty
&& push_items
> 0) {
2545 if (path
->slots
[0] < i
)
2547 if (path
->slots
[0] == i
) {
2548 int space
= btrfs_leaf_free_space(root
, right
);
2549 if (space
+ push_space
* 2 > free_space
)
2554 if (path
->slots
[0] == i
)
2555 push_space
+= data_size
;
2557 this_item_size
= btrfs_item_size(right
, item
);
2558 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2562 push_space
+= this_item_size
+ sizeof(*item
);
2565 if (right
->map_token
) {
2566 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2567 right
->map_token
= NULL
;
2570 if (push_items
== 0) {
2574 if (!empty
&& push_items
== btrfs_header_nritems(right
))
2577 /* push data from right to left */
2578 copy_extent_buffer(left
, right
,
2579 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
2580 btrfs_item_nr_offset(0),
2581 push_items
* sizeof(struct btrfs_item
));
2583 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
2584 btrfs_item_offset_nr(right
, push_items
- 1);
2586 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
2587 leaf_data_end(root
, left
) - push_space
,
2588 btrfs_leaf_data(right
) +
2589 btrfs_item_offset_nr(right
, push_items
- 1),
2591 old_left_nritems
= btrfs_header_nritems(left
);
2592 BUG_ON(old_left_nritems
<= 0);
2594 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
2595 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
2598 item
= btrfs_item_nr(left
, i
);
2599 if (!left
->map_token
) {
2600 map_extent_buffer(left
, (unsigned long)item
,
2601 sizeof(struct btrfs_item
),
2602 &left
->map_token
, &left
->kaddr
,
2603 &left
->map_start
, &left
->map_len
,
2607 ioff
= btrfs_item_offset(left
, item
);
2608 btrfs_set_item_offset(left
, item
,
2609 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
2611 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
2612 if (left
->map_token
) {
2613 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2614 left
->map_token
= NULL
;
2617 /* fixup right node */
2618 if (push_items
> right_nritems
) {
2619 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
2624 if (push_items
< right_nritems
) {
2625 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
2626 leaf_data_end(root
, right
);
2627 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
2628 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2629 btrfs_leaf_data(right
) +
2630 leaf_data_end(root
, right
), push_space
);
2632 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
2633 btrfs_item_nr_offset(push_items
),
2634 (btrfs_header_nritems(right
) - push_items
) *
2635 sizeof(struct btrfs_item
));
2637 right_nritems
-= push_items
;
2638 btrfs_set_header_nritems(right
, right_nritems
);
2639 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2640 for (i
= 0; i
< right_nritems
; i
++) {
2641 item
= btrfs_item_nr(right
, i
);
2643 if (!right
->map_token
) {
2644 map_extent_buffer(right
, (unsigned long)item
,
2645 sizeof(struct btrfs_item
),
2646 &right
->map_token
, &right
->kaddr
,
2647 &right
->map_start
, &right
->map_len
,
2651 push_space
= push_space
- btrfs_item_size(right
, item
);
2652 btrfs_set_item_offset(right
, item
, push_space
);
2654 if (right
->map_token
) {
2655 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2656 right
->map_token
= NULL
;
2659 btrfs_mark_buffer_dirty(left
);
2661 btrfs_mark_buffer_dirty(right
);
2663 btrfs_item_key(right
, &disk_key
, 0);
2664 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2668 /* then fixup the leaf pointer in the path */
2669 if (path
->slots
[0] < push_items
) {
2670 path
->slots
[0] += old_left_nritems
;
2671 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2672 clean_tree_block(trans
, root
, path
->nodes
[0]);
2673 btrfs_tree_unlock(path
->nodes
[0]);
2674 free_extent_buffer(path
->nodes
[0]);
2675 path
->nodes
[0] = left
;
2676 path
->slots
[1] -= 1;
2678 btrfs_tree_unlock(left
);
2679 free_extent_buffer(left
);
2680 path
->slots
[0] -= push_items
;
2682 BUG_ON(path
->slots
[0] < 0);
2685 btrfs_tree_unlock(left
);
2686 free_extent_buffer(left
);
2691 * push some data in the path leaf to the left, trying to free up at
2692 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2694 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
2695 *root
, struct btrfs_path
*path
, int data_size
,
2698 struct extent_buffer
*right
= path
->nodes
[0];
2699 struct extent_buffer
*left
;
2705 slot
= path
->slots
[1];
2708 if (!path
->nodes
[1])
2711 right_nritems
= btrfs_header_nritems(right
);
2712 if (right_nritems
== 0)
2715 btrfs_assert_tree_locked(path
->nodes
[1]);
2717 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
2718 btrfs_tree_lock(left
);
2719 btrfs_set_lock_blocking(left
);
2721 free_space
= btrfs_leaf_free_space(root
, left
);
2722 if (free_space
< data_size
) {
2727 /* cow and double check */
2728 ret
= btrfs_cow_block(trans
, root
, left
,
2729 path
->nodes
[1], slot
- 1, &left
);
2731 /* we hit -ENOSPC, but it isn't fatal here */
2736 free_space
= btrfs_leaf_free_space(root
, left
);
2737 if (free_space
< data_size
) {
2742 return __push_leaf_left(trans
, root
, path
, data_size
,
2743 empty
, left
, free_space
, right_nritems
);
2745 btrfs_tree_unlock(left
);
2746 free_extent_buffer(left
);
2751 * split the path's leaf in two, making sure there is at least data_size
2752 * available for the resulting leaf level of the path.
2754 * returns 0 if all went well and < 0 on failure.
2756 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
2757 struct btrfs_root
*root
,
2758 struct btrfs_path
*path
,
2759 struct extent_buffer
*l
,
2760 struct extent_buffer
*right
,
2761 int slot
, int mid
, int nritems
)
2768 struct btrfs_disk_key disk_key
;
2770 nritems
= nritems
- mid
;
2771 btrfs_set_header_nritems(right
, nritems
);
2772 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
2774 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
2775 btrfs_item_nr_offset(mid
),
2776 nritems
* sizeof(struct btrfs_item
));
2778 copy_extent_buffer(right
, l
,
2779 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
2780 data_copy_size
, btrfs_leaf_data(l
) +
2781 leaf_data_end(root
, l
), data_copy_size
);
2783 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
2784 btrfs_item_end_nr(l
, mid
);
2786 for (i
= 0; i
< nritems
; i
++) {
2787 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
2790 if (!right
->map_token
) {
2791 map_extent_buffer(right
, (unsigned long)item
,
2792 sizeof(struct btrfs_item
),
2793 &right
->map_token
, &right
->kaddr
,
2794 &right
->map_start
, &right
->map_len
,
2798 ioff
= btrfs_item_offset(right
, item
);
2799 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2802 if (right
->map_token
) {
2803 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2804 right
->map_token
= NULL
;
2807 btrfs_set_header_nritems(l
, mid
);
2809 btrfs_item_key(right
, &disk_key
, 0);
2810 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2811 path
->slots
[1] + 1, 1);
2815 btrfs_mark_buffer_dirty(right
);
2816 btrfs_mark_buffer_dirty(l
);
2817 BUG_ON(path
->slots
[0] != slot
);
2820 btrfs_tree_unlock(path
->nodes
[0]);
2821 free_extent_buffer(path
->nodes
[0]);
2822 path
->nodes
[0] = right
;
2823 path
->slots
[0] -= mid
;
2824 path
->slots
[1] += 1;
2826 btrfs_tree_unlock(right
);
2827 free_extent_buffer(right
);
2830 BUG_ON(path
->slots
[0] < 0);
2836 * split the path's leaf in two, making sure there is at least data_size
2837 * available for the resulting leaf level of the path.
2839 * returns 0 if all went well and < 0 on failure.
2841 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2842 struct btrfs_root
*root
,
2843 struct btrfs_key
*ins_key
,
2844 struct btrfs_path
*path
, int data_size
,
2847 struct btrfs_disk_key disk_key
;
2848 struct extent_buffer
*l
;
2852 struct extent_buffer
*right
;
2856 int num_doubles
= 0;
2859 slot
= path
->slots
[0];
2860 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2861 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
2864 /* first try to make some room by pushing left and right */
2865 if (data_size
&& ins_key
->type
!= BTRFS_DIR_ITEM_KEY
) {
2866 wret
= push_leaf_right(trans
, root
, path
, data_size
, 0);
2870 wret
= push_leaf_left(trans
, root
, path
, data_size
, 0);
2876 /* did the pushes work? */
2877 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2881 if (!path
->nodes
[1]) {
2882 ret
= insert_new_root(trans
, root
, path
, 1);
2889 slot
= path
->slots
[0];
2890 nritems
= btrfs_header_nritems(l
);
2891 mid
= (nritems
+ 1) / 2;
2895 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2896 BTRFS_LEAF_DATA_SIZE(root
)) {
2897 if (slot
>= nritems
) {
2901 if (mid
!= nritems
&&
2902 leaf_space_used(l
, mid
, nritems
- mid
) +
2903 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2909 if (leaf_space_used(l
, 0, mid
) + data_size
>
2910 BTRFS_LEAF_DATA_SIZE(root
)) {
2911 if (!extend
&& data_size
&& slot
== 0) {
2913 } else if ((extend
|| !data_size
) && slot
== 0) {
2917 if (mid
!= nritems
&&
2918 leaf_space_used(l
, mid
, nritems
- mid
) +
2919 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
2927 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2929 btrfs_item_key(l
, &disk_key
, mid
);
2931 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
2932 root
->root_key
.objectid
,
2933 &disk_key
, 0, l
->start
, 0);
2934 if (IS_ERR(right
)) {
2936 return PTR_ERR(right
);
2939 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2940 btrfs_set_header_bytenr(right
, right
->start
);
2941 btrfs_set_header_generation(right
, trans
->transid
);
2942 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
2943 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2944 btrfs_set_header_level(right
, 0);
2945 write_extent_buffer(right
, root
->fs_info
->fsid
,
2946 (unsigned long)btrfs_header_fsid(right
),
2949 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2950 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
2955 btrfs_set_header_nritems(right
, 0);
2956 wret
= insert_ptr(trans
, root
, path
,
2957 &disk_key
, right
->start
,
2958 path
->slots
[1] + 1, 1);
2962 btrfs_tree_unlock(path
->nodes
[0]);
2963 free_extent_buffer(path
->nodes
[0]);
2964 path
->nodes
[0] = right
;
2966 path
->slots
[1] += 1;
2968 btrfs_set_header_nritems(right
, 0);
2969 wret
= insert_ptr(trans
, root
, path
,
2975 btrfs_tree_unlock(path
->nodes
[0]);
2976 free_extent_buffer(path
->nodes
[0]);
2977 path
->nodes
[0] = right
;
2979 if (path
->slots
[1] == 0) {
2980 wret
= fixup_low_keys(trans
, root
,
2981 path
, &disk_key
, 1);
2986 btrfs_mark_buffer_dirty(right
);
2990 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
2994 BUG_ON(num_doubles
!= 0);
3002 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
3003 struct btrfs_root
*root
,
3004 struct btrfs_path
*path
, int ins_len
)
3006 struct btrfs_key key
;
3007 struct extent_buffer
*leaf
;
3008 struct btrfs_file_extent_item
*fi
;
3013 leaf
= path
->nodes
[0];
3014 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3016 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
3017 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
3019 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
3022 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3023 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3024 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3025 struct btrfs_file_extent_item
);
3026 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
3028 btrfs_release_path(root
, path
);
3030 path
->keep_locks
= 1;
3031 path
->search_for_split
= 1;
3032 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3033 path
->search_for_split
= 0;
3038 leaf
= path
->nodes
[0];
3039 /* if our item isn't there or got smaller, return now */
3040 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
3043 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3044 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3045 struct btrfs_file_extent_item
);
3046 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
3050 btrfs_set_path_blocking(path
);
3051 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
3054 path
->keep_locks
= 0;
3055 btrfs_unlock_up_safe(path
, 1);
3058 path
->keep_locks
= 0;
3062 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
3063 struct btrfs_root
*root
,
3064 struct btrfs_path
*path
,
3065 struct btrfs_key
*new_key
,
3066 unsigned long split_offset
)
3068 struct extent_buffer
*leaf
;
3069 struct btrfs_item
*item
;
3070 struct btrfs_item
*new_item
;
3076 struct btrfs_disk_key disk_key
;
3078 leaf
= path
->nodes
[0];
3079 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
3081 btrfs_set_path_blocking(path
);
3083 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
3084 orig_offset
= btrfs_item_offset(leaf
, item
);
3085 item_size
= btrfs_item_size(leaf
, item
);
3087 buf
= kmalloc(item_size
, GFP_NOFS
);
3091 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3092 path
->slots
[0]), item_size
);
3094 slot
= path
->slots
[0] + 1;
3095 nritems
= btrfs_header_nritems(leaf
);
3096 if (slot
!= nritems
) {
3097 /* shift the items */
3098 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
3099 btrfs_item_nr_offset(slot
),
3100 (nritems
- slot
) * sizeof(struct btrfs_item
));
3103 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3104 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3106 new_item
= btrfs_item_nr(leaf
, slot
);
3108 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
3109 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
3111 btrfs_set_item_offset(leaf
, item
,
3112 orig_offset
+ item_size
- split_offset
);
3113 btrfs_set_item_size(leaf
, item
, split_offset
);
3115 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3117 /* write the data for the start of the original item */
3118 write_extent_buffer(leaf
, buf
,
3119 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3122 /* write the data for the new item */
3123 write_extent_buffer(leaf
, buf
+ split_offset
,
3124 btrfs_item_ptr_offset(leaf
, slot
),
3125 item_size
- split_offset
);
3126 btrfs_mark_buffer_dirty(leaf
);
3128 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
3134 * This function splits a single item into two items,
3135 * giving 'new_key' to the new item and splitting the
3136 * old one at split_offset (from the start of the item).
3138 * The path may be released by this operation. After
3139 * the split, the path is pointing to the old item. The
3140 * new item is going to be in the same node as the old one.
3142 * Note, the item being split must be smaller enough to live alone on
3143 * a tree block with room for one extra struct btrfs_item
3145 * This allows us to split the item in place, keeping a lock on the
3146 * leaf the entire time.
3148 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
3149 struct btrfs_root
*root
,
3150 struct btrfs_path
*path
,
3151 struct btrfs_key
*new_key
,
3152 unsigned long split_offset
)
3155 ret
= setup_leaf_for_split(trans
, root
, path
,
3156 sizeof(struct btrfs_item
));
3160 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
3165 * This function duplicate a item, giving 'new_key' to the new item.
3166 * It guarantees both items live in the same tree leaf and the new item
3167 * is contiguous with the original item.
3169 * This allows us to split file extent in place, keeping a lock on the
3170 * leaf the entire time.
3172 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
3173 struct btrfs_root
*root
,
3174 struct btrfs_path
*path
,
3175 struct btrfs_key
*new_key
)
3177 struct extent_buffer
*leaf
;
3181 leaf
= path
->nodes
[0];
3182 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3183 ret
= setup_leaf_for_split(trans
, root
, path
,
3184 item_size
+ sizeof(struct btrfs_item
));
3189 ret
= setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
3190 item_size
, item_size
+
3191 sizeof(struct btrfs_item
), 1);
3194 leaf
= path
->nodes
[0];
3195 memcpy_extent_buffer(leaf
,
3196 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3197 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
3203 * make the item pointed to by the path smaller. new_size indicates
3204 * how small to make it, and from_end tells us if we just chop bytes
3205 * off the end of the item or if we shift the item to chop bytes off
3208 int btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
3209 struct btrfs_root
*root
,
3210 struct btrfs_path
*path
,
3211 u32 new_size
, int from_end
)
3216 struct extent_buffer
*leaf
;
3217 struct btrfs_item
*item
;
3219 unsigned int data_end
;
3220 unsigned int old_data_start
;
3221 unsigned int old_size
;
3222 unsigned int size_diff
;
3225 slot_orig
= path
->slots
[0];
3226 leaf
= path
->nodes
[0];
3227 slot
= path
->slots
[0];
3229 old_size
= btrfs_item_size_nr(leaf
, slot
);
3230 if (old_size
== new_size
)
3233 nritems
= btrfs_header_nritems(leaf
);
3234 data_end
= leaf_data_end(root
, leaf
);
3236 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
3238 size_diff
= old_size
- new_size
;
3241 BUG_ON(slot
>= nritems
);
3244 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3246 /* first correct the data pointers */
3247 for (i
= slot
; i
< nritems
; i
++) {
3249 item
= btrfs_item_nr(leaf
, i
);
3251 if (!leaf
->map_token
) {
3252 map_extent_buffer(leaf
, (unsigned long)item
,
3253 sizeof(struct btrfs_item
),
3254 &leaf
->map_token
, &leaf
->kaddr
,
3255 &leaf
->map_start
, &leaf
->map_len
,
3259 ioff
= btrfs_item_offset(leaf
, item
);
3260 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
3263 if (leaf
->map_token
) {
3264 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3265 leaf
->map_token
= NULL
;
3268 /* shift the data */
3270 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3271 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3272 data_end
, old_data_start
+ new_size
- data_end
);
3274 struct btrfs_disk_key disk_key
;
3277 btrfs_item_key(leaf
, &disk_key
, slot
);
3279 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
3281 struct btrfs_file_extent_item
*fi
;
3283 fi
= btrfs_item_ptr(leaf
, slot
,
3284 struct btrfs_file_extent_item
);
3285 fi
= (struct btrfs_file_extent_item
*)(
3286 (unsigned long)fi
- size_diff
);
3288 if (btrfs_file_extent_type(leaf
, fi
) ==
3289 BTRFS_FILE_EXTENT_INLINE
) {
3290 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3291 memmove_extent_buffer(leaf
, ptr
,
3293 offsetof(struct btrfs_file_extent_item
,
3298 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3299 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3300 data_end
, old_data_start
- data_end
);
3302 offset
= btrfs_disk_key_offset(&disk_key
);
3303 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
3304 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3306 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3309 item
= btrfs_item_nr(leaf
, slot
);
3310 btrfs_set_item_size(leaf
, item
, new_size
);
3311 btrfs_mark_buffer_dirty(leaf
);
3314 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3315 btrfs_print_leaf(root
, leaf
);
3322 * make the item pointed to by the path bigger, data_size is the new size.
3324 int btrfs_extend_item(struct btrfs_trans_handle
*trans
,
3325 struct btrfs_root
*root
, struct btrfs_path
*path
,
3331 struct extent_buffer
*leaf
;
3332 struct btrfs_item
*item
;
3334 unsigned int data_end
;
3335 unsigned int old_data
;
3336 unsigned int old_size
;
3339 slot_orig
= path
->slots
[0];
3340 leaf
= path
->nodes
[0];
3342 nritems
= btrfs_header_nritems(leaf
);
3343 data_end
= leaf_data_end(root
, leaf
);
3345 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
3346 btrfs_print_leaf(root
, leaf
);
3349 slot
= path
->slots
[0];
3350 old_data
= btrfs_item_end_nr(leaf
, slot
);
3353 if (slot
>= nritems
) {
3354 btrfs_print_leaf(root
, leaf
);
3355 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
3361 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3363 /* first correct the data pointers */
3364 for (i
= slot
; i
< nritems
; i
++) {
3366 item
= btrfs_item_nr(leaf
, i
);
3368 if (!leaf
->map_token
) {
3369 map_extent_buffer(leaf
, (unsigned long)item
,
3370 sizeof(struct btrfs_item
),
3371 &leaf
->map_token
, &leaf
->kaddr
,
3372 &leaf
->map_start
, &leaf
->map_len
,
3375 ioff
= btrfs_item_offset(leaf
, item
);
3376 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
3379 if (leaf
->map_token
) {
3380 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3381 leaf
->map_token
= NULL
;
3384 /* shift the data */
3385 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3386 data_end
- data_size
, btrfs_leaf_data(leaf
) +
3387 data_end
, old_data
- data_end
);
3389 data_end
= old_data
;
3390 old_size
= btrfs_item_size_nr(leaf
, slot
);
3391 item
= btrfs_item_nr(leaf
, slot
);
3392 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
3393 btrfs_mark_buffer_dirty(leaf
);
3396 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3397 btrfs_print_leaf(root
, leaf
);
3404 * Given a key and some data, insert items into the tree.
3405 * This does all the path init required, making room in the tree if needed.
3406 * Returns the number of keys that were inserted.
3408 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
3409 struct btrfs_root
*root
,
3410 struct btrfs_path
*path
,
3411 struct btrfs_key
*cpu_key
, u32
*data_size
,
3414 struct extent_buffer
*leaf
;
3415 struct btrfs_item
*item
;
3422 unsigned int data_end
;
3423 struct btrfs_disk_key disk_key
;
3424 struct btrfs_key found_key
;
3426 for (i
= 0; i
< nr
; i
++) {
3427 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
3428 BTRFS_LEAF_DATA_SIZE(root
)) {
3432 total_data
+= data_size
[i
];
3433 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
3437 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3443 leaf
= path
->nodes
[0];
3445 nritems
= btrfs_header_nritems(leaf
);
3446 data_end
= leaf_data_end(root
, leaf
);
3448 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3449 for (i
= nr
; i
>= 0; i
--) {
3450 total_data
-= data_size
[i
];
3451 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
3452 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
3458 slot
= path
->slots
[0];
3461 if (slot
!= nritems
) {
3462 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3464 item
= btrfs_item_nr(leaf
, slot
);
3465 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3467 /* figure out how many keys we can insert in here */
3468 total_data
= data_size
[0];
3469 for (i
= 1; i
< nr
; i
++) {
3470 if (btrfs_comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
3472 total_data
+= data_size
[i
];
3476 if (old_data
< data_end
) {
3477 btrfs_print_leaf(root
, leaf
);
3478 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3479 slot
, old_data
, data_end
);
3483 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3485 /* first correct the data pointers */
3486 WARN_ON(leaf
->map_token
);
3487 for (i
= slot
; i
< nritems
; i
++) {
3490 item
= btrfs_item_nr(leaf
, i
);
3491 if (!leaf
->map_token
) {
3492 map_extent_buffer(leaf
, (unsigned long)item
,
3493 sizeof(struct btrfs_item
),
3494 &leaf
->map_token
, &leaf
->kaddr
,
3495 &leaf
->map_start
, &leaf
->map_len
,
3499 ioff
= btrfs_item_offset(leaf
, item
);
3500 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3502 if (leaf
->map_token
) {
3503 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3504 leaf
->map_token
= NULL
;
3507 /* shift the items */
3508 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3509 btrfs_item_nr_offset(slot
),
3510 (nritems
- slot
) * sizeof(struct btrfs_item
));
3512 /* shift the data */
3513 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3514 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3515 data_end
, old_data
- data_end
);
3516 data_end
= old_data
;
3519 * this sucks but it has to be done, if we are inserting at
3520 * the end of the leaf only insert 1 of the items, since we
3521 * have no way of knowing whats on the next leaf and we'd have
3522 * to drop our current locks to figure it out
3527 /* setup the item for the new data */
3528 for (i
= 0; i
< nr
; i
++) {
3529 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3530 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3531 item
= btrfs_item_nr(leaf
, slot
+ i
);
3532 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3533 data_end
-= data_size
[i
];
3534 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3536 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3537 btrfs_mark_buffer_dirty(leaf
);
3541 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3542 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3545 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3546 btrfs_print_leaf(root
, leaf
);
3556 * this is a helper for btrfs_insert_empty_items, the main goal here is
3557 * to save stack depth by doing the bulk of the work in a function
3558 * that doesn't call btrfs_search_slot
3560 static noinline_for_stack
int
3561 setup_items_for_insert(struct btrfs_trans_handle
*trans
,
3562 struct btrfs_root
*root
, struct btrfs_path
*path
,
3563 struct btrfs_key
*cpu_key
, u32
*data_size
,
3564 u32 total_data
, u32 total_size
, int nr
)
3566 struct btrfs_item
*item
;
3569 unsigned int data_end
;
3570 struct btrfs_disk_key disk_key
;
3572 struct extent_buffer
*leaf
;
3575 leaf
= path
->nodes
[0];
3576 slot
= path
->slots
[0];
3578 nritems
= btrfs_header_nritems(leaf
);
3579 data_end
= leaf_data_end(root
, leaf
);
3581 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3582 btrfs_print_leaf(root
, leaf
);
3583 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
3584 total_size
, btrfs_leaf_free_space(root
, leaf
));
3588 if (slot
!= nritems
) {
3589 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3591 if (old_data
< data_end
) {
3592 btrfs_print_leaf(root
, leaf
);
3593 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3594 slot
, old_data
, data_end
);
3598 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3600 /* first correct the data pointers */
3601 WARN_ON(leaf
->map_token
);
3602 for (i
= slot
; i
< nritems
; i
++) {
3605 item
= btrfs_item_nr(leaf
, i
);
3606 if (!leaf
->map_token
) {
3607 map_extent_buffer(leaf
, (unsigned long)item
,
3608 sizeof(struct btrfs_item
),
3609 &leaf
->map_token
, &leaf
->kaddr
,
3610 &leaf
->map_start
, &leaf
->map_len
,
3614 ioff
= btrfs_item_offset(leaf
, item
);
3615 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3617 if (leaf
->map_token
) {
3618 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3619 leaf
->map_token
= NULL
;
3622 /* shift the items */
3623 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3624 btrfs_item_nr_offset(slot
),
3625 (nritems
- slot
) * sizeof(struct btrfs_item
));
3627 /* shift the data */
3628 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3629 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3630 data_end
, old_data
- data_end
);
3631 data_end
= old_data
;
3634 /* setup the item for the new data */
3635 for (i
= 0; i
< nr
; i
++) {
3636 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3637 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3638 item
= btrfs_item_nr(leaf
, slot
+ i
);
3639 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3640 data_end
-= data_size
[i
];
3641 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3644 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3648 struct btrfs_disk_key disk_key
;
3649 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3650 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3652 btrfs_unlock_up_safe(path
, 1);
3653 btrfs_mark_buffer_dirty(leaf
);
3655 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3656 btrfs_print_leaf(root
, leaf
);
3663 * Given a key and some data, insert items into the tree.
3664 * This does all the path init required, making room in the tree if needed.
3666 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
3667 struct btrfs_root
*root
,
3668 struct btrfs_path
*path
,
3669 struct btrfs_key
*cpu_key
, u32
*data_size
,
3672 struct extent_buffer
*leaf
;
3679 for (i
= 0; i
< nr
; i
++)
3680 total_data
+= data_size
[i
];
3682 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
3683 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3689 leaf
= path
->nodes
[0];
3690 slot
= path
->slots
[0];
3693 ret
= setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
3694 total_data
, total_size
, nr
);
3701 * Given a key and some data, insert an item into the tree.
3702 * This does all the path init required, making room in the tree if needed.
3704 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
3705 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
3709 struct btrfs_path
*path
;
3710 struct extent_buffer
*leaf
;
3713 path
= btrfs_alloc_path();
3715 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
3717 leaf
= path
->nodes
[0];
3718 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3719 write_extent_buffer(leaf
, data
, ptr
, data_size
);
3720 btrfs_mark_buffer_dirty(leaf
);
3722 btrfs_free_path(path
);
3727 * delete the pointer from a given node.
3729 * the tree should have been previously balanced so the deletion does not
3732 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3733 struct btrfs_path
*path
, int level
, int slot
)
3735 struct extent_buffer
*parent
= path
->nodes
[level
];
3740 nritems
= btrfs_header_nritems(parent
);
3741 if (slot
!= nritems
- 1) {
3742 memmove_extent_buffer(parent
,
3743 btrfs_node_key_ptr_offset(slot
),
3744 btrfs_node_key_ptr_offset(slot
+ 1),
3745 sizeof(struct btrfs_key_ptr
) *
3746 (nritems
- slot
- 1));
3749 btrfs_set_header_nritems(parent
, nritems
);
3750 if (nritems
== 0 && parent
== root
->node
) {
3751 BUG_ON(btrfs_header_level(root
->node
) != 1);
3752 /* just turn the root into a leaf and break */
3753 btrfs_set_header_level(root
->node
, 0);
3754 } else if (slot
== 0) {
3755 struct btrfs_disk_key disk_key
;
3757 btrfs_node_key(parent
, &disk_key
, 0);
3758 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
3762 btrfs_mark_buffer_dirty(parent
);
3767 * a helper function to delete the leaf pointed to by path->slots[1] and
3770 * This deletes the pointer in path->nodes[1] and frees the leaf
3771 * block extent. zero is returned if it all worked out, < 0 otherwise.
3773 * The path must have already been setup for deleting the leaf, including
3774 * all the proper balancing. path->nodes[1] must be locked.
3776 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
3777 struct btrfs_root
*root
,
3778 struct btrfs_path
*path
,
3779 struct extent_buffer
*leaf
)
3783 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
3784 ret
= del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
3789 * btrfs_free_extent is expensive, we want to make sure we
3790 * aren't holding any locks when we call it
3792 btrfs_unlock_up_safe(path
, 0);
3794 ret
= btrfs_free_tree_block(trans
, root
, leaf
->start
, leaf
->len
,
3795 0, root
->root_key
.objectid
, 0);
3799 * delete the item at the leaf level in path. If that empties
3800 * the leaf, remove it from the tree
3802 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3803 struct btrfs_path
*path
, int slot
, int nr
)
3805 struct extent_buffer
*leaf
;
3806 struct btrfs_item
*item
;
3814 leaf
= path
->nodes
[0];
3815 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
3817 for (i
= 0; i
< nr
; i
++)
3818 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
3820 nritems
= btrfs_header_nritems(leaf
);
3822 if (slot
+ nr
!= nritems
) {
3823 int data_end
= leaf_data_end(root
, leaf
);
3825 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3827 btrfs_leaf_data(leaf
) + data_end
,
3828 last_off
- data_end
);
3830 for (i
= slot
+ nr
; i
< nritems
; i
++) {
3833 item
= btrfs_item_nr(leaf
, i
);
3834 if (!leaf
->map_token
) {
3835 map_extent_buffer(leaf
, (unsigned long)item
,
3836 sizeof(struct btrfs_item
),
3837 &leaf
->map_token
, &leaf
->kaddr
,
3838 &leaf
->map_start
, &leaf
->map_len
,
3841 ioff
= btrfs_item_offset(leaf
, item
);
3842 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
3845 if (leaf
->map_token
) {
3846 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3847 leaf
->map_token
= NULL
;
3850 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
3851 btrfs_item_nr_offset(slot
+ nr
),
3852 sizeof(struct btrfs_item
) *
3853 (nritems
- slot
- nr
));
3855 btrfs_set_header_nritems(leaf
, nritems
- nr
);
3858 /* delete the leaf if we've emptied it */
3860 if (leaf
== root
->node
) {
3861 btrfs_set_header_level(leaf
, 0);
3863 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3867 int used
= leaf_space_used(leaf
, 0, nritems
);
3869 struct btrfs_disk_key disk_key
;
3871 btrfs_item_key(leaf
, &disk_key
, 0);
3872 wret
= fixup_low_keys(trans
, root
, path
,
3878 /* delete the leaf if it is mostly empty */
3879 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
3880 /* push_leaf_left fixes the path.
3881 * make sure the path still points to our leaf
3882 * for possible call to del_ptr below
3884 slot
= path
->slots
[1];
3885 extent_buffer_get(leaf
);
3887 btrfs_set_path_blocking(path
);
3888 wret
= push_leaf_left(trans
, root
, path
, 1, 1);
3889 if (wret
< 0 && wret
!= -ENOSPC
)
3892 if (path
->nodes
[0] == leaf
&&
3893 btrfs_header_nritems(leaf
)) {
3894 wret
= push_leaf_right(trans
, root
, path
, 1, 1);
3895 if (wret
< 0 && wret
!= -ENOSPC
)
3899 if (btrfs_header_nritems(leaf
) == 0) {
3900 path
->slots
[1] = slot
;
3901 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3903 free_extent_buffer(leaf
);
3905 /* if we're still in the path, make sure
3906 * we're dirty. Otherwise, one of the
3907 * push_leaf functions must have already
3908 * dirtied this buffer
3910 if (path
->nodes
[0] == leaf
)
3911 btrfs_mark_buffer_dirty(leaf
);
3912 free_extent_buffer(leaf
);
3915 btrfs_mark_buffer_dirty(leaf
);
3922 * search the tree again to find a leaf with lesser keys
3923 * returns 0 if it found something or 1 if there are no lesser leaves.
3924 * returns < 0 on io errors.
3926 * This may release the path, and so you may lose any locks held at the
3929 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
3931 struct btrfs_key key
;
3932 struct btrfs_disk_key found_key
;
3935 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
3939 else if (key
.type
> 0)
3941 else if (key
.objectid
> 0)
3946 btrfs_release_path(root
, path
);
3947 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3950 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
3951 ret
= comp_keys(&found_key
, &key
);
3958 * A helper function to walk down the tree starting at min_key, and looking
3959 * for nodes or leaves that are either in cache or have a minimum
3960 * transaction id. This is used by the btree defrag code, and tree logging
3962 * This does not cow, but it does stuff the starting key it finds back
3963 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3964 * key and get a writable path.
3966 * This does lock as it descends, and path->keep_locks should be set
3967 * to 1 by the caller.
3969 * This honors path->lowest_level to prevent descent past a given level
3972 * min_trans indicates the oldest transaction that you are interested
3973 * in walking through. Any nodes or leaves older than min_trans are
3974 * skipped over (without reading them).
3976 * returns zero if something useful was found, < 0 on error and 1 if there
3977 * was nothing in the tree that matched the search criteria.
3979 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
3980 struct btrfs_key
*max_key
,
3981 struct btrfs_path
*path
, int cache_only
,
3984 struct extent_buffer
*cur
;
3985 struct btrfs_key found_key
;
3992 WARN_ON(!path
->keep_locks
);
3994 cur
= btrfs_lock_root_node(root
);
3995 level
= btrfs_header_level(cur
);
3996 WARN_ON(path
->nodes
[level
]);
3997 path
->nodes
[level
] = cur
;
3998 path
->locks
[level
] = 1;
4000 if (btrfs_header_generation(cur
) < min_trans
) {
4005 nritems
= btrfs_header_nritems(cur
);
4006 level
= btrfs_header_level(cur
);
4007 sret
= bin_search(cur
, min_key
, level
, &slot
);
4009 /* at the lowest level, we're done, setup the path and exit */
4010 if (level
== path
->lowest_level
) {
4011 if (slot
>= nritems
)
4014 path
->slots
[level
] = slot
;
4015 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4018 if (sret
&& slot
> 0)
4021 * check this node pointer against the cache_only and
4022 * min_trans parameters. If it isn't in cache or is too
4023 * old, skip to the next one.
4025 while (slot
< nritems
) {
4028 struct extent_buffer
*tmp
;
4029 struct btrfs_disk_key disk_key
;
4031 blockptr
= btrfs_node_blockptr(cur
, slot
);
4032 gen
= btrfs_node_ptr_generation(cur
, slot
);
4033 if (gen
< min_trans
) {
4041 btrfs_node_key(cur
, &disk_key
, slot
);
4042 if (comp_keys(&disk_key
, max_key
) >= 0) {
4048 tmp
= btrfs_find_tree_block(root
, blockptr
,
4049 btrfs_level_size(root
, level
- 1));
4051 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
4052 free_extent_buffer(tmp
);
4056 free_extent_buffer(tmp
);
4061 * we didn't find a candidate key in this node, walk forward
4062 * and find another one
4064 if (slot
>= nritems
) {
4065 path
->slots
[level
] = slot
;
4066 btrfs_set_path_blocking(path
);
4067 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4068 cache_only
, min_trans
);
4070 btrfs_release_path(root
, path
);
4076 /* save our key for returning back */
4077 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4078 path
->slots
[level
] = slot
;
4079 if (level
== path
->lowest_level
) {
4081 unlock_up(path
, level
, 1);
4084 btrfs_set_path_blocking(path
);
4085 cur
= read_node_slot(root
, cur
, slot
);
4087 btrfs_tree_lock(cur
);
4089 path
->locks
[level
- 1] = 1;
4090 path
->nodes
[level
- 1] = cur
;
4091 unlock_up(path
, level
, 1);
4092 btrfs_clear_path_blocking(path
, NULL
);
4096 memcpy(min_key
, &found_key
, sizeof(found_key
));
4097 btrfs_set_path_blocking(path
);
4102 * this is similar to btrfs_next_leaf, but does not try to preserve
4103 * and fixup the path. It looks for and returns the next key in the
4104 * tree based on the current path and the cache_only and min_trans
4107 * 0 is returned if another key is found, < 0 if there are any errors
4108 * and 1 is returned if there are no higher keys in the tree
4110 * path->keep_locks should be set to 1 on the search made before
4111 * calling this function.
4113 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4114 struct btrfs_key
*key
, int level
,
4115 int cache_only
, u64 min_trans
)
4118 struct extent_buffer
*c
;
4120 WARN_ON(!path
->keep_locks
);
4121 while (level
< BTRFS_MAX_LEVEL
) {
4122 if (!path
->nodes
[level
])
4125 slot
= path
->slots
[level
] + 1;
4126 c
= path
->nodes
[level
];
4128 if (slot
>= btrfs_header_nritems(c
)) {
4131 struct btrfs_key cur_key
;
4132 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
4133 !path
->nodes
[level
+ 1])
4136 if (path
->locks
[level
+ 1]) {
4141 slot
= btrfs_header_nritems(c
) - 1;
4143 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
4145 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
4147 orig_lowest
= path
->lowest_level
;
4148 btrfs_release_path(root
, path
);
4149 path
->lowest_level
= level
;
4150 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
4152 path
->lowest_level
= orig_lowest
;
4156 c
= path
->nodes
[level
];
4157 slot
= path
->slots
[level
];
4164 btrfs_item_key_to_cpu(c
, key
, slot
);
4166 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
4167 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4170 struct extent_buffer
*cur
;
4171 cur
= btrfs_find_tree_block(root
, blockptr
,
4172 btrfs_level_size(root
, level
- 1));
4173 if (!cur
|| !btrfs_buffer_uptodate(cur
, gen
)) {
4176 free_extent_buffer(cur
);
4179 free_extent_buffer(cur
);
4181 if (gen
< min_trans
) {
4185 btrfs_node_key_to_cpu(c
, key
, slot
);
4193 * search the tree again to find a leaf with greater keys
4194 * returns 0 if it found something or 1 if there are no greater leaves.
4195 * returns < 0 on io errors.
4197 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4201 struct extent_buffer
*c
;
4202 struct extent_buffer
*next
;
4203 struct btrfs_key key
;
4206 int old_spinning
= path
->leave_spinning
;
4207 int force_blocking
= 0;
4209 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4214 * we take the blocks in an order that upsets lockdep. Using
4215 * blocking mode is the only way around it.
4217 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4221 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4225 btrfs_release_path(root
, path
);
4227 path
->keep_locks
= 1;
4229 if (!force_blocking
)
4230 path
->leave_spinning
= 1;
4232 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4233 path
->keep_locks
= 0;
4238 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4240 * by releasing the path above we dropped all our locks. A balance
4241 * could have added more items next to the key that used to be
4242 * at the very end of the block. So, check again here and
4243 * advance the path if there are now more items available.
4245 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4252 while (level
< BTRFS_MAX_LEVEL
) {
4253 if (!path
->nodes
[level
]) {
4258 slot
= path
->slots
[level
] + 1;
4259 c
= path
->nodes
[level
];
4260 if (slot
>= btrfs_header_nritems(c
)) {
4262 if (level
== BTRFS_MAX_LEVEL
) {
4270 btrfs_tree_unlock(next
);
4271 free_extent_buffer(next
);
4275 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4281 btrfs_release_path(root
, path
);
4285 if (!path
->skip_locking
) {
4286 ret
= btrfs_try_spin_lock(next
);
4288 btrfs_set_path_blocking(path
);
4289 btrfs_tree_lock(next
);
4290 if (!force_blocking
)
4291 btrfs_clear_path_blocking(path
, next
);
4294 btrfs_set_lock_blocking(next
);
4298 path
->slots
[level
] = slot
;
4301 c
= path
->nodes
[level
];
4302 if (path
->locks
[level
])
4303 btrfs_tree_unlock(c
);
4305 free_extent_buffer(c
);
4306 path
->nodes
[level
] = next
;
4307 path
->slots
[level
] = 0;
4308 if (!path
->skip_locking
)
4309 path
->locks
[level
] = 1;
4314 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4320 btrfs_release_path(root
, path
);
4324 if (!path
->skip_locking
) {
4325 btrfs_assert_tree_locked(path
->nodes
[level
]);
4326 ret
= btrfs_try_spin_lock(next
);
4328 btrfs_set_path_blocking(path
);
4329 btrfs_tree_lock(next
);
4330 if (!force_blocking
)
4331 btrfs_clear_path_blocking(path
, next
);
4334 btrfs_set_lock_blocking(next
);
4339 unlock_up(path
, 0, 1);
4340 path
->leave_spinning
= old_spinning
;
4342 btrfs_set_path_blocking(path
);
4348 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4349 * searching until it gets past min_objectid or finds an item of 'type'
4351 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4353 int btrfs_previous_item(struct btrfs_root
*root
,
4354 struct btrfs_path
*path
, u64 min_objectid
,
4357 struct btrfs_key found_key
;
4358 struct extent_buffer
*leaf
;
4363 if (path
->slots
[0] == 0) {
4364 btrfs_set_path_blocking(path
);
4365 ret
= btrfs_prev_leaf(root
, path
);
4371 leaf
= path
->nodes
[0];
4372 nritems
= btrfs_header_nritems(leaf
);
4375 if (path
->slots
[0] == nritems
)
4378 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4379 if (found_key
.objectid
< min_objectid
)
4381 if (found_key
.type
== type
)
4383 if (found_key
.objectid
== min_objectid
&&
4384 found_key
.type
< type
)