drm/i915|intel-gtt: consolidate intel-gtt.h headers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / reiserfs / inode.c
blob0bae036831e2ca2aeeae94eb78d74f2aa769b54d
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
25 void reiserfs_evict_inode(struct inode *inode)
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int depth;
33 int err;
35 if (!inode->i_nlink && !is_bad_inode(inode))
36 dquot_initialize(inode);
38 truncate_inode_pages(&inode->i_data, 0);
39 if (inode->i_nlink)
40 goto no_delete;
42 depth = reiserfs_write_lock_once(inode->i_sb);
44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
46 reiserfs_delete_xattrs(inode);
48 if (journal_begin(&th, inode->i_sb, jbegin_count))
49 goto out;
50 reiserfs_update_inode_transaction(inode);
52 reiserfs_discard_prealloc(&th, inode);
54 err = reiserfs_delete_object(&th, inode);
56 /* Do quota update inside a transaction for journaled quotas. We must do that
57 * after delete_object so that quota updates go into the same transaction as
58 * stat data deletion */
59 if (!err)
60 dquot_free_inode(inode);
62 if (journal_end(&th, inode->i_sb, jbegin_count))
63 goto out;
65 /* check return value from reiserfs_delete_object after
66 * ending the transaction
68 if (err)
69 goto out;
71 /* all items of file are deleted, so we can remove "save" link */
72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73 * about an error here */
74 } else {
75 /* no object items are in the tree */
78 out:
79 end_writeback(inode); /* note this must go after the journal_end to prevent deadlock */
80 dquot_drop(inode);
81 inode->i_blocks = 0;
82 reiserfs_write_unlock_once(inode->i_sb, depth);
83 return;
85 no_delete:
86 end_writeback(inode);
87 dquot_drop(inode);
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 __u32 objectid, loff_t offset, int type, int length)
93 key->version = version;
95 key->on_disk_key.k_dir_id = dirid;
96 key->on_disk_key.k_objectid = objectid;
97 set_cpu_key_k_offset(key, offset);
98 set_cpu_key_k_type(key, type);
99 key->key_length = length;
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103 offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 int type, int length)
107 _make_cpu_key(key, get_inode_item_key_version(inode),
108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 length);
114 // when key is 0, do not set version and short key
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 int version,
118 loff_t offset, int type, int length,
119 int entry_count /*or ih_free_space */ )
121 if (key) {
122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 ih->ih_key.k_objectid =
124 cpu_to_le32(key->on_disk_key.k_objectid);
126 put_ih_version(ih, version);
127 set_le_ih_k_offset(ih, offset);
128 set_le_ih_k_type(ih, type);
129 put_ih_item_len(ih, length);
130 /* set_ih_free_space (ih, 0); */
131 // for directory items it is entry count, for directs and stat
132 // datas - 0xffff, for indirects - 0
133 put_ih_entry_count(ih, entry_count);
137 // FIXME: we might cache recently accessed indirect item
139 // Ugh. Not too eager for that....
140 // I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in. But, Vladimir has a really good idea here. Think
145 ** about what happens for reading a file. For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item. This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right. But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
152 ** The size of the cache could be dynamic based on the size of the file.
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
157 ** --chris
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it. So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers. Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
168 static inline void fix_tail_page_for_writing(struct page *page)
170 struct buffer_head *head, *next, *bh;
172 if (page && page_has_buffers(page)) {
173 head = page_buffers(page);
174 bh = head;
175 do {
176 next = bh->b_this_page;
177 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 reiserfs_unmap_buffer(bh);
180 bh = next;
181 } while (bh != head);
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186 done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 struct item_head *ih,
189 __le32 * item, int pos_in_item)
191 if (allocated)
192 return 0;
193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 get_block_num(item, pos_in_item))
195 return 0;
196 return 1;
199 static inline int indirect_item_found(int retval, struct item_head *ih)
201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 b_blocknr_t block, struct inode *inode)
207 map_bh(bh, inode->i_sb, block);
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
214 static int file_capable(struct inode *inode, sector_t block)
216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
218 return 1;
220 return 0;
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 struct inode *inode, struct treepath *path)
226 struct super_block *s = th->t_super;
227 int len = th->t_blocks_allocated;
228 int err;
230 BUG_ON(!th->t_trans_id);
231 BUG_ON(!th->t_refcount);
233 pathrelse(path);
235 /* we cannot restart while nested */
236 if (th->t_refcount > 1) {
237 return 0;
239 reiserfs_update_sd(th, inode);
240 err = journal_end(th, s, len);
241 if (!err) {
242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 if (!err)
244 reiserfs_update_inode_transaction(inode);
246 return err;
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 struct buffer_head *bh_result, int args)
260 INITIALIZE_PATH(path);
261 struct cpu_key key;
262 struct buffer_head *bh;
263 struct item_head *ih, tmp_ih;
264 b_blocknr_t blocknr;
265 char *p = NULL;
266 int chars;
267 int ret;
268 int result;
269 int done = 0;
270 unsigned long offset;
272 // prepare the key to look for the 'block'-th block of file
273 make_cpu_key(&key, inode,
274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
277 result = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (result != POSITION_FOUND) {
279 pathrelse(&path);
280 if (p)
281 kunmap(bh_result->b_page);
282 if (result == IO_ERROR)
283 return -EIO;
284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 // That there is some MMAPED data associated with it that is yet to be written to disk.
286 if ((args & GET_BLOCK_NO_HOLE)
287 && !PageUptodate(bh_result->b_page)) {
288 return -ENOENT;
290 return 0;
293 bh = get_last_bh(&path);
294 ih = get_ih(&path);
295 if (is_indirect_le_ih(ih)) {
296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
298 /* FIXME: here we could cache indirect item or part of it in
299 the inode to avoid search_by_key in case of subsequent
300 access to file */
301 blocknr = get_block_num(ind_item, path.pos_in_item);
302 ret = 0;
303 if (blocknr) {
304 map_bh(bh_result, inode->i_sb, blocknr);
305 if (path.pos_in_item ==
306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 set_buffer_boundary(bh_result);
309 } else
310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 // That there is some MMAPED data associated with it that is yet to be written to disk.
312 if ((args & GET_BLOCK_NO_HOLE)
313 && !PageUptodate(bh_result->b_page)) {
314 ret = -ENOENT;
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return ret;
322 // requested data are in direct item(s)
323 if (!(args & GET_BLOCK_READ_DIRECT)) {
324 // we are called by bmap. FIXME: we can not map block of file
325 // when it is stored in direct item(s)
326 pathrelse(&path);
327 if (p)
328 kunmap(bh_result->b_page);
329 return -ENOENT;
332 /* if we've got a direct item, and the buffer or page was uptodate,
333 ** we don't want to pull data off disk again. skip to the
334 ** end, where we map the buffer and return
336 if (buffer_uptodate(bh_result)) {
337 goto finished;
338 } else
340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 ** pages without any buffers. If the page is up to date, we don't want
342 ** read old data off disk. Set the up to date bit on the buffer instead
343 ** and jump to the end
345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 set_buffer_uptodate(bh_result);
347 goto finished;
349 // read file tail into part of page
350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 copy_item_head(&tmp_ih, ih);
353 /* we only want to kmap if we are reading the tail into the page.
354 ** this is not the common case, so we don't kmap until we are
355 ** sure we need to. But, this means the item might move if
356 ** kmap schedules
358 if (!p)
359 p = (char *)kmap(bh_result->b_page);
361 p += offset;
362 memset(p, 0, inode->i_sb->s_blocksize);
363 do {
364 if (!is_direct_le_ih(ih)) {
365 BUG();
367 /* make sure we don't read more bytes than actually exist in
368 ** the file. This can happen in odd cases where i_size isn't
369 ** correct, and when direct item padding results in a few
370 ** extra bytes at the end of the direct item
372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 break;
374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 chars =
376 inode->i_size - (le_ih_k_offset(ih) - 1) -
377 path.pos_in_item;
378 done = 1;
379 } else {
380 chars = ih_item_len(ih) - path.pos_in_item;
382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
384 if (done)
385 break;
387 p += chars;
389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 // we done, if read direct item is not the last item of
391 // node FIXME: we could try to check right delimiting key
392 // to see whether direct item continues in the right
393 // neighbor or rely on i_size
394 break;
396 // update key to look for the next piece
397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 result = search_for_position_by_key(inode->i_sb, &key, &path);
399 if (result != POSITION_FOUND)
400 // i/o error most likely
401 break;
402 bh = get_last_bh(&path);
403 ih = get_ih(&path);
404 } while (1);
406 flush_dcache_page(bh_result->b_page);
407 kunmap(bh_result->b_page);
409 finished:
410 pathrelse(&path);
412 if (result == IO_ERROR)
413 return -EIO;
415 /* this buffer has valid data, but isn't valid for io. mapping it to
416 * block #0 tells the rest of reiserfs it just has a tail in it
418 map_bh(bh_result, inode->i_sb, 0);
419 set_buffer_uptodate(bh_result);
420 return 0;
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 struct buffer_head *bh_result, int create)
428 if (!file_capable(inode, block))
429 return -EFBIG;
431 reiserfs_write_lock(inode->i_sb);
432 /* do not read the direct item */
433 _get_block_create_0(inode, block, bh_result, 0);
434 reiserfs_write_unlock(inode->i_sb);
435 return 0;
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now. It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page. Where it does not produce a valid page for holes, or past the
447 ** end of the file. This turns out to be exactly what we need for reading
448 ** tails for conversion.
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1. If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 struct buffer_head *bh_result,
457 int create)
459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
462 /* This is special helper for reiserfs_get_block in case we are executing
463 direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 sector_t iblock,
466 struct buffer_head *bh_result,
467 int create)
469 int ret;
471 bh_result->b_page = NULL;
473 /* We set the b_size before reiserfs_get_block call since it is
474 referenced in convert_tail_for_hole() that may be called from
475 reiserfs_get_block() */
476 bh_result->b_size = (1 << inode->i_blkbits);
478 ret = reiserfs_get_block(inode, iblock, bh_result,
479 create | GET_BLOCK_NO_DANGLE);
480 if (ret)
481 goto out;
483 /* don't allow direct io onto tail pages */
484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 /* make sure future calls to the direct io funcs for this offset
486 ** in the file fail by unmapping the buffer
488 clear_buffer_mapped(bh_result);
489 ret = -EINVAL;
491 /* Possible unpacked tail. Flush the data before pages have
492 disappeared */
493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 int err;
496 reiserfs_write_lock(inode->i_sb);
498 err = reiserfs_commit_for_inode(inode);
499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
501 reiserfs_write_unlock(inode->i_sb);
503 if (err < 0)
504 ret = err;
506 out:
507 return ret;
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
520 static int convert_tail_for_hole(struct inode *inode,
521 struct buffer_head *bh_result,
522 loff_t tail_offset)
524 unsigned long index;
525 unsigned long tail_end;
526 unsigned long tail_start;
527 struct page *tail_page;
528 struct page *hole_page = bh_result->b_page;
529 int retval = 0;
531 if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 return -EIO;
534 /* always try to read until the end of the block */
535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538 index = tail_offset >> PAGE_CACHE_SHIFT;
539 /* hole_page can be zero in case of direct_io, we are sure
540 that we cannot get here if we write with O_DIRECT into
541 tail page */
542 if (!hole_page || index != hole_page->index) {
543 tail_page = grab_cache_page(inode->i_mapping, index);
544 retval = -ENOMEM;
545 if (!tail_page) {
546 goto out;
548 } else {
549 tail_page = hole_page;
552 /* we don't have to make sure the conversion did not happen while
553 ** we were locking the page because anyone that could convert
554 ** must first take i_mutex.
556 ** We must fix the tail page for writing because it might have buffers
557 ** that are mapped, but have a block number of 0. This indicates tail
558 ** data that has been read directly into the page, and
559 ** __block_write_begin won't trigger a get_block in this case.
561 fix_tail_page_for_writing(tail_page);
562 retval = __reiserfs_write_begin(tail_page, tail_start,
563 tail_end - tail_start);
564 if (retval)
565 goto unlock;
567 /* tail conversion might change the data in the page */
568 flush_dcache_page(tail_page);
570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
572 unlock:
573 if (tail_page != hole_page) {
574 unlock_page(tail_page);
575 page_cache_release(tail_page);
577 out:
578 return retval;
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 sector_t block,
583 struct inode *inode,
584 b_blocknr_t * allocated_block_nr,
585 struct treepath *path, int flags)
587 BUG_ON(!th->t_trans_id);
589 #ifdef REISERFS_PREALLOCATE
590 if (!(flags & GET_BLOCK_NO_IMUX)) {
591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 path, block);
594 #endif
595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 block);
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 struct buffer_head *bh_result, int create)
602 int repeat, retval = 0;
603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
604 INITIALIZE_PATH(path);
605 int pos_in_item;
606 struct cpu_key key;
607 struct buffer_head *bh, *unbh = NULL;
608 struct item_head *ih, tmp_ih;
609 __le32 *item;
610 int done;
611 int fs_gen;
612 int lock_depth;
613 struct reiserfs_transaction_handle *th = NULL;
614 /* space reserved in transaction batch:
615 . 3 balancings in direct->indirect conversion
616 . 1 block involved into reiserfs_update_sd()
617 XXX in practically impossible worst case direct2indirect()
618 can incur (much) more than 3 balancings.
619 quota update for user, group */
620 int jbegin_count =
621 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 int version;
624 int dangle = 1;
625 loff_t new_offset =
626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
628 lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 version = get_inode_item_key_version(inode);
631 if (!file_capable(inode, block)) {
632 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 return -EFBIG;
636 /* if !create, we aren't changing the FS, so we don't need to
637 ** log anything, so we don't need to start a transaction
639 if (!(create & GET_BLOCK_CREATE)) {
640 int ret;
641 /* find number of block-th logical block of the file */
642 ret = _get_block_create_0(inode, block, bh_result,
643 create | GET_BLOCK_READ_DIRECT);
644 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 return ret;
648 * if we're already in a transaction, make sure to close
649 * any new transactions we start in this func
651 if ((create & GET_BLOCK_NO_DANGLE) ||
652 reiserfs_transaction_running(inode->i_sb))
653 dangle = 0;
655 /* If file is of such a size, that it might have a tail and tails are enabled
656 ** we should mark it as possibly needing tail packing on close
658 if ((have_large_tails(inode->i_sb)
659 && inode->i_size < i_block_size(inode) * 4)
660 || (have_small_tails(inode->i_sb)
661 && inode->i_size < i_block_size(inode)))
662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
664 /* set the key of the first byte in the 'block'-th block of file */
665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 start_trans:
668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 if (!th) {
670 retval = -ENOMEM;
671 goto failure;
673 reiserfs_update_inode_transaction(inode);
675 research:
677 retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 if (retval == IO_ERROR) {
679 retval = -EIO;
680 goto failure;
683 bh = get_last_bh(&path);
684 ih = get_ih(&path);
685 item = get_item(&path);
686 pos_in_item = path.pos_in_item;
688 fs_gen = get_generation(inode->i_sb);
689 copy_item_head(&tmp_ih, ih);
691 if (allocation_needed
692 (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 /* we have to allocate block for the unformatted node */
694 if (!th) {
695 pathrelse(&path);
696 goto start_trans;
699 repeat =
700 _allocate_block(th, block, inode, &allocated_block_nr,
701 &path, create);
703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 /* restart the transaction to give the journal a chance to free
705 ** some blocks. releases the path, so we have to go back to
706 ** research if we succeed on the second try
708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 retval = restart_transaction(th, inode, &path);
710 if (retval)
711 goto failure;
712 repeat =
713 _allocate_block(th, block, inode,
714 &allocated_block_nr, NULL, create);
716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 goto research;
719 if (repeat == QUOTA_EXCEEDED)
720 retval = -EDQUOT;
721 else
722 retval = -ENOSPC;
723 goto failure;
726 if (fs_changed(fs_gen, inode->i_sb)
727 && item_moved(&tmp_ih, &path)) {
728 goto research;
732 if (indirect_item_found(retval, ih)) {
733 b_blocknr_t unfm_ptr;
734 /* 'block'-th block is in the file already (there is
735 corresponding cell in some indirect item). But it may be
736 zero unformatted node pointer (hole) */
737 unfm_ptr = get_block_num(item, pos_in_item);
738 if (unfm_ptr == 0) {
739 /* use allocated block to plug the hole */
740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 if (fs_changed(fs_gen, inode->i_sb)
742 && item_moved(&tmp_ih, &path)) {
743 reiserfs_restore_prepared_buffer(inode->i_sb,
744 bh);
745 goto research;
747 set_buffer_new(bh_result);
748 if (buffer_dirty(bh_result)
749 && reiserfs_data_ordered(inode->i_sb))
750 reiserfs_add_ordered_list(inode, bh_result);
751 put_block_num(item, pos_in_item, allocated_block_nr);
752 unfm_ptr = allocated_block_nr;
753 journal_mark_dirty(th, inode->i_sb, bh);
754 reiserfs_update_sd(th, inode);
756 set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 pathrelse(&path);
758 retval = 0;
759 if (!dangle && th)
760 retval = reiserfs_end_persistent_transaction(th);
762 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
764 /* the item was found, so new blocks were not added to the file
765 ** there is no need to make sure the inode is updated with this
766 ** transaction
768 return retval;
771 if (!th) {
772 pathrelse(&path);
773 goto start_trans;
776 /* desired position is not found or is in the direct item. We have
777 to append file with holes up to 'block'-th block converting
778 direct items to indirect one if necessary */
779 done = 0;
780 do {
781 if (is_statdata_le_ih(ih)) {
782 __le32 unp = 0;
783 struct cpu_key tmp_key;
785 /* indirect item has to be inserted */
786 make_le_item_head(&tmp_ih, &key, version, 1,
787 TYPE_INDIRECT, UNFM_P_SIZE,
788 0 /* free_space */ );
790 if (cpu_key_k_offset(&key) == 1) {
791 /* we are going to add 'block'-th block to the file. Use
792 allocated block for that */
793 unp = cpu_to_le32(allocated_block_nr);
794 set_block_dev_mapped(bh_result,
795 allocated_block_nr, inode);
796 set_buffer_new(bh_result);
797 done = 1;
799 tmp_key = key; // ;)
800 set_cpu_key_k_offset(&tmp_key, 1);
801 PATH_LAST_POSITION(&path)++;
803 retval =
804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 inode, (char *)&unp);
806 if (retval) {
807 reiserfs_free_block(th, inode,
808 allocated_block_nr, 1);
809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
811 //mark_tail_converted (inode);
812 } else if (is_direct_le_ih(ih)) {
813 /* direct item has to be converted */
814 loff_t tail_offset;
816 tail_offset =
817 ((le_ih_k_offset(ih) -
818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 if (tail_offset == cpu_key_k_offset(&key)) {
820 /* direct item we just found fits into block we have
821 to map. Convert it into unformatted node: use
822 bh_result for the conversion */
823 set_block_dev_mapped(bh_result,
824 allocated_block_nr, inode);
825 unbh = bh_result;
826 done = 1;
827 } else {
828 /* we have to padd file tail stored in direct item(s)
829 up to block size and convert it to unformatted
830 node. FIXME: this should also get into page cache */
832 pathrelse(&path);
834 * ugly, but we can only end the transaction if
835 * we aren't nested
837 BUG_ON(!th->t_refcount);
838 if (th->t_refcount == 1) {
839 retval =
840 reiserfs_end_persistent_transaction
841 (th);
842 th = NULL;
843 if (retval)
844 goto failure;
847 retval =
848 convert_tail_for_hole(inode, bh_result,
849 tail_offset);
850 if (retval) {
851 if (retval != -ENOSPC)
852 reiserfs_error(inode->i_sb,
853 "clm-6004",
854 "convert tail failed "
855 "inode %lu, error %d",
856 inode->i_ino,
857 retval);
858 if (allocated_block_nr) {
859 /* the bitmap, the super, and the stat data == 3 */
860 if (!th)
861 th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 if (th)
863 reiserfs_free_block(th,
864 inode,
865 allocated_block_nr,
868 goto failure;
870 goto research;
872 retval =
873 direct2indirect(th, inode, &path, unbh,
874 tail_offset);
875 if (retval) {
876 reiserfs_unmap_buffer(unbh);
877 reiserfs_free_block(th, inode,
878 allocated_block_nr, 1);
879 goto failure;
881 /* it is important the set_buffer_uptodate is done after
882 ** the direct2indirect. The buffer might contain valid
883 ** data newer than the data on disk (read by readpage, changed,
884 ** and then sent here by writepage). direct2indirect needs
885 ** to know if unbh was already up to date, so it can decide
886 ** if the data in unbh needs to be replaced with data from
887 ** the disk
889 set_buffer_uptodate(unbh);
891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 buffer will disappear shortly, so it should not be added to
894 if (unbh->b_page) {
895 /* we've converted the tail, so we must
896 ** flush unbh before the transaction commits
898 reiserfs_add_tail_list(inode, unbh);
900 /* mark it dirty now to prevent commit_write from adding
901 ** this buffer to the inode's dirty buffer list
904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 * It's still atomic, but it sets the page dirty too,
906 * which makes it eligible for writeback at any time by the
907 * VM (which was also the case with __mark_buffer_dirty())
909 mark_buffer_dirty(unbh);
911 } else {
912 /* append indirect item with holes if needed, when appending
913 pointer to 'block'-th block use block, which is already
914 allocated */
915 struct cpu_key tmp_key;
916 unp_t unf_single = 0; // We use this in case we need to allocate only
917 // one block which is a fastpath
918 unp_t *un;
919 __u64 max_to_insert =
920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 UNFM_P_SIZE;
922 __u64 blocks_needed;
924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 "vs-804: invalid position for append");
926 /* indirect item has to be appended, set up key of that position */
927 make_cpu_key(&tmp_key, inode,
928 le_key_k_offset(version,
929 &(ih->ih_key)) +
930 op_bytes_number(ih,
931 inode->i_sb->s_blocksize),
932 //pos_in_item * inode->i_sb->s_blocksize,
933 TYPE_INDIRECT, 3); // key type is unimportant
935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 "green-805: invalid offset");
937 blocks_needed =
939 ((cpu_key_k_offset(&key) -
940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 s_blocksize_bits);
943 if (blocks_needed == 1) {
944 un = &unf_single;
945 } else {
946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 if (!un) {
948 un = &unf_single;
949 blocks_needed = 1;
950 max_to_insert = 0;
953 if (blocks_needed <= max_to_insert) {
954 /* we are going to add target block to the file. Use allocated
955 block for that */
956 un[blocks_needed - 1] =
957 cpu_to_le32(allocated_block_nr);
958 set_block_dev_mapped(bh_result,
959 allocated_block_nr, inode);
960 set_buffer_new(bh_result);
961 done = 1;
962 } else {
963 /* paste hole to the indirect item */
964 /* If kmalloc failed, max_to_insert becomes zero and it means we
965 only have space for one block */
966 blocks_needed =
967 max_to_insert ? max_to_insert : 1;
969 retval =
970 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 (char *)un,
972 UNFM_P_SIZE *
973 blocks_needed);
975 if (blocks_needed != 1)
976 kfree(un);
978 if (retval) {
979 reiserfs_free_block(th, inode,
980 allocated_block_nr, 1);
981 goto failure;
983 if (!done) {
984 /* We need to mark new file size in case this function will be
985 interrupted/aborted later on. And we may do this only for
986 holes. */
987 inode->i_size +=
988 inode->i_sb->s_blocksize * blocks_needed;
992 if (done == 1)
993 break;
995 /* this loop could log more blocks than we had originally asked
996 ** for. So, we have to allow the transaction to end if it is
997 ** too big or too full. Update the inode so things are
998 ** consistent if we crash before the function returns
1000 ** release the path so that anybody waiting on the path before
1001 ** ending their transaction will be able to continue.
1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 retval = restart_transaction(th, inode, &path);
1005 if (retval)
1006 goto failure;
1009 * inserting indirect pointers for a hole can take a
1010 * long time. reschedule if needed and also release the write
1011 * lock for others.
1013 if (need_resched()) {
1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 schedule();
1016 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1019 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 if (retval == IO_ERROR) {
1021 retval = -EIO;
1022 goto failure;
1024 if (retval == POSITION_FOUND) {
1025 reiserfs_warning(inode->i_sb, "vs-825",
1026 "%K should not be found", &key);
1027 retval = -EEXIST;
1028 if (allocated_block_nr)
1029 reiserfs_free_block(th, inode,
1030 allocated_block_nr, 1);
1031 pathrelse(&path);
1032 goto failure;
1034 bh = get_last_bh(&path);
1035 ih = get_ih(&path);
1036 item = get_item(&path);
1037 pos_in_item = path.pos_in_item;
1038 } while (1);
1040 retval = 0;
1042 failure:
1043 if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 int err;
1045 if (th->t_trans_id)
1046 reiserfs_update_sd(th, inode);
1047 err = reiserfs_end_persistent_transaction(th);
1048 if (err)
1049 retval = err;
1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 reiserfs_check_path(&path);
1054 return retval;
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 struct list_head *pages, unsigned nr_pages)
1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1064 /* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1067 static int real_space_diff(struct inode *inode, int sd_size)
1069 int bytes;
1070 loff_t blocksize = inode->i_sb->s_blocksize;
1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 return sd_size;
1075 /* End of file is also in full block with indirect reference, so round
1076 ** up to the next block.
1078 ** there is just no way to know if the tail is actually packed
1079 ** on the file, so we have to assume it isn't. When we pack the
1080 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 ** node pointer
1083 bytes =
1084 ((inode->i_size +
1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 sd_size;
1087 return bytes;
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 int sd_size)
1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 return inode->i_size +
1095 (loff_t) (real_space_diff(inode, sd_size));
1097 return ((loff_t) real_space_diff(inode, sd_size)) +
1098 (((loff_t) blocks) << 9);
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1104 loff_t bytes = inode_get_bytes(inode);
1105 loff_t real_space = real_space_diff(inode, sd_size);
1107 /* keeps fsck and non-quota versions of reiserfs happy */
1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 bytes += (loff_t) 511;
1112 /* files from before the quota patch might i_blocks such that
1113 ** bytes < real_space. Deal with that here to prevent it from
1114 ** going negative.
1116 if (bytes < real_space)
1117 return 0;
1118 return (bytes - real_space) >> 9;
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1131 struct buffer_head *bh;
1132 struct item_head *ih;
1133 __u32 rdev;
1134 //int version = ITEM_VERSION_1;
1136 bh = PATH_PLAST_BUFFER(path);
1137 ih = PATH_PITEM_HEAD(path);
1139 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 REISERFS_I(inode)->i_flags = 0;
1143 REISERFS_I(inode)->i_prealloc_block = 0;
1144 REISERFS_I(inode)->i_prealloc_count = 0;
1145 REISERFS_I(inode)->i_trans_id = 0;
1146 REISERFS_I(inode)->i_jl = NULL;
1147 reiserfs_init_xattr_rwsem(inode);
1149 if (stat_data_v1(ih)) {
1150 struct stat_data_v1 *sd =
1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 unsigned long blocks;
1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 set_inode_sd_version(inode, STAT_DATA_V1);
1156 inode->i_mode = sd_v1_mode(sd);
1157 inode->i_nlink = sd_v1_nlink(sd);
1158 inode->i_uid = sd_v1_uid(sd);
1159 inode->i_gid = sd_v1_gid(sd);
1160 inode->i_size = sd_v1_size(sd);
1161 inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 inode->i_atime.tv_nsec = 0;
1165 inode->i_ctime.tv_nsec = 0;
1166 inode->i_mtime.tv_nsec = 0;
1168 inode->i_blocks = sd_v1_blocks(sd);
1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 blocks = (inode->i_size + 511) >> 9;
1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 if (inode->i_blocks > blocks) {
1173 // there was a bug in <=3.5.23 when i_blocks could take negative
1174 // values. Starting from 3.5.17 this value could even be stored in
1175 // stat data. For such files we set i_blocks based on file
1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 // only updated if file's inode will ever change
1178 inode->i_blocks = blocks;
1181 rdev = sd_v1_rdev(sd);
1182 REISERFS_I(inode)->i_first_direct_byte =
1183 sd_v1_first_direct_byte(sd);
1184 /* an early bug in the quota code can give us an odd number for the
1185 ** block count. This is incorrect, fix it here.
1187 if (inode->i_blocks & 1) {
1188 inode->i_blocks++;
1190 inode_set_bytes(inode,
1191 to_real_used_space(inode, inode->i_blocks,
1192 SD_V1_SIZE));
1193 /* nopack is initially zero for v1 objects. For v2 objects,
1194 nopack is initialised from sd_attrs */
1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 } else {
1197 // new stat data found, but object may have old items
1198 // (directories and symlinks)
1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1201 inode->i_mode = sd_v2_mode(sd);
1202 inode->i_nlink = sd_v2_nlink(sd);
1203 inode->i_uid = sd_v2_uid(sd);
1204 inode->i_size = sd_v2_size(sd);
1205 inode->i_gid = sd_v2_gid(sd);
1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 inode->i_ctime.tv_nsec = 0;
1210 inode->i_mtime.tv_nsec = 0;
1211 inode->i_atime.tv_nsec = 0;
1212 inode->i_blocks = sd_v2_blocks(sd);
1213 rdev = sd_v2_rdev(sd);
1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 inode->i_generation =
1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 else
1218 inode->i_generation = sd_v2_generation(sd);
1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 else
1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 REISERFS_I(inode)->i_first_direct_byte = 0;
1225 set_inode_sd_version(inode, STAT_DATA_V2);
1226 inode_set_bytes(inode,
1227 to_real_used_space(inode, inode->i_blocks,
1228 SD_V2_SIZE));
1229 /* read persistent inode attributes from sd and initialise
1230 generic inode flags from them */
1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1235 pathrelse(path);
1236 if (S_ISREG(inode->i_mode)) {
1237 inode->i_op = &reiserfs_file_inode_operations;
1238 inode->i_fop = &reiserfs_file_operations;
1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 } else if (S_ISDIR(inode->i_mode)) {
1241 inode->i_op = &reiserfs_dir_inode_operations;
1242 inode->i_fop = &reiserfs_dir_operations;
1243 } else if (S_ISLNK(inode->i_mode)) {
1244 inode->i_op = &reiserfs_symlink_inode_operations;
1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 } else {
1247 inode->i_blocks = 0;
1248 inode->i_op = &reiserfs_special_inode_operations;
1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1256 struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 __u16 flags;
1259 set_sd_v2_mode(sd_v2, inode->i_mode);
1260 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 set_sd_v2_uid(sd_v2, inode->i_uid);
1262 set_sd_v2_size(sd_v2, size);
1263 set_sd_v2_gid(sd_v2, inode->i_gid);
1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 else
1271 set_sd_v2_generation(sd_v2, inode->i_generation);
1272 flags = REISERFS_I(inode)->i_attrs;
1273 i_attrs_to_sd_attrs(inode, &flags);
1274 set_sd_v2_attrs(sd_v2, flags);
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1282 set_sd_v1_mode(sd_v1, inode->i_mode);
1283 set_sd_v1_uid(sd_v1, inode->i_uid);
1284 set_sd_v1_gid(sd_v1, inode->i_gid);
1285 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 set_sd_v1_size(sd_v1, size);
1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 else
1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1296 // Sigh. i_first_direct_byte is back
1297 set_sd_v1_first_direct_byte(sd_v1,
1298 REISERFS_I(inode)->i_first_direct_byte);
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 loff_t size)
1307 struct buffer_head *bh;
1308 struct item_head *ih;
1310 bh = PATH_PLAST_BUFFER(path);
1311 ih = PATH_PITEM_HEAD(path);
1313 if (!is_statdata_le_ih(ih))
1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 INODE_PKEY(inode), ih);
1317 if (stat_data_v1(ih)) {
1318 // path points to old stat data
1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 } else {
1321 inode2sd(B_I_PITEM(bh, ih), inode, size);
1324 return;
1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 struct inode *inode, loff_t size)
1330 struct cpu_key key;
1331 INITIALIZE_PATH(path);
1332 struct buffer_head *bh;
1333 int fs_gen;
1334 struct item_head *ih, tmp_ih;
1335 int retval;
1337 BUG_ON(!th->t_trans_id);
1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1341 for (;;) {
1342 int pos;
1343 /* look for the object's stat data */
1344 retval = search_item(inode->i_sb, &key, &path);
1345 if (retval == IO_ERROR) {
1346 reiserfs_error(inode->i_sb, "vs-13050",
1347 "i/o failure occurred trying to "
1348 "update %K stat data", &key);
1349 return;
1351 if (retval == ITEM_NOT_FOUND) {
1352 pos = PATH_LAST_POSITION(&path);
1353 pathrelse(&path);
1354 if (inode->i_nlink == 0) {
1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 return;
1358 reiserfs_warning(inode->i_sb, "vs-13060",
1359 "stat data of object %k (nlink == %d) "
1360 "not found (pos %d)",
1361 INODE_PKEY(inode), inode->i_nlink,
1362 pos);
1363 reiserfs_check_path(&path);
1364 return;
1367 /* sigh, prepare_for_journal might schedule. When it schedules the
1368 ** FS might change. We have to detect that, and loop back to the
1369 ** search if the stat data item has moved
1371 bh = get_last_bh(&path);
1372 ih = get_ih(&path);
1373 copy_item_head(&tmp_ih, ih);
1374 fs_gen = get_generation(inode->i_sb);
1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 if (fs_changed(fs_gen, inode->i_sb)
1377 && item_moved(&tmp_ih, &path)) {
1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 continue; /* Stat_data item has been moved after scheduling. */
1381 break;
1383 update_stat_data(&path, inode, size);
1384 journal_mark_dirty(th, th->t_super, bh);
1385 pathrelse(&path);
1386 return;
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong. But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1397 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 make_bad_inode(inode);
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 inode->i_ino = args->objectid;
1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 return 0;
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415 inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 struct reiserfs_iget_args *args)
1419 INITIALIZE_PATH(path_to_sd);
1420 struct cpu_key key;
1421 unsigned long dirino;
1422 int retval;
1424 dirino = args->dirid;
1426 /* set version 1, version 2 could be used too, because stat data
1427 key is the same in both versions */
1428 key.version = KEY_FORMAT_3_5;
1429 key.on_disk_key.k_dir_id = dirino;
1430 key.on_disk_key.k_objectid = inode->i_ino;
1431 key.on_disk_key.k_offset = 0;
1432 key.on_disk_key.k_type = 0;
1434 /* look for the object's stat data */
1435 retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 if (retval == IO_ERROR) {
1437 reiserfs_error(inode->i_sb, "vs-13070",
1438 "i/o failure occurred trying to find "
1439 "stat data of %K", &key);
1440 reiserfs_make_bad_inode(inode);
1441 return;
1443 if (retval != ITEM_FOUND) {
1444 /* a stale NFS handle can trigger this without it being an error */
1445 pathrelse(&path_to_sd);
1446 reiserfs_make_bad_inode(inode);
1447 inode->i_nlink = 0;
1448 return;
1451 init_inode(inode, &path_to_sd);
1453 /* It is possible that knfsd is trying to access inode of a file
1454 that is being removed from the disk by some other thread. As we
1455 update sd on unlink all that is required is to check for nlink
1456 here. This bug was first found by Sizif when debugging
1457 SquidNG/Butterfly, forgotten, and found again after Philippe
1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1460 More logical fix would require changes in fs/inode.c:iput() to
1461 remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 in iget() to return NULL if I_FREEING inode is found in
1463 hash-table. */
1464 /* Currently there is one place where it's ok to meet inode with
1465 nlink==0: processing of open-unlinked and half-truncated files
1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 if ((inode->i_nlink == 0) &&
1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 reiserfs_warning(inode->i_sb, "vs-13075",
1470 "dead inode read from disk %K. "
1471 "This is likely to be race with knfsd. Ignore",
1472 &key);
1473 reiserfs_make_bad_inode(inode);
1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1481 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1483 * @inode: inode from hash table to check
1484 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1486 * This function is called by iget5_locked() to distinguish reiserfs inodes
1487 * having the same inode numbers. Such inodes can only exist due to some
1488 * error condition. One of them should be bad. Inodes with identical
1489 * inode numbers (objectids) are distinguished by parent directory ids.
1492 int reiserfs_find_actor(struct inode *inode, void *opaque)
1494 struct reiserfs_iget_args *args;
1496 args = opaque;
1497 /* args is already in CPU order */
1498 return (inode->i_ino == args->objectid) &&
1499 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1502 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1504 struct inode *inode;
1505 struct reiserfs_iget_args args;
1507 args.objectid = key->on_disk_key.k_objectid;
1508 args.dirid = key->on_disk_key.k_dir_id;
1509 reiserfs_write_unlock(s);
1510 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1511 reiserfs_find_actor, reiserfs_init_locked_inode,
1512 (void *)(&args));
1513 reiserfs_write_lock(s);
1514 if (!inode)
1515 return ERR_PTR(-ENOMEM);
1517 if (inode->i_state & I_NEW) {
1518 reiserfs_read_locked_inode(inode, &args);
1519 unlock_new_inode(inode);
1522 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1523 /* either due to i/o error or a stale NFS handle */
1524 iput(inode);
1525 inode = NULL;
1527 return inode;
1530 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1531 u32 objectid, u32 dir_id, u32 generation)
1534 struct cpu_key key;
1535 struct inode *inode;
1537 key.on_disk_key.k_objectid = objectid;
1538 key.on_disk_key.k_dir_id = dir_id;
1539 reiserfs_write_lock(sb);
1540 inode = reiserfs_iget(sb, &key);
1541 if (inode && !IS_ERR(inode) && generation != 0 &&
1542 generation != inode->i_generation) {
1543 iput(inode);
1544 inode = NULL;
1546 reiserfs_write_unlock(sb);
1548 return d_obtain_alias(inode);
1551 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1552 int fh_len, int fh_type)
1554 /* fhtype happens to reflect the number of u32s encoded.
1555 * due to a bug in earlier code, fhtype might indicate there
1556 * are more u32s then actually fitted.
1557 * so if fhtype seems to be more than len, reduce fhtype.
1558 * Valid types are:
1559 * 2 - objectid + dir_id - legacy support
1560 * 3 - objectid + dir_id + generation
1561 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1563 * 6 - as above plus generation of directory
1564 * 6 does not fit in NFSv2 handles
1566 if (fh_type > fh_len) {
1567 if (fh_type != 6 || fh_len != 5)
1568 reiserfs_warning(sb, "reiserfs-13077",
1569 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 fh_type, fh_len);
1571 fh_type = 5;
1574 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1575 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1578 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1579 int fh_len, int fh_type)
1581 if (fh_type < 4)
1582 return NULL;
1584 return reiserfs_get_dentry(sb,
1585 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1586 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1587 (fh_type == 6) ? fid->raw[5] : 0);
1590 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1591 int need_parent)
1593 struct inode *inode = dentry->d_inode;
1594 int maxlen = *lenp;
1596 if (maxlen < 3)
1597 return 255;
1599 data[0] = inode->i_ino;
1600 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1601 data[2] = inode->i_generation;
1602 *lenp = 3;
1603 /* no room for directory info? return what we've stored so far */
1604 if (maxlen < 5 || !need_parent)
1605 return 3;
1607 spin_lock(&dentry->d_lock);
1608 inode = dentry->d_parent->d_inode;
1609 data[3] = inode->i_ino;
1610 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1611 *lenp = 5;
1612 if (maxlen >= 6) {
1613 data[5] = inode->i_generation;
1614 *lenp = 6;
1616 spin_unlock(&dentry->d_lock);
1617 return *lenp;
1620 /* looks for stat data, then copies fields to it, marks the buffer
1621 containing stat data as dirty */
1622 /* reiserfs inodes are never really dirty, since the dirty inode call
1623 ** always logs them. This call allows the VFS inode marking routines
1624 ** to properly mark inodes for datasync and such, but only actually
1625 ** does something when called for a synchronous update.
1627 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1629 struct reiserfs_transaction_handle th;
1630 int jbegin_count = 1;
1632 if (inode->i_sb->s_flags & MS_RDONLY)
1633 return -EROFS;
1634 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1635 ** these cases are just when the system needs ram, not when the
1636 ** inode needs to reach disk for safety, and they can safely be
1637 ** ignored because the altered inode has already been logged.
1639 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1640 reiserfs_write_lock(inode->i_sb);
1641 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1642 reiserfs_update_sd(&th, inode);
1643 journal_end_sync(&th, inode->i_sb, jbegin_count);
1645 reiserfs_write_unlock(inode->i_sb);
1647 return 0;
1650 /* stat data of new object is inserted already, this inserts the item
1651 containing "." and ".." entries */
1652 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1653 struct inode *inode,
1654 struct item_head *ih, struct treepath *path,
1655 struct inode *dir)
1657 struct super_block *sb = th->t_super;
1658 char empty_dir[EMPTY_DIR_SIZE];
1659 char *body = empty_dir;
1660 struct cpu_key key;
1661 int retval;
1663 BUG_ON(!th->t_trans_id);
1665 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1666 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1667 TYPE_DIRENTRY, 3 /*key length */ );
1669 /* compose item head for new item. Directories consist of items of
1670 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1671 is done by reiserfs_new_inode */
1672 if (old_format_only(sb)) {
1673 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1674 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1676 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1677 ih->ih_key.k_objectid,
1678 INODE_PKEY(dir)->k_dir_id,
1679 INODE_PKEY(dir)->k_objectid);
1680 } else {
1681 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1684 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1685 ih->ih_key.k_objectid,
1686 INODE_PKEY(dir)->k_dir_id,
1687 INODE_PKEY(dir)->k_objectid);
1690 /* look for place in the tree for new item */
1691 retval = search_item(sb, &key, path);
1692 if (retval == IO_ERROR) {
1693 reiserfs_error(sb, "vs-13080",
1694 "i/o failure occurred creating new directory");
1695 return -EIO;
1697 if (retval == ITEM_FOUND) {
1698 pathrelse(path);
1699 reiserfs_warning(sb, "vs-13070",
1700 "object with this key exists (%k)",
1701 &(ih->ih_key));
1702 return -EEXIST;
1705 /* insert item, that is empty directory item */
1706 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1709 /* stat data of object has been inserted, this inserts the item
1710 containing the body of symlink */
1711 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1712 struct item_head *ih,
1713 struct treepath *path, const char *symname,
1714 int item_len)
1716 struct super_block *sb = th->t_super;
1717 struct cpu_key key;
1718 int retval;
1720 BUG_ON(!th->t_trans_id);
1722 _make_cpu_key(&key, KEY_FORMAT_3_5,
1723 le32_to_cpu(ih->ih_key.k_dir_id),
1724 le32_to_cpu(ih->ih_key.k_objectid),
1725 1, TYPE_DIRECT, 3 /*key length */ );
1727 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1728 0 /*free_space */ );
1730 /* look for place in the tree for new item */
1731 retval = search_item(sb, &key, path);
1732 if (retval == IO_ERROR) {
1733 reiserfs_error(sb, "vs-13080",
1734 "i/o failure occurred creating new symlink");
1735 return -EIO;
1737 if (retval == ITEM_FOUND) {
1738 pathrelse(path);
1739 reiserfs_warning(sb, "vs-13080",
1740 "object with this key exists (%k)",
1741 &(ih->ih_key));
1742 return -EEXIST;
1745 /* insert item, that is body of symlink */
1746 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1749 /* inserts the stat data into the tree, and then calls
1750 reiserfs_new_directory (to insert ".", ".." item if new object is
1751 directory) or reiserfs_new_symlink (to insert symlink body if new
1752 object is symlink) or nothing (if new object is regular file)
1754 NOTE! uid and gid must already be set in the inode. If we return
1755 non-zero due to an error, we have to drop the quota previously allocated
1756 for the fresh inode. This can only be done outside a transaction, so
1757 if we return non-zero, we also end the transaction. */
1758 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1759 struct inode *dir, int mode, const char *symname,
1760 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1761 strlen (symname) for symlinks) */
1762 loff_t i_size, struct dentry *dentry,
1763 struct inode *inode,
1764 struct reiserfs_security_handle *security)
1766 struct super_block *sb;
1767 struct reiserfs_iget_args args;
1768 INITIALIZE_PATH(path_to_key);
1769 struct cpu_key key;
1770 struct item_head ih;
1771 struct stat_data sd;
1772 int retval;
1773 int err;
1775 BUG_ON(!th->t_trans_id);
1777 dquot_initialize(inode);
1778 err = dquot_alloc_inode(inode);
1779 if (err)
1780 goto out_end_trans;
1781 if (!dir->i_nlink) {
1782 err = -EPERM;
1783 goto out_bad_inode;
1786 sb = dir->i_sb;
1788 /* item head of new item */
1789 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1790 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1791 if (!ih.ih_key.k_objectid) {
1792 err = -ENOMEM;
1793 goto out_bad_inode;
1795 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1796 if (old_format_only(sb))
1797 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1798 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1799 else
1800 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1801 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1802 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1803 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1804 if (insert_inode_locked4(inode, args.objectid,
1805 reiserfs_find_actor, &args) < 0) {
1806 err = -EINVAL;
1807 goto out_bad_inode;
1809 if (old_format_only(sb))
1810 /* not a perfect generation count, as object ids can be reused, but
1811 ** this is as good as reiserfs can do right now.
1812 ** note that the private part of inode isn't filled in yet, we have
1813 ** to use the directory.
1815 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1816 else
1817 #if defined( USE_INODE_GENERATION_COUNTER )
1818 inode->i_generation =
1819 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1820 #else
1821 inode->i_generation = ++event;
1822 #endif
1824 /* fill stat data */
1825 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1827 /* uid and gid must already be set by the caller for quota init */
1829 /* symlink cannot be immutable or append only, right? */
1830 if (S_ISLNK(inode->i_mode))
1831 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1833 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1834 inode->i_size = i_size;
1835 inode->i_blocks = 0;
1836 inode->i_bytes = 0;
1837 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1838 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1840 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1841 REISERFS_I(inode)->i_flags = 0;
1842 REISERFS_I(inode)->i_prealloc_block = 0;
1843 REISERFS_I(inode)->i_prealloc_count = 0;
1844 REISERFS_I(inode)->i_trans_id = 0;
1845 REISERFS_I(inode)->i_jl = NULL;
1846 REISERFS_I(inode)->i_attrs =
1847 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1848 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1849 reiserfs_init_xattr_rwsem(inode);
1851 /* key to search for correct place for new stat data */
1852 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1853 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1854 TYPE_STAT_DATA, 3 /*key length */ );
1856 /* find proper place for inserting of stat data */
1857 retval = search_item(sb, &key, &path_to_key);
1858 if (retval == IO_ERROR) {
1859 err = -EIO;
1860 goto out_bad_inode;
1862 if (retval == ITEM_FOUND) {
1863 pathrelse(&path_to_key);
1864 err = -EEXIST;
1865 goto out_bad_inode;
1867 if (old_format_only(sb)) {
1868 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1869 pathrelse(&path_to_key);
1870 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1871 err = -EINVAL;
1872 goto out_bad_inode;
1874 inode2sd_v1(&sd, inode, inode->i_size);
1875 } else {
1876 inode2sd(&sd, inode, inode->i_size);
1878 // store in in-core inode the key of stat data and version all
1879 // object items will have (directory items will have old offset
1880 // format, other new objects will consist of new items)
1881 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1882 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1883 else
1884 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1885 if (old_format_only(sb))
1886 set_inode_sd_version(inode, STAT_DATA_V1);
1887 else
1888 set_inode_sd_version(inode, STAT_DATA_V2);
1890 /* insert the stat data into the tree */
1891 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1892 if (REISERFS_I(dir)->new_packing_locality)
1893 th->displace_new_blocks = 1;
1894 #endif
1895 retval =
1896 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1897 (char *)(&sd));
1898 if (retval) {
1899 err = retval;
1900 reiserfs_check_path(&path_to_key);
1901 goto out_bad_inode;
1903 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1904 if (!th->displace_new_blocks)
1905 REISERFS_I(dir)->new_packing_locality = 0;
1906 #endif
1907 if (S_ISDIR(mode)) {
1908 /* insert item with "." and ".." */
1909 retval =
1910 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1913 if (S_ISLNK(mode)) {
1914 /* insert body of symlink */
1915 if (!old_format_only(sb))
1916 i_size = ROUND_UP(i_size);
1917 retval =
1918 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1919 i_size);
1921 if (retval) {
1922 err = retval;
1923 reiserfs_check_path(&path_to_key);
1924 journal_end(th, th->t_super, th->t_blocks_allocated);
1925 goto out_inserted_sd;
1928 if (reiserfs_posixacl(inode->i_sb)) {
1929 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1930 if (retval) {
1931 err = retval;
1932 reiserfs_check_path(&path_to_key);
1933 journal_end(th, th->t_super, th->t_blocks_allocated);
1934 goto out_inserted_sd;
1936 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1937 reiserfs_warning(inode->i_sb, "jdm-13090",
1938 "ACLs aren't enabled in the fs, "
1939 "but vfs thinks they are!");
1940 } else if (IS_PRIVATE(dir))
1941 inode->i_flags |= S_PRIVATE;
1943 if (security->name) {
1944 retval = reiserfs_security_write(th, inode, security);
1945 if (retval) {
1946 err = retval;
1947 reiserfs_check_path(&path_to_key);
1948 retval = journal_end(th, th->t_super,
1949 th->t_blocks_allocated);
1950 if (retval)
1951 err = retval;
1952 goto out_inserted_sd;
1956 reiserfs_update_sd(th, inode);
1957 reiserfs_check_path(&path_to_key);
1959 return 0;
1961 /* it looks like you can easily compress these two goto targets into
1962 * one. Keeping it like this doesn't actually hurt anything, and they
1963 * are place holders for what the quota code actually needs.
1965 out_bad_inode:
1966 /* Invalidate the object, nothing was inserted yet */
1967 INODE_PKEY(inode)->k_objectid = 0;
1969 /* Quota change must be inside a transaction for journaling */
1970 dquot_free_inode(inode);
1972 out_end_trans:
1973 journal_end(th, th->t_super, th->t_blocks_allocated);
1974 /* Drop can be outside and it needs more credits so it's better to have it outside */
1975 dquot_drop(inode);
1976 inode->i_flags |= S_NOQUOTA;
1977 make_bad_inode(inode);
1979 out_inserted_sd:
1980 inode->i_nlink = 0;
1981 th->t_trans_id = 0; /* so the caller can't use this handle later */
1982 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1983 iput(inode);
1984 return err;
1988 ** finds the tail page in the page cache,
1989 ** reads the last block in.
1991 ** On success, page_result is set to a locked, pinned page, and bh_result
1992 ** is set to an up to date buffer for the last block in the file. returns 0.
1994 ** tail conversion is not done, so bh_result might not be valid for writing
1995 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1996 ** trying to write the block.
1998 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2000 static int grab_tail_page(struct inode *inode,
2001 struct page **page_result,
2002 struct buffer_head **bh_result)
2005 /* we want the page with the last byte in the file,
2006 ** not the page that will hold the next byte for appending
2008 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2009 unsigned long pos = 0;
2010 unsigned long start = 0;
2011 unsigned long blocksize = inode->i_sb->s_blocksize;
2012 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2013 struct buffer_head *bh;
2014 struct buffer_head *head;
2015 struct page *page;
2016 int error;
2018 /* we know that we are only called with inode->i_size > 0.
2019 ** we also know that a file tail can never be as big as a block
2020 ** If i_size % blocksize == 0, our file is currently block aligned
2021 ** and it won't need converting or zeroing after a truncate.
2023 if ((offset & (blocksize - 1)) == 0) {
2024 return -ENOENT;
2026 page = grab_cache_page(inode->i_mapping, index);
2027 error = -ENOMEM;
2028 if (!page) {
2029 goto out;
2031 /* start within the page of the last block in the file */
2032 start = (offset / blocksize) * blocksize;
2034 error = __block_write_begin(page, start, offset - start,
2035 reiserfs_get_block_create_0);
2036 if (error)
2037 goto unlock;
2039 head = page_buffers(page);
2040 bh = head;
2041 do {
2042 if (pos >= start) {
2043 break;
2045 bh = bh->b_this_page;
2046 pos += blocksize;
2047 } while (bh != head);
2049 if (!buffer_uptodate(bh)) {
2050 /* note, this should never happen, prepare_write should
2051 ** be taking care of this for us. If the buffer isn't up to date,
2052 ** I've screwed up the code to find the buffer, or the code to
2053 ** call prepare_write
2055 reiserfs_error(inode->i_sb, "clm-6000",
2056 "error reading block %lu", bh->b_blocknr);
2057 error = -EIO;
2058 goto unlock;
2060 *bh_result = bh;
2061 *page_result = page;
2063 out:
2064 return error;
2066 unlock:
2067 unlock_page(page);
2068 page_cache_release(page);
2069 return error;
2073 ** vfs version of truncate file. Must NOT be called with
2074 ** a transaction already started.
2076 ** some code taken from block_truncate_page
2078 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2080 struct reiserfs_transaction_handle th;
2081 /* we want the offset for the first byte after the end of the file */
2082 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2083 unsigned blocksize = inode->i_sb->s_blocksize;
2084 unsigned length;
2085 struct page *page = NULL;
2086 int error;
2087 struct buffer_head *bh = NULL;
2088 int err2;
2089 int lock_depth;
2091 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2093 if (inode->i_size > 0) {
2094 error = grab_tail_page(inode, &page, &bh);
2095 if (error) {
2096 // -ENOENT means we truncated past the end of the file,
2097 // and get_block_create_0 could not find a block to read in,
2098 // which is ok.
2099 if (error != -ENOENT)
2100 reiserfs_error(inode->i_sb, "clm-6001",
2101 "grab_tail_page failed %d",
2102 error);
2103 page = NULL;
2104 bh = NULL;
2108 /* so, if page != NULL, we have a buffer head for the offset at
2109 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2110 ** then we have an unformatted node. Otherwise, we have a direct item,
2111 ** and no zeroing is required on disk. We zero after the truncate,
2112 ** because the truncate might pack the item anyway
2113 ** (it will unmap bh if it packs).
2115 /* it is enough to reserve space in transaction for 2 balancings:
2116 one for "save" link adding and another for the first
2117 cut_from_item. 1 is for update_sd */
2118 error = journal_begin(&th, inode->i_sb,
2119 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2120 if (error)
2121 goto out;
2122 reiserfs_update_inode_transaction(inode);
2123 if (update_timestamps)
2124 /* we are doing real truncate: if the system crashes before the last
2125 transaction of truncating gets committed - on reboot the file
2126 either appears truncated properly or not truncated at all */
2127 add_save_link(&th, inode, 1);
2128 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2129 error =
2130 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2131 if (error)
2132 goto out;
2134 /* check reiserfs_do_truncate after ending the transaction */
2135 if (err2) {
2136 error = err2;
2137 goto out;
2140 if (update_timestamps) {
2141 error = remove_save_link(inode, 1 /* truncate */);
2142 if (error)
2143 goto out;
2146 if (page) {
2147 length = offset & (blocksize - 1);
2148 /* if we are not on a block boundary */
2149 if (length) {
2150 length = blocksize - length;
2151 zero_user(page, offset, length);
2152 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2153 mark_buffer_dirty(bh);
2156 unlock_page(page);
2157 page_cache_release(page);
2160 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2162 return 0;
2163 out:
2164 if (page) {
2165 unlock_page(page);
2166 page_cache_release(page);
2169 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2171 return error;
2174 static int map_block_for_writepage(struct inode *inode,
2175 struct buffer_head *bh_result,
2176 unsigned long block)
2178 struct reiserfs_transaction_handle th;
2179 int fs_gen;
2180 struct item_head tmp_ih;
2181 struct item_head *ih;
2182 struct buffer_head *bh;
2183 __le32 *item;
2184 struct cpu_key key;
2185 INITIALIZE_PATH(path);
2186 int pos_in_item;
2187 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2188 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2189 int retval;
2190 int use_get_block = 0;
2191 int bytes_copied = 0;
2192 int copy_size;
2193 int trans_running = 0;
2195 /* catch places below that try to log something without starting a trans */
2196 th.t_trans_id = 0;
2198 if (!buffer_uptodate(bh_result)) {
2199 return -EIO;
2202 kmap(bh_result->b_page);
2203 start_over:
2204 reiserfs_write_lock(inode->i_sb);
2205 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2207 research:
2208 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2209 if (retval != POSITION_FOUND) {
2210 use_get_block = 1;
2211 goto out;
2214 bh = get_last_bh(&path);
2215 ih = get_ih(&path);
2216 item = get_item(&path);
2217 pos_in_item = path.pos_in_item;
2219 /* we've found an unformatted node */
2220 if (indirect_item_found(retval, ih)) {
2221 if (bytes_copied > 0) {
2222 reiserfs_warning(inode->i_sb, "clm-6002",
2223 "bytes_copied %d", bytes_copied);
2225 if (!get_block_num(item, pos_in_item)) {
2226 /* crap, we are writing to a hole */
2227 use_get_block = 1;
2228 goto out;
2230 set_block_dev_mapped(bh_result,
2231 get_block_num(item, pos_in_item), inode);
2232 } else if (is_direct_le_ih(ih)) {
2233 char *p;
2234 p = page_address(bh_result->b_page);
2235 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2236 copy_size = ih_item_len(ih) - pos_in_item;
2238 fs_gen = get_generation(inode->i_sb);
2239 copy_item_head(&tmp_ih, ih);
2241 if (!trans_running) {
2242 /* vs-3050 is gone, no need to drop the path */
2243 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2244 if (retval)
2245 goto out;
2246 reiserfs_update_inode_transaction(inode);
2247 trans_running = 1;
2248 if (fs_changed(fs_gen, inode->i_sb)
2249 && item_moved(&tmp_ih, &path)) {
2250 reiserfs_restore_prepared_buffer(inode->i_sb,
2251 bh);
2252 goto research;
2256 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2258 if (fs_changed(fs_gen, inode->i_sb)
2259 && item_moved(&tmp_ih, &path)) {
2260 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2261 goto research;
2264 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2265 copy_size);
2267 journal_mark_dirty(&th, inode->i_sb, bh);
2268 bytes_copied += copy_size;
2269 set_block_dev_mapped(bh_result, 0, inode);
2271 /* are there still bytes left? */
2272 if (bytes_copied < bh_result->b_size &&
2273 (byte_offset + bytes_copied) < inode->i_size) {
2274 set_cpu_key_k_offset(&key,
2275 cpu_key_k_offset(&key) +
2276 copy_size);
2277 goto research;
2279 } else {
2280 reiserfs_warning(inode->i_sb, "clm-6003",
2281 "bad item inode %lu", inode->i_ino);
2282 retval = -EIO;
2283 goto out;
2285 retval = 0;
2287 out:
2288 pathrelse(&path);
2289 if (trans_running) {
2290 int err = journal_end(&th, inode->i_sb, jbegin_count);
2291 if (err)
2292 retval = err;
2293 trans_running = 0;
2295 reiserfs_write_unlock(inode->i_sb);
2297 /* this is where we fill in holes in the file. */
2298 if (use_get_block) {
2299 retval = reiserfs_get_block(inode, block, bh_result,
2300 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2301 | GET_BLOCK_NO_DANGLE);
2302 if (!retval) {
2303 if (!buffer_mapped(bh_result)
2304 || bh_result->b_blocknr == 0) {
2305 /* get_block failed to find a mapped unformatted node. */
2306 use_get_block = 0;
2307 goto start_over;
2311 kunmap(bh_result->b_page);
2313 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2314 /* we've copied data from the page into the direct item, so the
2315 * buffer in the page is now clean, mark it to reflect that.
2317 lock_buffer(bh_result);
2318 clear_buffer_dirty(bh_result);
2319 unlock_buffer(bh_result);
2321 return retval;
2325 * mason@suse.com: updated in 2.5.54 to follow the same general io
2326 * start/recovery path as __block_write_full_page, along with special
2327 * code to handle reiserfs tails.
2329 static int reiserfs_write_full_page(struct page *page,
2330 struct writeback_control *wbc)
2332 struct inode *inode = page->mapping->host;
2333 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2334 int error = 0;
2335 unsigned long block;
2336 sector_t last_block;
2337 struct buffer_head *head, *bh;
2338 int partial = 0;
2339 int nr = 0;
2340 int checked = PageChecked(page);
2341 struct reiserfs_transaction_handle th;
2342 struct super_block *s = inode->i_sb;
2343 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2344 th.t_trans_id = 0;
2346 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2347 if (checked && (current->flags & PF_MEMALLOC)) {
2348 redirty_page_for_writepage(wbc, page);
2349 unlock_page(page);
2350 return 0;
2353 /* The page dirty bit is cleared before writepage is called, which
2354 * means we have to tell create_empty_buffers to make dirty buffers
2355 * The page really should be up to date at this point, so tossing
2356 * in the BH_Uptodate is just a sanity check.
2358 if (!page_has_buffers(page)) {
2359 create_empty_buffers(page, s->s_blocksize,
2360 (1 << BH_Dirty) | (1 << BH_Uptodate));
2362 head = page_buffers(page);
2364 /* last page in the file, zero out any contents past the
2365 ** last byte in the file
2367 if (page->index >= end_index) {
2368 unsigned last_offset;
2370 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2371 /* no file contents in this page */
2372 if (page->index >= end_index + 1 || !last_offset) {
2373 unlock_page(page);
2374 return 0;
2376 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2378 bh = head;
2379 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2380 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2381 /* first map all the buffers, logging any direct items we find */
2382 do {
2383 if (block > last_block) {
2385 * This can happen when the block size is less than
2386 * the page size. The corresponding bytes in the page
2387 * were zero filled above
2389 clear_buffer_dirty(bh);
2390 set_buffer_uptodate(bh);
2391 } else if ((checked || buffer_dirty(bh)) &&
2392 (!buffer_mapped(bh) || (buffer_mapped(bh)
2393 && bh->b_blocknr ==
2394 0))) {
2395 /* not mapped yet, or it points to a direct item, search
2396 * the btree for the mapping info, and log any direct
2397 * items found
2399 if ((error = map_block_for_writepage(inode, bh, block))) {
2400 goto fail;
2403 bh = bh->b_this_page;
2404 block++;
2405 } while (bh != head);
2408 * we start the transaction after map_block_for_writepage,
2409 * because it can create holes in the file (an unbounded operation).
2410 * starting it here, we can make a reliable estimate for how many
2411 * blocks we're going to log
2413 if (checked) {
2414 ClearPageChecked(page);
2415 reiserfs_write_lock(s);
2416 error = journal_begin(&th, s, bh_per_page + 1);
2417 if (error) {
2418 reiserfs_write_unlock(s);
2419 goto fail;
2421 reiserfs_update_inode_transaction(inode);
2423 /* now go through and lock any dirty buffers on the page */
2424 do {
2425 get_bh(bh);
2426 if (!buffer_mapped(bh))
2427 continue;
2428 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2429 continue;
2431 if (checked) {
2432 reiserfs_prepare_for_journal(s, bh, 1);
2433 journal_mark_dirty(&th, s, bh);
2434 continue;
2436 /* from this point on, we know the buffer is mapped to a
2437 * real block and not a direct item
2439 if (wbc->sync_mode != WB_SYNC_NONE) {
2440 lock_buffer(bh);
2441 } else {
2442 if (!trylock_buffer(bh)) {
2443 redirty_page_for_writepage(wbc, page);
2444 continue;
2447 if (test_clear_buffer_dirty(bh)) {
2448 mark_buffer_async_write(bh);
2449 } else {
2450 unlock_buffer(bh);
2452 } while ((bh = bh->b_this_page) != head);
2454 if (checked) {
2455 error = journal_end(&th, s, bh_per_page + 1);
2456 reiserfs_write_unlock(s);
2457 if (error)
2458 goto fail;
2460 BUG_ON(PageWriteback(page));
2461 set_page_writeback(page);
2462 unlock_page(page);
2465 * since any buffer might be the only dirty buffer on the page,
2466 * the first submit_bh can bring the page out of writeback.
2467 * be careful with the buffers.
2469 do {
2470 struct buffer_head *next = bh->b_this_page;
2471 if (buffer_async_write(bh)) {
2472 submit_bh(WRITE, bh);
2473 nr++;
2475 put_bh(bh);
2476 bh = next;
2477 } while (bh != head);
2479 error = 0;
2480 done:
2481 if (nr == 0) {
2483 * if this page only had a direct item, it is very possible for
2484 * no io to be required without there being an error. Or,
2485 * someone else could have locked them and sent them down the
2486 * pipe without locking the page
2488 bh = head;
2489 do {
2490 if (!buffer_uptodate(bh)) {
2491 partial = 1;
2492 break;
2494 bh = bh->b_this_page;
2495 } while (bh != head);
2496 if (!partial)
2497 SetPageUptodate(page);
2498 end_page_writeback(page);
2500 return error;
2502 fail:
2503 /* catches various errors, we need to make sure any valid dirty blocks
2504 * get to the media. The page is currently locked and not marked for
2505 * writeback
2507 ClearPageUptodate(page);
2508 bh = head;
2509 do {
2510 get_bh(bh);
2511 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2512 lock_buffer(bh);
2513 mark_buffer_async_write(bh);
2514 } else {
2516 * clear any dirty bits that might have come from getting
2517 * attached to a dirty page
2519 clear_buffer_dirty(bh);
2521 bh = bh->b_this_page;
2522 } while (bh != head);
2523 SetPageError(page);
2524 BUG_ON(PageWriteback(page));
2525 set_page_writeback(page);
2526 unlock_page(page);
2527 do {
2528 struct buffer_head *next = bh->b_this_page;
2529 if (buffer_async_write(bh)) {
2530 clear_buffer_dirty(bh);
2531 submit_bh(WRITE, bh);
2532 nr++;
2534 put_bh(bh);
2535 bh = next;
2536 } while (bh != head);
2537 goto done;
2540 static int reiserfs_readpage(struct file *f, struct page *page)
2542 return block_read_full_page(page, reiserfs_get_block);
2545 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2547 struct inode *inode = page->mapping->host;
2548 reiserfs_wait_on_write_block(inode->i_sb);
2549 return reiserfs_write_full_page(page, wbc);
2552 static void reiserfs_truncate_failed_write(struct inode *inode)
2554 truncate_inode_pages(inode->i_mapping, inode->i_size);
2555 reiserfs_truncate_file(inode, 0);
2558 static int reiserfs_write_begin(struct file *file,
2559 struct address_space *mapping,
2560 loff_t pos, unsigned len, unsigned flags,
2561 struct page **pagep, void **fsdata)
2563 struct inode *inode;
2564 struct page *page;
2565 pgoff_t index;
2566 int ret;
2567 int old_ref = 0;
2569 inode = mapping->host;
2570 *fsdata = 0;
2571 if (flags & AOP_FLAG_CONT_EXPAND &&
2572 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2573 pos ++;
2574 *fsdata = (void *)(unsigned long)flags;
2577 index = pos >> PAGE_CACHE_SHIFT;
2578 page = grab_cache_page_write_begin(mapping, index, flags);
2579 if (!page)
2580 return -ENOMEM;
2581 *pagep = page;
2583 reiserfs_wait_on_write_block(inode->i_sb);
2584 fix_tail_page_for_writing(page);
2585 if (reiserfs_transaction_running(inode->i_sb)) {
2586 struct reiserfs_transaction_handle *th;
2587 th = (struct reiserfs_transaction_handle *)current->
2588 journal_info;
2589 BUG_ON(!th->t_refcount);
2590 BUG_ON(!th->t_trans_id);
2591 old_ref = th->t_refcount;
2592 th->t_refcount++;
2594 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2595 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2596 struct reiserfs_transaction_handle *th = current->journal_info;
2597 /* this gets a little ugly. If reiserfs_get_block returned an
2598 * error and left a transacstion running, we've got to close it,
2599 * and we've got to free handle if it was a persistent transaction.
2601 * But, if we had nested into an existing transaction, we need
2602 * to just drop the ref count on the handle.
2604 * If old_ref == 0, the transaction is from reiserfs_get_block,
2605 * and it was a persistent trans. Otherwise, it was nested above.
2607 if (th->t_refcount > old_ref) {
2608 if (old_ref)
2609 th->t_refcount--;
2610 else {
2611 int err;
2612 reiserfs_write_lock(inode->i_sb);
2613 err = reiserfs_end_persistent_transaction(th);
2614 reiserfs_write_unlock(inode->i_sb);
2615 if (err)
2616 ret = err;
2620 if (ret) {
2621 unlock_page(page);
2622 page_cache_release(page);
2623 /* Truncate allocated blocks */
2624 reiserfs_truncate_failed_write(inode);
2626 return ret;
2629 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2631 struct inode *inode = page->mapping->host;
2632 int ret;
2633 int old_ref = 0;
2635 reiserfs_write_unlock(inode->i_sb);
2636 reiserfs_wait_on_write_block(inode->i_sb);
2637 reiserfs_write_lock(inode->i_sb);
2639 fix_tail_page_for_writing(page);
2640 if (reiserfs_transaction_running(inode->i_sb)) {
2641 struct reiserfs_transaction_handle *th;
2642 th = (struct reiserfs_transaction_handle *)current->
2643 journal_info;
2644 BUG_ON(!th->t_refcount);
2645 BUG_ON(!th->t_trans_id);
2646 old_ref = th->t_refcount;
2647 th->t_refcount++;
2650 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2651 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2652 struct reiserfs_transaction_handle *th = current->journal_info;
2653 /* this gets a little ugly. If reiserfs_get_block returned an
2654 * error and left a transacstion running, we've got to close it,
2655 * and we've got to free handle if it was a persistent transaction.
2657 * But, if we had nested into an existing transaction, we need
2658 * to just drop the ref count on the handle.
2660 * If old_ref == 0, the transaction is from reiserfs_get_block,
2661 * and it was a persistent trans. Otherwise, it was nested above.
2663 if (th->t_refcount > old_ref) {
2664 if (old_ref)
2665 th->t_refcount--;
2666 else {
2667 int err;
2668 reiserfs_write_lock(inode->i_sb);
2669 err = reiserfs_end_persistent_transaction(th);
2670 reiserfs_write_unlock(inode->i_sb);
2671 if (err)
2672 ret = err;
2676 return ret;
2680 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2682 return generic_block_bmap(as, block, reiserfs_bmap);
2685 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2686 loff_t pos, unsigned len, unsigned copied,
2687 struct page *page, void *fsdata)
2689 struct inode *inode = page->mapping->host;
2690 int ret = 0;
2691 int update_sd = 0;
2692 struct reiserfs_transaction_handle *th;
2693 unsigned start;
2694 int lock_depth = 0;
2695 bool locked = false;
2697 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2698 pos ++;
2700 reiserfs_wait_on_write_block(inode->i_sb);
2701 if (reiserfs_transaction_running(inode->i_sb))
2702 th = current->journal_info;
2703 else
2704 th = NULL;
2706 start = pos & (PAGE_CACHE_SIZE - 1);
2707 if (unlikely(copied < len)) {
2708 if (!PageUptodate(page))
2709 copied = 0;
2711 page_zero_new_buffers(page, start + copied, start + len);
2713 flush_dcache_page(page);
2715 reiserfs_commit_page(inode, page, start, start + copied);
2717 /* generic_commit_write does this for us, but does not update the
2718 ** transaction tracking stuff when the size changes. So, we have
2719 ** to do the i_size updates here.
2721 if (pos + copied > inode->i_size) {
2722 struct reiserfs_transaction_handle myth;
2723 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2724 locked = true;
2725 /* If the file have grown beyond the border where it
2726 can have a tail, unmark it as needing a tail
2727 packing */
2728 if ((have_large_tails(inode->i_sb)
2729 && inode->i_size > i_block_size(inode) * 4)
2730 || (have_small_tails(inode->i_sb)
2731 && inode->i_size > i_block_size(inode)))
2732 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2734 ret = journal_begin(&myth, inode->i_sb, 1);
2735 if (ret)
2736 goto journal_error;
2738 reiserfs_update_inode_transaction(inode);
2739 inode->i_size = pos + copied;
2741 * this will just nest into our transaction. It's important
2742 * to use mark_inode_dirty so the inode gets pushed around on the
2743 * dirty lists, and so that O_SYNC works as expected
2745 mark_inode_dirty(inode);
2746 reiserfs_update_sd(&myth, inode);
2747 update_sd = 1;
2748 ret = journal_end(&myth, inode->i_sb, 1);
2749 if (ret)
2750 goto journal_error;
2752 if (th) {
2753 if (!locked) {
2754 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2755 locked = true;
2757 if (!update_sd)
2758 mark_inode_dirty(inode);
2759 ret = reiserfs_end_persistent_transaction(th);
2760 if (ret)
2761 goto out;
2764 out:
2765 if (locked)
2766 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2767 unlock_page(page);
2768 page_cache_release(page);
2770 if (pos + len > inode->i_size)
2771 reiserfs_truncate_failed_write(inode);
2773 return ret == 0 ? copied : ret;
2775 journal_error:
2776 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2777 locked = false;
2778 if (th) {
2779 if (!update_sd)
2780 reiserfs_update_sd(th, inode);
2781 ret = reiserfs_end_persistent_transaction(th);
2783 goto out;
2786 int reiserfs_commit_write(struct file *f, struct page *page,
2787 unsigned from, unsigned to)
2789 struct inode *inode = page->mapping->host;
2790 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2791 int ret = 0;
2792 int update_sd = 0;
2793 struct reiserfs_transaction_handle *th = NULL;
2795 reiserfs_write_unlock(inode->i_sb);
2796 reiserfs_wait_on_write_block(inode->i_sb);
2797 reiserfs_write_lock(inode->i_sb);
2799 if (reiserfs_transaction_running(inode->i_sb)) {
2800 th = current->journal_info;
2802 reiserfs_commit_page(inode, page, from, to);
2804 /* generic_commit_write does this for us, but does not update the
2805 ** transaction tracking stuff when the size changes. So, we have
2806 ** to do the i_size updates here.
2808 if (pos > inode->i_size) {
2809 struct reiserfs_transaction_handle myth;
2810 /* If the file have grown beyond the border where it
2811 can have a tail, unmark it as needing a tail
2812 packing */
2813 if ((have_large_tails(inode->i_sb)
2814 && inode->i_size > i_block_size(inode) * 4)
2815 || (have_small_tails(inode->i_sb)
2816 && inode->i_size > i_block_size(inode)))
2817 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2819 ret = journal_begin(&myth, inode->i_sb, 1);
2820 if (ret)
2821 goto journal_error;
2823 reiserfs_update_inode_transaction(inode);
2824 inode->i_size = pos;
2826 * this will just nest into our transaction. It's important
2827 * to use mark_inode_dirty so the inode gets pushed around on the
2828 * dirty lists, and so that O_SYNC works as expected
2830 mark_inode_dirty(inode);
2831 reiserfs_update_sd(&myth, inode);
2832 update_sd = 1;
2833 ret = journal_end(&myth, inode->i_sb, 1);
2834 if (ret)
2835 goto journal_error;
2837 if (th) {
2838 if (!update_sd)
2839 mark_inode_dirty(inode);
2840 ret = reiserfs_end_persistent_transaction(th);
2841 if (ret)
2842 goto out;
2845 out:
2846 return ret;
2848 journal_error:
2849 if (th) {
2850 if (!update_sd)
2851 reiserfs_update_sd(th, inode);
2852 ret = reiserfs_end_persistent_transaction(th);
2855 return ret;
2858 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2860 if (reiserfs_attrs(inode->i_sb)) {
2861 if (sd_attrs & REISERFS_SYNC_FL)
2862 inode->i_flags |= S_SYNC;
2863 else
2864 inode->i_flags &= ~S_SYNC;
2865 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2866 inode->i_flags |= S_IMMUTABLE;
2867 else
2868 inode->i_flags &= ~S_IMMUTABLE;
2869 if (sd_attrs & REISERFS_APPEND_FL)
2870 inode->i_flags |= S_APPEND;
2871 else
2872 inode->i_flags &= ~S_APPEND;
2873 if (sd_attrs & REISERFS_NOATIME_FL)
2874 inode->i_flags |= S_NOATIME;
2875 else
2876 inode->i_flags &= ~S_NOATIME;
2877 if (sd_attrs & REISERFS_NOTAIL_FL)
2878 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2879 else
2880 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2884 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2886 if (reiserfs_attrs(inode->i_sb)) {
2887 if (inode->i_flags & S_IMMUTABLE)
2888 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2889 else
2890 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2891 if (inode->i_flags & S_SYNC)
2892 *sd_attrs |= REISERFS_SYNC_FL;
2893 else
2894 *sd_attrs &= ~REISERFS_SYNC_FL;
2895 if (inode->i_flags & S_NOATIME)
2896 *sd_attrs |= REISERFS_NOATIME_FL;
2897 else
2898 *sd_attrs &= ~REISERFS_NOATIME_FL;
2899 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2900 *sd_attrs |= REISERFS_NOTAIL_FL;
2901 else
2902 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2906 /* decide if this buffer needs to stay around for data logging or ordered
2907 ** write purposes
2909 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2911 int ret = 1;
2912 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2914 lock_buffer(bh);
2915 spin_lock(&j->j_dirty_buffers_lock);
2916 if (!buffer_mapped(bh)) {
2917 goto free_jh;
2919 /* the page is locked, and the only places that log a data buffer
2920 * also lock the page.
2922 if (reiserfs_file_data_log(inode)) {
2924 * very conservative, leave the buffer pinned if
2925 * anyone might need it.
2927 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2928 ret = 0;
2930 } else if (buffer_dirty(bh)) {
2931 struct reiserfs_journal_list *jl;
2932 struct reiserfs_jh *jh = bh->b_private;
2934 /* why is this safe?
2935 * reiserfs_setattr updates i_size in the on disk
2936 * stat data before allowing vmtruncate to be called.
2938 * If buffer was put onto the ordered list for this
2939 * transaction, we know for sure either this transaction
2940 * or an older one already has updated i_size on disk,
2941 * and this ordered data won't be referenced in the file
2942 * if we crash.
2944 * if the buffer was put onto the ordered list for an older
2945 * transaction, we need to leave it around
2947 if (jh && (jl = jh->jl)
2948 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2949 ret = 0;
2951 free_jh:
2952 if (ret && bh->b_private) {
2953 reiserfs_free_jh(bh);
2955 spin_unlock(&j->j_dirty_buffers_lock);
2956 unlock_buffer(bh);
2957 return ret;
2960 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2961 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2963 struct buffer_head *head, *bh, *next;
2964 struct inode *inode = page->mapping->host;
2965 unsigned int curr_off = 0;
2966 int ret = 1;
2968 BUG_ON(!PageLocked(page));
2970 if (offset == 0)
2971 ClearPageChecked(page);
2973 if (!page_has_buffers(page))
2974 goto out;
2976 head = page_buffers(page);
2977 bh = head;
2978 do {
2979 unsigned int next_off = curr_off + bh->b_size;
2980 next = bh->b_this_page;
2983 * is this block fully invalidated?
2985 if (offset <= curr_off) {
2986 if (invalidatepage_can_drop(inode, bh))
2987 reiserfs_unmap_buffer(bh);
2988 else
2989 ret = 0;
2991 curr_off = next_off;
2992 bh = next;
2993 } while (bh != head);
2996 * We release buffers only if the entire page is being invalidated.
2997 * The get_block cached value has been unconditionally invalidated,
2998 * so real IO is not possible anymore.
3000 if (!offset && ret) {
3001 ret = try_to_release_page(page, 0);
3002 /* maybe should BUG_ON(!ret); - neilb */
3004 out:
3005 return;
3008 static int reiserfs_set_page_dirty(struct page *page)
3010 struct inode *inode = page->mapping->host;
3011 if (reiserfs_file_data_log(inode)) {
3012 SetPageChecked(page);
3013 return __set_page_dirty_nobuffers(page);
3015 return __set_page_dirty_buffers(page);
3019 * Returns 1 if the page's buffers were dropped. The page is locked.
3021 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3022 * in the buffers at page_buffers(page).
3024 * even in -o notail mode, we can't be sure an old mount without -o notail
3025 * didn't create files with tails.
3027 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3029 struct inode *inode = page->mapping->host;
3030 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3031 struct buffer_head *head;
3032 struct buffer_head *bh;
3033 int ret = 1;
3035 WARN_ON(PageChecked(page));
3036 spin_lock(&j->j_dirty_buffers_lock);
3037 head = page_buffers(page);
3038 bh = head;
3039 do {
3040 if (bh->b_private) {
3041 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3042 reiserfs_free_jh(bh);
3043 } else {
3044 ret = 0;
3045 break;
3048 bh = bh->b_this_page;
3049 } while (bh != head);
3050 if (ret)
3051 ret = try_to_free_buffers(page);
3052 spin_unlock(&j->j_dirty_buffers_lock);
3053 return ret;
3056 /* We thank Mingming Cao for helping us understand in great detail what
3057 to do in this section of the code. */
3058 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3059 const struct iovec *iov, loff_t offset,
3060 unsigned long nr_segs)
3062 struct file *file = iocb->ki_filp;
3063 struct inode *inode = file->f_mapping->host;
3064 ssize_t ret;
3066 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3067 offset, nr_segs,
3068 reiserfs_get_blocks_direct_io, NULL);
3071 * In case of error extending write may have instantiated a few
3072 * blocks outside i_size. Trim these off again.
3074 if (unlikely((rw & WRITE) && ret < 0)) {
3075 loff_t isize = i_size_read(inode);
3076 loff_t end = offset + iov_length(iov, nr_segs);
3078 if (end > isize)
3079 vmtruncate(inode, isize);
3082 return ret;
3085 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3087 struct inode *inode = dentry->d_inode;
3088 unsigned int ia_valid;
3089 int depth;
3090 int error;
3092 error = inode_change_ok(inode, attr);
3093 if (error)
3094 return error;
3096 /* must be turned off for recursive notify_change calls */
3097 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3099 depth = reiserfs_write_lock_once(inode->i_sb);
3100 if (is_quota_modification(inode, attr))
3101 dquot_initialize(inode);
3103 if (attr->ia_valid & ATTR_SIZE) {
3104 /* version 2 items will be caught by the s_maxbytes check
3105 ** done for us in vmtruncate
3107 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3108 attr->ia_size > MAX_NON_LFS) {
3109 error = -EFBIG;
3110 goto out;
3112 /* fill in hole pointers in the expanding truncate case. */
3113 if (attr->ia_size > inode->i_size) {
3114 error = generic_cont_expand_simple(inode, attr->ia_size);
3115 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3116 int err;
3117 struct reiserfs_transaction_handle th;
3118 /* we're changing at most 2 bitmaps, inode + super */
3119 err = journal_begin(&th, inode->i_sb, 4);
3120 if (!err) {
3121 reiserfs_discard_prealloc(&th, inode);
3122 err = journal_end(&th, inode->i_sb, 4);
3124 if (err)
3125 error = err;
3127 if (error)
3128 goto out;
3130 * file size is changed, ctime and mtime are
3131 * to be updated
3133 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3137 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3138 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3139 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3140 /* stat data of format v3.5 has 16 bit uid and gid */
3141 error = -EINVAL;
3142 goto out;
3145 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3146 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3147 struct reiserfs_transaction_handle th;
3148 int jbegin_count =
3150 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3151 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3154 error = reiserfs_chown_xattrs(inode, attr);
3156 if (error)
3157 return error;
3159 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3160 error = journal_begin(&th, inode->i_sb, jbegin_count);
3161 if (error)
3162 goto out;
3163 error = dquot_transfer(inode, attr);
3164 if (error) {
3165 journal_end(&th, inode->i_sb, jbegin_count);
3166 goto out;
3169 /* Update corresponding info in inode so that everything is in
3170 * one transaction */
3171 if (attr->ia_valid & ATTR_UID)
3172 inode->i_uid = attr->ia_uid;
3173 if (attr->ia_valid & ATTR_GID)
3174 inode->i_gid = attr->ia_gid;
3175 mark_inode_dirty(inode);
3176 error = journal_end(&th, inode->i_sb, jbegin_count);
3177 if (error)
3178 goto out;
3182 * Relax the lock here, as it might truncate the
3183 * inode pages and wait for inode pages locks.
3184 * To release such page lock, the owner needs the
3185 * reiserfs lock
3187 reiserfs_write_unlock_once(inode->i_sb, depth);
3188 if ((attr->ia_valid & ATTR_SIZE) &&
3189 attr->ia_size != i_size_read(inode))
3190 error = vmtruncate(inode, attr->ia_size);
3192 if (!error) {
3193 setattr_copy(inode, attr);
3194 mark_inode_dirty(inode);
3196 depth = reiserfs_write_lock_once(inode->i_sb);
3198 if (!error && reiserfs_posixacl(inode->i_sb)) {
3199 if (attr->ia_valid & ATTR_MODE)
3200 error = reiserfs_acl_chmod(inode);
3203 out:
3204 reiserfs_write_unlock_once(inode->i_sb, depth);
3206 return error;
3209 const struct address_space_operations reiserfs_address_space_operations = {
3210 .writepage = reiserfs_writepage,
3211 .readpage = reiserfs_readpage,
3212 .readpages = reiserfs_readpages,
3213 .releasepage = reiserfs_releasepage,
3214 .invalidatepage = reiserfs_invalidatepage,
3215 .sync_page = block_sync_page,
3216 .write_begin = reiserfs_write_begin,
3217 .write_end = reiserfs_write_end,
3218 .bmap = reiserfs_aop_bmap,
3219 .direct_IO = reiserfs_direct_IO,
3220 .set_page_dirty = reiserfs_set_page_dirty,