drm/i915|intel-gtt: consolidate intel-gtt.h headers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / kernel / perf_event.c
blob0d6deb55a2ae7e4189b5ab60aec81cd8df28adb6
1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
29 #include "kstack.h"
31 /* Sparc64 chips have two performance counters, 32-bits each, with
32 * overflow interrupts generated on transition from 0xffffffff to 0.
33 * The counters are accessed in one go using a 64-bit register.
35 * Both counters are controlled using a single control register. The
36 * only way to stop all sampling is to clear all of the context (user,
37 * supervisor, hypervisor) sampling enable bits. But these bits apply
38 * to both counters, thus the two counters can't be enabled/disabled
39 * individually.
41 * The control register has two event fields, one for each of the two
42 * counters. It's thus nearly impossible to have one counter going
43 * while keeping the other one stopped. Therefore it is possible to
44 * get overflow interrupts for counters not currently "in use" and
45 * that condition must be checked in the overflow interrupt handler.
47 * So we use a hack, in that we program inactive counters with the
48 * "sw_count0" and "sw_count1" events. These count how many times
49 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
50 * unusual way to encode a NOP and therefore will not trigger in
51 * normal code.
54 #define MAX_HWEVENTS 2
55 #define MAX_PERIOD ((1UL << 32) - 1)
57 #define PIC_UPPER_INDEX 0
58 #define PIC_LOWER_INDEX 1
59 #define PIC_NO_INDEX -1
61 struct cpu_hw_events {
62 /* Number of events currently scheduled onto this cpu.
63 * This tells how many entries in the arrays below
64 * are valid.
66 int n_events;
68 /* Number of new events added since the last hw_perf_disable().
69 * This works because the perf event layer always adds new
70 * events inside of a perf_{disable,enable}() sequence.
72 int n_added;
74 /* Array of events current scheduled on this cpu. */
75 struct perf_event *event[MAX_HWEVENTS];
77 /* Array of encoded longs, specifying the %pcr register
78 * encoding and the mask of PIC counters this even can
79 * be scheduled on. See perf_event_encode() et al.
81 unsigned long events[MAX_HWEVENTS];
83 /* The current counter index assigned to an event. When the
84 * event hasn't been programmed into the cpu yet, this will
85 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
86 * we ought to schedule the event.
88 int current_idx[MAX_HWEVENTS];
90 /* Software copy of %pcr register on this cpu. */
91 u64 pcr;
93 /* Enabled/disable state. */
94 int enabled;
96 unsigned int group_flag;
98 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100 /* An event map describes the characteristics of a performance
101 * counter event. In particular it gives the encoding as well as
102 * a mask telling which counters the event can be measured on.
104 struct perf_event_map {
105 u16 encoding;
106 u8 pic_mask;
107 #define PIC_NONE 0x00
108 #define PIC_UPPER 0x01
109 #define PIC_LOWER 0x02
112 /* Encode a perf_event_map entry into a long. */
113 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
118 static u8 perf_event_get_msk(unsigned long val)
120 return val & 0xff;
123 static u64 perf_event_get_enc(unsigned long val)
125 return val >> 16;
128 #define C(x) PERF_COUNT_HW_CACHE_##x
130 #define CACHE_OP_UNSUPPORTED 0xfffe
131 #define CACHE_OP_NONSENSE 0xffff
133 typedef struct perf_event_map cache_map_t
134 [PERF_COUNT_HW_CACHE_MAX]
135 [PERF_COUNT_HW_CACHE_OP_MAX]
136 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138 struct sparc_pmu {
139 const struct perf_event_map *(*event_map)(int);
140 const cache_map_t *cache_map;
141 int max_events;
142 int upper_shift;
143 int lower_shift;
144 int event_mask;
145 int hv_bit;
146 int irq_bit;
147 int upper_nop;
148 int lower_nop;
151 static const struct perf_event_map ultra3_perfmon_event_map[] = {
152 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
153 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
154 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
155 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
158 static const struct perf_event_map *ultra3_event_map(int event_id)
160 return &ultra3_perfmon_event_map[event_id];
163 static const cache_map_t ultra3_cache_map = {
164 [C(L1D)] = {
165 [C(OP_READ)] = {
166 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
167 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169 [C(OP_WRITE)] = {
170 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
171 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173 [C(OP_PREFETCH)] = {
174 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
175 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
178 [C(L1I)] = {
179 [C(OP_READ)] = {
180 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
181 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183 [ C(OP_WRITE) ] = {
184 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
185 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
187 [ C(OP_PREFETCH) ] = {
188 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
189 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
192 [C(LL)] = {
193 [C(OP_READ)] = {
194 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
195 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197 [C(OP_WRITE)] = {
198 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
199 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201 [C(OP_PREFETCH)] = {
202 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
203 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
206 [C(DTLB)] = {
207 [C(OP_READ)] = {
208 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
209 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211 [ C(OP_WRITE) ] = {
212 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
213 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
215 [ C(OP_PREFETCH) ] = {
216 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
217 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
220 [C(ITLB)] = {
221 [C(OP_READ)] = {
222 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
223 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225 [ C(OP_WRITE) ] = {
226 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
227 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
229 [ C(OP_PREFETCH) ] = {
230 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
231 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
234 [C(BPU)] = {
235 [C(OP_READ)] = {
236 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
237 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239 [ C(OP_WRITE) ] = {
240 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
241 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
243 [ C(OP_PREFETCH) ] = {
244 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
250 static const struct sparc_pmu ultra3_pmu = {
251 .event_map = ultra3_event_map,
252 .cache_map = &ultra3_cache_map,
253 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
254 .upper_shift = 11,
255 .lower_shift = 4,
256 .event_mask = 0x3f,
257 .upper_nop = 0x1c,
258 .lower_nop = 0x14,
261 /* Niagara1 is very limited. The upper PIC is hard-locked to count
262 * only instructions, so it is free running which creates all kinds of
263 * problems. Some hardware designs make one wonder if the creator
264 * even looked at how this stuff gets used by software.
266 static const struct perf_event_map niagara1_perfmon_event_map[] = {
267 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
268 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
269 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
270 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
273 static const struct perf_event_map *niagara1_event_map(int event_id)
275 return &niagara1_perfmon_event_map[event_id];
278 static const cache_map_t niagara1_cache_map = {
279 [C(L1D)] = {
280 [C(OP_READ)] = {
281 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
282 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284 [C(OP_WRITE)] = {
285 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
286 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
288 [C(OP_PREFETCH)] = {
289 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
290 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 [C(L1I)] = {
294 [C(OP_READ)] = {
295 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
296 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
298 [ C(OP_WRITE) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
300 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
302 [ C(OP_PREFETCH) ] = {
303 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
304 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307 [C(LL)] = {
308 [C(OP_READ)] = {
309 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
310 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312 [C(OP_WRITE)] = {
313 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
314 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
316 [C(OP_PREFETCH)] = {
317 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
318 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
321 [C(DTLB)] = {
322 [C(OP_READ)] = {
323 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
324 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
326 [ C(OP_WRITE) ] = {
327 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
328 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
330 [ C(OP_PREFETCH) ] = {
331 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
332 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
335 [C(ITLB)] = {
336 [C(OP_READ)] = {
337 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
338 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
340 [ C(OP_WRITE) ] = {
341 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
342 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
344 [ C(OP_PREFETCH) ] = {
345 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
346 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
349 [C(BPU)] = {
350 [C(OP_READ)] = {
351 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
352 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
354 [ C(OP_WRITE) ] = {
355 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
356 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
358 [ C(OP_PREFETCH) ] = {
359 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
360 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
365 static const struct sparc_pmu niagara1_pmu = {
366 .event_map = niagara1_event_map,
367 .cache_map = &niagara1_cache_map,
368 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
369 .upper_shift = 0,
370 .lower_shift = 4,
371 .event_mask = 0x7,
372 .upper_nop = 0x0,
373 .lower_nop = 0x0,
376 static const struct perf_event_map niagara2_perfmon_event_map[] = {
377 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
378 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
380 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
381 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
382 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
385 static const struct perf_event_map *niagara2_event_map(int event_id)
387 return &niagara2_perfmon_event_map[event_id];
390 static const cache_map_t niagara2_cache_map = {
391 [C(L1D)] = {
392 [C(OP_READ)] = {
393 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
394 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396 [C(OP_WRITE)] = {
397 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
398 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
400 [C(OP_PREFETCH)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
405 [C(L1I)] = {
406 [C(OP_READ)] = {
407 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
408 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
410 [ C(OP_WRITE) ] = {
411 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
412 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
414 [ C(OP_PREFETCH) ] = {
415 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
416 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
419 [C(LL)] = {
420 [C(OP_READ)] = {
421 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
422 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
424 [C(OP_WRITE)] = {
425 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
426 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
428 [C(OP_PREFETCH)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433 [C(DTLB)] = {
434 [C(OP_READ)] = {
435 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
436 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
438 [ C(OP_WRITE) ] = {
439 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
442 [ C(OP_PREFETCH) ] = {
443 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
444 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
447 [C(ITLB)] = {
448 [C(OP_READ)] = {
449 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
450 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
452 [ C(OP_WRITE) ] = {
453 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
456 [ C(OP_PREFETCH) ] = {
457 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
458 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
461 [C(BPU)] = {
462 [C(OP_READ)] = {
463 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
464 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
466 [ C(OP_WRITE) ] = {
467 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
468 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
470 [ C(OP_PREFETCH) ] = {
471 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
472 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
477 static const struct sparc_pmu niagara2_pmu = {
478 .event_map = niagara2_event_map,
479 .cache_map = &niagara2_cache_map,
480 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
481 .upper_shift = 19,
482 .lower_shift = 6,
483 .event_mask = 0xfff,
484 .hv_bit = 0x8,
485 .irq_bit = 0x30,
486 .upper_nop = 0x220,
487 .lower_nop = 0x220,
490 static const struct sparc_pmu *sparc_pmu __read_mostly;
492 static u64 event_encoding(u64 event_id, int idx)
494 if (idx == PIC_UPPER_INDEX)
495 event_id <<= sparc_pmu->upper_shift;
496 else
497 event_id <<= sparc_pmu->lower_shift;
498 return event_id;
501 static u64 mask_for_index(int idx)
503 return event_encoding(sparc_pmu->event_mask, idx);
506 static u64 nop_for_index(int idx)
508 return event_encoding(idx == PIC_UPPER_INDEX ?
509 sparc_pmu->upper_nop :
510 sparc_pmu->lower_nop, idx);
513 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
515 u64 val, mask = mask_for_index(idx);
517 val = cpuc->pcr;
518 val &= ~mask;
519 val |= hwc->config;
520 cpuc->pcr = val;
522 pcr_ops->write(cpuc->pcr);
525 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
527 u64 mask = mask_for_index(idx);
528 u64 nop = nop_for_index(idx);
529 u64 val;
531 val = cpuc->pcr;
532 val &= ~mask;
533 val |= nop;
534 cpuc->pcr = val;
536 pcr_ops->write(cpuc->pcr);
539 static u32 read_pmc(int idx)
541 u64 val;
543 read_pic(val);
544 if (idx == PIC_UPPER_INDEX)
545 val >>= 32;
547 return val & 0xffffffff;
550 static void write_pmc(int idx, u64 val)
552 u64 shift, mask, pic;
554 shift = 0;
555 if (idx == PIC_UPPER_INDEX)
556 shift = 32;
558 mask = ((u64) 0xffffffff) << shift;
559 val <<= shift;
561 read_pic(pic);
562 pic &= ~mask;
563 pic |= val;
564 write_pic(pic);
567 static u64 sparc_perf_event_update(struct perf_event *event,
568 struct hw_perf_event *hwc, int idx)
570 int shift = 64 - 32;
571 u64 prev_raw_count, new_raw_count;
572 s64 delta;
574 again:
575 prev_raw_count = local64_read(&hwc->prev_count);
576 new_raw_count = read_pmc(idx);
578 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
579 new_raw_count) != prev_raw_count)
580 goto again;
582 delta = (new_raw_count << shift) - (prev_raw_count << shift);
583 delta >>= shift;
585 local64_add(delta, &event->count);
586 local64_sub(delta, &hwc->period_left);
588 return new_raw_count;
591 static int sparc_perf_event_set_period(struct perf_event *event,
592 struct hw_perf_event *hwc, int idx)
594 s64 left = local64_read(&hwc->period_left);
595 s64 period = hwc->sample_period;
596 int ret = 0;
598 if (unlikely(left <= -period)) {
599 left = period;
600 local64_set(&hwc->period_left, left);
601 hwc->last_period = period;
602 ret = 1;
605 if (unlikely(left <= 0)) {
606 left += period;
607 local64_set(&hwc->period_left, left);
608 hwc->last_period = period;
609 ret = 1;
611 if (left > MAX_PERIOD)
612 left = MAX_PERIOD;
614 local64_set(&hwc->prev_count, (u64)-left);
616 write_pmc(idx, (u64)(-left) & 0xffffffff);
618 perf_event_update_userpage(event);
620 return ret;
623 /* If performance event entries have been added, move existing
624 * events around (if necessary) and then assign new entries to
625 * counters.
627 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
629 int i;
631 if (!cpuc->n_added)
632 goto out;
634 /* Read in the counters which are moving. */
635 for (i = 0; i < cpuc->n_events; i++) {
636 struct perf_event *cp = cpuc->event[i];
638 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
639 cpuc->current_idx[i] != cp->hw.idx) {
640 sparc_perf_event_update(cp, &cp->hw,
641 cpuc->current_idx[i]);
642 cpuc->current_idx[i] = PIC_NO_INDEX;
646 /* Assign to counters all unassigned events. */
647 for (i = 0; i < cpuc->n_events; i++) {
648 struct perf_event *cp = cpuc->event[i];
649 struct hw_perf_event *hwc = &cp->hw;
650 int idx = hwc->idx;
651 u64 enc;
653 if (cpuc->current_idx[i] != PIC_NO_INDEX)
654 continue;
656 sparc_perf_event_set_period(cp, hwc, idx);
657 cpuc->current_idx[i] = idx;
659 enc = perf_event_get_enc(cpuc->events[i]);
660 pcr &= ~mask_for_index(idx);
661 if (hwc->state & PERF_HES_STOPPED)
662 pcr |= nop_for_index(idx);
663 else
664 pcr |= event_encoding(enc, idx);
666 out:
667 return pcr;
670 static void sparc_pmu_enable(struct pmu *pmu)
672 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
673 u64 pcr;
675 if (cpuc->enabled)
676 return;
678 cpuc->enabled = 1;
679 barrier();
681 pcr = cpuc->pcr;
682 if (!cpuc->n_events) {
683 pcr = 0;
684 } else {
685 pcr = maybe_change_configuration(cpuc, pcr);
687 /* We require that all of the events have the same
688 * configuration, so just fetch the settings from the
689 * first entry.
691 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
694 pcr_ops->write(cpuc->pcr);
697 static void sparc_pmu_disable(struct pmu *pmu)
699 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
700 u64 val;
702 if (!cpuc->enabled)
703 return;
705 cpuc->enabled = 0;
706 cpuc->n_added = 0;
708 val = cpuc->pcr;
709 val &= ~(PCR_UTRACE | PCR_STRACE |
710 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
711 cpuc->pcr = val;
713 pcr_ops->write(cpuc->pcr);
716 static int active_event_index(struct cpu_hw_events *cpuc,
717 struct perf_event *event)
719 int i;
721 for (i = 0; i < cpuc->n_events; i++) {
722 if (cpuc->event[i] == event)
723 break;
725 BUG_ON(i == cpuc->n_events);
726 return cpuc->current_idx[i];
729 static void sparc_pmu_start(struct perf_event *event, int flags)
731 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
732 int idx = active_event_index(cpuc, event);
734 if (flags & PERF_EF_RELOAD) {
735 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
736 sparc_perf_event_set_period(event, &event->hw, idx);
739 event->hw.state = 0;
741 sparc_pmu_enable_event(cpuc, &event->hw, idx);
744 static void sparc_pmu_stop(struct perf_event *event, int flags)
746 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
747 int idx = active_event_index(cpuc, event);
749 if (!(event->hw.state & PERF_HES_STOPPED)) {
750 sparc_pmu_disable_event(cpuc, &event->hw, idx);
751 event->hw.state |= PERF_HES_STOPPED;
754 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
755 sparc_perf_event_update(event, &event->hw, idx);
756 event->hw.state |= PERF_HES_UPTODATE;
760 static void sparc_pmu_del(struct perf_event *event, int _flags)
762 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
763 unsigned long flags;
764 int i;
766 local_irq_save(flags);
767 perf_pmu_disable(event->pmu);
769 for (i = 0; i < cpuc->n_events; i++) {
770 if (event == cpuc->event[i]) {
771 /* Absorb the final count and turn off the
772 * event.
774 sparc_pmu_stop(event, PERF_EF_UPDATE);
776 /* Shift remaining entries down into
777 * the existing slot.
779 while (++i < cpuc->n_events) {
780 cpuc->event[i - 1] = cpuc->event[i];
781 cpuc->events[i - 1] = cpuc->events[i];
782 cpuc->current_idx[i - 1] =
783 cpuc->current_idx[i];
786 perf_event_update_userpage(event);
788 cpuc->n_events--;
789 break;
793 perf_pmu_enable(event->pmu);
794 local_irq_restore(flags);
797 static void sparc_pmu_read(struct perf_event *event)
799 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
800 int idx = active_event_index(cpuc, event);
801 struct hw_perf_event *hwc = &event->hw;
803 sparc_perf_event_update(event, hwc, idx);
806 static atomic_t active_events = ATOMIC_INIT(0);
807 static DEFINE_MUTEX(pmc_grab_mutex);
809 static void perf_stop_nmi_watchdog(void *unused)
811 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
813 stop_nmi_watchdog(NULL);
814 cpuc->pcr = pcr_ops->read();
817 void perf_event_grab_pmc(void)
819 if (atomic_inc_not_zero(&active_events))
820 return;
822 mutex_lock(&pmc_grab_mutex);
823 if (atomic_read(&active_events) == 0) {
824 if (atomic_read(&nmi_active) > 0) {
825 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
826 BUG_ON(atomic_read(&nmi_active) != 0);
828 atomic_inc(&active_events);
830 mutex_unlock(&pmc_grab_mutex);
833 void perf_event_release_pmc(void)
835 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
836 if (atomic_read(&nmi_active) == 0)
837 on_each_cpu(start_nmi_watchdog, NULL, 1);
838 mutex_unlock(&pmc_grab_mutex);
842 static const struct perf_event_map *sparc_map_cache_event(u64 config)
844 unsigned int cache_type, cache_op, cache_result;
845 const struct perf_event_map *pmap;
847 if (!sparc_pmu->cache_map)
848 return ERR_PTR(-ENOENT);
850 cache_type = (config >> 0) & 0xff;
851 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
852 return ERR_PTR(-EINVAL);
854 cache_op = (config >> 8) & 0xff;
855 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
856 return ERR_PTR(-EINVAL);
858 cache_result = (config >> 16) & 0xff;
859 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
860 return ERR_PTR(-EINVAL);
862 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
864 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
865 return ERR_PTR(-ENOENT);
867 if (pmap->encoding == CACHE_OP_NONSENSE)
868 return ERR_PTR(-EINVAL);
870 return pmap;
873 static void hw_perf_event_destroy(struct perf_event *event)
875 perf_event_release_pmc();
878 /* Make sure all events can be scheduled into the hardware at
879 * the same time. This is simplified by the fact that we only
880 * need to support 2 simultaneous HW events.
882 * As a side effect, the evts[]->hw.idx values will be assigned
883 * on success. These are pending indexes. When the events are
884 * actually programmed into the chip, these values will propagate
885 * to the per-cpu cpuc->current_idx[] slots, see the code in
886 * maybe_change_configuration() for details.
888 static int sparc_check_constraints(struct perf_event **evts,
889 unsigned long *events, int n_ev)
891 u8 msk0 = 0, msk1 = 0;
892 int idx0 = 0;
894 /* This case is possible when we are invoked from
895 * hw_perf_group_sched_in().
897 if (!n_ev)
898 return 0;
900 if (n_ev > MAX_HWEVENTS)
901 return -1;
903 msk0 = perf_event_get_msk(events[0]);
904 if (n_ev == 1) {
905 if (msk0 & PIC_LOWER)
906 idx0 = 1;
907 goto success;
909 BUG_ON(n_ev != 2);
910 msk1 = perf_event_get_msk(events[1]);
912 /* If both events can go on any counter, OK. */
913 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
914 msk1 == (PIC_UPPER | PIC_LOWER))
915 goto success;
917 /* If one event is limited to a specific counter,
918 * and the other can go on both, OK.
920 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
921 msk1 == (PIC_UPPER | PIC_LOWER)) {
922 if (msk0 & PIC_LOWER)
923 idx0 = 1;
924 goto success;
927 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
928 msk0 == (PIC_UPPER | PIC_LOWER)) {
929 if (msk1 & PIC_UPPER)
930 idx0 = 1;
931 goto success;
934 /* If the events are fixed to different counters, OK. */
935 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
936 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
937 if (msk0 & PIC_LOWER)
938 idx0 = 1;
939 goto success;
942 /* Otherwise, there is a conflict. */
943 return -1;
945 success:
946 evts[0]->hw.idx = idx0;
947 if (n_ev == 2)
948 evts[1]->hw.idx = idx0 ^ 1;
949 return 0;
952 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
954 int eu = 0, ek = 0, eh = 0;
955 struct perf_event *event;
956 int i, n, first;
958 n = n_prev + n_new;
959 if (n <= 1)
960 return 0;
962 first = 1;
963 for (i = 0; i < n; i++) {
964 event = evts[i];
965 if (first) {
966 eu = event->attr.exclude_user;
967 ek = event->attr.exclude_kernel;
968 eh = event->attr.exclude_hv;
969 first = 0;
970 } else if (event->attr.exclude_user != eu ||
971 event->attr.exclude_kernel != ek ||
972 event->attr.exclude_hv != eh) {
973 return -EAGAIN;
977 return 0;
980 static int collect_events(struct perf_event *group, int max_count,
981 struct perf_event *evts[], unsigned long *events,
982 int *current_idx)
984 struct perf_event *event;
985 int n = 0;
987 if (!is_software_event(group)) {
988 if (n >= max_count)
989 return -1;
990 evts[n] = group;
991 events[n] = group->hw.event_base;
992 current_idx[n++] = PIC_NO_INDEX;
994 list_for_each_entry(event, &group->sibling_list, group_entry) {
995 if (!is_software_event(event) &&
996 event->state != PERF_EVENT_STATE_OFF) {
997 if (n >= max_count)
998 return -1;
999 evts[n] = event;
1000 events[n] = event->hw.event_base;
1001 current_idx[n++] = PIC_NO_INDEX;
1004 return n;
1007 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1009 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1010 int n0, ret = -EAGAIN;
1011 unsigned long flags;
1013 local_irq_save(flags);
1014 perf_pmu_disable(event->pmu);
1016 n0 = cpuc->n_events;
1017 if (n0 >= MAX_HWEVENTS)
1018 goto out;
1020 cpuc->event[n0] = event;
1021 cpuc->events[n0] = event->hw.event_base;
1022 cpuc->current_idx[n0] = PIC_NO_INDEX;
1024 event->hw.state = PERF_HES_UPTODATE;
1025 if (!(ef_flags & PERF_EF_START))
1026 event->hw.state |= PERF_HES_STOPPED;
1029 * If group events scheduling transaction was started,
1030 * skip the schedulability test here, it will be peformed
1031 * at commit time(->commit_txn) as a whole
1033 if (cpuc->group_flag & PERF_EVENT_TXN)
1034 goto nocheck;
1036 if (check_excludes(cpuc->event, n0, 1))
1037 goto out;
1038 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1039 goto out;
1041 nocheck:
1042 cpuc->n_events++;
1043 cpuc->n_added++;
1045 ret = 0;
1046 out:
1047 perf_pmu_enable(event->pmu);
1048 local_irq_restore(flags);
1049 return ret;
1052 static int sparc_pmu_event_init(struct perf_event *event)
1054 struct perf_event_attr *attr = &event->attr;
1055 struct perf_event *evts[MAX_HWEVENTS];
1056 struct hw_perf_event *hwc = &event->hw;
1057 unsigned long events[MAX_HWEVENTS];
1058 int current_idx_dmy[MAX_HWEVENTS];
1059 const struct perf_event_map *pmap;
1060 int n;
1062 if (atomic_read(&nmi_active) < 0)
1063 return -ENODEV;
1065 switch (attr->type) {
1066 case PERF_TYPE_HARDWARE:
1067 if (attr->config >= sparc_pmu->max_events)
1068 return -EINVAL;
1069 pmap = sparc_pmu->event_map(attr->config);
1070 break;
1072 case PERF_TYPE_HW_CACHE:
1073 pmap = sparc_map_cache_event(attr->config);
1074 if (IS_ERR(pmap))
1075 return PTR_ERR(pmap);
1076 break;
1078 case PERF_TYPE_RAW:
1079 pmap = NULL;
1080 break;
1082 default:
1083 return -ENOENT;
1087 if (pmap) {
1088 hwc->event_base = perf_event_encode(pmap);
1089 } else {
1091 * User gives us "(encoding << 16) | pic_mask" for
1092 * PERF_TYPE_RAW events.
1094 hwc->event_base = attr->config;
1097 /* We save the enable bits in the config_base. */
1098 hwc->config_base = sparc_pmu->irq_bit;
1099 if (!attr->exclude_user)
1100 hwc->config_base |= PCR_UTRACE;
1101 if (!attr->exclude_kernel)
1102 hwc->config_base |= PCR_STRACE;
1103 if (!attr->exclude_hv)
1104 hwc->config_base |= sparc_pmu->hv_bit;
1106 n = 0;
1107 if (event->group_leader != event) {
1108 n = collect_events(event->group_leader,
1109 MAX_HWEVENTS - 1,
1110 evts, events, current_idx_dmy);
1111 if (n < 0)
1112 return -EINVAL;
1114 events[n] = hwc->event_base;
1115 evts[n] = event;
1117 if (check_excludes(evts, n, 1))
1118 return -EINVAL;
1120 if (sparc_check_constraints(evts, events, n + 1))
1121 return -EINVAL;
1123 hwc->idx = PIC_NO_INDEX;
1125 /* Try to do all error checking before this point, as unwinding
1126 * state after grabbing the PMC is difficult.
1128 perf_event_grab_pmc();
1129 event->destroy = hw_perf_event_destroy;
1131 if (!hwc->sample_period) {
1132 hwc->sample_period = MAX_PERIOD;
1133 hwc->last_period = hwc->sample_period;
1134 local64_set(&hwc->period_left, hwc->sample_period);
1137 return 0;
1141 * Start group events scheduling transaction
1142 * Set the flag to make pmu::enable() not perform the
1143 * schedulability test, it will be performed at commit time
1145 static void sparc_pmu_start_txn(struct pmu *pmu)
1147 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1149 perf_pmu_disable(pmu);
1150 cpuhw->group_flag |= PERF_EVENT_TXN;
1154 * Stop group events scheduling transaction
1155 * Clear the flag and pmu::enable() will perform the
1156 * schedulability test.
1158 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1160 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1162 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1163 perf_pmu_enable(pmu);
1167 * Commit group events scheduling transaction
1168 * Perform the group schedulability test as a whole
1169 * Return 0 if success
1171 static int sparc_pmu_commit_txn(struct pmu *pmu)
1173 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1174 int n;
1176 if (!sparc_pmu)
1177 return -EINVAL;
1179 cpuc = &__get_cpu_var(cpu_hw_events);
1180 n = cpuc->n_events;
1181 if (check_excludes(cpuc->event, 0, n))
1182 return -EINVAL;
1183 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1184 return -EAGAIN;
1186 cpuc->group_flag &= ~PERF_EVENT_TXN;
1187 perf_pmu_enable(pmu);
1188 return 0;
1191 static struct pmu pmu = {
1192 .pmu_enable = sparc_pmu_enable,
1193 .pmu_disable = sparc_pmu_disable,
1194 .event_init = sparc_pmu_event_init,
1195 .add = sparc_pmu_add,
1196 .del = sparc_pmu_del,
1197 .start = sparc_pmu_start,
1198 .stop = sparc_pmu_stop,
1199 .read = sparc_pmu_read,
1200 .start_txn = sparc_pmu_start_txn,
1201 .cancel_txn = sparc_pmu_cancel_txn,
1202 .commit_txn = sparc_pmu_commit_txn,
1205 void perf_event_print_debug(void)
1207 unsigned long flags;
1208 u64 pcr, pic;
1209 int cpu;
1211 if (!sparc_pmu)
1212 return;
1214 local_irq_save(flags);
1216 cpu = smp_processor_id();
1218 pcr = pcr_ops->read();
1219 read_pic(pic);
1221 pr_info("\n");
1222 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1223 cpu, pcr, pic);
1225 local_irq_restore(flags);
1228 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1229 unsigned long cmd, void *__args)
1231 struct die_args *args = __args;
1232 struct perf_sample_data data;
1233 struct cpu_hw_events *cpuc;
1234 struct pt_regs *regs;
1235 int i;
1237 if (!atomic_read(&active_events))
1238 return NOTIFY_DONE;
1240 switch (cmd) {
1241 case DIE_NMI:
1242 break;
1244 default:
1245 return NOTIFY_DONE;
1248 regs = args->regs;
1250 perf_sample_data_init(&data, 0);
1252 cpuc = &__get_cpu_var(cpu_hw_events);
1254 /* If the PMU has the TOE IRQ enable bits, we need to do a
1255 * dummy write to the %pcr to clear the overflow bits and thus
1256 * the interrupt.
1258 * Do this before we peek at the counters to determine
1259 * overflow so we don't lose any events.
1261 if (sparc_pmu->irq_bit)
1262 pcr_ops->write(cpuc->pcr);
1264 for (i = 0; i < cpuc->n_events; i++) {
1265 struct perf_event *event = cpuc->event[i];
1266 int idx = cpuc->current_idx[i];
1267 struct hw_perf_event *hwc;
1268 u64 val;
1270 hwc = &event->hw;
1271 val = sparc_perf_event_update(event, hwc, idx);
1272 if (val & (1ULL << 31))
1273 continue;
1275 data.period = event->hw.last_period;
1276 if (!sparc_perf_event_set_period(event, hwc, idx))
1277 continue;
1279 if (perf_event_overflow(event, 1, &data, regs))
1280 sparc_pmu_stop(event, 0);
1283 return NOTIFY_STOP;
1286 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1287 .notifier_call = perf_event_nmi_handler,
1290 static bool __init supported_pmu(void)
1292 if (!strcmp(sparc_pmu_type, "ultra3") ||
1293 !strcmp(sparc_pmu_type, "ultra3+") ||
1294 !strcmp(sparc_pmu_type, "ultra3i") ||
1295 !strcmp(sparc_pmu_type, "ultra4+")) {
1296 sparc_pmu = &ultra3_pmu;
1297 return true;
1299 if (!strcmp(sparc_pmu_type, "niagara")) {
1300 sparc_pmu = &niagara1_pmu;
1301 return true;
1303 if (!strcmp(sparc_pmu_type, "niagara2")) {
1304 sparc_pmu = &niagara2_pmu;
1305 return true;
1307 return false;
1310 void __init init_hw_perf_events(void)
1312 pr_info("Performance events: ");
1314 if (!supported_pmu()) {
1315 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1316 return;
1319 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1321 perf_pmu_register(&pmu);
1322 register_die_notifier(&perf_event_nmi_notifier);
1325 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1326 struct pt_regs *regs)
1328 unsigned long ksp, fp;
1329 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1330 int graph = 0;
1331 #endif
1333 stack_trace_flush();
1335 perf_callchain_store(entry, regs->tpc);
1337 ksp = regs->u_regs[UREG_I6];
1338 fp = ksp + STACK_BIAS;
1339 do {
1340 struct sparc_stackf *sf;
1341 struct pt_regs *regs;
1342 unsigned long pc;
1344 if (!kstack_valid(current_thread_info(), fp))
1345 break;
1347 sf = (struct sparc_stackf *) fp;
1348 regs = (struct pt_regs *) (sf + 1);
1350 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1351 if (user_mode(regs))
1352 break;
1353 pc = regs->tpc;
1354 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1355 } else {
1356 pc = sf->callers_pc;
1357 fp = (unsigned long)sf->fp + STACK_BIAS;
1359 perf_callchain_store(entry, pc);
1360 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1361 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1362 int index = current->curr_ret_stack;
1363 if (current->ret_stack && index >= graph) {
1364 pc = current->ret_stack[index - graph].ret;
1365 perf_callchain_store(entry, pc);
1366 graph++;
1369 #endif
1370 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1373 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1374 struct pt_regs *regs)
1376 unsigned long ufp;
1378 perf_callchain_store(entry, regs->tpc);
1380 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1381 do {
1382 struct sparc_stackf *usf, sf;
1383 unsigned long pc;
1385 usf = (struct sparc_stackf *) ufp;
1386 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1387 break;
1389 pc = sf.callers_pc;
1390 ufp = (unsigned long)sf.fp + STACK_BIAS;
1391 perf_callchain_store(entry, pc);
1392 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1395 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1396 struct pt_regs *regs)
1398 unsigned long ufp;
1400 perf_callchain_store(entry, regs->tpc);
1402 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1403 do {
1404 struct sparc_stackf32 *usf, sf;
1405 unsigned long pc;
1407 usf = (struct sparc_stackf32 *) ufp;
1408 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1409 break;
1411 pc = sf.callers_pc;
1412 ufp = (unsigned long)sf.fp;
1413 perf_callchain_store(entry, pc);
1414 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1417 void
1418 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1420 flushw_user();
1421 if (test_thread_flag(TIF_32BIT))
1422 perf_callchain_user_32(entry, regs);
1423 else
1424 perf_callchain_user_64(entry, regs);