2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
52 #include <asm/tlbflush.h>
54 struct kmem_cache
*anon_vma_cachep
;
56 static inline void validate_anon_vma(struct vm_area_struct
*find_vma
)
58 #ifdef CONFIG_DEBUG_VM
59 struct anon_vma
*anon_vma
= find_vma
->anon_vma
;
60 struct vm_area_struct
*vma
;
61 unsigned int mapcount
= 0;
64 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
66 BUG_ON(mapcount
> 100000);
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct
*vma
)
77 struct anon_vma
*anon_vma
= vma
->anon_vma
;
80 if (unlikely(!anon_vma
)) {
81 struct mm_struct
*mm
= vma
->vm_mm
;
82 struct anon_vma
*allocated
, *locked
;
84 anon_vma
= find_mergeable_anon_vma(vma
);
88 spin_lock(&locked
->lock
);
90 anon_vma
= anon_vma_alloc();
91 if (unlikely(!anon_vma
))
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm
->page_table_lock
);
99 if (likely(!vma
->anon_vma
)) {
100 vma
->anon_vma
= anon_vma
;
101 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
104 spin_unlock(&mm
->page_table_lock
);
107 spin_unlock(&locked
->lock
);
108 if (unlikely(allocated
))
109 anon_vma_free(allocated
);
114 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
116 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
117 list_del(&next
->anon_vma_node
);
120 void __anon_vma_link(struct vm_area_struct
*vma
)
122 struct anon_vma
*anon_vma
= vma
->anon_vma
;
125 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
126 validate_anon_vma(vma
);
130 void anon_vma_link(struct vm_area_struct
*vma
)
132 struct anon_vma
*anon_vma
= vma
->anon_vma
;
135 spin_lock(&anon_vma
->lock
);
136 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
137 validate_anon_vma(vma
);
138 spin_unlock(&anon_vma
->lock
);
142 void anon_vma_unlink(struct vm_area_struct
*vma
)
144 struct anon_vma
*anon_vma
= vma
->anon_vma
;
150 spin_lock(&anon_vma
->lock
);
151 validate_anon_vma(vma
);
152 list_del(&vma
->anon_vma_node
);
154 /* We must garbage collect the anon_vma if it's empty */
155 empty
= list_empty(&anon_vma
->head
);
156 spin_unlock(&anon_vma
->lock
);
159 anon_vma_free(anon_vma
);
162 static void anon_vma_ctor(void *data
, struct kmem_cache
*cachep
,
165 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
166 SLAB_CTOR_CONSTRUCTOR
) {
167 struct anon_vma
*anon_vma
= data
;
169 spin_lock_init(&anon_vma
->lock
);
170 INIT_LIST_HEAD(&anon_vma
->head
);
174 void __init
anon_vma_init(void)
176 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
177 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
, NULL
);
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
184 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
186 struct anon_vma
*anon_vma
= NULL
;
187 unsigned long anon_mapping
;
190 anon_mapping
= (unsigned long) page
->mapping
;
191 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
193 if (!page_mapped(page
))
196 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
197 spin_lock(&anon_vma
->lock
);
204 * At what user virtual address is page expected in vma?
206 static inline unsigned long
207 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
209 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
210 unsigned long address
;
212 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
213 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
214 /* page should be within any vma from prio_tree_next */
215 BUG_ON(!PageAnon(page
));
222 * At what user virtual address is page expected in vma? checking that the
223 * page matches the vma: currently only used on anon pages, by unuse_vma;
225 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
227 if (PageAnon(page
)) {
228 if ((void *)vma
->anon_vma
!=
229 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
231 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
233 vma
->vm_file
->f_mapping
!= page
->mapping
)
237 return vma_address(page
, vma
);
241 * Check that @page is mapped at @address into @mm.
243 * On success returns with pte mapped and locked.
245 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
246 unsigned long address
, spinlock_t
**ptlp
)
254 pgd
= pgd_offset(mm
, address
);
255 if (!pgd_present(*pgd
))
258 pud
= pud_offset(pgd
, address
);
259 if (!pud_present(*pud
))
262 pmd
= pmd_offset(pud
, address
);
263 if (!pmd_present(*pmd
))
266 pte
= pte_offset_map(pmd
, address
);
267 /* Make a quick check before getting the lock */
268 if (!pte_present(*pte
)) {
273 ptl
= pte_lockptr(mm
, pmd
);
275 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
279 pte_unmap_unlock(pte
, ptl
);
284 * Subfunctions of page_referenced: page_referenced_one called
285 * repeatedly from either page_referenced_anon or page_referenced_file.
287 static int page_referenced_one(struct page
*page
,
288 struct vm_area_struct
*vma
, unsigned int *mapcount
)
290 struct mm_struct
*mm
= vma
->vm_mm
;
291 unsigned long address
;
296 address
= vma_address(page
, vma
);
297 if (address
== -EFAULT
)
300 pte
= page_check_address(page
, mm
, address
, &ptl
);
304 if (ptep_clear_flush_young(vma
, address
, pte
))
307 /* Pretend the page is referenced if the task has the
308 swap token and is in the middle of a page fault. */
309 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
310 rwsem_is_locked(&mm
->mmap_sem
))
314 pte_unmap_unlock(pte
, ptl
);
319 static int page_referenced_anon(struct page
*page
)
321 unsigned int mapcount
;
322 struct anon_vma
*anon_vma
;
323 struct vm_area_struct
*vma
;
326 anon_vma
= page_lock_anon_vma(page
);
330 mapcount
= page_mapcount(page
);
331 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
332 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
336 spin_unlock(&anon_vma
->lock
);
341 * page_referenced_file - referenced check for object-based rmap
342 * @page: the page we're checking references on.
344 * For an object-based mapped page, find all the places it is mapped and
345 * check/clear the referenced flag. This is done by following the page->mapping
346 * pointer, then walking the chain of vmas it holds. It returns the number
347 * of references it found.
349 * This function is only called from page_referenced for object-based pages.
351 static int page_referenced_file(struct page
*page
)
353 unsigned int mapcount
;
354 struct address_space
*mapping
= page
->mapping
;
355 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
356 struct vm_area_struct
*vma
;
357 struct prio_tree_iter iter
;
361 * The caller's checks on page->mapping and !PageAnon have made
362 * sure that this is a file page: the check for page->mapping
363 * excludes the case just before it gets set on an anon page.
365 BUG_ON(PageAnon(page
));
368 * The page lock not only makes sure that page->mapping cannot
369 * suddenly be NULLified by truncation, it makes sure that the
370 * structure at mapping cannot be freed and reused yet,
371 * so we can safely take mapping->i_mmap_lock.
373 BUG_ON(!PageLocked(page
));
375 spin_lock(&mapping
->i_mmap_lock
);
378 * i_mmap_lock does not stabilize mapcount at all, but mapcount
379 * is more likely to be accurate if we note it after spinning.
381 mapcount
= page_mapcount(page
);
383 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
384 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
385 == (VM_LOCKED
|VM_MAYSHARE
)) {
389 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
394 spin_unlock(&mapping
->i_mmap_lock
);
399 * page_referenced - test if the page was referenced
400 * @page: the page to test
401 * @is_locked: caller holds lock on the page
403 * Quick test_and_clear_referenced for all mappings to a page,
404 * returns the number of ptes which referenced the page.
406 int page_referenced(struct page
*page
, int is_locked
)
410 if (page_test_and_clear_young(page
))
413 if (TestClearPageReferenced(page
))
416 if (page_mapped(page
) && page
->mapping
) {
418 referenced
+= page_referenced_anon(page
);
420 referenced
+= page_referenced_file(page
);
421 else if (TestSetPageLocked(page
))
425 referenced
+= page_referenced_file(page
);
432 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
434 struct mm_struct
*mm
= vma
->vm_mm
;
435 unsigned long address
;
440 address
= vma_address(page
, vma
);
441 if (address
== -EFAULT
)
444 pte
= page_check_address(page
, mm
, address
, &ptl
);
448 if (pte_dirty(*pte
) || pte_write(*pte
)) {
451 flush_cache_page(vma
, address
, pte_pfn(*pte
));
452 entry
= ptep_clear_flush(vma
, address
, pte
);
453 entry
= pte_wrprotect(entry
);
454 entry
= pte_mkclean(entry
);
455 set_pte_at(mm
, address
, pte
, entry
);
456 lazy_mmu_prot_update(entry
);
460 pte_unmap_unlock(pte
, ptl
);
465 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
467 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
468 struct vm_area_struct
*vma
;
469 struct prio_tree_iter iter
;
472 BUG_ON(PageAnon(page
));
474 spin_lock(&mapping
->i_mmap_lock
);
475 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
476 if (vma
->vm_flags
& VM_SHARED
)
477 ret
+= page_mkclean_one(page
, vma
);
479 spin_unlock(&mapping
->i_mmap_lock
);
483 int page_mkclean(struct page
*page
)
487 BUG_ON(!PageLocked(page
));
489 if (page_mapped(page
)) {
490 struct address_space
*mapping
= page_mapping(page
);
492 ret
= page_mkclean_file(mapping
, page
);
494 if (page_test_and_clear_dirty(page
))
501 * page_set_anon_rmap - setup new anonymous rmap
502 * @page: the page to add the mapping to
503 * @vma: the vm area in which the mapping is added
504 * @address: the user virtual address mapped
506 static void __page_set_anon_rmap(struct page
*page
,
507 struct vm_area_struct
*vma
, unsigned long address
)
509 struct anon_vma
*anon_vma
= vma
->anon_vma
;
512 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
513 page
->mapping
= (struct address_space
*) anon_vma
;
515 page
->index
= linear_page_index(vma
, address
);
518 * nr_mapped state can be updated without turning off
519 * interrupts because it is not modified via interrupt.
521 __inc_zone_page_state(page
, NR_ANON_PAGES
);
525 * page_add_anon_rmap - add pte mapping to an anonymous page
526 * @page: the page to add the mapping to
527 * @vma: the vm area in which the mapping is added
528 * @address: the user virtual address mapped
530 * The caller needs to hold the pte lock.
532 void page_add_anon_rmap(struct page
*page
,
533 struct vm_area_struct
*vma
, unsigned long address
)
535 if (atomic_inc_and_test(&page
->_mapcount
))
536 __page_set_anon_rmap(page
, vma
, address
);
537 /* else checking page index and mapping is racy */
541 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
542 * @page: the page to add the mapping to
543 * @vma: the vm area in which the mapping is added
544 * @address: the user virtual address mapped
546 * Same as page_add_anon_rmap but must only be called on *new* pages.
547 * This means the inc-and-test can be bypassed.
549 void page_add_new_anon_rmap(struct page
*page
,
550 struct vm_area_struct
*vma
, unsigned long address
)
552 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
553 __page_set_anon_rmap(page
, vma
, address
);
557 * page_add_file_rmap - add pte mapping to a file page
558 * @page: the page to add the mapping to
560 * The caller needs to hold the pte lock.
562 void page_add_file_rmap(struct page
*page
)
564 if (atomic_inc_and_test(&page
->_mapcount
))
565 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
569 * page_remove_rmap - take down pte mapping from a page
570 * @page: page to remove mapping from
572 * The caller needs to hold the pte lock.
574 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
576 if (atomic_add_negative(-1, &page
->_mapcount
)) {
577 if (unlikely(page_mapcount(page
) < 0)) {
578 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
579 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
580 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
581 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
582 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
583 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
585 print_symbol (KERN_EMERG
" vma->vm_ops->nopage = %s\n", (unsigned long)vma
->vm_ops
->nopage
);
586 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
587 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
592 * It would be tidy to reset the PageAnon mapping here,
593 * but that might overwrite a racing page_add_anon_rmap
594 * which increments mapcount after us but sets mapping
595 * before us: so leave the reset to free_hot_cold_page,
596 * and remember that it's only reliable while mapped.
597 * Leaving it set also helps swapoff to reinstate ptes
598 * faster for those pages still in swapcache.
600 if (page_test_and_clear_dirty(page
))
601 set_page_dirty(page
);
602 __dec_zone_page_state(page
,
603 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
608 * Subfunctions of try_to_unmap: try_to_unmap_one called
609 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
611 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
614 struct mm_struct
*mm
= vma
->vm_mm
;
615 unsigned long address
;
619 int ret
= SWAP_AGAIN
;
621 address
= vma_address(page
, vma
);
622 if (address
== -EFAULT
)
625 pte
= page_check_address(page
, mm
, address
, &ptl
);
630 * If the page is mlock()d, we cannot swap it out.
631 * If it's recently referenced (perhaps page_referenced
632 * skipped over this mm) then we should reactivate it.
634 if (!migration
&& ((vma
->vm_flags
& VM_LOCKED
) ||
635 (ptep_clear_flush_young(vma
, address
, pte
)))) {
640 /* Nuke the page table entry. */
641 flush_cache_page(vma
, address
, page_to_pfn(page
));
642 pteval
= ptep_clear_flush(vma
, address
, pte
);
644 /* Move the dirty bit to the physical page now the pte is gone. */
645 if (pte_dirty(pteval
))
646 set_page_dirty(page
);
648 /* Update high watermark before we lower rss */
649 update_hiwater_rss(mm
);
651 if (PageAnon(page
)) {
652 swp_entry_t entry
= { .val
= page_private(page
) };
654 if (PageSwapCache(page
)) {
656 * Store the swap location in the pte.
657 * See handle_pte_fault() ...
659 swap_duplicate(entry
);
660 if (list_empty(&mm
->mmlist
)) {
661 spin_lock(&mmlist_lock
);
662 if (list_empty(&mm
->mmlist
))
663 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
664 spin_unlock(&mmlist_lock
);
666 dec_mm_counter(mm
, anon_rss
);
667 #ifdef CONFIG_MIGRATION
670 * Store the pfn of the page in a special migration
671 * pte. do_swap_page() will wait until the migration
672 * pte is removed and then restart fault handling.
675 entry
= make_migration_entry(page
, pte_write(pteval
));
678 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
679 BUG_ON(pte_file(*pte
));
681 #ifdef CONFIG_MIGRATION
683 /* Establish migration entry for a file page */
685 entry
= make_migration_entry(page
, pte_write(pteval
));
686 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
689 dec_mm_counter(mm
, file_rss
);
692 page_remove_rmap(page
, vma
);
693 page_cache_release(page
);
696 pte_unmap_unlock(pte
, ptl
);
702 * objrmap doesn't work for nonlinear VMAs because the assumption that
703 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
704 * Consequently, given a particular page and its ->index, we cannot locate the
705 * ptes which are mapping that page without an exhaustive linear search.
707 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
708 * maps the file to which the target page belongs. The ->vm_private_data field
709 * holds the current cursor into that scan. Successive searches will circulate
710 * around the vma's virtual address space.
712 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
713 * more scanning pressure is placed against them as well. Eventually pages
714 * will become fully unmapped and are eligible for eviction.
716 * For very sparsely populated VMAs this is a little inefficient - chances are
717 * there there won't be many ptes located within the scan cluster. In this case
718 * maybe we could scan further - to the end of the pte page, perhaps.
720 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
721 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
723 static void try_to_unmap_cluster(unsigned long cursor
,
724 unsigned int *mapcount
, struct vm_area_struct
*vma
)
726 struct mm_struct
*mm
= vma
->vm_mm
;
734 unsigned long address
;
737 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
738 end
= address
+ CLUSTER_SIZE
;
739 if (address
< vma
->vm_start
)
740 address
= vma
->vm_start
;
741 if (end
> vma
->vm_end
)
744 pgd
= pgd_offset(mm
, address
);
745 if (!pgd_present(*pgd
))
748 pud
= pud_offset(pgd
, address
);
749 if (!pud_present(*pud
))
752 pmd
= pmd_offset(pud
, address
);
753 if (!pmd_present(*pmd
))
756 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
758 /* Update high watermark before we lower rss */
759 update_hiwater_rss(mm
);
761 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
762 if (!pte_present(*pte
))
764 page
= vm_normal_page(vma
, address
, *pte
);
765 BUG_ON(!page
|| PageAnon(page
));
767 if (ptep_clear_flush_young(vma
, address
, pte
))
770 /* Nuke the page table entry. */
771 flush_cache_page(vma
, address
, pte_pfn(*pte
));
772 pteval
= ptep_clear_flush(vma
, address
, pte
);
774 /* If nonlinear, store the file page offset in the pte. */
775 if (page
->index
!= linear_page_index(vma
, address
))
776 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
778 /* Move the dirty bit to the physical page now the pte is gone. */
779 if (pte_dirty(pteval
))
780 set_page_dirty(page
);
782 page_remove_rmap(page
, vma
);
783 page_cache_release(page
);
784 dec_mm_counter(mm
, file_rss
);
787 pte_unmap_unlock(pte
- 1, ptl
);
790 static int try_to_unmap_anon(struct page
*page
, int migration
)
792 struct anon_vma
*anon_vma
;
793 struct vm_area_struct
*vma
;
794 int ret
= SWAP_AGAIN
;
796 anon_vma
= page_lock_anon_vma(page
);
800 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
801 ret
= try_to_unmap_one(page
, vma
, migration
);
802 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
805 spin_unlock(&anon_vma
->lock
);
810 * try_to_unmap_file - unmap file page using the object-based rmap method
811 * @page: the page to unmap
813 * Find all the mappings of a page using the mapping pointer and the vma chains
814 * contained in the address_space struct it points to.
816 * This function is only called from try_to_unmap for object-based pages.
818 static int try_to_unmap_file(struct page
*page
, int migration
)
820 struct address_space
*mapping
= page
->mapping
;
821 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
822 struct vm_area_struct
*vma
;
823 struct prio_tree_iter iter
;
824 int ret
= SWAP_AGAIN
;
825 unsigned long cursor
;
826 unsigned long max_nl_cursor
= 0;
827 unsigned long max_nl_size
= 0;
828 unsigned int mapcount
;
830 spin_lock(&mapping
->i_mmap_lock
);
831 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
832 ret
= try_to_unmap_one(page
, vma
, migration
);
833 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
837 if (list_empty(&mapping
->i_mmap_nonlinear
))
840 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
841 shared
.vm_set
.list
) {
842 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
844 cursor
= (unsigned long) vma
->vm_private_data
;
845 if (cursor
> max_nl_cursor
)
846 max_nl_cursor
= cursor
;
847 cursor
= vma
->vm_end
- vma
->vm_start
;
848 if (cursor
> max_nl_size
)
849 max_nl_size
= cursor
;
852 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
858 * We don't try to search for this page in the nonlinear vmas,
859 * and page_referenced wouldn't have found it anyway. Instead
860 * just walk the nonlinear vmas trying to age and unmap some.
861 * The mapcount of the page we came in with is irrelevant,
862 * but even so use it as a guide to how hard we should try?
864 mapcount
= page_mapcount(page
);
867 cond_resched_lock(&mapping
->i_mmap_lock
);
869 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
870 if (max_nl_cursor
== 0)
871 max_nl_cursor
= CLUSTER_SIZE
;
874 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
875 shared
.vm_set
.list
) {
876 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
878 cursor
= (unsigned long) vma
->vm_private_data
;
879 while ( cursor
< max_nl_cursor
&&
880 cursor
< vma
->vm_end
- vma
->vm_start
) {
881 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
882 cursor
+= CLUSTER_SIZE
;
883 vma
->vm_private_data
= (void *) cursor
;
884 if ((int)mapcount
<= 0)
887 vma
->vm_private_data
= (void *) max_nl_cursor
;
889 cond_resched_lock(&mapping
->i_mmap_lock
);
890 max_nl_cursor
+= CLUSTER_SIZE
;
891 } while (max_nl_cursor
<= max_nl_size
);
894 * Don't loop forever (perhaps all the remaining pages are
895 * in locked vmas). Reset cursor on all unreserved nonlinear
896 * vmas, now forgetting on which ones it had fallen behind.
898 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
899 vma
->vm_private_data
= NULL
;
901 spin_unlock(&mapping
->i_mmap_lock
);
906 * try_to_unmap - try to remove all page table mappings to a page
907 * @page: the page to get unmapped
909 * Tries to remove all the page table entries which are mapping this
910 * page, used in the pageout path. Caller must hold the page lock.
913 * SWAP_SUCCESS - we succeeded in removing all mappings
914 * SWAP_AGAIN - we missed a mapping, try again later
915 * SWAP_FAIL - the page is unswappable
917 int try_to_unmap(struct page
*page
, int migration
)
921 BUG_ON(!PageLocked(page
));
924 ret
= try_to_unmap_anon(page
, migration
);
926 ret
= try_to_unmap_file(page
, migration
);
928 if (!page_mapped(page
))