TOMOYO: Use callback for updating entries.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
blobd5ff029aa7b226f6ab60c4d96e46c231f19b9c16
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS, E1000_STATS};
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
149 ecmd->port = PORT_FIBRE;
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
157 if (er32(STATUS) & E1000_STATUS_LU) {
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ecmd->speed = adapter->link_speed;
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ecmd->speed = -1;
172 ecmd->duplex = -1;
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else
201 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202 clear_bit(__E1000_RESETTING, &adapter->flags);
203 return -EINVAL;
206 /* reset the link */
208 if (netif_running(adapter->netdev)) {
209 e1000_down(adapter);
210 e1000_up(adapter);
211 } else
212 e1000_reset(adapter);
214 clear_bit(__E1000_RESETTING, &adapter->flags);
215 return 0;
218 static u32 e1000_get_link(struct net_device *netdev)
220 struct e1000_adapter *adapter = netdev_priv(netdev);
223 * If the link is not reported up to netdev, interrupts are disabled,
224 * and so the physical link state may have changed since we last
225 * looked. Set get_link_status to make sure that the true link
226 * state is interrogated, rather than pulling a cached and possibly
227 * stale link state from the driver.
229 if (!netif_carrier_ok(netdev))
230 adapter->hw.get_link_status = 1;
232 return e1000_has_link(adapter);
235 static void e1000_get_pauseparam(struct net_device *netdev,
236 struct ethtool_pauseparam *pause)
238 struct e1000_adapter *adapter = netdev_priv(netdev);
239 struct e1000_hw *hw = &adapter->hw;
241 pause->autoneg =
242 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
244 if (hw->fc == E1000_FC_RX_PAUSE)
245 pause->rx_pause = 1;
246 else if (hw->fc == E1000_FC_TX_PAUSE)
247 pause->tx_pause = 1;
248 else if (hw->fc == E1000_FC_FULL) {
249 pause->rx_pause = 1;
250 pause->tx_pause = 1;
254 static int e1000_set_pauseparam(struct net_device *netdev,
255 struct ethtool_pauseparam *pause)
257 struct e1000_adapter *adapter = netdev_priv(netdev);
258 struct e1000_hw *hw = &adapter->hw;
259 int retval = 0;
261 adapter->fc_autoneg = pause->autoneg;
263 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
264 msleep(1);
266 if (pause->rx_pause && pause->tx_pause)
267 hw->fc = E1000_FC_FULL;
268 else if (pause->rx_pause && !pause->tx_pause)
269 hw->fc = E1000_FC_RX_PAUSE;
270 else if (!pause->rx_pause && pause->tx_pause)
271 hw->fc = E1000_FC_TX_PAUSE;
272 else if (!pause->rx_pause && !pause->tx_pause)
273 hw->fc = E1000_FC_NONE;
275 hw->original_fc = hw->fc;
277 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
278 if (netif_running(adapter->netdev)) {
279 e1000_down(adapter);
280 e1000_up(adapter);
281 } else
282 e1000_reset(adapter);
283 } else
284 retval = ((hw->media_type == e1000_media_type_fiber) ?
285 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287 clear_bit(__E1000_RESETTING, &adapter->flags);
288 return retval;
291 static u32 e1000_get_rx_csum(struct net_device *netdev)
293 struct e1000_adapter *adapter = netdev_priv(netdev);
294 return adapter->rx_csum;
297 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
299 struct e1000_adapter *adapter = netdev_priv(netdev);
300 adapter->rx_csum = data;
302 if (netif_running(netdev))
303 e1000_reinit_locked(adapter);
304 else
305 e1000_reset(adapter);
306 return 0;
309 static u32 e1000_get_tx_csum(struct net_device *netdev)
311 return (netdev->features & NETIF_F_HW_CSUM) != 0;
314 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
316 struct e1000_adapter *adapter = netdev_priv(netdev);
317 struct e1000_hw *hw = &adapter->hw;
319 if (hw->mac_type < e1000_82543) {
320 if (!data)
321 return -EINVAL;
322 return 0;
325 if (data)
326 netdev->features |= NETIF_F_HW_CSUM;
327 else
328 netdev->features &= ~NETIF_F_HW_CSUM;
330 return 0;
333 static int e1000_set_tso(struct net_device *netdev, u32 data)
335 struct e1000_adapter *adapter = netdev_priv(netdev);
336 struct e1000_hw *hw = &adapter->hw;
338 if ((hw->mac_type < e1000_82544) ||
339 (hw->mac_type == e1000_82547))
340 return data ? -EINVAL : 0;
342 if (data)
343 netdev->features |= NETIF_F_TSO;
344 else
345 netdev->features &= ~NETIF_F_TSO;
347 netdev->features &= ~NETIF_F_TSO6;
349 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
350 adapter->tso_force = true;
351 return 0;
354 static u32 e1000_get_msglevel(struct net_device *netdev)
356 struct e1000_adapter *adapter = netdev_priv(netdev);
357 return adapter->msg_enable;
360 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 adapter->msg_enable = data;
366 static int e1000_get_regs_len(struct net_device *netdev)
368 #define E1000_REGS_LEN 32
369 return E1000_REGS_LEN * sizeof(u32);
372 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
373 void *p)
375 struct e1000_adapter *adapter = netdev_priv(netdev);
376 struct e1000_hw *hw = &adapter->hw;
377 u32 *regs_buff = p;
378 u16 phy_data;
380 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
382 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
384 regs_buff[0] = er32(CTRL);
385 regs_buff[1] = er32(STATUS);
387 regs_buff[2] = er32(RCTL);
388 regs_buff[3] = er32(RDLEN);
389 regs_buff[4] = er32(RDH);
390 regs_buff[5] = er32(RDT);
391 regs_buff[6] = er32(RDTR);
393 regs_buff[7] = er32(TCTL);
394 regs_buff[8] = er32(TDLEN);
395 regs_buff[9] = er32(TDH);
396 regs_buff[10] = er32(TDT);
397 regs_buff[11] = er32(TIDV);
399 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
400 if (hw->phy_type == e1000_phy_igp) {
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_AGC_A);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[13] = (u32)phy_data; /* cable length */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
407 IGP01E1000_PHY_AGC_B);
408 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
409 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410 regs_buff[14] = (u32)phy_data; /* cable length */
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412 IGP01E1000_PHY_AGC_C);
413 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
414 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415 regs_buff[15] = (u32)phy_data; /* cable length */
416 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417 IGP01E1000_PHY_AGC_D);
418 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
419 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420 regs_buff[16] = (u32)phy_data; /* cable length */
421 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
422 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
423 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
424 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425 regs_buff[18] = (u32)phy_data; /* cable polarity */
426 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427 IGP01E1000_PHY_PCS_INIT_REG);
428 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
429 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430 regs_buff[19] = (u32)phy_data; /* cable polarity */
431 regs_buff[20] = 0; /* polarity correction enabled (always) */
432 regs_buff[22] = 0; /* phy receive errors (unavailable) */
433 regs_buff[23] = regs_buff[18]; /* mdix mode */
434 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
435 } else {
436 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437 regs_buff[13] = (u32)phy_data; /* cable length */
438 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443 regs_buff[18] = regs_buff[13]; /* cable polarity */
444 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 regs_buff[20] = regs_buff[17]; /* polarity correction */
446 /* phy receive errors */
447 regs_buff[22] = adapter->phy_stats.receive_errors;
448 regs_buff[23] = regs_buff[13]; /* mdix mode */
450 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
451 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
452 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
453 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
454 if (hw->mac_type >= e1000_82540 &&
455 hw->media_type == e1000_media_type_copper) {
456 regs_buff[26] = er32(MANC);
460 static int e1000_get_eeprom_len(struct net_device *netdev)
462 struct e1000_adapter *adapter = netdev_priv(netdev);
463 struct e1000_hw *hw = &adapter->hw;
465 return hw->eeprom.word_size * 2;
468 static int e1000_get_eeprom(struct net_device *netdev,
469 struct ethtool_eeprom *eeprom, u8 *bytes)
471 struct e1000_adapter *adapter = netdev_priv(netdev);
472 struct e1000_hw *hw = &adapter->hw;
473 u16 *eeprom_buff;
474 int first_word, last_word;
475 int ret_val = 0;
476 u16 i;
478 if (eeprom->len == 0)
479 return -EINVAL;
481 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
483 first_word = eeprom->offset >> 1;
484 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
486 eeprom_buff = kmalloc(sizeof(u16) *
487 (last_word - first_word + 1), GFP_KERNEL);
488 if (!eeprom_buff)
489 return -ENOMEM;
491 if (hw->eeprom.type == e1000_eeprom_spi)
492 ret_val = e1000_read_eeprom(hw, first_word,
493 last_word - first_word + 1,
494 eeprom_buff);
495 else {
496 for (i = 0; i < last_word - first_word + 1; i++) {
497 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
498 &eeprom_buff[i]);
499 if (ret_val)
500 break;
504 /* Device's eeprom is always little-endian, word addressable */
505 for (i = 0; i < last_word - first_word + 1; i++)
506 le16_to_cpus(&eeprom_buff[i]);
508 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
509 eeprom->len);
510 kfree(eeprom_buff);
512 return ret_val;
515 static int e1000_set_eeprom(struct net_device *netdev,
516 struct ethtool_eeprom *eeprom, u8 *bytes)
518 struct e1000_adapter *adapter = netdev_priv(netdev);
519 struct e1000_hw *hw = &adapter->hw;
520 u16 *eeprom_buff;
521 void *ptr;
522 int max_len, first_word, last_word, ret_val = 0;
523 u16 i;
525 if (eeprom->len == 0)
526 return -EOPNOTSUPP;
528 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
529 return -EFAULT;
531 max_len = hw->eeprom.word_size * 2;
533 first_word = eeprom->offset >> 1;
534 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
535 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
536 if (!eeprom_buff)
537 return -ENOMEM;
539 ptr = (void *)eeprom_buff;
541 if (eeprom->offset & 1) {
542 /* need read/modify/write of first changed EEPROM word */
543 /* only the second byte of the word is being modified */
544 ret_val = e1000_read_eeprom(hw, first_word, 1,
545 &eeprom_buff[0]);
546 ptr++;
548 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
549 /* need read/modify/write of last changed EEPROM word */
550 /* only the first byte of the word is being modified */
551 ret_val = e1000_read_eeprom(hw, last_word, 1,
552 &eeprom_buff[last_word - first_word]);
555 /* Device's eeprom is always little-endian, word addressable */
556 for (i = 0; i < last_word - first_word + 1; i++)
557 le16_to_cpus(&eeprom_buff[i]);
559 memcpy(ptr, bytes, eeprom->len);
561 for (i = 0; i < last_word - first_word + 1; i++)
562 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
564 ret_val = e1000_write_eeprom(hw, first_word,
565 last_word - first_word + 1, eeprom_buff);
567 /* Update the checksum over the first part of the EEPROM if needed */
568 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
569 e1000_update_eeprom_checksum(hw);
571 kfree(eeprom_buff);
572 return ret_val;
575 static void e1000_get_drvinfo(struct net_device *netdev,
576 struct ethtool_drvinfo *drvinfo)
578 struct e1000_adapter *adapter = netdev_priv(netdev);
579 char firmware_version[32];
581 strncpy(drvinfo->driver, e1000_driver_name, 32);
582 strncpy(drvinfo->version, e1000_driver_version, 32);
584 sprintf(firmware_version, "N/A");
585 strncpy(drvinfo->fw_version, firmware_version, 32);
586 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587 drvinfo->regdump_len = e1000_get_regs_len(netdev);
588 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
591 static void e1000_get_ringparam(struct net_device *netdev,
592 struct ethtool_ringparam *ring)
594 struct e1000_adapter *adapter = netdev_priv(netdev);
595 struct e1000_hw *hw = &adapter->hw;
596 e1000_mac_type mac_type = hw->mac_type;
597 struct e1000_tx_ring *txdr = adapter->tx_ring;
598 struct e1000_rx_ring *rxdr = adapter->rx_ring;
600 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
601 E1000_MAX_82544_RXD;
602 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
603 E1000_MAX_82544_TXD;
604 ring->rx_mini_max_pending = 0;
605 ring->rx_jumbo_max_pending = 0;
606 ring->rx_pending = rxdr->count;
607 ring->tx_pending = txdr->count;
608 ring->rx_mini_pending = 0;
609 ring->rx_jumbo_pending = 0;
612 static int e1000_set_ringparam(struct net_device *netdev,
613 struct ethtool_ringparam *ring)
615 struct e1000_adapter *adapter = netdev_priv(netdev);
616 struct e1000_hw *hw = &adapter->hw;
617 e1000_mac_type mac_type = hw->mac_type;
618 struct e1000_tx_ring *txdr, *tx_old;
619 struct e1000_rx_ring *rxdr, *rx_old;
620 int i, err;
622 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
623 return -EINVAL;
625 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
626 msleep(1);
628 if (netif_running(adapter->netdev))
629 e1000_down(adapter);
631 tx_old = adapter->tx_ring;
632 rx_old = adapter->rx_ring;
634 err = -ENOMEM;
635 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
636 if (!txdr)
637 goto err_alloc_tx;
639 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
640 if (!rxdr)
641 goto err_alloc_rx;
643 adapter->tx_ring = txdr;
644 adapter->rx_ring = rxdr;
646 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
647 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
648 E1000_MAX_RXD : E1000_MAX_82544_RXD));
649 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
651 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
652 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
653 E1000_MAX_TXD : E1000_MAX_82544_TXD));
654 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
656 for (i = 0; i < adapter->num_tx_queues; i++)
657 txdr[i].count = txdr->count;
658 for (i = 0; i < adapter->num_rx_queues; i++)
659 rxdr[i].count = rxdr->count;
661 if (netif_running(adapter->netdev)) {
662 /* Try to get new resources before deleting old */
663 err = e1000_setup_all_rx_resources(adapter);
664 if (err)
665 goto err_setup_rx;
666 err = e1000_setup_all_tx_resources(adapter);
667 if (err)
668 goto err_setup_tx;
670 /* save the new, restore the old in order to free it,
671 * then restore the new back again */
673 adapter->rx_ring = rx_old;
674 adapter->tx_ring = tx_old;
675 e1000_free_all_rx_resources(adapter);
676 e1000_free_all_tx_resources(adapter);
677 kfree(tx_old);
678 kfree(rx_old);
679 adapter->rx_ring = rxdr;
680 adapter->tx_ring = txdr;
681 err = e1000_up(adapter);
682 if (err)
683 goto err_setup;
686 clear_bit(__E1000_RESETTING, &adapter->flags);
687 return 0;
688 err_setup_tx:
689 e1000_free_all_rx_resources(adapter);
690 err_setup_rx:
691 adapter->rx_ring = rx_old;
692 adapter->tx_ring = tx_old;
693 kfree(rxdr);
694 err_alloc_rx:
695 kfree(txdr);
696 err_alloc_tx:
697 e1000_up(adapter);
698 err_setup:
699 clear_bit(__E1000_RESETTING, &adapter->flags);
700 return err;
703 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
704 u32 mask, u32 write)
706 struct e1000_hw *hw = &adapter->hw;
707 static const u32 test[] =
708 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
709 u8 __iomem *address = hw->hw_addr + reg;
710 u32 read;
711 int i;
713 for (i = 0; i < ARRAY_SIZE(test); i++) {
714 writel(write & test[i], address);
715 read = readl(address);
716 if (read != (write & test[i] & mask)) {
717 e_info("pattern test reg %04X failed: "
718 "got 0x%08X expected 0x%08X\n",
719 reg, read, (write & test[i] & mask));
720 *data = reg;
721 return true;
724 return false;
727 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
728 u32 mask, u32 write)
730 struct e1000_hw *hw = &adapter->hw;
731 u8 __iomem *address = hw->hw_addr + reg;
732 u32 read;
734 writel(write & mask, address);
735 read = readl(address);
736 if ((read & mask) != (write & mask)) {
737 e_err("set/check reg %04X test failed: "
738 "got 0x%08X expected 0x%08X\n",
739 reg, (read & mask), (write & mask));
740 *data = reg;
741 return true;
743 return false;
746 #define REG_PATTERN_TEST(reg, mask, write) \
747 do { \
748 if (reg_pattern_test(adapter, data, \
749 (hw->mac_type >= e1000_82543) \
750 ? E1000_##reg : E1000_82542_##reg, \
751 mask, write)) \
752 return 1; \
753 } while (0)
755 #define REG_SET_AND_CHECK(reg, mask, write) \
756 do { \
757 if (reg_set_and_check(adapter, data, \
758 (hw->mac_type >= e1000_82543) \
759 ? E1000_##reg : E1000_82542_##reg, \
760 mask, write)) \
761 return 1; \
762 } while (0)
764 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
766 u32 value, before, after;
767 u32 i, toggle;
768 struct e1000_hw *hw = &adapter->hw;
770 /* The status register is Read Only, so a write should fail.
771 * Some bits that get toggled are ignored.
774 /* there are several bits on newer hardware that are r/w */
775 toggle = 0xFFFFF833;
777 before = er32(STATUS);
778 value = (er32(STATUS) & toggle);
779 ew32(STATUS, toggle);
780 after = er32(STATUS) & toggle;
781 if (value != after) {
782 e_err("failed STATUS register test got: "
783 "0x%08X expected: 0x%08X\n", after, value);
784 *data = 1;
785 return 1;
787 /* restore previous status */
788 ew32(STATUS, before);
790 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
791 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
792 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
793 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
795 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
796 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
798 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
801 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
802 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
803 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
804 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
806 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
808 before = 0x06DFB3FE;
809 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
810 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
812 if (hw->mac_type >= e1000_82543) {
814 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
815 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
816 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
817 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
819 value = E1000_RAR_ENTRIES;
820 for (i = 0; i < value; i++) {
821 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
822 0xFFFFFFFF);
825 } else {
827 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
828 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
829 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
830 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
834 value = E1000_MC_TBL_SIZE;
835 for (i = 0; i < value; i++)
836 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
838 *data = 0;
839 return 0;
842 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
844 struct e1000_hw *hw = &adapter->hw;
845 u16 temp;
846 u16 checksum = 0;
847 u16 i;
849 *data = 0;
850 /* Read and add up the contents of the EEPROM */
851 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
852 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
853 *data = 1;
854 break;
856 checksum += temp;
859 /* If Checksum is not Correct return error else test passed */
860 if ((checksum != (u16)EEPROM_SUM) && !(*data))
861 *data = 2;
863 return *data;
866 static irqreturn_t e1000_test_intr(int irq, void *data)
868 struct net_device *netdev = (struct net_device *)data;
869 struct e1000_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
872 adapter->test_icr |= er32(ICR);
874 return IRQ_HANDLED;
877 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
879 struct net_device *netdev = adapter->netdev;
880 u32 mask, i = 0;
881 bool shared_int = true;
882 u32 irq = adapter->pdev->irq;
883 struct e1000_hw *hw = &adapter->hw;
885 *data = 0;
887 /* NOTE: we don't test MSI interrupts here, yet */
888 /* Hook up test interrupt handler just for this test */
889 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
890 netdev))
891 shared_int = false;
892 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
893 netdev->name, netdev)) {
894 *data = 1;
895 return -1;
897 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
899 /* Disable all the interrupts */
900 ew32(IMC, 0xFFFFFFFF);
901 msleep(10);
903 /* Test each interrupt */
904 for (; i < 10; i++) {
906 /* Interrupt to test */
907 mask = 1 << i;
909 if (!shared_int) {
910 /* Disable the interrupt to be reported in
911 * the cause register and then force the same
912 * interrupt and see if one gets posted. If
913 * an interrupt was posted to the bus, the
914 * test failed.
916 adapter->test_icr = 0;
917 ew32(IMC, mask);
918 ew32(ICS, mask);
919 msleep(10);
921 if (adapter->test_icr & mask) {
922 *data = 3;
923 break;
927 /* Enable the interrupt to be reported in
928 * the cause register and then force the same
929 * interrupt and see if one gets posted. If
930 * an interrupt was not posted to the bus, the
931 * test failed.
933 adapter->test_icr = 0;
934 ew32(IMS, mask);
935 ew32(ICS, mask);
936 msleep(10);
938 if (!(adapter->test_icr & mask)) {
939 *data = 4;
940 break;
943 if (!shared_int) {
944 /* Disable the other interrupts to be reported in
945 * the cause register and then force the other
946 * interrupts and see if any get posted. If
947 * an interrupt was posted to the bus, the
948 * test failed.
950 adapter->test_icr = 0;
951 ew32(IMC, ~mask & 0x00007FFF);
952 ew32(ICS, ~mask & 0x00007FFF);
953 msleep(10);
955 if (adapter->test_icr) {
956 *data = 5;
957 break;
962 /* Disable all the interrupts */
963 ew32(IMC, 0xFFFFFFFF);
964 msleep(10);
966 /* Unhook test interrupt handler */
967 free_irq(irq, netdev);
969 return *data;
972 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
974 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
975 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
976 struct pci_dev *pdev = adapter->pdev;
977 int i;
979 if (txdr->desc && txdr->buffer_info) {
980 for (i = 0; i < txdr->count; i++) {
981 if (txdr->buffer_info[i].dma)
982 dma_unmap_single(&pdev->dev,
983 txdr->buffer_info[i].dma,
984 txdr->buffer_info[i].length,
985 DMA_TO_DEVICE);
986 if (txdr->buffer_info[i].skb)
987 dev_kfree_skb(txdr->buffer_info[i].skb);
991 if (rxdr->desc && rxdr->buffer_info) {
992 for (i = 0; i < rxdr->count; i++) {
993 if (rxdr->buffer_info[i].dma)
994 dma_unmap_single(&pdev->dev,
995 rxdr->buffer_info[i].dma,
996 rxdr->buffer_info[i].length,
997 DMA_FROM_DEVICE);
998 if (rxdr->buffer_info[i].skb)
999 dev_kfree_skb(rxdr->buffer_info[i].skb);
1003 if (txdr->desc) {
1004 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1005 txdr->dma);
1006 txdr->desc = NULL;
1008 if (rxdr->desc) {
1009 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1010 rxdr->dma);
1011 rxdr->desc = NULL;
1014 kfree(txdr->buffer_info);
1015 txdr->buffer_info = NULL;
1016 kfree(rxdr->buffer_info);
1017 rxdr->buffer_info = NULL;
1020 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1022 struct e1000_hw *hw = &adapter->hw;
1023 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1024 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1025 struct pci_dev *pdev = adapter->pdev;
1026 u32 rctl;
1027 int i, ret_val;
1029 /* Setup Tx descriptor ring and Tx buffers */
1031 if (!txdr->count)
1032 txdr->count = E1000_DEFAULT_TXD;
1034 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1035 GFP_KERNEL);
1036 if (!txdr->buffer_info) {
1037 ret_val = 1;
1038 goto err_nomem;
1041 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1042 txdr->size = ALIGN(txdr->size, 4096);
1043 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1044 GFP_KERNEL);
1045 if (!txdr->desc) {
1046 ret_val = 2;
1047 goto err_nomem;
1049 memset(txdr->desc, 0, txdr->size);
1050 txdr->next_to_use = txdr->next_to_clean = 0;
1052 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1053 ew32(TDBAH, ((u64)txdr->dma >> 32));
1054 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1055 ew32(TDH, 0);
1056 ew32(TDT, 0);
1057 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1058 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1059 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1061 for (i = 0; i < txdr->count; i++) {
1062 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1063 struct sk_buff *skb;
1064 unsigned int size = 1024;
1066 skb = alloc_skb(size, GFP_KERNEL);
1067 if (!skb) {
1068 ret_val = 3;
1069 goto err_nomem;
1071 skb_put(skb, size);
1072 txdr->buffer_info[i].skb = skb;
1073 txdr->buffer_info[i].length = skb->len;
1074 txdr->buffer_info[i].dma =
1075 dma_map_single(&pdev->dev, skb->data, skb->len,
1076 DMA_TO_DEVICE);
1077 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1078 tx_desc->lower.data = cpu_to_le32(skb->len);
1079 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1080 E1000_TXD_CMD_IFCS |
1081 E1000_TXD_CMD_RPS);
1082 tx_desc->upper.data = 0;
1085 /* Setup Rx descriptor ring and Rx buffers */
1087 if (!rxdr->count)
1088 rxdr->count = E1000_DEFAULT_RXD;
1090 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1091 GFP_KERNEL);
1092 if (!rxdr->buffer_info) {
1093 ret_val = 4;
1094 goto err_nomem;
1097 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1098 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1099 GFP_KERNEL);
1100 if (!rxdr->desc) {
1101 ret_val = 5;
1102 goto err_nomem;
1104 memset(rxdr->desc, 0, rxdr->size);
1105 rxdr->next_to_use = rxdr->next_to_clean = 0;
1107 rctl = er32(RCTL);
1108 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1109 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1110 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1111 ew32(RDLEN, rxdr->size);
1112 ew32(RDH, 0);
1113 ew32(RDT, 0);
1114 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1115 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1116 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1117 ew32(RCTL, rctl);
1119 for (i = 0; i < rxdr->count; i++) {
1120 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1121 struct sk_buff *skb;
1123 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1124 if (!skb) {
1125 ret_val = 6;
1126 goto err_nomem;
1128 skb_reserve(skb, NET_IP_ALIGN);
1129 rxdr->buffer_info[i].skb = skb;
1130 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1131 rxdr->buffer_info[i].dma =
1132 dma_map_single(&pdev->dev, skb->data,
1133 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1134 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1135 memset(skb->data, 0x00, skb->len);
1138 return 0;
1140 err_nomem:
1141 e1000_free_desc_rings(adapter);
1142 return ret_val;
1145 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1147 struct e1000_hw *hw = &adapter->hw;
1149 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1150 e1000_write_phy_reg(hw, 29, 0x001F);
1151 e1000_write_phy_reg(hw, 30, 0x8FFC);
1152 e1000_write_phy_reg(hw, 29, 0x001A);
1153 e1000_write_phy_reg(hw, 30, 0x8FF0);
1156 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1158 struct e1000_hw *hw = &adapter->hw;
1159 u16 phy_reg;
1161 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1162 * Extended PHY Specific Control Register to 25MHz clock. This
1163 * value defaults back to a 2.5MHz clock when the PHY is reset.
1165 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1166 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1167 e1000_write_phy_reg(hw,
1168 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1170 /* In addition, because of the s/w reset above, we need to enable
1171 * CRS on TX. This must be set for both full and half duplex
1172 * operation.
1174 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1175 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1176 e1000_write_phy_reg(hw,
1177 M88E1000_PHY_SPEC_CTRL, phy_reg);
1180 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1182 struct e1000_hw *hw = &adapter->hw;
1183 u32 ctrl_reg;
1184 u16 phy_reg;
1186 /* Setup the Device Control Register for PHY loopback test. */
1188 ctrl_reg = er32(CTRL);
1189 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1190 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1191 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1192 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1193 E1000_CTRL_FD); /* Force Duplex to FULL */
1195 ew32(CTRL, ctrl_reg);
1197 /* Read the PHY Specific Control Register (0x10) */
1198 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1200 /* Clear Auto-Crossover bits in PHY Specific Control Register
1201 * (bits 6:5).
1203 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1204 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1206 /* Perform software reset on the PHY */
1207 e1000_phy_reset(hw);
1209 /* Have to setup TX_CLK and TX_CRS after software reset */
1210 e1000_phy_reset_clk_and_crs(adapter);
1212 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1214 /* Wait for reset to complete. */
1215 udelay(500);
1217 /* Have to setup TX_CLK and TX_CRS after software reset */
1218 e1000_phy_reset_clk_and_crs(adapter);
1220 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1221 e1000_phy_disable_receiver(adapter);
1223 /* Set the loopback bit in the PHY control register. */
1224 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1225 phy_reg |= MII_CR_LOOPBACK;
1226 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1228 /* Setup TX_CLK and TX_CRS one more time. */
1229 e1000_phy_reset_clk_and_crs(adapter);
1231 /* Check Phy Configuration */
1232 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1233 if (phy_reg != 0x4100)
1234 return 9;
1236 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1237 if (phy_reg != 0x0070)
1238 return 10;
1240 e1000_read_phy_reg(hw, 29, &phy_reg);
1241 if (phy_reg != 0x001A)
1242 return 11;
1244 return 0;
1247 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1249 struct e1000_hw *hw = &adapter->hw;
1250 u32 ctrl_reg = 0;
1251 u32 stat_reg = 0;
1253 hw->autoneg = false;
1255 if (hw->phy_type == e1000_phy_m88) {
1256 /* Auto-MDI/MDIX Off */
1257 e1000_write_phy_reg(hw,
1258 M88E1000_PHY_SPEC_CTRL, 0x0808);
1259 /* reset to update Auto-MDI/MDIX */
1260 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1261 /* autoneg off */
1262 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1265 ctrl_reg = er32(CTRL);
1267 /* force 1000, set loopback */
1268 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1270 /* Now set up the MAC to the same speed/duplex as the PHY. */
1271 ctrl_reg = er32(CTRL);
1272 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1273 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1274 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1275 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1276 E1000_CTRL_FD); /* Force Duplex to FULL */
1278 if (hw->media_type == e1000_media_type_copper &&
1279 hw->phy_type == e1000_phy_m88)
1280 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1281 else {
1282 /* Set the ILOS bit on the fiber Nic is half
1283 * duplex link is detected. */
1284 stat_reg = er32(STATUS);
1285 if ((stat_reg & E1000_STATUS_FD) == 0)
1286 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1289 ew32(CTRL, ctrl_reg);
1291 /* Disable the receiver on the PHY so when a cable is plugged in, the
1292 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1294 if (hw->phy_type == e1000_phy_m88)
1295 e1000_phy_disable_receiver(adapter);
1297 udelay(500);
1299 return 0;
1302 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1304 struct e1000_hw *hw = &adapter->hw;
1305 u16 phy_reg = 0;
1306 u16 count = 0;
1308 switch (hw->mac_type) {
1309 case e1000_82543:
1310 if (hw->media_type == e1000_media_type_copper) {
1311 /* Attempt to setup Loopback mode on Non-integrated PHY.
1312 * Some PHY registers get corrupted at random, so
1313 * attempt this 10 times.
1315 while (e1000_nonintegrated_phy_loopback(adapter) &&
1316 count++ < 10);
1317 if (count < 11)
1318 return 0;
1320 break;
1322 case e1000_82544:
1323 case e1000_82540:
1324 case e1000_82545:
1325 case e1000_82545_rev_3:
1326 case e1000_82546:
1327 case e1000_82546_rev_3:
1328 case e1000_82541:
1329 case e1000_82541_rev_2:
1330 case e1000_82547:
1331 case e1000_82547_rev_2:
1332 return e1000_integrated_phy_loopback(adapter);
1333 break;
1334 default:
1335 /* Default PHY loopback work is to read the MII
1336 * control register and assert bit 14 (loopback mode).
1338 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1339 phy_reg |= MII_CR_LOOPBACK;
1340 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1341 return 0;
1342 break;
1345 return 8;
1348 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1350 struct e1000_hw *hw = &adapter->hw;
1351 u32 rctl;
1353 if (hw->media_type == e1000_media_type_fiber ||
1354 hw->media_type == e1000_media_type_internal_serdes) {
1355 switch (hw->mac_type) {
1356 case e1000_82545:
1357 case e1000_82546:
1358 case e1000_82545_rev_3:
1359 case e1000_82546_rev_3:
1360 return e1000_set_phy_loopback(adapter);
1361 break;
1362 default:
1363 rctl = er32(RCTL);
1364 rctl |= E1000_RCTL_LBM_TCVR;
1365 ew32(RCTL, rctl);
1366 return 0;
1368 } else if (hw->media_type == e1000_media_type_copper)
1369 return e1000_set_phy_loopback(adapter);
1371 return 7;
1374 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1376 struct e1000_hw *hw = &adapter->hw;
1377 u32 rctl;
1378 u16 phy_reg;
1380 rctl = er32(RCTL);
1381 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1382 ew32(RCTL, rctl);
1384 switch (hw->mac_type) {
1385 case e1000_82545:
1386 case e1000_82546:
1387 case e1000_82545_rev_3:
1388 case e1000_82546_rev_3:
1389 default:
1390 hw->autoneg = true;
1391 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1392 if (phy_reg & MII_CR_LOOPBACK) {
1393 phy_reg &= ~MII_CR_LOOPBACK;
1394 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1395 e1000_phy_reset(hw);
1397 break;
1401 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1402 unsigned int frame_size)
1404 memset(skb->data, 0xFF, frame_size);
1405 frame_size &= ~1;
1406 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1407 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1408 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1411 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1412 unsigned int frame_size)
1414 frame_size &= ~1;
1415 if (*(skb->data + 3) == 0xFF) {
1416 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1417 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1418 return 0;
1421 return 13;
1424 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1426 struct e1000_hw *hw = &adapter->hw;
1427 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1428 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1429 struct pci_dev *pdev = adapter->pdev;
1430 int i, j, k, l, lc, good_cnt, ret_val=0;
1431 unsigned long time;
1433 ew32(RDT, rxdr->count - 1);
1435 /* Calculate the loop count based on the largest descriptor ring
1436 * The idea is to wrap the largest ring a number of times using 64
1437 * send/receive pairs during each loop
1440 if (rxdr->count <= txdr->count)
1441 lc = ((txdr->count / 64) * 2) + 1;
1442 else
1443 lc = ((rxdr->count / 64) * 2) + 1;
1445 k = l = 0;
1446 for (j = 0; j <= lc; j++) { /* loop count loop */
1447 for (i = 0; i < 64; i++) { /* send the packets */
1448 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1449 1024);
1450 dma_sync_single_for_device(&pdev->dev,
1451 txdr->buffer_info[k].dma,
1452 txdr->buffer_info[k].length,
1453 DMA_TO_DEVICE);
1454 if (unlikely(++k == txdr->count)) k = 0;
1456 ew32(TDT, k);
1457 msleep(200);
1458 time = jiffies; /* set the start time for the receive */
1459 good_cnt = 0;
1460 do { /* receive the sent packets */
1461 dma_sync_single_for_cpu(&pdev->dev,
1462 rxdr->buffer_info[l].dma,
1463 rxdr->buffer_info[l].length,
1464 DMA_FROM_DEVICE);
1466 ret_val = e1000_check_lbtest_frame(
1467 rxdr->buffer_info[l].skb,
1468 1024);
1469 if (!ret_val)
1470 good_cnt++;
1471 if (unlikely(++l == rxdr->count)) l = 0;
1472 /* time + 20 msecs (200 msecs on 2.4) is more than
1473 * enough time to complete the receives, if it's
1474 * exceeded, break and error off
1476 } while (good_cnt < 64 && jiffies < (time + 20));
1477 if (good_cnt != 64) {
1478 ret_val = 13; /* ret_val is the same as mis-compare */
1479 break;
1481 if (jiffies >= (time + 2)) {
1482 ret_val = 14; /* error code for time out error */
1483 break;
1485 } /* end loop count loop */
1486 return ret_val;
1489 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1491 *data = e1000_setup_desc_rings(adapter);
1492 if (*data)
1493 goto out;
1494 *data = e1000_setup_loopback_test(adapter);
1495 if (*data)
1496 goto err_loopback;
1497 *data = e1000_run_loopback_test(adapter);
1498 e1000_loopback_cleanup(adapter);
1500 err_loopback:
1501 e1000_free_desc_rings(adapter);
1502 out:
1503 return *data;
1506 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1508 struct e1000_hw *hw = &adapter->hw;
1509 *data = 0;
1510 if (hw->media_type == e1000_media_type_internal_serdes) {
1511 int i = 0;
1512 hw->serdes_has_link = false;
1514 /* On some blade server designs, link establishment
1515 * could take as long as 2-3 minutes */
1516 do {
1517 e1000_check_for_link(hw);
1518 if (hw->serdes_has_link)
1519 return *data;
1520 msleep(20);
1521 } while (i++ < 3750);
1523 *data = 1;
1524 } else {
1525 e1000_check_for_link(hw);
1526 if (hw->autoneg) /* if auto_neg is set wait for it */
1527 msleep(4000);
1529 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1530 *data = 1;
1533 return *data;
1536 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1538 switch (sset) {
1539 case ETH_SS_TEST:
1540 return E1000_TEST_LEN;
1541 case ETH_SS_STATS:
1542 return E1000_STATS_LEN;
1543 default:
1544 return -EOPNOTSUPP;
1548 static void e1000_diag_test(struct net_device *netdev,
1549 struct ethtool_test *eth_test, u64 *data)
1551 struct e1000_adapter *adapter = netdev_priv(netdev);
1552 struct e1000_hw *hw = &adapter->hw;
1553 bool if_running = netif_running(netdev);
1555 set_bit(__E1000_TESTING, &adapter->flags);
1556 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1557 /* Offline tests */
1559 /* save speed, duplex, autoneg settings */
1560 u16 autoneg_advertised = hw->autoneg_advertised;
1561 u8 forced_speed_duplex = hw->forced_speed_duplex;
1562 u8 autoneg = hw->autoneg;
1564 e_info("offline testing starting\n");
1566 /* Link test performed before hardware reset so autoneg doesn't
1567 * interfere with test result */
1568 if (e1000_link_test(adapter, &data[4]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1571 if (if_running)
1572 /* indicate we're in test mode */
1573 dev_close(netdev);
1574 else
1575 e1000_reset(adapter);
1577 if (e1000_reg_test(adapter, &data[0]))
1578 eth_test->flags |= ETH_TEST_FL_FAILED;
1580 e1000_reset(adapter);
1581 if (e1000_eeprom_test(adapter, &data[1]))
1582 eth_test->flags |= ETH_TEST_FL_FAILED;
1584 e1000_reset(adapter);
1585 if (e1000_intr_test(adapter, &data[2]))
1586 eth_test->flags |= ETH_TEST_FL_FAILED;
1588 e1000_reset(adapter);
1589 /* make sure the phy is powered up */
1590 e1000_power_up_phy(adapter);
1591 if (e1000_loopback_test(adapter, &data[3]))
1592 eth_test->flags |= ETH_TEST_FL_FAILED;
1594 /* restore speed, duplex, autoneg settings */
1595 hw->autoneg_advertised = autoneg_advertised;
1596 hw->forced_speed_duplex = forced_speed_duplex;
1597 hw->autoneg = autoneg;
1599 e1000_reset(adapter);
1600 clear_bit(__E1000_TESTING, &adapter->flags);
1601 if (if_running)
1602 dev_open(netdev);
1603 } else {
1604 e_info("online testing starting\n");
1605 /* Online tests */
1606 if (e1000_link_test(adapter, &data[4]))
1607 eth_test->flags |= ETH_TEST_FL_FAILED;
1609 /* Online tests aren't run; pass by default */
1610 data[0] = 0;
1611 data[1] = 0;
1612 data[2] = 0;
1613 data[3] = 0;
1615 clear_bit(__E1000_TESTING, &adapter->flags);
1617 msleep_interruptible(4 * 1000);
1620 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1621 struct ethtool_wolinfo *wol)
1623 struct e1000_hw *hw = &adapter->hw;
1624 int retval = 1; /* fail by default */
1626 switch (hw->device_id) {
1627 case E1000_DEV_ID_82542:
1628 case E1000_DEV_ID_82543GC_FIBER:
1629 case E1000_DEV_ID_82543GC_COPPER:
1630 case E1000_DEV_ID_82544EI_FIBER:
1631 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1632 case E1000_DEV_ID_82545EM_FIBER:
1633 case E1000_DEV_ID_82545EM_COPPER:
1634 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1635 case E1000_DEV_ID_82546GB_PCIE:
1636 /* these don't support WoL at all */
1637 wol->supported = 0;
1638 break;
1639 case E1000_DEV_ID_82546EB_FIBER:
1640 case E1000_DEV_ID_82546GB_FIBER:
1641 /* Wake events not supported on port B */
1642 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1643 wol->supported = 0;
1644 break;
1646 /* return success for non excluded adapter ports */
1647 retval = 0;
1648 break;
1649 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1650 /* quad port adapters only support WoL on port A */
1651 if (!adapter->quad_port_a) {
1652 wol->supported = 0;
1653 break;
1655 /* return success for non excluded adapter ports */
1656 retval = 0;
1657 break;
1658 default:
1659 /* dual port cards only support WoL on port A from now on
1660 * unless it was enabled in the eeprom for port B
1661 * so exclude FUNC_1 ports from having WoL enabled */
1662 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1663 !adapter->eeprom_wol) {
1664 wol->supported = 0;
1665 break;
1668 retval = 0;
1671 return retval;
1674 static void e1000_get_wol(struct net_device *netdev,
1675 struct ethtool_wolinfo *wol)
1677 struct e1000_adapter *adapter = netdev_priv(netdev);
1678 struct e1000_hw *hw = &adapter->hw;
1680 wol->supported = WAKE_UCAST | WAKE_MCAST |
1681 WAKE_BCAST | WAKE_MAGIC;
1682 wol->wolopts = 0;
1684 /* this function will set ->supported = 0 and return 1 if wol is not
1685 * supported by this hardware */
1686 if (e1000_wol_exclusion(adapter, wol) ||
1687 !device_can_wakeup(&adapter->pdev->dev))
1688 return;
1690 /* apply any specific unsupported masks here */
1691 switch (hw->device_id) {
1692 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1693 /* KSP3 does not suppport UCAST wake-ups */
1694 wol->supported &= ~WAKE_UCAST;
1696 if (adapter->wol & E1000_WUFC_EX)
1697 e_err("Interface does not support "
1698 "directed (unicast) frame wake-up packets\n");
1699 break;
1700 default:
1701 break;
1704 if (adapter->wol & E1000_WUFC_EX)
1705 wol->wolopts |= WAKE_UCAST;
1706 if (adapter->wol & E1000_WUFC_MC)
1707 wol->wolopts |= WAKE_MCAST;
1708 if (adapter->wol & E1000_WUFC_BC)
1709 wol->wolopts |= WAKE_BCAST;
1710 if (adapter->wol & E1000_WUFC_MAG)
1711 wol->wolopts |= WAKE_MAGIC;
1714 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1716 struct e1000_adapter *adapter = netdev_priv(netdev);
1717 struct e1000_hw *hw = &adapter->hw;
1719 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1720 return -EOPNOTSUPP;
1722 if (e1000_wol_exclusion(adapter, wol) ||
1723 !device_can_wakeup(&adapter->pdev->dev))
1724 return wol->wolopts ? -EOPNOTSUPP : 0;
1726 switch (hw->device_id) {
1727 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1728 if (wol->wolopts & WAKE_UCAST) {
1729 e_err("Interface does not support "
1730 "directed (unicast) frame wake-up packets\n");
1731 return -EOPNOTSUPP;
1733 break;
1734 default:
1735 break;
1738 /* these settings will always override what we currently have */
1739 adapter->wol = 0;
1741 if (wol->wolopts & WAKE_UCAST)
1742 adapter->wol |= E1000_WUFC_EX;
1743 if (wol->wolopts & WAKE_MCAST)
1744 adapter->wol |= E1000_WUFC_MC;
1745 if (wol->wolopts & WAKE_BCAST)
1746 adapter->wol |= E1000_WUFC_BC;
1747 if (wol->wolopts & WAKE_MAGIC)
1748 adapter->wol |= E1000_WUFC_MAG;
1750 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1752 return 0;
1755 /* toggle LED 4 times per second = 2 "blinks" per second */
1756 #define E1000_ID_INTERVAL (HZ/4)
1758 /* bit defines for adapter->led_status */
1759 #define E1000_LED_ON 0
1761 static void e1000_led_blink_callback(unsigned long data)
1763 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1764 struct e1000_hw *hw = &adapter->hw;
1766 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1767 e1000_led_off(hw);
1768 else
1769 e1000_led_on(hw);
1771 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1774 static int e1000_phys_id(struct net_device *netdev, u32 data)
1776 struct e1000_adapter *adapter = netdev_priv(netdev);
1777 struct e1000_hw *hw = &adapter->hw;
1779 if (!data)
1780 data = INT_MAX;
1782 if (!adapter->blink_timer.function) {
1783 init_timer(&adapter->blink_timer);
1784 adapter->blink_timer.function = e1000_led_blink_callback;
1785 adapter->blink_timer.data = (unsigned long)adapter;
1787 e1000_setup_led(hw);
1788 mod_timer(&adapter->blink_timer, jiffies);
1789 msleep_interruptible(data * 1000);
1790 del_timer_sync(&adapter->blink_timer);
1792 e1000_led_off(hw);
1793 clear_bit(E1000_LED_ON, &adapter->led_status);
1794 e1000_cleanup_led(hw);
1796 return 0;
1799 static int e1000_get_coalesce(struct net_device *netdev,
1800 struct ethtool_coalesce *ec)
1802 struct e1000_adapter *adapter = netdev_priv(netdev);
1804 if (adapter->hw.mac_type < e1000_82545)
1805 return -EOPNOTSUPP;
1807 if (adapter->itr_setting <= 4)
1808 ec->rx_coalesce_usecs = adapter->itr_setting;
1809 else
1810 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1812 return 0;
1815 static int e1000_set_coalesce(struct net_device *netdev,
1816 struct ethtool_coalesce *ec)
1818 struct e1000_adapter *adapter = netdev_priv(netdev);
1819 struct e1000_hw *hw = &adapter->hw;
1821 if (hw->mac_type < e1000_82545)
1822 return -EOPNOTSUPP;
1824 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1825 ((ec->rx_coalesce_usecs > 4) &&
1826 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1827 (ec->rx_coalesce_usecs == 2))
1828 return -EINVAL;
1830 if (ec->rx_coalesce_usecs == 4) {
1831 adapter->itr = adapter->itr_setting = 4;
1832 } else if (ec->rx_coalesce_usecs <= 3) {
1833 adapter->itr = 20000;
1834 adapter->itr_setting = ec->rx_coalesce_usecs;
1835 } else {
1836 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1837 adapter->itr_setting = adapter->itr & ~3;
1840 if (adapter->itr_setting != 0)
1841 ew32(ITR, 1000000000 / (adapter->itr * 256));
1842 else
1843 ew32(ITR, 0);
1845 return 0;
1848 static int e1000_nway_reset(struct net_device *netdev)
1850 struct e1000_adapter *adapter = netdev_priv(netdev);
1851 if (netif_running(netdev))
1852 e1000_reinit_locked(adapter);
1853 return 0;
1856 static void e1000_get_ethtool_stats(struct net_device *netdev,
1857 struct ethtool_stats *stats, u64 *data)
1859 struct e1000_adapter *adapter = netdev_priv(netdev);
1860 int i;
1861 char *p = NULL;
1863 e1000_update_stats(adapter);
1864 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1865 switch (e1000_gstrings_stats[i].type) {
1866 case NETDEV_STATS:
1867 p = (char *) netdev +
1868 e1000_gstrings_stats[i].stat_offset;
1869 break;
1870 case E1000_STATS:
1871 p = (char *) adapter +
1872 e1000_gstrings_stats[i].stat_offset;
1873 break;
1876 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1877 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1879 /* BUG_ON(i != E1000_STATS_LEN); */
1882 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1883 u8 *data)
1885 u8 *p = data;
1886 int i;
1888 switch (stringset) {
1889 case ETH_SS_TEST:
1890 memcpy(data, *e1000_gstrings_test,
1891 sizeof(e1000_gstrings_test));
1892 break;
1893 case ETH_SS_STATS:
1894 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1895 memcpy(p, e1000_gstrings_stats[i].stat_string,
1896 ETH_GSTRING_LEN);
1897 p += ETH_GSTRING_LEN;
1899 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1900 break;
1904 static const struct ethtool_ops e1000_ethtool_ops = {
1905 .get_settings = e1000_get_settings,
1906 .set_settings = e1000_set_settings,
1907 .get_drvinfo = e1000_get_drvinfo,
1908 .get_regs_len = e1000_get_regs_len,
1909 .get_regs = e1000_get_regs,
1910 .get_wol = e1000_get_wol,
1911 .set_wol = e1000_set_wol,
1912 .get_msglevel = e1000_get_msglevel,
1913 .set_msglevel = e1000_set_msglevel,
1914 .nway_reset = e1000_nway_reset,
1915 .get_link = e1000_get_link,
1916 .get_eeprom_len = e1000_get_eeprom_len,
1917 .get_eeprom = e1000_get_eeprom,
1918 .set_eeprom = e1000_set_eeprom,
1919 .get_ringparam = e1000_get_ringparam,
1920 .set_ringparam = e1000_set_ringparam,
1921 .get_pauseparam = e1000_get_pauseparam,
1922 .set_pauseparam = e1000_set_pauseparam,
1923 .get_rx_csum = e1000_get_rx_csum,
1924 .set_rx_csum = e1000_set_rx_csum,
1925 .get_tx_csum = e1000_get_tx_csum,
1926 .set_tx_csum = e1000_set_tx_csum,
1927 .set_sg = ethtool_op_set_sg,
1928 .set_tso = e1000_set_tso,
1929 .self_test = e1000_diag_test,
1930 .get_strings = e1000_get_strings,
1931 .phys_id = e1000_phys_id,
1932 .get_ethtool_stats = e1000_get_ethtool_stats,
1933 .get_sset_count = e1000_get_sset_count,
1934 .get_coalesce = e1000_get_coalesce,
1935 .set_coalesce = e1000_set_coalesce,
1938 void e1000_set_ethtool_ops(struct net_device *netdev)
1940 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);