[POWERPC] cell: add missing '\n'
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / s2io.c
blob121cb100f93a036fd2ae1ab226f00ffc5c7543ff
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.10"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
372 struct s2io_nic *nic = dev->priv;
373 unsigned long flags;
375 spin_lock_irqsave(&nic->tx_lock, flags);
376 nic->vlgrp = grp;
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
384 * Constants to be programmed into the Xena's registers, to configure
385 * the XAUI.
388 #define END_SIGN 0x0
389 static const u64 herc_act_dtx_cfg[] = {
390 /* Set address */
391 0x8000051536750000ULL, 0x80000515367500E0ULL,
392 /* Write data */
393 0x8000051536750004ULL, 0x80000515367500E4ULL,
394 /* Set address */
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396 /* Write data */
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398 /* Set address */
399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
400 /* Write data */
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
402 /* Set address */
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404 /* Write data */
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406 /* Done */
407 END_SIGN
410 static const u64 xena_dtx_cfg[] = {
411 /* Set address */
412 0x8000051500000000ULL, 0x80000515000000E0ULL,
413 /* Write data */
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415 /* Set address */
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
417 /* Write data */
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419 /* Set address */
420 0x8002051500000000ULL, 0x80020515000000E0ULL,
421 /* Write data */
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423 END_SIGN
427 * Constants for Fixing the MacAddress problem seen mostly on
428 * Alpha machines.
430 static const u64 fix_mac[] = {
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
445 END_SIGN
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
496 * S2IO device table.
497 * This table lists all the devices that this driver supports.
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
508 {0,}
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
513 static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
519 static struct pci_driver s2io_driver = {
520 .name = "S2IO",
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
524 .err_handler = &s2io_err_handler,
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
538 static int init_shared_mem(struct s2io_nic *nic)
540 u32 size;
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
543 struct RxD_block *pre_rxd_blk = NULL;
544 int i, j, blk_cnt;
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
547 unsigned long tmp;
548 struct buffAdd *ba;
550 struct mac_info *mac_control;
551 struct config_param *config;
552 unsigned long long mem_allocated = 0;
554 mac_control = &nic->mac_control;
555 config = &nic->config;
558 /* Allocation and initialization of TXDLs in FIOFs */
559 size = 0;
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
563 if (size > MAX_AVAILABLE_TXDS) {
564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566 return -EINVAL;
569 lst_size = (sizeof(struct TxD) * config->max_txds);
570 lst_per_page = PAGE_SIZE / lst_size;
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576 GFP_KERNEL);
577 if (!mac_control->fifos[i].list_info) {
578 DBG_PRINT(INFO_DBG,
579 "Malloc failed for list_info\n");
580 return -ENOMEM;
582 mem_allocated += list_holder_size;
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586 lst_per_page);
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589 config->tx_cfg[i].fifo_len - 1;
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592 config->tx_cfg[i].fifo_len - 1;
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
597 for (j = 0; j < page_num; j++) {
598 int k = 0;
599 dma_addr_t tmp_p;
600 void *tmp_v;
601 tmp_v = pci_alloc_consistent(nic->pdev,
602 PAGE_SIZE, &tmp_p);
603 if (!tmp_v) {
604 DBG_PRINT(INFO_DBG,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607 return -ENOMEM;
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
612 * to be freed later.
614 if (!tmp_p) {
615 mac_control->zerodma_virt_addr = tmp_v;
616 DBG_PRINT(INIT_DBG,
617 "%s: Zero DMA address for TxDL. ", dev->name);
618 DBG_PRINT(INIT_DBG,
619 "Virtual address %p\n", tmp_v);
620 tmp_v = pci_alloc_consistent(nic->pdev,
621 PAGE_SIZE, &tmp_p);
622 if (!tmp_v) {
623 DBG_PRINT(INFO_DBG,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626 return -ENOMEM;
628 mem_allocated += PAGE_SIZE;
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
633 break;
634 mac_control->fifos[i].list_info[l].list_virt_addr =
635 tmp_v + (k * lst_size);
636 mac_control->fifos[i].list_info[l].list_phy_addr =
637 tmp_p + (k * lst_size);
638 k++;
643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644 if (!nic->ufo_in_band_v)
645 return -ENOMEM;
646 mem_allocated += (size * sizeof(u64));
648 /* Allocation and initialization of RXDs in Rings */
649 size = 0;
650 for (i = 0; i < config->rx_ring_num; i++) {
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
657 return FAILURE;
659 size += config->rx_cfg[i].num_rxd;
660 mac_control->rings[i].block_count =
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
666 if (nic->rxd_mode == RXD_MODE_1)
667 size = (size * (sizeof(struct RxD1)));
668 else
669 size = (size * (sizeof(struct RxD3)));
671 for (i = 0; i < config->rx_ring_num; i++) {
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
675 config->rx_cfg[i].num_rxd - 1;
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
679 config->rx_cfg[i].num_rxd - 1;
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 struct rx_block_info *rx_blocks;
688 int l;
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693 &tmp_p_addr);
694 if (tmp_v_addr == NULL) {
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
699 * failure happened.
701 rx_blocks->block_virt_addr = tmp_v_addr;
702 return -ENOMEM;
704 mem_allocated += size;
705 memset(tmp_v_addr, 0, size);
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709 rxd_count[nic->rxd_mode],
710 GFP_KERNEL);
711 if (!rx_blocks->rxds)
712 return -ENOMEM;
713 mem_allocated +=
714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
726 tmp_v_addr =
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728 tmp_v_addr_next =
729 mac_control->rings[i].rx_blocks[(j + 1) %
730 blk_cnt].block_virt_addr;
731 tmp_p_addr =
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733 tmp_p_addr_next =
734 mac_control->rings[i].rx_blocks[(j + 1) %
735 blk_cnt].block_dma_addr;
737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
744 if (nic->rxd_mode == RXD_MODE_3B) {
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754 GFP_KERNEL);
755 if (!mac_control->rings[i].ba)
756 return -ENOMEM;
757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758 for (j = 0; j < blk_cnt; j++) {
759 int k = 0;
760 mac_control->rings[i].ba[j] =
761 kmalloc((sizeof(struct buffAdd) *
762 (rxd_count[nic->rxd_mode] + 1)),
763 GFP_KERNEL);
764 if (!mac_control->rings[i].ba[j])
765 return -ENOMEM;
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773 if (!ba->ba_0_org)
774 return -ENOMEM;
775 mem_allocated +=
776 (BUF0_LEN + ALIGN_SIZE);
777 tmp = (unsigned long)ba->ba_0_org;
778 tmp += ALIGN_SIZE;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784 if (!ba->ba_1_org)
785 return -ENOMEM;
786 mem_allocated
787 += (BUF1_LEN + ALIGN_SIZE);
788 tmp = (unsigned long) ba->ba_1_org;
789 tmp += ALIGN_SIZE;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
792 k++;
798 /* Allocation and initialization of Statistics block */
799 size = sizeof(struct stat_block);
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
803 if (!mac_control->stats_mem) {
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
807 * failure happened.
809 return -ENOMEM;
811 mem_allocated += size;
812 mac_control->stats_mem_sz = size;
814 tmp_v_addr = mac_control->stats_mem;
815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816 memset(tmp_v_addr, 0, size);
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820 return SUCCESS;
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
830 static void free_shared_mem(struct s2io_nic *nic)
832 int i, j, blk_cnt, size;
833 u32 ufo_size = 0;
834 void *tmp_v_addr;
835 dma_addr_t tmp_p_addr;
836 struct mac_info *mac_control;
837 struct config_param *config;
838 int lst_size, lst_per_page;
839 struct net_device *dev;
840 int page_num = 0;
842 if (!nic)
843 return;
845 dev = nic->dev;
847 mac_control = &nic->mac_control;
848 config = &nic->config;
850 lst_size = (sizeof(struct TxD) * config->max_txds);
851 lst_per_page = PAGE_SIZE / lst_size;
853 for (i = 0; i < config->tx_fifo_num; i++) {
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856 lst_per_page);
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
859 if (!mac_control->fifos[i].list_info)
860 return;
861 if (!mac_control->fifos[i].list_info[mem_blks].
862 list_virt_addr)
863 break;
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
865 mac_control->fifos[i].
866 list_info[mem_blks].
867 list_virt_addr,
868 mac_control->fifos[i].
869 list_info[mem_blks].
870 list_phy_addr);
871 nic->mac_control.stats_info->sw_stat.mem_freed
872 += PAGE_SIZE;
874 /* If we got a zero DMA address during allocation,
875 * free the page now
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
880 (dma_addr_t)0);
881 DBG_PRINT(INIT_DBG,
882 "%s: Freeing TxDL with zero DMA addr. ",
883 dev->name);
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
886 nic->mac_control.stats_info->sw_stat.mem_freed
887 += PAGE_SIZE;
889 kfree(mac_control->fifos[i].list_info);
890 nic->mac_control.stats_info->sw_stat.mem_freed +=
891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
894 size = SIZE_OF_BLOCK;
895 for (i = 0; i < config->rx_ring_num; i++) {
896 blk_cnt = mac_control->rings[i].block_count;
897 for (j = 0; j < blk_cnt; j++) {
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899 block_virt_addr;
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901 block_dma_addr;
902 if (tmp_v_addr == NULL)
903 break;
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
908 nic->mac_control.stats_info->sw_stat.mem_freed +=
909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
913 if (nic->rxd_mode == RXD_MODE_3B) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
919 int k = 0;
920 if (!mac_control->rings[i].ba[j])
921 continue;
922 while (k != rxd_count[nic->rxd_mode]) {
923 struct buffAdd *ba =
924 &mac_control->rings[i].ba[j][k];
925 kfree(ba->ba_0_org);
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
928 kfree(ba->ba_1_org);
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
931 k++;
933 kfree(mac_control->rings[i].ba[j]);
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
938 kfree(mac_control->rings[i].ba);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 (sizeof(struct buffAdd *) * blk_cnt);
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
949 nic->mac_control.stats_info->sw_stat.mem_freed +=
950 mac_control->stats_mem_sz;
952 if (nic->ufo_in_band_v) {
953 kfree(nic->ufo_in_band_v);
954 nic->mac_control.stats_info->sw_stat.mem_freed
955 += (ufo_size * sizeof(u64));
960 * s2io_verify_pci_mode -
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 register u64 val64 = 0;
967 int mode;
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
974 return mode;
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
981 struct pci_dev *tdev = NULL;
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984 if (tdev->bus == s2io_pdev->bus->parent)
985 pci_dev_put(tdev);
986 return 1;
989 return 0;
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
994 * s2io_print_pci_mode -
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
999 register u64 val64 = 0;
1000 int mode;
1001 struct config_param *config = &nic->config;
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1009 config->bus_speed = bus_speed[mode];
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013 nic->dev->name);
1014 return mode;
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019 } else {
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1023 switch(mode) {
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026 break;
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029 break;
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032 break;
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035 break;
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038 break;
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041 break;
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044 break;
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047 break;
1048 default:
1049 return -1; /* Unsupported bus speed */
1052 return mode;
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1064 static int init_nic(struct s2io_nic *nic)
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1069 void __iomem *add;
1070 u32 time;
1071 int i, j;
1072 struct mac_info *mac_control;
1073 struct config_param *config;
1074 int dtx_cnt = 0;
1075 unsigned long long mem_share;
1076 int mem_size;
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic)) {
1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084 return -EIO;
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1093 msleep(500);
1094 val64 = readq(&bar0->sw_reset);
1097 /* Remove XGXS from reset state */
1098 val64 = 0;
1099 writeq(val64, &bar0->sw_reset);
1100 msleep(500);
1101 val64 = readq(&bar0->sw_reset);
1103 /* Ensure that it's safe to access registers by checking
1104 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1106 if (nic->device_type == XFRAME_II_DEVICE) {
1107 for (i = 0; i < 50; i++) {
1108 val64 = readq(&bar0->adapter_status);
1109 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1110 break;
1111 msleep(10);
1113 if (i == 50)
1114 return -ENODEV;
1117 /* Enable Receiving broadcasts */
1118 add = &bar0->mac_cfg;
1119 val64 = readq(&bar0->mac_cfg);
1120 val64 |= MAC_RMAC_BCAST_ENABLE;
1121 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1122 writel((u32) val64, add);
1123 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1124 writel((u32) (val64 >> 32), (add + 4));
1126 /* Read registers in all blocks */
1127 val64 = readq(&bar0->mac_int_mask);
1128 val64 = readq(&bar0->mc_int_mask);
1129 val64 = readq(&bar0->xgxs_int_mask);
1131 /* Set MTU */
1132 val64 = dev->mtu;
1133 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1135 if (nic->device_type & XFRAME_II_DEVICE) {
1136 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1137 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1138 &bar0->dtx_control, UF);
1139 if (dtx_cnt & 0x1)
1140 msleep(1); /* Necessary!! */
1141 dtx_cnt++;
1143 } else {
1144 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1145 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1146 &bar0->dtx_control, UF);
1147 val64 = readq(&bar0->dtx_control);
1148 dtx_cnt++;
1152 /* Tx DMA Initialization */
1153 val64 = 0;
1154 writeq(val64, &bar0->tx_fifo_partition_0);
1155 writeq(val64, &bar0->tx_fifo_partition_1);
1156 writeq(val64, &bar0->tx_fifo_partition_2);
1157 writeq(val64, &bar0->tx_fifo_partition_3);
1160 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1161 val64 |=
1162 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1163 13) | vBIT(config->tx_cfg[i].fifo_priority,
1164 ((i * 32) + 5), 3);
1166 if (i == (config->tx_fifo_num - 1)) {
1167 if (i % 2 == 0)
1168 i++;
1171 switch (i) {
1172 case 1:
1173 writeq(val64, &bar0->tx_fifo_partition_0);
1174 val64 = 0;
1175 break;
1176 case 3:
1177 writeq(val64, &bar0->tx_fifo_partition_1);
1178 val64 = 0;
1179 break;
1180 case 5:
1181 writeq(val64, &bar0->tx_fifo_partition_2);
1182 val64 = 0;
1183 break;
1184 case 7:
1185 writeq(val64, &bar0->tx_fifo_partition_3);
1186 break;
1191 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1192 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1194 if ((nic->device_type == XFRAME_I_DEVICE) &&
1195 (nic->pdev->revision < 4))
1196 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1198 val64 = readq(&bar0->tx_fifo_partition_0);
1199 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1200 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1203 * Initialization of Tx_PA_CONFIG register to ignore packet
1204 * integrity checking.
1206 val64 = readq(&bar0->tx_pa_cfg);
1207 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1208 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1209 writeq(val64, &bar0->tx_pa_cfg);
1211 /* Rx DMA intialization. */
1212 val64 = 0;
1213 for (i = 0; i < config->rx_ring_num; i++) {
1214 val64 |=
1215 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1218 writeq(val64, &bar0->rx_queue_priority);
1221 * Allocating equal share of memory to all the
1222 * configured Rings.
1224 val64 = 0;
1225 if (nic->device_type & XFRAME_II_DEVICE)
1226 mem_size = 32;
1227 else
1228 mem_size = 64;
1230 for (i = 0; i < config->rx_ring_num; i++) {
1231 switch (i) {
1232 case 0:
1233 mem_share = (mem_size / config->rx_ring_num +
1234 mem_size % config->rx_ring_num);
1235 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1236 continue;
1237 case 1:
1238 mem_share = (mem_size / config->rx_ring_num);
1239 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1240 continue;
1241 case 2:
1242 mem_share = (mem_size / config->rx_ring_num);
1243 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1244 continue;
1245 case 3:
1246 mem_share = (mem_size / config->rx_ring_num);
1247 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1248 continue;
1249 case 4:
1250 mem_share = (mem_size / config->rx_ring_num);
1251 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1252 continue;
1253 case 5:
1254 mem_share = (mem_size / config->rx_ring_num);
1255 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1256 continue;
1257 case 6:
1258 mem_share = (mem_size / config->rx_ring_num);
1259 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1260 continue;
1261 case 7:
1262 mem_share = (mem_size / config->rx_ring_num);
1263 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1264 continue;
1267 writeq(val64, &bar0->rx_queue_cfg);
1270 * Filling Tx round robin registers
1271 * as per the number of FIFOs
1273 switch (config->tx_fifo_num) {
1274 case 1:
1275 val64 = 0x0000000000000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_0);
1277 writeq(val64, &bar0->tx_w_round_robin_1);
1278 writeq(val64, &bar0->tx_w_round_robin_2);
1279 writeq(val64, &bar0->tx_w_round_robin_3);
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1281 break;
1282 case 2:
1283 val64 = 0x0000010000010000ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000100000100ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0001000001000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0000010000010000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0100000000000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1293 break;
1294 case 3:
1295 val64 = 0x0001000102000001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020000010001ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0200000100010200ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001000102000001ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001020000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1305 break;
1306 case 4:
1307 val64 = 0x0001020300010200ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0100000102030001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0200010000010203ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0001020001000001ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0203000100000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1317 break;
1318 case 5:
1319 val64 = 0x0001000203000102ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0001020001030004ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0001000203000102ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0001020001030004ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0001000000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1329 break;
1330 case 6:
1331 val64 = 0x0001020304000102ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0304050001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0203000100000102ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304000102030405ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0001000200000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1341 break;
1342 case 7:
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->tx_w_round_robin_4);
1353 break;
1354 case 8:
1355 val64 = 0x0001020300040105ULL;
1356 writeq(val64, &bar0->tx_w_round_robin_0);
1357 val64 = 0x0200030106000204ULL;
1358 writeq(val64, &bar0->tx_w_round_robin_1);
1359 val64 = 0x0103000502010007ULL;
1360 writeq(val64, &bar0->tx_w_round_robin_2);
1361 val64 = 0x0304010002060500ULL;
1362 writeq(val64, &bar0->tx_w_round_robin_3);
1363 val64 = 0x0103020400000000ULL;
1364 writeq(val64, &bar0->tx_w_round_robin_4);
1365 break;
1368 /* Enable all configured Tx FIFO partitions */
1369 val64 = readq(&bar0->tx_fifo_partition_0);
1370 val64 |= (TX_FIFO_PARTITION_EN);
1371 writeq(val64, &bar0->tx_fifo_partition_0);
1373 /* Filling the Rx round robin registers as per the
1374 * number of Rings and steering based on QoS.
1376 switch (config->rx_ring_num) {
1377 case 1:
1378 val64 = 0x8080808080808080ULL;
1379 writeq(val64, &bar0->rts_qos_steering);
1380 break;
1381 case 2:
1382 val64 = 0x0000010000010000ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_0);
1384 val64 = 0x0100000100000100ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_1);
1386 val64 = 0x0001000001000001ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_2);
1388 val64 = 0x0000010000010000ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_3);
1390 val64 = 0x0100000000000000ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_4);
1393 val64 = 0x8080808040404040ULL;
1394 writeq(val64, &bar0->rts_qos_steering);
1395 break;
1396 case 3:
1397 val64 = 0x0001000102000001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_0);
1399 val64 = 0x0001020000010001ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_1);
1401 val64 = 0x0200000100010200ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_2);
1403 val64 = 0x0001000102000001ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_3);
1405 val64 = 0x0001020000000000ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_4);
1408 val64 = 0x8080804040402020ULL;
1409 writeq(val64, &bar0->rts_qos_steering);
1410 break;
1411 case 4:
1412 val64 = 0x0001020300010200ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_0);
1414 val64 = 0x0100000102030001ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_1);
1416 val64 = 0x0200010000010203ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_2);
1418 val64 = 0x0001020001000001ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_3);
1420 val64 = 0x0203000100000000ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_4);
1423 val64 = 0x8080404020201010ULL;
1424 writeq(val64, &bar0->rts_qos_steering);
1425 break;
1426 case 5:
1427 val64 = 0x0001000203000102ULL;
1428 writeq(val64, &bar0->rx_w_round_robin_0);
1429 val64 = 0x0001020001030004ULL;
1430 writeq(val64, &bar0->rx_w_round_robin_1);
1431 val64 = 0x0001000203000102ULL;
1432 writeq(val64, &bar0->rx_w_round_robin_2);
1433 val64 = 0x0001020001030004ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_3);
1435 val64 = 0x0001000000000000ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_4);
1438 val64 = 0x8080404020201008ULL;
1439 writeq(val64, &bar0->rts_qos_steering);
1440 break;
1441 case 6:
1442 val64 = 0x0001020304000102ULL;
1443 writeq(val64, &bar0->rx_w_round_robin_0);
1444 val64 = 0x0304050001020001ULL;
1445 writeq(val64, &bar0->rx_w_round_robin_1);
1446 val64 = 0x0203000100000102ULL;
1447 writeq(val64, &bar0->rx_w_round_robin_2);
1448 val64 = 0x0304000102030405ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_3);
1450 val64 = 0x0001000200000000ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_4);
1453 val64 = 0x8080404020100804ULL;
1454 writeq(val64, &bar0->rts_qos_steering);
1455 break;
1456 case 7:
1457 val64 = 0x0001020001020300ULL;
1458 writeq(val64, &bar0->rx_w_round_robin_0);
1459 val64 = 0x0102030400010203ULL;
1460 writeq(val64, &bar0->rx_w_round_robin_1);
1461 val64 = 0x0405060001020001ULL;
1462 writeq(val64, &bar0->rx_w_round_robin_2);
1463 val64 = 0x0304050000010200ULL;
1464 writeq(val64, &bar0->rx_w_round_robin_3);
1465 val64 = 0x0102030000000000ULL;
1466 writeq(val64, &bar0->rx_w_round_robin_4);
1468 val64 = 0x8080402010080402ULL;
1469 writeq(val64, &bar0->rts_qos_steering);
1470 break;
1471 case 8:
1472 val64 = 0x0001020300040105ULL;
1473 writeq(val64, &bar0->rx_w_round_robin_0);
1474 val64 = 0x0200030106000204ULL;
1475 writeq(val64, &bar0->rx_w_round_robin_1);
1476 val64 = 0x0103000502010007ULL;
1477 writeq(val64, &bar0->rx_w_round_robin_2);
1478 val64 = 0x0304010002060500ULL;
1479 writeq(val64, &bar0->rx_w_round_robin_3);
1480 val64 = 0x0103020400000000ULL;
1481 writeq(val64, &bar0->rx_w_round_robin_4);
1483 val64 = 0x8040201008040201ULL;
1484 writeq(val64, &bar0->rts_qos_steering);
1485 break;
1488 /* UDP Fix */
1489 val64 = 0;
1490 for (i = 0; i < 8; i++)
1491 writeq(val64, &bar0->rts_frm_len_n[i]);
1493 /* Set the default rts frame length for the rings configured */
1494 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1495 for (i = 0 ; i < config->rx_ring_num ; i++)
1496 writeq(val64, &bar0->rts_frm_len_n[i]);
1498 /* Set the frame length for the configured rings
1499 * desired by the user
1501 for (i = 0; i < config->rx_ring_num; i++) {
1502 /* If rts_frm_len[i] == 0 then it is assumed that user not
1503 * specified frame length steering.
1504 * If the user provides the frame length then program
1505 * the rts_frm_len register for those values or else
1506 * leave it as it is.
1508 if (rts_frm_len[i] != 0) {
1509 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1510 &bar0->rts_frm_len_n[i]);
1514 /* Disable differentiated services steering logic */
1515 for (i = 0; i < 64; i++) {
1516 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1517 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1518 dev->name);
1519 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1520 return -ENODEV;
1524 /* Program statistics memory */
1525 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1527 if (nic->device_type == XFRAME_II_DEVICE) {
1528 val64 = STAT_BC(0x320);
1529 writeq(val64, &bar0->stat_byte_cnt);
1533 * Initializing the sampling rate for the device to calculate the
1534 * bandwidth utilization.
1536 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1537 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1538 writeq(val64, &bar0->mac_link_util);
1542 * Initializing the Transmit and Receive Traffic Interrupt
1543 * Scheme.
1546 * TTI Initialization. Default Tx timer gets us about
1547 * 250 interrupts per sec. Continuous interrupts are enabled
1548 * by default.
1550 if (nic->device_type == XFRAME_II_DEVICE) {
1551 int count = (nic->config.bus_speed * 125)/2;
1552 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1553 } else {
1555 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1557 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1558 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1559 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1560 if (use_continuous_tx_intrs)
1561 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1562 writeq(val64, &bar0->tti_data1_mem);
1564 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1565 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1566 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1567 writeq(val64, &bar0->tti_data2_mem);
1569 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1570 writeq(val64, &bar0->tti_command_mem);
1573 * Once the operation completes, the Strobe bit of the command
1574 * register will be reset. We poll for this particular condition
1575 * We wait for a maximum of 500ms for the operation to complete,
1576 * if it's not complete by then we return error.
1578 time = 0;
1579 while (TRUE) {
1580 val64 = readq(&bar0->tti_command_mem);
1581 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1582 break;
1584 if (time > 10) {
1585 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1586 dev->name);
1587 return -ENODEV;
1589 msleep(50);
1590 time++;
1593 /* RTI Initialization */
1594 if (nic->device_type == XFRAME_II_DEVICE) {
1596 * Programmed to generate Apprx 500 Intrs per
1597 * second
1599 int count = (nic->config.bus_speed * 125)/4;
1600 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1601 } else
1602 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1603 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1604 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1605 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1607 writeq(val64, &bar0->rti_data1_mem);
1609 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1610 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1611 if (nic->config.intr_type == MSI_X)
1612 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1613 RTI_DATA2_MEM_RX_UFC_D(0x40));
1614 else
1615 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1616 RTI_DATA2_MEM_RX_UFC_D(0x80));
1617 writeq(val64, &bar0->rti_data2_mem);
1619 for (i = 0; i < config->rx_ring_num; i++) {
1620 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1621 | RTI_CMD_MEM_OFFSET(i);
1622 writeq(val64, &bar0->rti_command_mem);
1625 * Once the operation completes, the Strobe bit of the
1626 * command register will be reset. We poll for this
1627 * particular condition. We wait for a maximum of 500ms
1628 * for the operation to complete, if it's not complete
1629 * by then we return error.
1631 time = 0;
1632 while (TRUE) {
1633 val64 = readq(&bar0->rti_command_mem);
1634 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1635 break;
1637 if (time > 10) {
1638 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1639 dev->name);
1640 return -ENODEV;
1642 time++;
1643 msleep(50);
1648 * Initializing proper values as Pause threshold into all
1649 * the 8 Queues on Rx side.
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1652 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1654 /* Disable RMAC PAD STRIPPING */
1655 add = &bar0->mac_cfg;
1656 val64 = readq(&bar0->mac_cfg);
1657 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1658 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1659 writel((u32) (val64), add);
1660 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1661 writel((u32) (val64 >> 32), (add + 4));
1662 val64 = readq(&bar0->mac_cfg);
1664 /* Enable FCS stripping by adapter */
1665 add = &bar0->mac_cfg;
1666 val64 = readq(&bar0->mac_cfg);
1667 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1668 if (nic->device_type == XFRAME_II_DEVICE)
1669 writeq(val64, &bar0->mac_cfg);
1670 else {
1671 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1672 writel((u32) (val64), add);
1673 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1674 writel((u32) (val64 >> 32), (add + 4));
1678 * Set the time value to be inserted in the pause frame
1679 * generated by xena.
1681 val64 = readq(&bar0->rmac_pause_cfg);
1682 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1683 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1684 writeq(val64, &bar0->rmac_pause_cfg);
1687 * Set the Threshold Limit for Generating the pause frame
1688 * If the amount of data in any Queue exceeds ratio of
1689 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1690 * pause frame is generated
1692 val64 = 0;
1693 for (i = 0; i < 4; i++) {
1694 val64 |=
1695 (((u64) 0xFF00 | nic->mac_control.
1696 mc_pause_threshold_q0q3)
1697 << (i * 2 * 8));
1699 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1701 val64 = 0;
1702 for (i = 0; i < 4; i++) {
1703 val64 |=
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q4q7)
1706 << (i * 2 * 8));
1708 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1711 * TxDMA will stop Read request if the number of read split has
1712 * exceeded the limit pointed by shared_splits
1714 val64 = readq(&bar0->pic_control);
1715 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1716 writeq(val64, &bar0->pic_control);
1718 if (nic->config.bus_speed == 266) {
1719 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1720 writeq(0x0, &bar0->read_retry_delay);
1721 writeq(0x0, &bar0->write_retry_delay);
1725 * Programming the Herc to split every write transaction
1726 * that does not start on an ADB to reduce disconnects.
1728 if (nic->device_type == XFRAME_II_DEVICE) {
1729 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1730 MISC_LINK_STABILITY_PRD(3);
1731 writeq(val64, &bar0->misc_control);
1732 val64 = readq(&bar0->pic_control2);
1733 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1734 writeq(val64, &bar0->pic_control2);
1736 if (strstr(nic->product_name, "CX4")) {
1737 val64 = TMAC_AVG_IPG(0x17);
1738 writeq(val64, &bar0->tmac_avg_ipg);
1741 return SUCCESS;
1743 #define LINK_UP_DOWN_INTERRUPT 1
1744 #define MAC_RMAC_ERR_TIMER 2
1746 static int s2io_link_fault_indication(struct s2io_nic *nic)
1748 if (nic->config.intr_type != INTA)
1749 return MAC_RMAC_ERR_TIMER;
1750 if (nic->device_type == XFRAME_II_DEVICE)
1751 return LINK_UP_DOWN_INTERRUPT;
1752 else
1753 return MAC_RMAC_ERR_TIMER;
1757 * do_s2io_write_bits - update alarm bits in alarm register
1758 * @value: alarm bits
1759 * @flag: interrupt status
1760 * @addr: address value
1761 * Description: update alarm bits in alarm register
1762 * Return Value:
1763 * NONE.
1765 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1767 u64 temp64;
1769 temp64 = readq(addr);
1771 if(flag == ENABLE_INTRS)
1772 temp64 &= ~((u64) value);
1773 else
1774 temp64 |= ((u64) value);
1775 writeq(temp64, addr);
1778 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1780 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1781 register u64 gen_int_mask = 0;
1783 if (mask & TX_DMA_INTR) {
1785 gen_int_mask |= TXDMA_INT_M;
1787 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1788 TXDMA_PCC_INT | TXDMA_TTI_INT |
1789 TXDMA_LSO_INT | TXDMA_TPA_INT |
1790 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1792 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1793 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1794 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1795 &bar0->pfc_err_mask);
1797 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1798 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1799 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1801 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1802 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1803 PCC_N_SERR | PCC_6_COF_OV_ERR |
1804 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1805 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1806 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1808 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1809 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1811 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1812 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1813 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1814 flag, &bar0->lso_err_mask);
1816 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1817 flag, &bar0->tpa_err_mask);
1819 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1823 if (mask & TX_MAC_INTR) {
1824 gen_int_mask |= TXMAC_INT_M;
1825 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1826 &bar0->mac_int_mask);
1827 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1828 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1829 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1830 flag, &bar0->mac_tmac_err_mask);
1833 if (mask & TX_XGXS_INTR) {
1834 gen_int_mask |= TXXGXS_INT_M;
1835 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1836 &bar0->xgxs_int_mask);
1837 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1838 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1839 flag, &bar0->xgxs_txgxs_err_mask);
1842 if (mask & RX_DMA_INTR) {
1843 gen_int_mask |= RXDMA_INT_M;
1844 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1845 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1846 flag, &bar0->rxdma_int_mask);
1847 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1848 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1849 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1850 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1851 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1852 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1853 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1854 &bar0->prc_pcix_err_mask);
1855 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1856 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1857 &bar0->rpa_err_mask);
1858 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1859 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1860 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1861 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1862 flag, &bar0->rda_err_mask);
1863 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1864 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1865 flag, &bar0->rti_err_mask);
1868 if (mask & RX_MAC_INTR) {
1869 gen_int_mask |= RXMAC_INT_M;
1870 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1871 &bar0->mac_int_mask);
1872 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1873 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1874 RMAC_DOUBLE_ECC_ERR |
1875 RMAC_LINK_STATE_CHANGE_INT,
1876 flag, &bar0->mac_rmac_err_mask);
1879 if (mask & RX_XGXS_INTR)
1881 gen_int_mask |= RXXGXS_INT_M;
1882 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1883 &bar0->xgxs_int_mask);
1884 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1885 &bar0->xgxs_rxgxs_err_mask);
1888 if (mask & MC_INTR) {
1889 gen_int_mask |= MC_INT_M;
1890 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1891 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1892 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1893 &bar0->mc_err_mask);
1895 nic->general_int_mask = gen_int_mask;
1897 /* Remove this line when alarm interrupts are enabled */
1898 nic->general_int_mask = 0;
1901 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1902 * @nic: device private variable,
1903 * @mask: A mask indicating which Intr block must be modified and,
1904 * @flag: A flag indicating whether to enable or disable the Intrs.
1905 * Description: This function will either disable or enable the interrupts
1906 * depending on the flag argument. The mask argument can be used to
1907 * enable/disable any Intr block.
1908 * Return Value: NONE.
1911 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 temp64 = 0, intr_mask = 0;
1916 intr_mask = nic->general_int_mask;
1918 /* Top level interrupt classification */
1919 /* PIC Interrupts */
1920 if (mask & TX_PIC_INTR) {
1921 /* Enable PIC Intrs in the general intr mask register */
1922 intr_mask |= TXPIC_INT_M;
1923 if (flag == ENABLE_INTRS) {
1925 * If Hercules adapter enable GPIO otherwise
1926 * disable all PCIX, Flash, MDIO, IIC and GPIO
1927 * interrupts for now.
1928 * TODO
1930 if (s2io_link_fault_indication(nic) ==
1931 LINK_UP_DOWN_INTERRUPT ) {
1932 do_s2io_write_bits(PIC_INT_GPIO, flag,
1933 &bar0->pic_int_mask);
1934 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1935 &bar0->gpio_int_mask);
1936 } else
1937 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1938 } else if (flag == DISABLE_INTRS) {
1940 * Disable PIC Intrs in the general
1941 * intr mask register
1943 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1947 /* Tx traffic interrupts */
1948 if (mask & TX_TRAFFIC_INTR) {
1949 intr_mask |= TXTRAFFIC_INT_M;
1950 if (flag == ENABLE_INTRS) {
1952 * Enable all the Tx side interrupts
1953 * writing 0 Enables all 64 TX interrupt levels
1955 writeq(0x0, &bar0->tx_traffic_mask);
1956 } else if (flag == DISABLE_INTRS) {
1958 * Disable Tx Traffic Intrs in the general intr mask
1959 * register.
1961 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1965 /* Rx traffic interrupts */
1966 if (mask & RX_TRAFFIC_INTR) {
1967 intr_mask |= RXTRAFFIC_INT_M;
1968 if (flag == ENABLE_INTRS) {
1969 /* writing 0 Enables all 8 RX interrupt levels */
1970 writeq(0x0, &bar0->rx_traffic_mask);
1971 } else if (flag == DISABLE_INTRS) {
1973 * Disable Rx Traffic Intrs in the general intr mask
1974 * register.
1976 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1980 temp64 = readq(&bar0->general_int_mask);
1981 if (flag == ENABLE_INTRS)
1982 temp64 &= ~((u64) intr_mask);
1983 else
1984 temp64 = DISABLE_ALL_INTRS;
1985 writeq(temp64, &bar0->general_int_mask);
1987 nic->general_int_mask = readq(&bar0->general_int_mask);
1991 * verify_pcc_quiescent- Checks for PCC quiescent state
1992 * Return: 1 If PCC is quiescence
1993 * 0 If PCC is not quiescence
1995 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1997 int ret = 0, herc;
1998 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1999 u64 val64 = readq(&bar0->adapter_status);
2001 herc = (sp->device_type == XFRAME_II_DEVICE);
2003 if (flag == FALSE) {
2004 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2005 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2006 ret = 1;
2007 } else {
2008 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2009 ret = 1;
2011 } else {
2012 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2013 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2014 ADAPTER_STATUS_RMAC_PCC_IDLE))
2015 ret = 1;
2016 } else {
2017 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2018 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2019 ret = 1;
2023 return ret;
2026 * verify_xena_quiescence - Checks whether the H/W is ready
2027 * Description: Returns whether the H/W is ready to go or not. Depending
2028 * on whether adapter enable bit was written or not the comparison
2029 * differs and the calling function passes the input argument flag to
2030 * indicate this.
2031 * Return: 1 If xena is quiescence
2032 * 0 If Xena is not quiescence
2035 static int verify_xena_quiescence(struct s2io_nic *sp)
2037 int mode;
2038 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039 u64 val64 = readq(&bar0->adapter_status);
2040 mode = s2io_verify_pci_mode(sp);
2042 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2043 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2044 return 0;
2046 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2047 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2048 return 0;
2050 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2051 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2052 return 0;
2054 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2055 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2056 return 0;
2058 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2059 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2060 return 0;
2062 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2063 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2064 return 0;
2066 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2067 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2068 return 0;
2070 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2071 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2072 return 0;
2076 * In PCI 33 mode, the P_PLL is not used, and therefore,
2077 * the the P_PLL_LOCK bit in the adapter_status register will
2078 * not be asserted.
2080 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2081 sp->device_type == XFRAME_II_DEVICE && mode !=
2082 PCI_MODE_PCI_33) {
2083 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2084 return 0;
2086 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2087 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2088 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2089 return 0;
2091 return 1;
2095 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2096 * @sp: Pointer to device specifc structure
2097 * Description :
2098 * New procedure to clear mac address reading problems on Alpha platforms
2102 static void fix_mac_address(struct s2io_nic * sp)
2104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2105 u64 val64;
2106 int i = 0;
2108 while (fix_mac[i] != END_SIGN) {
2109 writeq(fix_mac[i++], &bar0->gpio_control);
2110 udelay(10);
2111 val64 = readq(&bar0->gpio_control);
2116 * start_nic - Turns the device on
2117 * @nic : device private variable.
2118 * Description:
2119 * This function actually turns the device on. Before this function is
2120 * called,all Registers are configured from their reset states
2121 * and shared memory is allocated but the NIC is still quiescent. On
2122 * calling this function, the device interrupts are cleared and the NIC is
2123 * literally switched on by writing into the adapter control register.
2124 * Return Value:
2125 * SUCCESS on success and -1 on failure.
2128 static int start_nic(struct s2io_nic *nic)
2130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2131 struct net_device *dev = nic->dev;
2132 register u64 val64 = 0;
2133 u16 subid, i;
2134 struct mac_info *mac_control;
2135 struct config_param *config;
2137 mac_control = &nic->mac_control;
2138 config = &nic->config;
2140 /* PRC Initialization and configuration */
2141 for (i = 0; i < config->rx_ring_num; i++) {
2142 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2143 &bar0->prc_rxd0_n[i]);
2145 val64 = readq(&bar0->prc_ctrl_n[i]);
2146 if (nic->rxd_mode == RXD_MODE_1)
2147 val64 |= PRC_CTRL_RC_ENABLED;
2148 else
2149 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2150 if (nic->device_type == XFRAME_II_DEVICE)
2151 val64 |= PRC_CTRL_GROUP_READS;
2152 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2153 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2154 writeq(val64, &bar0->prc_ctrl_n[i]);
2157 if (nic->rxd_mode == RXD_MODE_3B) {
2158 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2159 val64 = readq(&bar0->rx_pa_cfg);
2160 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2161 writeq(val64, &bar0->rx_pa_cfg);
2164 if (vlan_tag_strip == 0) {
2165 val64 = readq(&bar0->rx_pa_cfg);
2166 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2167 writeq(val64, &bar0->rx_pa_cfg);
2168 vlan_strip_flag = 0;
2172 * Enabling MC-RLDRAM. After enabling the device, we timeout
2173 * for around 100ms, which is approximately the time required
2174 * for the device to be ready for operation.
2176 val64 = readq(&bar0->mc_rldram_mrs);
2177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2179 val64 = readq(&bar0->mc_rldram_mrs);
2181 msleep(100); /* Delay by around 100 ms. */
2183 /* Enabling ECC Protection. */
2184 val64 = readq(&bar0->adapter_control);
2185 val64 &= ~ADAPTER_ECC_EN;
2186 writeq(val64, &bar0->adapter_control);
2189 * Verify if the device is ready to be enabled, if so enable
2190 * it.
2192 val64 = readq(&bar0->adapter_status);
2193 if (!verify_xena_quiescence(nic)) {
2194 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2195 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2196 (unsigned long long) val64);
2197 return FAILURE;
2201 * With some switches, link might be already up at this point.
2202 * Because of this weird behavior, when we enable laser,
2203 * we may not get link. We need to handle this. We cannot
2204 * figure out which switch is misbehaving. So we are forced to
2205 * make a global change.
2208 /* Enabling Laser. */
2209 val64 = readq(&bar0->adapter_control);
2210 val64 |= ADAPTER_EOI_TX_ON;
2211 writeq(val64, &bar0->adapter_control);
2213 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2215 * Dont see link state interrupts initally on some switches,
2216 * so directly scheduling the link state task here.
2218 schedule_work(&nic->set_link_task);
2220 /* SXE-002: Initialize link and activity LED */
2221 subid = nic->pdev->subsystem_device;
2222 if (((subid & 0xFF) >= 0x07) &&
2223 (nic->device_type == XFRAME_I_DEVICE)) {
2224 val64 = readq(&bar0->gpio_control);
2225 val64 |= 0x0000800000000000ULL;
2226 writeq(val64, &bar0->gpio_control);
2227 val64 = 0x0411040400000000ULL;
2228 writeq(val64, (void __iomem *)bar0 + 0x2700);
2231 return SUCCESS;
2234 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2236 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2237 TxD *txdlp, int get_off)
2239 struct s2io_nic *nic = fifo_data->nic;
2240 struct sk_buff *skb;
2241 struct TxD *txds;
2242 u16 j, frg_cnt;
2244 txds = txdlp;
2245 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2246 pci_unmap_single(nic->pdev, (dma_addr_t)
2247 txds->Buffer_Pointer, sizeof(u64),
2248 PCI_DMA_TODEVICE);
2249 txds++;
2252 skb = (struct sk_buff *) ((unsigned long)
2253 txds->Host_Control);
2254 if (!skb) {
2255 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2256 return NULL;
2258 pci_unmap_single(nic->pdev, (dma_addr_t)
2259 txds->Buffer_Pointer,
2260 skb->len - skb->data_len,
2261 PCI_DMA_TODEVICE);
2262 frg_cnt = skb_shinfo(skb)->nr_frags;
2263 if (frg_cnt) {
2264 txds++;
2265 for (j = 0; j < frg_cnt; j++, txds++) {
2266 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2267 if (!txds->Buffer_Pointer)
2268 break;
2269 pci_unmap_page(nic->pdev, (dma_addr_t)
2270 txds->Buffer_Pointer,
2271 frag->size, PCI_DMA_TODEVICE);
2274 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2275 return(skb);
2279 * free_tx_buffers - Free all queued Tx buffers
2280 * @nic : device private variable.
2281 * Description:
2282 * Free all queued Tx buffers.
2283 * Return Value: void
2286 static void free_tx_buffers(struct s2io_nic *nic)
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
2290 struct TxD *txdp;
2291 int i, j;
2292 struct mac_info *mac_control;
2293 struct config_param *config;
2294 int cnt = 0;
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2299 for (i = 0; i < config->tx_fifo_num; i++) {
2300 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2301 txdp = (struct TxD *) \
2302 mac_control->fifos[i].list_info[j].list_virt_addr;
2303 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2304 if (skb) {
2305 nic->mac_control.stats_info->sw_stat.mem_freed
2306 += skb->truesize;
2307 dev_kfree_skb(skb);
2308 cnt++;
2311 DBG_PRINT(INTR_DBG,
2312 "%s:forcibly freeing %d skbs on FIFO%d\n",
2313 dev->name, cnt, i);
2314 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2315 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2320 * stop_nic - To stop the nic
2321 * @nic ; device private variable.
2322 * Description:
2323 * This function does exactly the opposite of what the start_nic()
2324 * function does. This function is called to stop the device.
2325 * Return Value:
2326 * void.
2329 static void stop_nic(struct s2io_nic *nic)
2331 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2332 register u64 val64 = 0;
2333 u16 interruptible;
2334 struct mac_info *mac_control;
2335 struct config_param *config;
2337 mac_control = &nic->mac_control;
2338 config = &nic->config;
2340 /* Disable all interrupts */
2341 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2342 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2343 interruptible |= TX_PIC_INTR;
2344 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2346 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 &= ~(ADAPTER_CNTL_EN);
2349 writeq(val64, &bar0->adapter_control);
2353 * fill_rx_buffers - Allocates the Rx side skbs
2354 * @nic: device private variable
2355 * @ring_no: ring number
2356 * Description:
2357 * The function allocates Rx side skbs and puts the physical
2358 * address of these buffers into the RxD buffer pointers, so that the NIC
2359 * can DMA the received frame into these locations.
2360 * The NIC supports 3 receive modes, viz
2361 * 1. single buffer,
2362 * 2. three buffer and
2363 * 3. Five buffer modes.
2364 * Each mode defines how many fragments the received frame will be split
2365 * up into by the NIC. The frame is split into L3 header, L4 Header,
2366 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2367 * is split into 3 fragments. As of now only single buffer mode is
2368 * supported.
2369 * Return Value:
2370 * SUCCESS on success or an appropriate -ve value on failure.
2373 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
2377 struct RxD_t *rxdp;
2378 int off, off1, size, block_no, block_no1;
2379 u32 alloc_tab = 0;
2380 u32 alloc_cnt;
2381 struct mac_info *mac_control;
2382 struct config_param *config;
2383 u64 tmp;
2384 struct buffAdd *ba;
2385 unsigned long flags;
2386 struct RxD_t *first_rxdp = NULL;
2387 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2388 struct RxD1 *rxdp1;
2389 struct RxD3 *rxdp3;
2390 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2392 mac_control = &nic->mac_control;
2393 config = &nic->config;
2394 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2395 atomic_read(&nic->rx_bufs_left[ring_no]);
2397 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2398 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2399 while (alloc_tab < alloc_cnt) {
2400 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2401 block_index;
2402 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2404 rxdp = mac_control->rings[ring_no].
2405 rx_blocks[block_no].rxds[off].virt_addr;
2407 if ((block_no == block_no1) && (off == off1) &&
2408 (rxdp->Host_Control)) {
2409 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2410 dev->name);
2411 DBG_PRINT(INTR_DBG, " info equated\n");
2412 goto end;
2414 if (off && (off == rxd_count[nic->rxd_mode])) {
2415 mac_control->rings[ring_no].rx_curr_put_info.
2416 block_index++;
2417 if (mac_control->rings[ring_no].rx_curr_put_info.
2418 block_index == mac_control->rings[ring_no].
2419 block_count)
2420 mac_control->rings[ring_no].rx_curr_put_info.
2421 block_index = 0;
2422 block_no = mac_control->rings[ring_no].
2423 rx_curr_put_info.block_index;
2424 if (off == rxd_count[nic->rxd_mode])
2425 off = 0;
2426 mac_control->rings[ring_no].rx_curr_put_info.
2427 offset = off;
2428 rxdp = mac_control->rings[ring_no].
2429 rx_blocks[block_no].block_virt_addr;
2430 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2431 dev->name, rxdp);
2433 if(!napi) {
2434 spin_lock_irqsave(&nic->put_lock, flags);
2435 mac_control->rings[ring_no].put_pos =
2436 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2437 spin_unlock_irqrestore(&nic->put_lock, flags);
2438 } else {
2439 mac_control->rings[ring_no].put_pos =
2440 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2442 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2443 ((nic->rxd_mode == RXD_MODE_3B) &&
2444 (rxdp->Control_2 & s2BIT(0)))) {
2445 mac_control->rings[ring_no].rx_curr_put_info.
2446 offset = off;
2447 goto end;
2449 /* calculate size of skb based on ring mode */
2450 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2451 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2452 if (nic->rxd_mode == RXD_MODE_1)
2453 size += NET_IP_ALIGN;
2454 else
2455 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2457 /* allocate skb */
2458 skb = dev_alloc_skb(size);
2459 if(!skb) {
2460 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2461 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2462 if (first_rxdp) {
2463 wmb();
2464 first_rxdp->Control_1 |= RXD_OWN_XENA;
2466 nic->mac_control.stats_info->sw_stat. \
2467 mem_alloc_fail_cnt++;
2468 return -ENOMEM ;
2470 nic->mac_control.stats_info->sw_stat.mem_allocated
2471 += skb->truesize;
2472 if (nic->rxd_mode == RXD_MODE_1) {
2473 /* 1 buffer mode - normal operation mode */
2474 rxdp1 = (struct RxD1*)rxdp;
2475 memset(rxdp, 0, sizeof(struct RxD1));
2476 skb_reserve(skb, NET_IP_ALIGN);
2477 rxdp1->Buffer0_ptr = pci_map_single
2478 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2479 PCI_DMA_FROMDEVICE);
2480 if( (rxdp1->Buffer0_ptr == 0) ||
2481 (rxdp1->Buffer0_ptr ==
2482 DMA_ERROR_CODE))
2483 goto pci_map_failed;
2485 rxdp->Control_2 =
2486 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2488 } else if (nic->rxd_mode == RXD_MODE_3B) {
2490 * 2 buffer mode -
2491 * 2 buffer mode provides 128
2492 * byte aligned receive buffers.
2495 rxdp3 = (struct RxD3*)rxdp;
2496 /* save buffer pointers to avoid frequent dma mapping */
2497 Buffer0_ptr = rxdp3->Buffer0_ptr;
2498 Buffer1_ptr = rxdp3->Buffer1_ptr;
2499 memset(rxdp, 0, sizeof(struct RxD3));
2500 /* restore the buffer pointers for dma sync*/
2501 rxdp3->Buffer0_ptr = Buffer0_ptr;
2502 rxdp3->Buffer1_ptr = Buffer1_ptr;
2504 ba = &mac_control->rings[ring_no].ba[block_no][off];
2505 skb_reserve(skb, BUF0_LEN);
2506 tmp = (u64)(unsigned long) skb->data;
2507 tmp += ALIGN_SIZE;
2508 tmp &= ~ALIGN_SIZE;
2509 skb->data = (void *) (unsigned long)tmp;
2510 skb_reset_tail_pointer(skb);
2512 if (!(rxdp3->Buffer0_ptr))
2513 rxdp3->Buffer0_ptr =
2514 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2515 PCI_DMA_FROMDEVICE);
2516 else
2517 pci_dma_sync_single_for_device(nic->pdev,
2518 (dma_addr_t) rxdp3->Buffer0_ptr,
2519 BUF0_LEN, PCI_DMA_FROMDEVICE);
2520 if( (rxdp3->Buffer0_ptr == 0) ||
2521 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2522 goto pci_map_failed;
2524 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2525 if (nic->rxd_mode == RXD_MODE_3B) {
2526 /* Two buffer mode */
2529 * Buffer2 will have L3/L4 header plus
2530 * L4 payload
2532 rxdp3->Buffer2_ptr = pci_map_single
2533 (nic->pdev, skb->data, dev->mtu + 4,
2534 PCI_DMA_FROMDEVICE);
2536 if( (rxdp3->Buffer2_ptr == 0) ||
2537 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2538 goto pci_map_failed;
2540 rxdp3->Buffer1_ptr =
2541 pci_map_single(nic->pdev,
2542 ba->ba_1, BUF1_LEN,
2543 PCI_DMA_FROMDEVICE);
2544 if( (rxdp3->Buffer1_ptr == 0) ||
2545 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2546 pci_unmap_single
2547 (nic->pdev,
2548 (dma_addr_t)rxdp3->Buffer2_ptr,
2549 dev->mtu + 4,
2550 PCI_DMA_FROMDEVICE);
2551 goto pci_map_failed;
2553 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2554 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2555 (dev->mtu + 4);
2557 rxdp->Control_2 |= s2BIT(0);
2559 rxdp->Host_Control = (unsigned long) (skb);
2560 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2561 rxdp->Control_1 |= RXD_OWN_XENA;
2562 off++;
2563 if (off == (rxd_count[nic->rxd_mode] + 1))
2564 off = 0;
2565 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2567 rxdp->Control_2 |= SET_RXD_MARKER;
2568 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2569 if (first_rxdp) {
2570 wmb();
2571 first_rxdp->Control_1 |= RXD_OWN_XENA;
2573 first_rxdp = rxdp;
2575 atomic_inc(&nic->rx_bufs_left[ring_no]);
2576 alloc_tab++;
2579 end:
2580 /* Transfer ownership of first descriptor to adapter just before
2581 * exiting. Before that, use memory barrier so that ownership
2582 * and other fields are seen by adapter correctly.
2584 if (first_rxdp) {
2585 wmb();
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589 return SUCCESS;
2590 pci_map_failed:
2591 stats->pci_map_fail_cnt++;
2592 stats->mem_freed += skb->truesize;
2593 dev_kfree_skb_irq(skb);
2594 return -ENOMEM;
2597 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2599 struct net_device *dev = sp->dev;
2600 int j;
2601 struct sk_buff *skb;
2602 struct RxD_t *rxdp;
2603 struct mac_info *mac_control;
2604 struct buffAdd *ba;
2605 struct RxD1 *rxdp1;
2606 struct RxD3 *rxdp3;
2608 mac_control = &sp->mac_control;
2609 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2610 rxdp = mac_control->rings[ring_no].
2611 rx_blocks[blk].rxds[j].virt_addr;
2612 skb = (struct sk_buff *)
2613 ((unsigned long) rxdp->Host_Control);
2614 if (!skb) {
2615 continue;
2617 if (sp->rxd_mode == RXD_MODE_1) {
2618 rxdp1 = (struct RxD1*)rxdp;
2619 pci_unmap_single(sp->pdev, (dma_addr_t)
2620 rxdp1->Buffer0_ptr,
2621 dev->mtu +
2622 HEADER_ETHERNET_II_802_3_SIZE
2623 + HEADER_802_2_SIZE +
2624 HEADER_SNAP_SIZE,
2625 PCI_DMA_FROMDEVICE);
2626 memset(rxdp, 0, sizeof(struct RxD1));
2627 } else if(sp->rxd_mode == RXD_MODE_3B) {
2628 rxdp3 = (struct RxD3*)rxdp;
2629 ba = &mac_control->rings[ring_no].
2630 ba[blk][j];
2631 pci_unmap_single(sp->pdev, (dma_addr_t)
2632 rxdp3->Buffer0_ptr,
2633 BUF0_LEN,
2634 PCI_DMA_FROMDEVICE);
2635 pci_unmap_single(sp->pdev, (dma_addr_t)
2636 rxdp3->Buffer1_ptr,
2637 BUF1_LEN,
2638 PCI_DMA_FROMDEVICE);
2639 pci_unmap_single(sp->pdev, (dma_addr_t)
2640 rxdp3->Buffer2_ptr,
2641 dev->mtu + 4,
2642 PCI_DMA_FROMDEVICE);
2643 memset(rxdp, 0, sizeof(struct RxD3));
2645 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2646 dev_kfree_skb(skb);
2647 atomic_dec(&sp->rx_bufs_left[ring_no]);
2652 * free_rx_buffers - Frees all Rx buffers
2653 * @sp: device private variable.
2654 * Description:
2655 * This function will free all Rx buffers allocated by host.
2656 * Return Value:
2657 * NONE.
2660 static void free_rx_buffers(struct s2io_nic *sp)
2662 struct net_device *dev = sp->dev;
2663 int i, blk = 0, buf_cnt = 0;
2664 struct mac_info *mac_control;
2665 struct config_param *config;
2667 mac_control = &sp->mac_control;
2668 config = &sp->config;
2670 for (i = 0; i < config->rx_ring_num; i++) {
2671 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2672 free_rxd_blk(sp,i,blk);
2674 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2676 mac_control->rings[i].rx_curr_put_info.offset = 0;
2677 mac_control->rings[i].rx_curr_get_info.offset = 0;
2678 atomic_set(&sp->rx_bufs_left[i], 0);
2679 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2680 dev->name, buf_cnt, i);
2685 * s2io_poll - Rx interrupt handler for NAPI support
2686 * @napi : pointer to the napi structure.
2687 * @budget : The number of packets that were budgeted to be processed
2688 * during one pass through the 'Poll" function.
2689 * Description:
2690 * Comes into picture only if NAPI support has been incorporated. It does
2691 * the same thing that rx_intr_handler does, but not in a interrupt context
2692 * also It will process only a given number of packets.
2693 * Return value:
2694 * 0 on success and 1 if there are No Rx packets to be processed.
2697 static int s2io_poll(struct napi_struct *napi, int budget)
2699 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2700 struct net_device *dev = nic->dev;
2701 int pkt_cnt = 0, org_pkts_to_process;
2702 struct mac_info *mac_control;
2703 struct config_param *config;
2704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2705 int i;
2707 if (!is_s2io_card_up(nic))
2708 return 0;
2710 mac_control = &nic->mac_control;
2711 config = &nic->config;
2713 nic->pkts_to_process = budget;
2714 org_pkts_to_process = nic->pkts_to_process;
2716 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2717 readl(&bar0->rx_traffic_int);
2719 for (i = 0; i < config->rx_ring_num; i++) {
2720 rx_intr_handler(&mac_control->rings[i]);
2721 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2722 if (!nic->pkts_to_process) {
2723 /* Quota for the current iteration has been met */
2724 goto no_rx;
2728 netif_rx_complete(dev, napi);
2730 for (i = 0; i < config->rx_ring_num; i++) {
2731 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2732 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2733 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2734 break;
2737 /* Re enable the Rx interrupts. */
2738 writeq(0x0, &bar0->rx_traffic_mask);
2739 readl(&bar0->rx_traffic_mask);
2740 return pkt_cnt;
2742 no_rx:
2743 for (i = 0; i < config->rx_ring_num; i++) {
2744 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2745 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2746 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2747 break;
2750 return pkt_cnt;
2753 #ifdef CONFIG_NET_POLL_CONTROLLER
2755 * s2io_netpoll - netpoll event handler entry point
2756 * @dev : pointer to the device structure.
2757 * Description:
2758 * This function will be called by upper layer to check for events on the
2759 * interface in situations where interrupts are disabled. It is used for
2760 * specific in-kernel networking tasks, such as remote consoles and kernel
2761 * debugging over the network (example netdump in RedHat).
2763 static void s2io_netpoll(struct net_device *dev)
2765 struct s2io_nic *nic = dev->priv;
2766 struct mac_info *mac_control;
2767 struct config_param *config;
2768 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2770 int i;
2772 if (pci_channel_offline(nic->pdev))
2773 return;
2775 disable_irq(dev->irq);
2777 mac_control = &nic->mac_control;
2778 config = &nic->config;
2780 writeq(val64, &bar0->rx_traffic_int);
2781 writeq(val64, &bar0->tx_traffic_int);
2783 /* we need to free up the transmitted skbufs or else netpoll will
2784 * run out of skbs and will fail and eventually netpoll application such
2785 * as netdump will fail.
2787 for (i = 0; i < config->tx_fifo_num; i++)
2788 tx_intr_handler(&mac_control->fifos[i]);
2790 /* check for received packet and indicate up to network */
2791 for (i = 0; i < config->rx_ring_num; i++)
2792 rx_intr_handler(&mac_control->rings[i]);
2794 for (i = 0; i < config->rx_ring_num; i++) {
2795 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2796 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2797 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2798 break;
2801 enable_irq(dev->irq);
2802 return;
2804 #endif
2807 * rx_intr_handler - Rx interrupt handler
2808 * @nic: device private variable.
2809 * Description:
2810 * If the interrupt is because of a received frame or if the
2811 * receive ring contains fresh as yet un-processed frames,this function is
2812 * called. It picks out the RxD at which place the last Rx processing had
2813 * stopped and sends the skb to the OSM's Rx handler and then increments
2814 * the offset.
2815 * Return Value:
2816 * NONE.
2818 static void rx_intr_handler(struct ring_info *ring_data)
2820 struct s2io_nic *nic = ring_data->nic;
2821 struct net_device *dev = (struct net_device *) nic->dev;
2822 int get_block, put_block, put_offset;
2823 struct rx_curr_get_info get_info, put_info;
2824 struct RxD_t *rxdp;
2825 struct sk_buff *skb;
2826 int pkt_cnt = 0;
2827 int i;
2828 struct RxD1* rxdp1;
2829 struct RxD3* rxdp3;
2831 spin_lock(&nic->rx_lock);
2833 get_info = ring_data->rx_curr_get_info;
2834 get_block = get_info.block_index;
2835 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2836 put_block = put_info.block_index;
2837 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2838 if (!napi) {
2839 spin_lock(&nic->put_lock);
2840 put_offset = ring_data->put_pos;
2841 spin_unlock(&nic->put_lock);
2842 } else
2843 put_offset = ring_data->put_pos;
2845 while (RXD_IS_UP2DT(rxdp)) {
2847 * If your are next to put index then it's
2848 * FIFO full condition
2850 if ((get_block == put_block) &&
2851 (get_info.offset + 1) == put_info.offset) {
2852 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2853 break;
2855 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2856 if (skb == NULL) {
2857 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2858 dev->name);
2859 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2860 spin_unlock(&nic->rx_lock);
2861 return;
2863 if (nic->rxd_mode == RXD_MODE_1) {
2864 rxdp1 = (struct RxD1*)rxdp;
2865 pci_unmap_single(nic->pdev, (dma_addr_t)
2866 rxdp1->Buffer0_ptr,
2867 dev->mtu +
2868 HEADER_ETHERNET_II_802_3_SIZE +
2869 HEADER_802_2_SIZE +
2870 HEADER_SNAP_SIZE,
2871 PCI_DMA_FROMDEVICE);
2872 } else if (nic->rxd_mode == RXD_MODE_3B) {
2873 rxdp3 = (struct RxD3*)rxdp;
2874 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2875 rxdp3->Buffer0_ptr,
2876 BUF0_LEN, PCI_DMA_FROMDEVICE);
2877 pci_unmap_single(nic->pdev, (dma_addr_t)
2878 rxdp3->Buffer2_ptr,
2879 dev->mtu + 4,
2880 PCI_DMA_FROMDEVICE);
2882 prefetch(skb->data);
2883 rx_osm_handler(ring_data, rxdp);
2884 get_info.offset++;
2885 ring_data->rx_curr_get_info.offset = get_info.offset;
2886 rxdp = ring_data->rx_blocks[get_block].
2887 rxds[get_info.offset].virt_addr;
2888 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2889 get_info.offset = 0;
2890 ring_data->rx_curr_get_info.offset = get_info.offset;
2891 get_block++;
2892 if (get_block == ring_data->block_count)
2893 get_block = 0;
2894 ring_data->rx_curr_get_info.block_index = get_block;
2895 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2898 nic->pkts_to_process -= 1;
2899 if ((napi) && (!nic->pkts_to_process))
2900 break;
2901 pkt_cnt++;
2902 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2903 break;
2905 if (nic->lro) {
2906 /* Clear all LRO sessions before exiting */
2907 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2908 struct lro *lro = &nic->lro0_n[i];
2909 if (lro->in_use) {
2910 update_L3L4_header(nic, lro);
2911 queue_rx_frame(lro->parent);
2912 clear_lro_session(lro);
2917 spin_unlock(&nic->rx_lock);
2921 * tx_intr_handler - Transmit interrupt handler
2922 * @nic : device private variable
2923 * Description:
2924 * If an interrupt was raised to indicate DMA complete of the
2925 * Tx packet, this function is called. It identifies the last TxD
2926 * whose buffer was freed and frees all skbs whose data have already
2927 * DMA'ed into the NICs internal memory.
2928 * Return Value:
2929 * NONE
2932 static void tx_intr_handler(struct fifo_info *fifo_data)
2934 struct s2io_nic *nic = fifo_data->nic;
2935 struct net_device *dev = (struct net_device *) nic->dev;
2936 struct tx_curr_get_info get_info, put_info;
2937 struct sk_buff *skb;
2938 struct TxD *txdlp;
2939 u8 err_mask;
2941 get_info = fifo_data->tx_curr_get_info;
2942 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2943 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2944 list_virt_addr;
2945 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2946 (get_info.offset != put_info.offset) &&
2947 (txdlp->Host_Control)) {
2948 /* Check for TxD errors */
2949 if (txdlp->Control_1 & TXD_T_CODE) {
2950 unsigned long long err;
2951 err = txdlp->Control_1 & TXD_T_CODE;
2952 if (err & 0x1) {
2953 nic->mac_control.stats_info->sw_stat.
2954 parity_err_cnt++;
2957 /* update t_code statistics */
2958 err_mask = err >> 48;
2959 switch(err_mask) {
2960 case 2:
2961 nic->mac_control.stats_info->sw_stat.
2962 tx_buf_abort_cnt++;
2963 break;
2965 case 3:
2966 nic->mac_control.stats_info->sw_stat.
2967 tx_desc_abort_cnt++;
2968 break;
2970 case 7:
2971 nic->mac_control.stats_info->sw_stat.
2972 tx_parity_err_cnt++;
2973 break;
2975 case 10:
2976 nic->mac_control.stats_info->sw_stat.
2977 tx_link_loss_cnt++;
2978 break;
2980 case 15:
2981 nic->mac_control.stats_info->sw_stat.
2982 tx_list_proc_err_cnt++;
2983 break;
2987 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2988 if (skb == NULL) {
2989 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2990 __FUNCTION__);
2991 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2992 return;
2995 /* Updating the statistics block */
2996 nic->stats.tx_bytes += skb->len;
2997 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2998 dev_kfree_skb_irq(skb);
3000 get_info.offset++;
3001 if (get_info.offset == get_info.fifo_len + 1)
3002 get_info.offset = 0;
3003 txdlp = (struct TxD *) fifo_data->list_info
3004 [get_info.offset].list_virt_addr;
3005 fifo_data->tx_curr_get_info.offset =
3006 get_info.offset;
3009 spin_lock(&nic->tx_lock);
3010 if (netif_queue_stopped(dev))
3011 netif_wake_queue(dev);
3012 spin_unlock(&nic->tx_lock);
3016 * s2io_mdio_write - Function to write in to MDIO registers
3017 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3018 * @addr : address value
3019 * @value : data value
3020 * @dev : pointer to net_device structure
3021 * Description:
3022 * This function is used to write values to the MDIO registers
3023 * NONE
3025 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3027 u64 val64 = 0x0;
3028 struct s2io_nic *sp = dev->priv;
3029 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3031 //address transaction
3032 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3033 | MDIO_MMD_DEV_ADDR(mmd_type)
3034 | MDIO_MMS_PRT_ADDR(0x0);
3035 writeq(val64, &bar0->mdio_control);
3036 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3037 writeq(val64, &bar0->mdio_control);
3038 udelay(100);
3040 //Data transaction
3041 val64 = 0x0;
3042 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3043 | MDIO_MMD_DEV_ADDR(mmd_type)
3044 | MDIO_MMS_PRT_ADDR(0x0)
3045 | MDIO_MDIO_DATA(value)
3046 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3047 writeq(val64, &bar0->mdio_control);
3048 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3049 writeq(val64, &bar0->mdio_control);
3050 udelay(100);
3052 val64 = 0x0;
3053 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3054 | MDIO_MMD_DEV_ADDR(mmd_type)
3055 | MDIO_MMS_PRT_ADDR(0x0)
3056 | MDIO_OP(MDIO_OP_READ_TRANS);
3057 writeq(val64, &bar0->mdio_control);
3058 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3059 writeq(val64, &bar0->mdio_control);
3060 udelay(100);
3065 * s2io_mdio_read - Function to write in to MDIO registers
3066 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3067 * @addr : address value
3068 * @dev : pointer to net_device structure
3069 * Description:
3070 * This function is used to read values to the MDIO registers
3071 * NONE
3073 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3075 u64 val64 = 0x0;
3076 u64 rval64 = 0x0;
3077 struct s2io_nic *sp = dev->priv;
3078 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3080 /* address transaction */
3081 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3082 | MDIO_MMD_DEV_ADDR(mmd_type)
3083 | MDIO_MMS_PRT_ADDR(0x0);
3084 writeq(val64, &bar0->mdio_control);
3085 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3086 writeq(val64, &bar0->mdio_control);
3087 udelay(100);
3089 /* Data transaction */
3090 val64 = 0x0;
3091 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3092 | MDIO_MMD_DEV_ADDR(mmd_type)
3093 | MDIO_MMS_PRT_ADDR(0x0)
3094 | MDIO_OP(MDIO_OP_READ_TRANS);
3095 writeq(val64, &bar0->mdio_control);
3096 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3097 writeq(val64, &bar0->mdio_control);
3098 udelay(100);
3100 /* Read the value from regs */
3101 rval64 = readq(&bar0->mdio_control);
3102 rval64 = rval64 & 0xFFFF0000;
3103 rval64 = rval64 >> 16;
3104 return rval64;
3107 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3108 * @counter : couter value to be updated
3109 * @flag : flag to indicate the status
3110 * @type : counter type
3111 * Description:
3112 * This function is to check the status of the xpak counters value
3113 * NONE
3116 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3118 u64 mask = 0x3;
3119 u64 val64;
3120 int i;
3121 for(i = 0; i <index; i++)
3122 mask = mask << 0x2;
3124 if(flag > 0)
3126 *counter = *counter + 1;
3127 val64 = *regs_stat & mask;
3128 val64 = val64 >> (index * 0x2);
3129 val64 = val64 + 1;
3130 if(val64 == 3)
3132 switch(type)
3134 case 1:
3135 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3136 "service. Excessive temperatures may "
3137 "result in premature transceiver "
3138 "failure \n");
3139 break;
3140 case 2:
3141 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3142 "service Excessive bias currents may "
3143 "indicate imminent laser diode "
3144 "failure \n");
3145 break;
3146 case 3:
3147 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3148 "service Excessive laser output "
3149 "power may saturate far-end "
3150 "receiver\n");
3151 break;
3152 default:
3153 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3154 "type \n");
3156 val64 = 0x0;
3158 val64 = val64 << (index * 0x2);
3159 *regs_stat = (*regs_stat & (~mask)) | (val64);
3161 } else {
3162 *regs_stat = *regs_stat & (~mask);
3167 * s2io_updt_xpak_counter - Function to update the xpak counters
3168 * @dev : pointer to net_device struct
3169 * Description:
3170 * This function is to upate the status of the xpak counters value
3171 * NONE
3173 static void s2io_updt_xpak_counter(struct net_device *dev)
3175 u16 flag = 0x0;
3176 u16 type = 0x0;
3177 u16 val16 = 0x0;
3178 u64 val64 = 0x0;
3179 u64 addr = 0x0;
3181 struct s2io_nic *sp = dev->priv;
3182 struct stat_block *stat_info = sp->mac_control.stats_info;
3184 /* Check the communication with the MDIO slave */
3185 addr = 0x0000;
3186 val64 = 0x0;
3187 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3188 if((val64 == 0xFFFF) || (val64 == 0x0000))
3190 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3191 "Returned %llx\n", (unsigned long long)val64);
3192 return;
3195 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3196 if(val64 != 0x2040)
3198 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3199 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3200 (unsigned long long)val64);
3201 return;
3204 /* Loading the DOM register to MDIO register */
3205 addr = 0xA100;
3206 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3207 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3209 /* Reading the Alarm flags */
3210 addr = 0xA070;
3211 val64 = 0x0;
3212 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3214 flag = CHECKBIT(val64, 0x7);
3215 type = 1;
3216 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3217 &stat_info->xpak_stat.xpak_regs_stat,
3218 0x0, flag, type);
3220 if(CHECKBIT(val64, 0x6))
3221 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3223 flag = CHECKBIT(val64, 0x3);
3224 type = 2;
3225 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3226 &stat_info->xpak_stat.xpak_regs_stat,
3227 0x2, flag, type);
3229 if(CHECKBIT(val64, 0x2))
3230 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3232 flag = CHECKBIT(val64, 0x1);
3233 type = 3;
3234 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3235 &stat_info->xpak_stat.xpak_regs_stat,
3236 0x4, flag, type);
3238 if(CHECKBIT(val64, 0x0))
3239 stat_info->xpak_stat.alarm_laser_output_power_low++;
3241 /* Reading the Warning flags */
3242 addr = 0xA074;
3243 val64 = 0x0;
3244 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3246 if(CHECKBIT(val64, 0x7))
3247 stat_info->xpak_stat.warn_transceiver_temp_high++;
3249 if(CHECKBIT(val64, 0x6))
3250 stat_info->xpak_stat.warn_transceiver_temp_low++;
3252 if(CHECKBIT(val64, 0x3))
3253 stat_info->xpak_stat.warn_laser_bias_current_high++;
3255 if(CHECKBIT(val64, 0x2))
3256 stat_info->xpak_stat.warn_laser_bias_current_low++;
3258 if(CHECKBIT(val64, 0x1))
3259 stat_info->xpak_stat.warn_laser_output_power_high++;
3261 if(CHECKBIT(val64, 0x0))
3262 stat_info->xpak_stat.warn_laser_output_power_low++;
3266 * wait_for_cmd_complete - waits for a command to complete.
3267 * @sp : private member of the device structure, which is a pointer to the
3268 * s2io_nic structure.
3269 * Description: Function that waits for a command to Write into RMAC
3270 * ADDR DATA registers to be completed and returns either success or
3271 * error depending on whether the command was complete or not.
3272 * Return value:
3273 * SUCCESS on success and FAILURE on failure.
3276 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3277 int bit_state)
3279 int ret = FAILURE, cnt = 0, delay = 1;
3280 u64 val64;
3282 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3283 return FAILURE;
3285 do {
3286 val64 = readq(addr);
3287 if (bit_state == S2IO_BIT_RESET) {
3288 if (!(val64 & busy_bit)) {
3289 ret = SUCCESS;
3290 break;
3292 } else {
3293 if (!(val64 & busy_bit)) {
3294 ret = SUCCESS;
3295 break;
3299 if(in_interrupt())
3300 mdelay(delay);
3301 else
3302 msleep(delay);
3304 if (++cnt >= 10)
3305 delay = 50;
3306 } while (cnt < 20);
3307 return ret;
3310 * check_pci_device_id - Checks if the device id is supported
3311 * @id : device id
3312 * Description: Function to check if the pci device id is supported by driver.
3313 * Return value: Actual device id if supported else PCI_ANY_ID
3315 static u16 check_pci_device_id(u16 id)
3317 switch (id) {
3318 case PCI_DEVICE_ID_HERC_WIN:
3319 case PCI_DEVICE_ID_HERC_UNI:
3320 return XFRAME_II_DEVICE;
3321 case PCI_DEVICE_ID_S2IO_UNI:
3322 case PCI_DEVICE_ID_S2IO_WIN:
3323 return XFRAME_I_DEVICE;
3324 default:
3325 return PCI_ANY_ID;
3330 * s2io_reset - Resets the card.
3331 * @sp : private member of the device structure.
3332 * Description: Function to Reset the card. This function then also
3333 * restores the previously saved PCI configuration space registers as
3334 * the card reset also resets the configuration space.
3335 * Return value:
3336 * void.
3339 static void s2io_reset(struct s2io_nic * sp)
3341 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3342 u64 val64;
3343 u16 subid, pci_cmd;
3344 int i;
3345 u16 val16;
3346 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3347 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3349 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3350 __FUNCTION__, sp->dev->name);
3352 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3353 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3355 val64 = SW_RESET_ALL;
3356 writeq(val64, &bar0->sw_reset);
3357 if (strstr(sp->product_name, "CX4")) {
3358 msleep(750);
3360 msleep(250);
3361 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3363 /* Restore the PCI state saved during initialization. */
3364 pci_restore_state(sp->pdev);
3365 pci_read_config_word(sp->pdev, 0x2, &val16);
3366 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3367 break;
3368 msleep(200);
3371 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3372 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3375 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3377 s2io_init_pci(sp);
3379 /* Set swapper to enable I/O register access */
3380 s2io_set_swapper(sp);
3382 /* Restore the MSIX table entries from local variables */
3383 restore_xmsi_data(sp);
3385 /* Clear certain PCI/PCI-X fields after reset */
3386 if (sp->device_type == XFRAME_II_DEVICE) {
3387 /* Clear "detected parity error" bit */
3388 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3390 /* Clearing PCIX Ecc status register */
3391 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3393 /* Clearing PCI_STATUS error reflected here */
3394 writeq(s2BIT(62), &bar0->txpic_int_reg);
3397 /* Reset device statistics maintained by OS */
3398 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3400 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3401 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3402 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3403 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3404 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3405 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3406 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3407 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3408 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3409 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3410 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3411 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3412 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3413 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3414 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3415 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3416 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3417 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3418 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3420 /* SXE-002: Configure link and activity LED to turn it off */
3421 subid = sp->pdev->subsystem_device;
3422 if (((subid & 0xFF) >= 0x07) &&
3423 (sp->device_type == XFRAME_I_DEVICE)) {
3424 val64 = readq(&bar0->gpio_control);
3425 val64 |= 0x0000800000000000ULL;
3426 writeq(val64, &bar0->gpio_control);
3427 val64 = 0x0411040400000000ULL;
3428 writeq(val64, (void __iomem *)bar0 + 0x2700);
3432 * Clear spurious ECC interrupts that would have occured on
3433 * XFRAME II cards after reset.
3435 if (sp->device_type == XFRAME_II_DEVICE) {
3436 val64 = readq(&bar0->pcc_err_reg);
3437 writeq(val64, &bar0->pcc_err_reg);
3440 /* restore the previously assigned mac address */
3441 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3443 sp->device_enabled_once = FALSE;
3447 * s2io_set_swapper - to set the swapper controle on the card
3448 * @sp : private member of the device structure,
3449 * pointer to the s2io_nic structure.
3450 * Description: Function to set the swapper control on the card
3451 * correctly depending on the 'endianness' of the system.
3452 * Return value:
3453 * SUCCESS on success and FAILURE on failure.
3456 static int s2io_set_swapper(struct s2io_nic * sp)
3458 struct net_device *dev = sp->dev;
3459 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3460 u64 val64, valt, valr;
3463 * Set proper endian settings and verify the same by reading
3464 * the PIF Feed-back register.
3467 val64 = readq(&bar0->pif_rd_swapper_fb);
3468 if (val64 != 0x0123456789ABCDEFULL) {
3469 int i = 0;
3470 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3471 0x8100008181000081ULL, /* FE=1, SE=0 */
3472 0x4200004242000042ULL, /* FE=0, SE=1 */
3473 0}; /* FE=0, SE=0 */
3475 while(i<4) {
3476 writeq(value[i], &bar0->swapper_ctrl);
3477 val64 = readq(&bar0->pif_rd_swapper_fb);
3478 if (val64 == 0x0123456789ABCDEFULL)
3479 break;
3480 i++;
3482 if (i == 4) {
3483 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3484 dev->name);
3485 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3486 (unsigned long long) val64);
3487 return FAILURE;
3489 valr = value[i];
3490 } else {
3491 valr = readq(&bar0->swapper_ctrl);
3494 valt = 0x0123456789ABCDEFULL;
3495 writeq(valt, &bar0->xmsi_address);
3496 val64 = readq(&bar0->xmsi_address);
3498 if(val64 != valt) {
3499 int i = 0;
3500 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3501 0x0081810000818100ULL, /* FE=1, SE=0 */
3502 0x0042420000424200ULL, /* FE=0, SE=1 */
3503 0}; /* FE=0, SE=0 */
3505 while(i<4) {
3506 writeq((value[i] | valr), &bar0->swapper_ctrl);
3507 writeq(valt, &bar0->xmsi_address);
3508 val64 = readq(&bar0->xmsi_address);
3509 if(val64 == valt)
3510 break;
3511 i++;
3513 if(i == 4) {
3514 unsigned long long x = val64;
3515 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3516 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3517 return FAILURE;
3520 val64 = readq(&bar0->swapper_ctrl);
3521 val64 &= 0xFFFF000000000000ULL;
3523 #ifdef __BIG_ENDIAN
3525 * The device by default set to a big endian format, so a
3526 * big endian driver need not set anything.
3528 val64 |= (SWAPPER_CTRL_TXP_FE |
3529 SWAPPER_CTRL_TXP_SE |
3530 SWAPPER_CTRL_TXD_R_FE |
3531 SWAPPER_CTRL_TXD_W_FE |
3532 SWAPPER_CTRL_TXF_R_FE |
3533 SWAPPER_CTRL_RXD_R_FE |
3534 SWAPPER_CTRL_RXD_W_FE |
3535 SWAPPER_CTRL_RXF_W_FE |
3536 SWAPPER_CTRL_XMSI_FE |
3537 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3538 if (sp->config.intr_type == INTA)
3539 val64 |= SWAPPER_CTRL_XMSI_SE;
3540 writeq(val64, &bar0->swapper_ctrl);
3541 #else
3543 * Initially we enable all bits to make it accessible by the
3544 * driver, then we selectively enable only those bits that
3545 * we want to set.
3547 val64 |= (SWAPPER_CTRL_TXP_FE |
3548 SWAPPER_CTRL_TXP_SE |
3549 SWAPPER_CTRL_TXD_R_FE |
3550 SWAPPER_CTRL_TXD_R_SE |
3551 SWAPPER_CTRL_TXD_W_FE |
3552 SWAPPER_CTRL_TXD_W_SE |
3553 SWAPPER_CTRL_TXF_R_FE |
3554 SWAPPER_CTRL_RXD_R_FE |
3555 SWAPPER_CTRL_RXD_R_SE |
3556 SWAPPER_CTRL_RXD_W_FE |
3557 SWAPPER_CTRL_RXD_W_SE |
3558 SWAPPER_CTRL_RXF_W_FE |
3559 SWAPPER_CTRL_XMSI_FE |
3560 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3561 if (sp->config.intr_type == INTA)
3562 val64 |= SWAPPER_CTRL_XMSI_SE;
3563 writeq(val64, &bar0->swapper_ctrl);
3564 #endif
3565 val64 = readq(&bar0->swapper_ctrl);
3568 * Verifying if endian settings are accurate by reading a
3569 * feedback register.
3571 val64 = readq(&bar0->pif_rd_swapper_fb);
3572 if (val64 != 0x0123456789ABCDEFULL) {
3573 /* Endian settings are incorrect, calls for another dekko. */
3574 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3575 dev->name);
3576 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3577 (unsigned long long) val64);
3578 return FAILURE;
3581 return SUCCESS;
3584 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3586 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3587 u64 val64;
3588 int ret = 0, cnt = 0;
3590 do {
3591 val64 = readq(&bar0->xmsi_access);
3592 if (!(val64 & s2BIT(15)))
3593 break;
3594 mdelay(1);
3595 cnt++;
3596 } while(cnt < 5);
3597 if (cnt == 5) {
3598 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3599 ret = 1;
3602 return ret;
3605 static void restore_xmsi_data(struct s2io_nic *nic)
3607 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3608 u64 val64;
3609 int i;
3611 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3612 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3613 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3614 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3615 writeq(val64, &bar0->xmsi_access);
3616 if (wait_for_msix_trans(nic, i)) {
3617 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3618 continue;
3623 static void store_xmsi_data(struct s2io_nic *nic)
3625 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3626 u64 val64, addr, data;
3627 int i;
3629 /* Store and display */
3630 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3631 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3632 writeq(val64, &bar0->xmsi_access);
3633 if (wait_for_msix_trans(nic, i)) {
3634 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3635 continue;
3637 addr = readq(&bar0->xmsi_address);
3638 data = readq(&bar0->xmsi_data);
3639 if (addr && data) {
3640 nic->msix_info[i].addr = addr;
3641 nic->msix_info[i].data = data;
3646 static int s2io_enable_msi_x(struct s2io_nic *nic)
3648 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3649 u64 tx_mat, rx_mat;
3650 u16 msi_control; /* Temp variable */
3651 int ret, i, j, msix_indx = 1;
3653 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3654 GFP_KERNEL);
3655 if (!nic->entries) {
3656 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3657 __FUNCTION__);
3658 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3659 return -ENOMEM;
3661 nic->mac_control.stats_info->sw_stat.mem_allocated
3662 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3664 nic->s2io_entries =
3665 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3666 GFP_KERNEL);
3667 if (!nic->s2io_entries) {
3668 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3669 __FUNCTION__);
3670 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3671 kfree(nic->entries);
3672 nic->mac_control.stats_info->sw_stat.mem_freed
3673 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3674 return -ENOMEM;
3676 nic->mac_control.stats_info->sw_stat.mem_allocated
3677 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3679 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3680 nic->entries[i].entry = i;
3681 nic->s2io_entries[i].entry = i;
3682 nic->s2io_entries[i].arg = NULL;
3683 nic->s2io_entries[i].in_use = 0;
3686 tx_mat = readq(&bar0->tx_mat0_n[0]);
3687 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3688 tx_mat |= TX_MAT_SET(i, msix_indx);
3689 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3690 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3691 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3693 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3695 rx_mat = readq(&bar0->rx_mat);
3696 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3697 rx_mat |= RX_MAT_SET(j, msix_indx);
3698 nic->s2io_entries[msix_indx].arg
3699 = &nic->mac_control.rings[j];
3700 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3701 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3703 writeq(rx_mat, &bar0->rx_mat);
3705 nic->avail_msix_vectors = 0;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3707 /* We fail init if error or we get less vectors than min required */
3708 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3709 nic->avail_msix_vectors = ret;
3710 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3712 if (ret) {
3713 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3714 kfree(nic->entries);
3715 nic->mac_control.stats_info->sw_stat.mem_freed
3716 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3717 kfree(nic->s2io_entries);
3718 nic->mac_control.stats_info->sw_stat.mem_freed
3719 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3720 nic->entries = NULL;
3721 nic->s2io_entries = NULL;
3722 nic->avail_msix_vectors = 0;
3723 return -ENOMEM;
3725 if (!nic->avail_msix_vectors)
3726 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3729 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3730 * in the herc NIC. (Temp change, needs to be removed later)
3732 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3733 msi_control |= 0x1; /* Enable MSI */
3734 pci_write_config_word(nic->pdev, 0x42, msi_control);
3736 return 0;
3739 /* Handle software interrupt used during MSI(X) test */
3740 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3742 struct s2io_nic *sp = dev_id;
3744 sp->msi_detected = 1;
3745 wake_up(&sp->msi_wait);
3747 return IRQ_HANDLED;
3750 /* Test interrupt path by forcing a a software IRQ */
3751 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3753 struct pci_dev *pdev = sp->pdev;
3754 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3755 int err;
3756 u64 val64, saved64;
3758 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3759 sp->name, sp);
3760 if (err) {
3761 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3762 sp->dev->name, pci_name(pdev), pdev->irq);
3763 return err;
3766 init_waitqueue_head (&sp->msi_wait);
3767 sp->msi_detected = 0;
3769 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3770 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3771 val64 |= SCHED_INT_CTRL_TIMER_EN;
3772 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3773 writeq(val64, &bar0->scheduled_int_ctrl);
3775 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3777 if (!sp->msi_detected) {
3778 /* MSI(X) test failed, go back to INTx mode */
3779 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3780 "using MSI(X) during test\n", sp->dev->name,
3781 pci_name(pdev));
3783 err = -EOPNOTSUPP;
3786 free_irq(sp->entries[1].vector, sp);
3788 writeq(saved64, &bar0->scheduled_int_ctrl);
3790 return err;
3793 static void remove_msix_isr(struct s2io_nic *sp)
3795 int i;
3796 u16 msi_control;
3798 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3799 if (sp->s2io_entries[i].in_use ==
3800 MSIX_REGISTERED_SUCCESS) {
3801 int vector = sp->entries[i].vector;
3802 void *arg = sp->s2io_entries[i].arg;
3803 free_irq(vector, arg);
3807 kfree(sp->entries);
3808 kfree(sp->s2io_entries);
3809 sp->entries = NULL;
3810 sp->s2io_entries = NULL;
3812 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3813 msi_control &= 0xFFFE; /* Disable MSI */
3814 pci_write_config_word(sp->pdev, 0x42, msi_control);
3816 pci_disable_msix(sp->pdev);
3819 static void remove_inta_isr(struct s2io_nic *sp)
3821 struct net_device *dev = sp->dev;
3823 free_irq(sp->pdev->irq, dev);
3826 /* ********************************************************* *
3827 * Functions defined below concern the OS part of the driver *
3828 * ********************************************************* */
3831 * s2io_open - open entry point of the driver
3832 * @dev : pointer to the device structure.
3833 * Description:
3834 * This function is the open entry point of the driver. It mainly calls a
3835 * function to allocate Rx buffers and inserts them into the buffer
3836 * descriptors and then enables the Rx part of the NIC.
3837 * Return value:
3838 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3839 * file on failure.
3842 static int s2io_open(struct net_device *dev)
3844 struct s2io_nic *sp = dev->priv;
3845 int err = 0;
3848 * Make sure you have link off by default every time
3849 * Nic is initialized
3851 netif_carrier_off(dev);
3852 sp->last_link_state = 0;
3854 napi_enable(&sp->napi);
3856 if (sp->config.intr_type == MSI_X) {
3857 int ret = s2io_enable_msi_x(sp);
3859 if (!ret) {
3860 ret = s2io_test_msi(sp);
3861 /* rollback MSI-X, will re-enable during add_isr() */
3862 remove_msix_isr(sp);
3864 if (ret) {
3866 DBG_PRINT(ERR_DBG,
3867 "%s: MSI-X requested but failed to enable\n",
3868 dev->name);
3869 sp->config.intr_type = INTA;
3873 /* NAPI doesn't work well with MSI(X) */
3874 if (sp->config.intr_type != INTA) {
3875 if(sp->config.napi)
3876 sp->config.napi = 0;
3879 /* Initialize H/W and enable interrupts */
3880 err = s2io_card_up(sp);
3881 if (err) {
3882 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3883 dev->name);
3884 goto hw_init_failed;
3887 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3888 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3889 s2io_card_down(sp);
3890 err = -ENODEV;
3891 goto hw_init_failed;
3894 netif_start_queue(dev);
3895 return 0;
3897 hw_init_failed:
3898 napi_disable(&sp->napi);
3899 if (sp->config.intr_type == MSI_X) {
3900 if (sp->entries) {
3901 kfree(sp->entries);
3902 sp->mac_control.stats_info->sw_stat.mem_freed
3903 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3905 if (sp->s2io_entries) {
3906 kfree(sp->s2io_entries);
3907 sp->mac_control.stats_info->sw_stat.mem_freed
3908 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3911 return err;
3915 * s2io_close -close entry point of the driver
3916 * @dev : device pointer.
3917 * Description:
3918 * This is the stop entry point of the driver. It needs to undo exactly
3919 * whatever was done by the open entry point,thus it's usually referred to
3920 * as the close function.Among other things this function mainly stops the
3921 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3922 * Return value:
3923 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3924 * file on failure.
3927 static int s2io_close(struct net_device *dev)
3929 struct s2io_nic *sp = dev->priv;
3931 /* Return if the device is already closed *
3932 * Can happen when s2io_card_up failed in change_mtu *
3934 if (!is_s2io_card_up(sp))
3935 return 0;
3937 netif_stop_queue(dev);
3938 napi_disable(&sp->napi);
3939 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3940 s2io_card_down(sp);
3942 return 0;
3946 * s2io_xmit - Tx entry point of te driver
3947 * @skb : the socket buffer containing the Tx data.
3948 * @dev : device pointer.
3949 * Description :
3950 * This function is the Tx entry point of the driver. S2IO NIC supports
3951 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3952 * NOTE: when device cant queue the pkt,just the trans_start variable will
3953 * not be upadted.
3954 * Return value:
3955 * 0 on success & 1 on failure.
3958 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3960 struct s2io_nic *sp = dev->priv;
3961 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3962 register u64 val64;
3963 struct TxD *txdp;
3964 struct TxFIFO_element __iomem *tx_fifo;
3965 unsigned long flags;
3966 u16 vlan_tag = 0;
3967 int vlan_priority = 0;
3968 struct mac_info *mac_control;
3969 struct config_param *config;
3970 int offload_type;
3971 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3973 mac_control = &sp->mac_control;
3974 config = &sp->config;
3976 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3978 if (unlikely(skb->len <= 0)) {
3979 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3980 dev_kfree_skb_any(skb);
3981 return 0;
3984 spin_lock_irqsave(&sp->tx_lock, flags);
3985 if (!is_s2io_card_up(sp)) {
3986 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3987 dev->name);
3988 spin_unlock_irqrestore(&sp->tx_lock, flags);
3989 dev_kfree_skb(skb);
3990 return 0;
3993 queue = 0;
3994 /* Get Fifo number to Transmit based on vlan priority */
3995 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3996 vlan_tag = vlan_tx_tag_get(skb);
3997 vlan_priority = vlan_tag >> 13;
3998 queue = config->fifo_mapping[vlan_priority];
4001 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4002 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4003 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4004 list_virt_addr;
4006 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4007 /* Avoid "put" pointer going beyond "get" pointer */
4008 if (txdp->Host_Control ||
4009 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4010 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4011 netif_stop_queue(dev);
4012 dev_kfree_skb(skb);
4013 spin_unlock_irqrestore(&sp->tx_lock, flags);
4014 return 0;
4017 offload_type = s2io_offload_type(skb);
4018 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4019 txdp->Control_1 |= TXD_TCP_LSO_EN;
4020 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4022 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4023 txdp->Control_2 |=
4024 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4025 TXD_TX_CKO_UDP_EN);
4027 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4028 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4029 txdp->Control_2 |= config->tx_intr_type;
4031 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4032 txdp->Control_2 |= TXD_VLAN_ENABLE;
4033 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4036 frg_len = skb->len - skb->data_len;
4037 if (offload_type == SKB_GSO_UDP) {
4038 int ufo_size;
4040 ufo_size = s2io_udp_mss(skb);
4041 ufo_size &= ~7;
4042 txdp->Control_1 |= TXD_UFO_EN;
4043 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4044 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4045 #ifdef __BIG_ENDIAN
4046 sp->ufo_in_band_v[put_off] =
4047 (u64)skb_shinfo(skb)->ip6_frag_id;
4048 #else
4049 sp->ufo_in_band_v[put_off] =
4050 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4051 #endif
4052 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4053 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4054 sp->ufo_in_band_v,
4055 sizeof(u64), PCI_DMA_TODEVICE);
4056 if((txdp->Buffer_Pointer == 0) ||
4057 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4058 goto pci_map_failed;
4059 txdp++;
4062 txdp->Buffer_Pointer = pci_map_single
4063 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4064 if((txdp->Buffer_Pointer == 0) ||
4065 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4066 goto pci_map_failed;
4068 txdp->Host_Control = (unsigned long) skb;
4069 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4070 if (offload_type == SKB_GSO_UDP)
4071 txdp->Control_1 |= TXD_UFO_EN;
4073 frg_cnt = skb_shinfo(skb)->nr_frags;
4074 /* For fragmented SKB. */
4075 for (i = 0; i < frg_cnt; i++) {
4076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4077 /* A '0' length fragment will be ignored */
4078 if (!frag->size)
4079 continue;
4080 txdp++;
4081 txdp->Buffer_Pointer = (u64) pci_map_page
4082 (sp->pdev, frag->page, frag->page_offset,
4083 frag->size, PCI_DMA_TODEVICE);
4084 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4085 if (offload_type == SKB_GSO_UDP)
4086 txdp->Control_1 |= TXD_UFO_EN;
4088 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4090 if (offload_type == SKB_GSO_UDP)
4091 frg_cnt++; /* as Txd0 was used for inband header */
4093 tx_fifo = mac_control->tx_FIFO_start[queue];
4094 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4095 writeq(val64, &tx_fifo->TxDL_Pointer);
4097 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4098 TX_FIFO_LAST_LIST);
4099 if (offload_type)
4100 val64 |= TX_FIFO_SPECIAL_FUNC;
4102 writeq(val64, &tx_fifo->List_Control);
4104 mmiowb();
4106 put_off++;
4107 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4108 put_off = 0;
4109 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4111 /* Avoid "put" pointer going beyond "get" pointer */
4112 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4113 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4114 DBG_PRINT(TX_DBG,
4115 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4116 put_off, get_off);
4117 netif_stop_queue(dev);
4119 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4120 dev->trans_start = jiffies;
4121 spin_unlock_irqrestore(&sp->tx_lock, flags);
4123 return 0;
4124 pci_map_failed:
4125 stats->pci_map_fail_cnt++;
4126 netif_stop_queue(dev);
4127 stats->mem_freed += skb->truesize;
4128 dev_kfree_skb(skb);
4129 spin_unlock_irqrestore(&sp->tx_lock, flags);
4130 return 0;
4133 static void
4134 s2io_alarm_handle(unsigned long data)
4136 struct s2io_nic *sp = (struct s2io_nic *)data;
4137 struct net_device *dev = sp->dev;
4139 s2io_handle_errors(dev);
4140 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4143 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4145 int rxb_size, level;
4147 if (!sp->lro) {
4148 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4149 level = rx_buffer_level(sp, rxb_size, rng_n);
4151 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4152 int ret;
4153 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4154 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4155 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4156 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4157 __FUNCTION__);
4158 clear_bit(0, (&sp->tasklet_status));
4159 return -1;
4161 clear_bit(0, (&sp->tasklet_status));
4162 } else if (level == LOW)
4163 tasklet_schedule(&sp->task);
4165 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4166 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4167 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4169 return 0;
4172 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4174 struct ring_info *ring = (struct ring_info *)dev_id;
4175 struct s2io_nic *sp = ring->nic;
4177 if (!is_s2io_card_up(sp))
4178 return IRQ_HANDLED;
4180 rx_intr_handler(ring);
4181 s2io_chk_rx_buffers(sp, ring->ring_no);
4183 return IRQ_HANDLED;
4186 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4188 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4189 struct s2io_nic *sp = fifo->nic;
4191 if (!is_s2io_card_up(sp))
4192 return IRQ_HANDLED;
4194 tx_intr_handler(fifo);
4195 return IRQ_HANDLED;
4197 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4199 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4200 u64 val64;
4202 val64 = readq(&bar0->pic_int_status);
4203 if (val64 & PIC_INT_GPIO) {
4204 val64 = readq(&bar0->gpio_int_reg);
4205 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4206 (val64 & GPIO_INT_REG_LINK_UP)) {
4208 * This is unstable state so clear both up/down
4209 * interrupt and adapter to re-evaluate the link state.
4211 val64 |= GPIO_INT_REG_LINK_DOWN;
4212 val64 |= GPIO_INT_REG_LINK_UP;
4213 writeq(val64, &bar0->gpio_int_reg);
4214 val64 = readq(&bar0->gpio_int_mask);
4215 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4216 GPIO_INT_MASK_LINK_DOWN);
4217 writeq(val64, &bar0->gpio_int_mask);
4219 else if (val64 & GPIO_INT_REG_LINK_UP) {
4220 val64 = readq(&bar0->adapter_status);
4221 /* Enable Adapter */
4222 val64 = readq(&bar0->adapter_control);
4223 val64 |= ADAPTER_CNTL_EN;
4224 writeq(val64, &bar0->adapter_control);
4225 val64 |= ADAPTER_LED_ON;
4226 writeq(val64, &bar0->adapter_control);
4227 if (!sp->device_enabled_once)
4228 sp->device_enabled_once = 1;
4230 s2io_link(sp, LINK_UP);
4232 * unmask link down interrupt and mask link-up
4233 * intr
4235 val64 = readq(&bar0->gpio_int_mask);
4236 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4237 val64 |= GPIO_INT_MASK_LINK_UP;
4238 writeq(val64, &bar0->gpio_int_mask);
4240 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4241 val64 = readq(&bar0->adapter_status);
4242 s2io_link(sp, LINK_DOWN);
4243 /* Link is down so unmaks link up interrupt */
4244 val64 = readq(&bar0->gpio_int_mask);
4245 val64 &= ~GPIO_INT_MASK_LINK_UP;
4246 val64 |= GPIO_INT_MASK_LINK_DOWN;
4247 writeq(val64, &bar0->gpio_int_mask);
4249 /* turn off LED */
4250 val64 = readq(&bar0->adapter_control);
4251 val64 = val64 &(~ADAPTER_LED_ON);
4252 writeq(val64, &bar0->adapter_control);
4255 val64 = readq(&bar0->gpio_int_mask);
4259 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4260 * @value: alarm bits
4261 * @addr: address value
4262 * @cnt: counter variable
4263 * Description: Check for alarm and increment the counter
4264 * Return Value:
4265 * 1 - if alarm bit set
4266 * 0 - if alarm bit is not set
4268 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4269 unsigned long long *cnt)
4271 u64 val64;
4272 val64 = readq(addr);
4273 if ( val64 & value ) {
4274 writeq(val64, addr);
4275 (*cnt)++;
4276 return 1;
4278 return 0;
4283 * s2io_handle_errors - Xframe error indication handler
4284 * @nic: device private variable
4285 * Description: Handle alarms such as loss of link, single or
4286 * double ECC errors, critical and serious errors.
4287 * Return Value:
4288 * NONE
4290 static void s2io_handle_errors(void * dev_id)
4292 struct net_device *dev = (struct net_device *) dev_id;
4293 struct s2io_nic *sp = dev->priv;
4294 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4295 u64 temp64 = 0,val64=0;
4296 int i = 0;
4298 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4299 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4301 if (!is_s2io_card_up(sp))
4302 return;
4304 if (pci_channel_offline(sp->pdev))
4305 return;
4307 memset(&sw_stat->ring_full_cnt, 0,
4308 sizeof(sw_stat->ring_full_cnt));
4310 /* Handling the XPAK counters update */
4311 if(stats->xpak_timer_count < 72000) {
4312 /* waiting for an hour */
4313 stats->xpak_timer_count++;
4314 } else {
4315 s2io_updt_xpak_counter(dev);
4316 /* reset the count to zero */
4317 stats->xpak_timer_count = 0;
4320 /* Handling link status change error Intr */
4321 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4322 val64 = readq(&bar0->mac_rmac_err_reg);
4323 writeq(val64, &bar0->mac_rmac_err_reg);
4324 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4325 schedule_work(&sp->set_link_task);
4328 /* In case of a serious error, the device will be Reset. */
4329 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4330 &sw_stat->serious_err_cnt))
4331 goto reset;
4333 /* Check for data parity error */
4334 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4335 &sw_stat->parity_err_cnt))
4336 goto reset;
4338 /* Check for ring full counter */
4339 if (sp->device_type == XFRAME_II_DEVICE) {
4340 val64 = readq(&bar0->ring_bump_counter1);
4341 for (i=0; i<4; i++) {
4342 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4343 temp64 >>= 64 - ((i+1)*16);
4344 sw_stat->ring_full_cnt[i] += temp64;
4347 val64 = readq(&bar0->ring_bump_counter2);
4348 for (i=0; i<4; i++) {
4349 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4350 temp64 >>= 64 - ((i+1)*16);
4351 sw_stat->ring_full_cnt[i+4] += temp64;
4355 val64 = readq(&bar0->txdma_int_status);
4356 /*check for pfc_err*/
4357 if (val64 & TXDMA_PFC_INT) {
4358 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4359 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4360 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4361 &sw_stat->pfc_err_cnt))
4362 goto reset;
4363 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4364 &sw_stat->pfc_err_cnt);
4367 /*check for tda_err*/
4368 if (val64 & TXDMA_TDA_INT) {
4369 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4370 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4371 &sw_stat->tda_err_cnt))
4372 goto reset;
4373 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4374 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4376 /*check for pcc_err*/
4377 if (val64 & TXDMA_PCC_INT) {
4378 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4379 | PCC_N_SERR | PCC_6_COF_OV_ERR
4380 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4381 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4382 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4383 &sw_stat->pcc_err_cnt))
4384 goto reset;
4385 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4386 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4389 /*check for tti_err*/
4390 if (val64 & TXDMA_TTI_INT) {
4391 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4392 &sw_stat->tti_err_cnt))
4393 goto reset;
4394 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4395 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4398 /*check for lso_err*/
4399 if (val64 & TXDMA_LSO_INT) {
4400 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4401 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4402 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4403 goto reset;
4404 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4405 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4408 /*check for tpa_err*/
4409 if (val64 & TXDMA_TPA_INT) {
4410 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4411 &sw_stat->tpa_err_cnt))
4412 goto reset;
4413 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4414 &sw_stat->tpa_err_cnt);
4417 /*check for sm_err*/
4418 if (val64 & TXDMA_SM_INT) {
4419 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4420 &sw_stat->sm_err_cnt))
4421 goto reset;
4424 val64 = readq(&bar0->mac_int_status);
4425 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4426 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4427 &bar0->mac_tmac_err_reg,
4428 &sw_stat->mac_tmac_err_cnt))
4429 goto reset;
4430 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4431 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4432 &bar0->mac_tmac_err_reg,
4433 &sw_stat->mac_tmac_err_cnt);
4436 val64 = readq(&bar0->xgxs_int_status);
4437 if (val64 & XGXS_INT_STATUS_TXGXS) {
4438 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4439 &bar0->xgxs_txgxs_err_reg,
4440 &sw_stat->xgxs_txgxs_err_cnt))
4441 goto reset;
4442 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4443 &bar0->xgxs_txgxs_err_reg,
4444 &sw_stat->xgxs_txgxs_err_cnt);
4447 val64 = readq(&bar0->rxdma_int_status);
4448 if (val64 & RXDMA_INT_RC_INT_M) {
4449 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4450 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4451 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4452 goto reset;
4453 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4454 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4455 &sw_stat->rc_err_cnt);
4456 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4457 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4458 &sw_stat->prc_pcix_err_cnt))
4459 goto reset;
4460 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4461 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4462 &sw_stat->prc_pcix_err_cnt);
4465 if (val64 & RXDMA_INT_RPA_INT_M) {
4466 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4467 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4468 goto reset;
4469 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4470 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4473 if (val64 & RXDMA_INT_RDA_INT_M) {
4474 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4475 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4476 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4477 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4478 goto reset;
4479 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4480 | RDA_MISC_ERR | RDA_PCIX_ERR,
4481 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4484 if (val64 & RXDMA_INT_RTI_INT_M) {
4485 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4486 &sw_stat->rti_err_cnt))
4487 goto reset;
4488 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4489 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4492 val64 = readq(&bar0->mac_int_status);
4493 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4494 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4495 &bar0->mac_rmac_err_reg,
4496 &sw_stat->mac_rmac_err_cnt))
4497 goto reset;
4498 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4499 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4500 &sw_stat->mac_rmac_err_cnt);
4503 val64 = readq(&bar0->xgxs_int_status);
4504 if (val64 & XGXS_INT_STATUS_RXGXS) {
4505 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4506 &bar0->xgxs_rxgxs_err_reg,
4507 &sw_stat->xgxs_rxgxs_err_cnt))
4508 goto reset;
4511 val64 = readq(&bar0->mc_int_status);
4512 if(val64 & MC_INT_STATUS_MC_INT) {
4513 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4514 &sw_stat->mc_err_cnt))
4515 goto reset;
4517 /* Handling Ecc errors */
4518 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4519 writeq(val64, &bar0->mc_err_reg);
4520 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4521 sw_stat->double_ecc_errs++;
4522 if (sp->device_type != XFRAME_II_DEVICE) {
4524 * Reset XframeI only if critical error
4526 if (val64 &
4527 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4528 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4529 goto reset;
4531 } else
4532 sw_stat->single_ecc_errs++;
4535 return;
4537 reset:
4538 netif_stop_queue(dev);
4539 schedule_work(&sp->rst_timer_task);
4540 sw_stat->soft_reset_cnt++;
4541 return;
4545 * s2io_isr - ISR handler of the device .
4546 * @irq: the irq of the device.
4547 * @dev_id: a void pointer to the dev structure of the NIC.
4548 * Description: This function is the ISR handler of the device. It
4549 * identifies the reason for the interrupt and calls the relevant
4550 * service routines. As a contongency measure, this ISR allocates the
4551 * recv buffers, if their numbers are below the panic value which is
4552 * presently set to 25% of the original number of rcv buffers allocated.
4553 * Return value:
4554 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4555 * IRQ_NONE: will be returned if interrupt is not from our device
4557 static irqreturn_t s2io_isr(int irq, void *dev_id)
4559 struct net_device *dev = (struct net_device *) dev_id;
4560 struct s2io_nic *sp = dev->priv;
4561 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4562 int i;
4563 u64 reason = 0;
4564 struct mac_info *mac_control;
4565 struct config_param *config;
4567 /* Pretend we handled any irq's from a disconnected card */
4568 if (pci_channel_offline(sp->pdev))
4569 return IRQ_NONE;
4571 if (!is_s2io_card_up(sp))
4572 return IRQ_NONE;
4574 mac_control = &sp->mac_control;
4575 config = &sp->config;
4578 * Identify the cause for interrupt and call the appropriate
4579 * interrupt handler. Causes for the interrupt could be;
4580 * 1. Rx of packet.
4581 * 2. Tx complete.
4582 * 3. Link down.
4584 reason = readq(&bar0->general_int_status);
4586 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4587 /* Nothing much can be done. Get out */
4588 return IRQ_HANDLED;
4591 if (reason & (GEN_INTR_RXTRAFFIC |
4592 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4594 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4596 if (config->napi) {
4597 if (reason & GEN_INTR_RXTRAFFIC) {
4598 if (likely(netif_rx_schedule_prep(dev,
4599 &sp->napi))) {
4600 __netif_rx_schedule(dev, &sp->napi);
4601 writeq(S2IO_MINUS_ONE,
4602 &bar0->rx_traffic_mask);
4603 } else
4604 writeq(S2IO_MINUS_ONE,
4605 &bar0->rx_traffic_int);
4607 } else {
4609 * rx_traffic_int reg is an R1 register, writing all 1's
4610 * will ensure that the actual interrupt causing bit
4611 * get's cleared and hence a read can be avoided.
4613 if (reason & GEN_INTR_RXTRAFFIC)
4614 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4616 for (i = 0; i < config->rx_ring_num; i++)
4617 rx_intr_handler(&mac_control->rings[i]);
4621 * tx_traffic_int reg is an R1 register, writing all 1's
4622 * will ensure that the actual interrupt causing bit get's
4623 * cleared and hence a read can be avoided.
4625 if (reason & GEN_INTR_TXTRAFFIC)
4626 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4628 for (i = 0; i < config->tx_fifo_num; i++)
4629 tx_intr_handler(&mac_control->fifos[i]);
4631 if (reason & GEN_INTR_TXPIC)
4632 s2io_txpic_intr_handle(sp);
4635 * Reallocate the buffers from the interrupt handler itself.
4637 if (!config->napi) {
4638 for (i = 0; i < config->rx_ring_num; i++)
4639 s2io_chk_rx_buffers(sp, i);
4641 writeq(sp->general_int_mask, &bar0->general_int_mask);
4642 readl(&bar0->general_int_status);
4644 return IRQ_HANDLED;
4647 else if (!reason) {
4648 /* The interrupt was not raised by us */
4649 return IRQ_NONE;
4652 return IRQ_HANDLED;
4656 * s2io_updt_stats -
4658 static void s2io_updt_stats(struct s2io_nic *sp)
4660 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4661 u64 val64;
4662 int cnt = 0;
4664 if (is_s2io_card_up(sp)) {
4665 /* Apprx 30us on a 133 MHz bus */
4666 val64 = SET_UPDT_CLICKS(10) |
4667 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4668 writeq(val64, &bar0->stat_cfg);
4669 do {
4670 udelay(100);
4671 val64 = readq(&bar0->stat_cfg);
4672 if (!(val64 & s2BIT(0)))
4673 break;
4674 cnt++;
4675 if (cnt == 5)
4676 break; /* Updt failed */
4677 } while(1);
4682 * s2io_get_stats - Updates the device statistics structure.
4683 * @dev : pointer to the device structure.
4684 * Description:
4685 * This function updates the device statistics structure in the s2io_nic
4686 * structure and returns a pointer to the same.
4687 * Return value:
4688 * pointer to the updated net_device_stats structure.
4691 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4693 struct s2io_nic *sp = dev->priv;
4694 struct mac_info *mac_control;
4695 struct config_param *config;
4698 mac_control = &sp->mac_control;
4699 config = &sp->config;
4701 /* Configure Stats for immediate updt */
4702 s2io_updt_stats(sp);
4704 sp->stats.tx_packets =
4705 le32_to_cpu(mac_control->stats_info->tmac_frms);
4706 sp->stats.tx_errors =
4707 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4708 sp->stats.rx_errors =
4709 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4710 sp->stats.multicast =
4711 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4712 sp->stats.rx_length_errors =
4713 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4715 return (&sp->stats);
4719 * s2io_set_multicast - entry point for multicast address enable/disable.
4720 * @dev : pointer to the device structure
4721 * Description:
4722 * This function is a driver entry point which gets called by the kernel
4723 * whenever multicast addresses must be enabled/disabled. This also gets
4724 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4725 * determine, if multicast address must be enabled or if promiscuous mode
4726 * is to be disabled etc.
4727 * Return value:
4728 * void.
4731 static void s2io_set_multicast(struct net_device *dev)
4733 int i, j, prev_cnt;
4734 struct dev_mc_list *mclist;
4735 struct s2io_nic *sp = dev->priv;
4736 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4737 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4738 0xfeffffffffffULL;
4739 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4740 void __iomem *add;
4742 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4743 /* Enable all Multicast addresses */
4744 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4745 &bar0->rmac_addr_data0_mem);
4746 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4747 &bar0->rmac_addr_data1_mem);
4748 val64 = RMAC_ADDR_CMD_MEM_WE |
4749 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4750 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4751 writeq(val64, &bar0->rmac_addr_cmd_mem);
4752 /* Wait till command completes */
4753 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4754 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4755 S2IO_BIT_RESET);
4757 sp->m_cast_flg = 1;
4758 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4759 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4760 /* Disable all Multicast addresses */
4761 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4762 &bar0->rmac_addr_data0_mem);
4763 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4764 &bar0->rmac_addr_data1_mem);
4765 val64 = RMAC_ADDR_CMD_MEM_WE |
4766 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4767 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4768 writeq(val64, &bar0->rmac_addr_cmd_mem);
4769 /* Wait till command completes */
4770 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4771 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4772 S2IO_BIT_RESET);
4774 sp->m_cast_flg = 0;
4775 sp->all_multi_pos = 0;
4778 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4779 /* Put the NIC into promiscuous mode */
4780 add = &bar0->mac_cfg;
4781 val64 = readq(&bar0->mac_cfg);
4782 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4784 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4785 writel((u32) val64, add);
4786 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4787 writel((u32) (val64 >> 32), (add + 4));
4789 if (vlan_tag_strip != 1) {
4790 val64 = readq(&bar0->rx_pa_cfg);
4791 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4792 writeq(val64, &bar0->rx_pa_cfg);
4793 vlan_strip_flag = 0;
4796 val64 = readq(&bar0->mac_cfg);
4797 sp->promisc_flg = 1;
4798 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4799 dev->name);
4800 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4801 /* Remove the NIC from promiscuous mode */
4802 add = &bar0->mac_cfg;
4803 val64 = readq(&bar0->mac_cfg);
4804 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4807 writel((u32) val64, add);
4808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4809 writel((u32) (val64 >> 32), (add + 4));
4811 if (vlan_tag_strip != 0) {
4812 val64 = readq(&bar0->rx_pa_cfg);
4813 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4814 writeq(val64, &bar0->rx_pa_cfg);
4815 vlan_strip_flag = 1;
4818 val64 = readq(&bar0->mac_cfg);
4819 sp->promisc_flg = 0;
4820 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4821 dev->name);
4824 /* Update individual M_CAST address list */
4825 if ((!sp->m_cast_flg) && dev->mc_count) {
4826 if (dev->mc_count >
4827 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4828 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4829 dev->name);
4830 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4831 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4832 return;
4835 prev_cnt = sp->mc_addr_count;
4836 sp->mc_addr_count = dev->mc_count;
4838 /* Clear out the previous list of Mc in the H/W. */
4839 for (i = 0; i < prev_cnt; i++) {
4840 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4841 &bar0->rmac_addr_data0_mem);
4842 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4843 &bar0->rmac_addr_data1_mem);
4844 val64 = RMAC_ADDR_CMD_MEM_WE |
4845 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4846 RMAC_ADDR_CMD_MEM_OFFSET
4847 (MAC_MC_ADDR_START_OFFSET + i);
4848 writeq(val64, &bar0->rmac_addr_cmd_mem);
4850 /* Wait for command completes */
4851 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4852 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4853 S2IO_BIT_RESET)) {
4854 DBG_PRINT(ERR_DBG, "%s: Adding ",
4855 dev->name);
4856 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4857 return;
4861 /* Create the new Rx filter list and update the same in H/W. */
4862 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4863 i++, mclist = mclist->next) {
4864 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4865 ETH_ALEN);
4866 mac_addr = 0;
4867 for (j = 0; j < ETH_ALEN; j++) {
4868 mac_addr |= mclist->dmi_addr[j];
4869 mac_addr <<= 8;
4871 mac_addr >>= 8;
4872 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4873 &bar0->rmac_addr_data0_mem);
4874 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4875 &bar0->rmac_addr_data1_mem);
4876 val64 = RMAC_ADDR_CMD_MEM_WE |
4877 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4878 RMAC_ADDR_CMD_MEM_OFFSET
4879 (i + MAC_MC_ADDR_START_OFFSET);
4880 writeq(val64, &bar0->rmac_addr_cmd_mem);
4882 /* Wait for command completes */
4883 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4884 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4885 S2IO_BIT_RESET)) {
4886 DBG_PRINT(ERR_DBG, "%s: Adding ",
4887 dev->name);
4888 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4889 return;
4895 /* add unicast MAC address to CAM */
4896 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4898 u64 val64;
4899 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4901 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4902 &bar0->rmac_addr_data0_mem);
4904 val64 =
4905 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906 RMAC_ADDR_CMD_MEM_OFFSET(off);
4907 writeq(val64, &bar0->rmac_addr_cmd_mem);
4909 /* Wait till command completes */
4910 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4911 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4912 S2IO_BIT_RESET)) {
4913 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4914 return FAILURE;
4916 return SUCCESS;
4920 * s2io_set_mac_addr driver entry point
4922 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4924 struct sockaddr *addr = p;
4926 if (!is_valid_ether_addr(addr->sa_data))
4927 return -EINVAL;
4929 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4931 /* store the MAC address in CAM */
4932 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4936 * do_s2io_prog_unicast - Programs the Xframe mac address
4937 * @dev : pointer to the device structure.
4938 * @addr: a uchar pointer to the new mac address which is to be set.
4939 * Description : This procedure will program the Xframe to receive
4940 * frames with new Mac Address
4941 * Return value: SUCCESS on success and an appropriate (-)ve integer
4942 * as defined in errno.h file on failure.
4944 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4946 struct s2io_nic *sp = dev->priv;
4947 register u64 mac_addr = 0, perm_addr = 0;
4948 int i;
4951 * Set the new MAC address as the new unicast filter and reflect this
4952 * change on the device address registered with the OS. It will be
4953 * at offset 0.
4955 for (i = 0; i < ETH_ALEN; i++) {
4956 mac_addr <<= 8;
4957 mac_addr |= addr[i];
4958 perm_addr <<= 8;
4959 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4962 /* check if the dev_addr is different than perm_addr */
4963 if (mac_addr == perm_addr)
4964 return SUCCESS;
4966 /* Update the internal structure with this new mac address */
4967 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4968 return (do_s2io_add_unicast(sp, mac_addr, 0));
4972 * s2io_ethtool_sset - Sets different link parameters.
4973 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4974 * @info: pointer to the structure with parameters given by ethtool to set
4975 * link information.
4976 * Description:
4977 * The function sets different link parameters provided by the user onto
4978 * the NIC.
4979 * Return value:
4980 * 0 on success.
4983 static int s2io_ethtool_sset(struct net_device *dev,
4984 struct ethtool_cmd *info)
4986 struct s2io_nic *sp = dev->priv;
4987 if ((info->autoneg == AUTONEG_ENABLE) ||
4988 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4989 return -EINVAL;
4990 else {
4991 s2io_close(sp->dev);
4992 s2io_open(sp->dev);
4995 return 0;
4999 * s2io_ethtol_gset - Return link specific information.
5000 * @sp : private member of the device structure, pointer to the
5001 * s2io_nic structure.
5002 * @info : pointer to the structure with parameters given by ethtool
5003 * to return link information.
5004 * Description:
5005 * Returns link specific information like speed, duplex etc.. to ethtool.
5006 * Return value :
5007 * return 0 on success.
5010 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5012 struct s2io_nic *sp = dev->priv;
5013 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5014 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5015 info->port = PORT_FIBRE;
5017 /* info->transceiver */
5018 info->transceiver = XCVR_EXTERNAL;
5020 if (netif_carrier_ok(sp->dev)) {
5021 info->speed = 10000;
5022 info->duplex = DUPLEX_FULL;
5023 } else {
5024 info->speed = -1;
5025 info->duplex = -1;
5028 info->autoneg = AUTONEG_DISABLE;
5029 return 0;
5033 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5034 * @sp : private member of the device structure, which is a pointer to the
5035 * s2io_nic structure.
5036 * @info : pointer to the structure with parameters given by ethtool to
5037 * return driver information.
5038 * Description:
5039 * Returns driver specefic information like name, version etc.. to ethtool.
5040 * Return value:
5041 * void
5044 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5045 struct ethtool_drvinfo *info)
5047 struct s2io_nic *sp = dev->priv;
5049 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5050 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5051 strncpy(info->fw_version, "", sizeof(info->fw_version));
5052 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5053 info->regdump_len = XENA_REG_SPACE;
5054 info->eedump_len = XENA_EEPROM_SPACE;
5058 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5059 * @sp: private member of the device structure, which is a pointer to the
5060 * s2io_nic structure.
5061 * @regs : pointer to the structure with parameters given by ethtool for
5062 * dumping the registers.
5063 * @reg_space: The input argumnet into which all the registers are dumped.
5064 * Description:
5065 * Dumps the entire register space of xFrame NIC into the user given
5066 * buffer area.
5067 * Return value :
5068 * void .
5071 static void s2io_ethtool_gregs(struct net_device *dev,
5072 struct ethtool_regs *regs, void *space)
5074 int i;
5075 u64 reg;
5076 u8 *reg_space = (u8 *) space;
5077 struct s2io_nic *sp = dev->priv;
5079 regs->len = XENA_REG_SPACE;
5080 regs->version = sp->pdev->subsystem_device;
5082 for (i = 0; i < regs->len; i += 8) {
5083 reg = readq(sp->bar0 + i);
5084 memcpy((reg_space + i), &reg, 8);
5089 * s2io_phy_id - timer function that alternates adapter LED.
5090 * @data : address of the private member of the device structure, which
5091 * is a pointer to the s2io_nic structure, provided as an u32.
5092 * Description: This is actually the timer function that alternates the
5093 * adapter LED bit of the adapter control bit to set/reset every time on
5094 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5095 * once every second.
5097 static void s2io_phy_id(unsigned long data)
5099 struct s2io_nic *sp = (struct s2io_nic *) data;
5100 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5101 u64 val64 = 0;
5102 u16 subid;
5104 subid = sp->pdev->subsystem_device;
5105 if ((sp->device_type == XFRAME_II_DEVICE) ||
5106 ((subid & 0xFF) >= 0x07)) {
5107 val64 = readq(&bar0->gpio_control);
5108 val64 ^= GPIO_CTRL_GPIO_0;
5109 writeq(val64, &bar0->gpio_control);
5110 } else {
5111 val64 = readq(&bar0->adapter_control);
5112 val64 ^= ADAPTER_LED_ON;
5113 writeq(val64, &bar0->adapter_control);
5116 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5120 * s2io_ethtool_idnic - To physically identify the nic on the system.
5121 * @sp : private member of the device structure, which is a pointer to the
5122 * s2io_nic structure.
5123 * @id : pointer to the structure with identification parameters given by
5124 * ethtool.
5125 * Description: Used to physically identify the NIC on the system.
5126 * The Link LED will blink for a time specified by the user for
5127 * identification.
5128 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5129 * identification is possible only if it's link is up.
5130 * Return value:
5131 * int , returns 0 on success
5134 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5136 u64 val64 = 0, last_gpio_ctrl_val;
5137 struct s2io_nic *sp = dev->priv;
5138 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5139 u16 subid;
5141 subid = sp->pdev->subsystem_device;
5142 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5143 if ((sp->device_type == XFRAME_I_DEVICE) &&
5144 ((subid & 0xFF) < 0x07)) {
5145 val64 = readq(&bar0->adapter_control);
5146 if (!(val64 & ADAPTER_CNTL_EN)) {
5147 printk(KERN_ERR
5148 "Adapter Link down, cannot blink LED\n");
5149 return -EFAULT;
5152 if (sp->id_timer.function == NULL) {
5153 init_timer(&sp->id_timer);
5154 sp->id_timer.function = s2io_phy_id;
5155 sp->id_timer.data = (unsigned long) sp;
5157 mod_timer(&sp->id_timer, jiffies);
5158 if (data)
5159 msleep_interruptible(data * HZ);
5160 else
5161 msleep_interruptible(MAX_FLICKER_TIME);
5162 del_timer_sync(&sp->id_timer);
5164 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5165 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5166 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5169 return 0;
5172 static void s2io_ethtool_gringparam(struct net_device *dev,
5173 struct ethtool_ringparam *ering)
5175 struct s2io_nic *sp = dev->priv;
5176 int i,tx_desc_count=0,rx_desc_count=0;
5178 if (sp->rxd_mode == RXD_MODE_1)
5179 ering->rx_max_pending = MAX_RX_DESC_1;
5180 else if (sp->rxd_mode == RXD_MODE_3B)
5181 ering->rx_max_pending = MAX_RX_DESC_2;
5183 ering->tx_max_pending = MAX_TX_DESC;
5184 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5185 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5187 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5188 ering->tx_pending = tx_desc_count;
5189 rx_desc_count = 0;
5190 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5191 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5193 ering->rx_pending = rx_desc_count;
5195 ering->rx_mini_max_pending = 0;
5196 ering->rx_mini_pending = 0;
5197 if(sp->rxd_mode == RXD_MODE_1)
5198 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5199 else if (sp->rxd_mode == RXD_MODE_3B)
5200 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5201 ering->rx_jumbo_pending = rx_desc_count;
5205 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5206 * @sp : private member of the device structure, which is a pointer to the
5207 * s2io_nic structure.
5208 * @ep : pointer to the structure with pause parameters given by ethtool.
5209 * Description:
5210 * Returns the Pause frame generation and reception capability of the NIC.
5211 * Return value:
5212 * void
5214 static void s2io_ethtool_getpause_data(struct net_device *dev,
5215 struct ethtool_pauseparam *ep)
5217 u64 val64;
5218 struct s2io_nic *sp = dev->priv;
5219 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5221 val64 = readq(&bar0->rmac_pause_cfg);
5222 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5223 ep->tx_pause = TRUE;
5224 if (val64 & RMAC_PAUSE_RX_ENABLE)
5225 ep->rx_pause = TRUE;
5226 ep->autoneg = FALSE;
5230 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5231 * @sp : private member of the device structure, which is a pointer to the
5232 * s2io_nic structure.
5233 * @ep : pointer to the structure with pause parameters given by ethtool.
5234 * Description:
5235 * It can be used to set or reset Pause frame generation or reception
5236 * support of the NIC.
5237 * Return value:
5238 * int, returns 0 on Success
5241 static int s2io_ethtool_setpause_data(struct net_device *dev,
5242 struct ethtool_pauseparam *ep)
5244 u64 val64;
5245 struct s2io_nic *sp = dev->priv;
5246 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5248 val64 = readq(&bar0->rmac_pause_cfg);
5249 if (ep->tx_pause)
5250 val64 |= RMAC_PAUSE_GEN_ENABLE;
5251 else
5252 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5253 if (ep->rx_pause)
5254 val64 |= RMAC_PAUSE_RX_ENABLE;
5255 else
5256 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5257 writeq(val64, &bar0->rmac_pause_cfg);
5258 return 0;
5262 * read_eeprom - reads 4 bytes of data from user given offset.
5263 * @sp : private member of the device structure, which is a pointer to the
5264 * s2io_nic structure.
5265 * @off : offset at which the data must be written
5266 * @data : Its an output parameter where the data read at the given
5267 * offset is stored.
5268 * Description:
5269 * Will read 4 bytes of data from the user given offset and return the
5270 * read data.
5271 * NOTE: Will allow to read only part of the EEPROM visible through the
5272 * I2C bus.
5273 * Return value:
5274 * -1 on failure and 0 on success.
5277 #define S2IO_DEV_ID 5
5278 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5280 int ret = -1;
5281 u32 exit_cnt = 0;
5282 u64 val64;
5283 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5285 if (sp->device_type == XFRAME_I_DEVICE) {
5286 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5287 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5288 I2C_CONTROL_CNTL_START;
5289 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5291 while (exit_cnt < 5) {
5292 val64 = readq(&bar0->i2c_control);
5293 if (I2C_CONTROL_CNTL_END(val64)) {
5294 *data = I2C_CONTROL_GET_DATA(val64);
5295 ret = 0;
5296 break;
5298 msleep(50);
5299 exit_cnt++;
5303 if (sp->device_type == XFRAME_II_DEVICE) {
5304 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5305 SPI_CONTROL_BYTECNT(0x3) |
5306 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5307 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5308 val64 |= SPI_CONTROL_REQ;
5309 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5310 while (exit_cnt < 5) {
5311 val64 = readq(&bar0->spi_control);
5312 if (val64 & SPI_CONTROL_NACK) {
5313 ret = 1;
5314 break;
5315 } else if (val64 & SPI_CONTROL_DONE) {
5316 *data = readq(&bar0->spi_data);
5317 *data &= 0xffffff;
5318 ret = 0;
5319 break;
5321 msleep(50);
5322 exit_cnt++;
5325 return ret;
5329 * write_eeprom - actually writes the relevant part of the data value.
5330 * @sp : private member of the device structure, which is a pointer to the
5331 * s2io_nic structure.
5332 * @off : offset at which the data must be written
5333 * @data : The data that is to be written
5334 * @cnt : Number of bytes of the data that are actually to be written into
5335 * the Eeprom. (max of 3)
5336 * Description:
5337 * Actually writes the relevant part of the data value into the Eeprom
5338 * through the I2C bus.
5339 * Return value:
5340 * 0 on success, -1 on failure.
5343 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5345 int exit_cnt = 0, ret = -1;
5346 u64 val64;
5347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5349 if (sp->device_type == XFRAME_I_DEVICE) {
5350 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5351 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5352 I2C_CONTROL_CNTL_START;
5353 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5355 while (exit_cnt < 5) {
5356 val64 = readq(&bar0->i2c_control);
5357 if (I2C_CONTROL_CNTL_END(val64)) {
5358 if (!(val64 & I2C_CONTROL_NACK))
5359 ret = 0;
5360 break;
5362 msleep(50);
5363 exit_cnt++;
5367 if (sp->device_type == XFRAME_II_DEVICE) {
5368 int write_cnt = (cnt == 8) ? 0 : cnt;
5369 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5371 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5372 SPI_CONTROL_BYTECNT(write_cnt) |
5373 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5374 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5375 val64 |= SPI_CONTROL_REQ;
5376 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5377 while (exit_cnt < 5) {
5378 val64 = readq(&bar0->spi_control);
5379 if (val64 & SPI_CONTROL_NACK) {
5380 ret = 1;
5381 break;
5382 } else if (val64 & SPI_CONTROL_DONE) {
5383 ret = 0;
5384 break;
5386 msleep(50);
5387 exit_cnt++;
5390 return ret;
5392 static void s2io_vpd_read(struct s2io_nic *nic)
5394 u8 *vpd_data;
5395 u8 data;
5396 int i=0, cnt, fail = 0;
5397 int vpd_addr = 0x80;
5399 if (nic->device_type == XFRAME_II_DEVICE) {
5400 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5401 vpd_addr = 0x80;
5403 else {
5404 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5405 vpd_addr = 0x50;
5407 strcpy(nic->serial_num, "NOT AVAILABLE");
5409 vpd_data = kmalloc(256, GFP_KERNEL);
5410 if (!vpd_data) {
5411 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5412 return;
5414 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5416 for (i = 0; i < 256; i +=4 ) {
5417 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5418 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5419 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5420 for (cnt = 0; cnt <5; cnt++) {
5421 msleep(2);
5422 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5423 if (data == 0x80)
5424 break;
5426 if (cnt >= 5) {
5427 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5428 fail = 1;
5429 break;
5431 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5432 (u32 *)&vpd_data[i]);
5435 if(!fail) {
5436 /* read serial number of adapter */
5437 for (cnt = 0; cnt < 256; cnt++) {
5438 if ((vpd_data[cnt] == 'S') &&
5439 (vpd_data[cnt+1] == 'N') &&
5440 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5441 memset(nic->serial_num, 0, VPD_STRING_LEN);
5442 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5443 vpd_data[cnt+2]);
5444 break;
5449 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5450 memset(nic->product_name, 0, vpd_data[1]);
5451 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5453 kfree(vpd_data);
5454 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5458 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5459 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5460 * @eeprom : pointer to the user level structure provided by ethtool,
5461 * containing all relevant information.
5462 * @data_buf : user defined value to be written into Eeprom.
5463 * Description: Reads the values stored in the Eeprom at given offset
5464 * for a given length. Stores these values int the input argument data
5465 * buffer 'data_buf' and returns these to the caller (ethtool.)
5466 * Return value:
5467 * int 0 on success
5470 static int s2io_ethtool_geeprom(struct net_device *dev,
5471 struct ethtool_eeprom *eeprom, u8 * data_buf)
5473 u32 i, valid;
5474 u64 data;
5475 struct s2io_nic *sp = dev->priv;
5477 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5479 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5480 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5482 for (i = 0; i < eeprom->len; i += 4) {
5483 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5484 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5485 return -EFAULT;
5487 valid = INV(data);
5488 memcpy((data_buf + i), &valid, 4);
5490 return 0;
5494 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5495 * @sp : private member of the device structure, which is a pointer to the
5496 * s2io_nic structure.
5497 * @eeprom : pointer to the user level structure provided by ethtool,
5498 * containing all relevant information.
5499 * @data_buf ; user defined value to be written into Eeprom.
5500 * Description:
5501 * Tries to write the user provided value in the Eeprom, at the offset
5502 * given by the user.
5503 * Return value:
5504 * 0 on success, -EFAULT on failure.
5507 static int s2io_ethtool_seeprom(struct net_device *dev,
5508 struct ethtool_eeprom *eeprom,
5509 u8 * data_buf)
5511 int len = eeprom->len, cnt = 0;
5512 u64 valid = 0, data;
5513 struct s2io_nic *sp = dev->priv;
5515 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5516 DBG_PRINT(ERR_DBG,
5517 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5518 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5519 eeprom->magic);
5520 return -EFAULT;
5523 while (len) {
5524 data = (u32) data_buf[cnt] & 0x000000FF;
5525 if (data) {
5526 valid = (u32) (data << 24);
5527 } else
5528 valid = data;
5530 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5531 DBG_PRINT(ERR_DBG,
5532 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5533 DBG_PRINT(ERR_DBG,
5534 "write into the specified offset\n");
5535 return -EFAULT;
5537 cnt++;
5538 len--;
5541 return 0;
5545 * s2io_register_test - reads and writes into all clock domains.
5546 * @sp : private member of the device structure, which is a pointer to the
5547 * s2io_nic structure.
5548 * @data : variable that returns the result of each of the test conducted b
5549 * by the driver.
5550 * Description:
5551 * Read and write into all clock domains. The NIC has 3 clock domains,
5552 * see that registers in all the three regions are accessible.
5553 * Return value:
5554 * 0 on success.
5557 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5559 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5560 u64 val64 = 0, exp_val;
5561 int fail = 0;
5563 val64 = readq(&bar0->pif_rd_swapper_fb);
5564 if (val64 != 0x123456789abcdefULL) {
5565 fail = 1;
5566 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5569 val64 = readq(&bar0->rmac_pause_cfg);
5570 if (val64 != 0xc000ffff00000000ULL) {
5571 fail = 1;
5572 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5575 val64 = readq(&bar0->rx_queue_cfg);
5576 if (sp->device_type == XFRAME_II_DEVICE)
5577 exp_val = 0x0404040404040404ULL;
5578 else
5579 exp_val = 0x0808080808080808ULL;
5580 if (val64 != exp_val) {
5581 fail = 1;
5582 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5585 val64 = readq(&bar0->xgxs_efifo_cfg);
5586 if (val64 != 0x000000001923141EULL) {
5587 fail = 1;
5588 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5591 val64 = 0x5A5A5A5A5A5A5A5AULL;
5592 writeq(val64, &bar0->xmsi_data);
5593 val64 = readq(&bar0->xmsi_data);
5594 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5595 fail = 1;
5596 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5599 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5600 writeq(val64, &bar0->xmsi_data);
5601 val64 = readq(&bar0->xmsi_data);
5602 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5603 fail = 1;
5604 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5607 *data = fail;
5608 return fail;
5612 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5613 * @sp : private member of the device structure, which is a pointer to the
5614 * s2io_nic structure.
5615 * @data:variable that returns the result of each of the test conducted by
5616 * the driver.
5617 * Description:
5618 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5619 * register.
5620 * Return value:
5621 * 0 on success.
5624 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5626 int fail = 0;
5627 u64 ret_data, org_4F0, org_7F0;
5628 u8 saved_4F0 = 0, saved_7F0 = 0;
5629 struct net_device *dev = sp->dev;
5631 /* Test Write Error at offset 0 */
5632 /* Note that SPI interface allows write access to all areas
5633 * of EEPROM. Hence doing all negative testing only for Xframe I.
5635 if (sp->device_type == XFRAME_I_DEVICE)
5636 if (!write_eeprom(sp, 0, 0, 3))
5637 fail = 1;
5639 /* Save current values at offsets 0x4F0 and 0x7F0 */
5640 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5641 saved_4F0 = 1;
5642 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5643 saved_7F0 = 1;
5645 /* Test Write at offset 4f0 */
5646 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5647 fail = 1;
5648 if (read_eeprom(sp, 0x4F0, &ret_data))
5649 fail = 1;
5651 if (ret_data != 0x012345) {
5652 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5653 "Data written %llx Data read %llx\n",
5654 dev->name, (unsigned long long)0x12345,
5655 (unsigned long long)ret_data);
5656 fail = 1;
5659 /* Reset the EEPROM data go FFFF */
5660 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5662 /* Test Write Request Error at offset 0x7c */
5663 if (sp->device_type == XFRAME_I_DEVICE)
5664 if (!write_eeprom(sp, 0x07C, 0, 3))
5665 fail = 1;
5667 /* Test Write Request at offset 0x7f0 */
5668 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5669 fail = 1;
5670 if (read_eeprom(sp, 0x7F0, &ret_data))
5671 fail = 1;
5673 if (ret_data != 0x012345) {
5674 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5675 "Data written %llx Data read %llx\n",
5676 dev->name, (unsigned long long)0x12345,
5677 (unsigned long long)ret_data);
5678 fail = 1;
5681 /* Reset the EEPROM data go FFFF */
5682 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5684 if (sp->device_type == XFRAME_I_DEVICE) {
5685 /* Test Write Error at offset 0x80 */
5686 if (!write_eeprom(sp, 0x080, 0, 3))
5687 fail = 1;
5689 /* Test Write Error at offset 0xfc */
5690 if (!write_eeprom(sp, 0x0FC, 0, 3))
5691 fail = 1;
5693 /* Test Write Error at offset 0x100 */
5694 if (!write_eeprom(sp, 0x100, 0, 3))
5695 fail = 1;
5697 /* Test Write Error at offset 4ec */
5698 if (!write_eeprom(sp, 0x4EC, 0, 3))
5699 fail = 1;
5702 /* Restore values at offsets 0x4F0 and 0x7F0 */
5703 if (saved_4F0)
5704 write_eeprom(sp, 0x4F0, org_4F0, 3);
5705 if (saved_7F0)
5706 write_eeprom(sp, 0x7F0, org_7F0, 3);
5708 *data = fail;
5709 return fail;
5713 * s2io_bist_test - invokes the MemBist test of the card .
5714 * @sp : private member of the device structure, which is a pointer to the
5715 * s2io_nic structure.
5716 * @data:variable that returns the result of each of the test conducted by
5717 * the driver.
5718 * Description:
5719 * This invokes the MemBist test of the card. We give around
5720 * 2 secs time for the Test to complete. If it's still not complete
5721 * within this peiod, we consider that the test failed.
5722 * Return value:
5723 * 0 on success and -1 on failure.
5726 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5728 u8 bist = 0;
5729 int cnt = 0, ret = -1;
5731 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5732 bist |= PCI_BIST_START;
5733 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5735 while (cnt < 20) {
5736 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5737 if (!(bist & PCI_BIST_START)) {
5738 *data = (bist & PCI_BIST_CODE_MASK);
5739 ret = 0;
5740 break;
5742 msleep(100);
5743 cnt++;
5746 return ret;
5750 * s2io-link_test - verifies the link state of the nic
5751 * @sp ; private member of the device structure, which is a pointer to the
5752 * s2io_nic structure.
5753 * @data: variable that returns the result of each of the test conducted by
5754 * the driver.
5755 * Description:
5756 * The function verifies the link state of the NIC and updates the input
5757 * argument 'data' appropriately.
5758 * Return value:
5759 * 0 on success.
5762 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5764 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5765 u64 val64;
5767 val64 = readq(&bar0->adapter_status);
5768 if(!(LINK_IS_UP(val64)))
5769 *data = 1;
5770 else
5771 *data = 0;
5773 return *data;
5777 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5778 * @sp - private member of the device structure, which is a pointer to the
5779 * s2io_nic structure.
5780 * @data - variable that returns the result of each of the test
5781 * conducted by the driver.
5782 * Description:
5783 * This is one of the offline test that tests the read and write
5784 * access to the RldRam chip on the NIC.
5785 * Return value:
5786 * 0 on success.
5789 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5791 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5792 u64 val64;
5793 int cnt, iteration = 0, test_fail = 0;
5795 val64 = readq(&bar0->adapter_control);
5796 val64 &= ~ADAPTER_ECC_EN;
5797 writeq(val64, &bar0->adapter_control);
5799 val64 = readq(&bar0->mc_rldram_test_ctrl);
5800 val64 |= MC_RLDRAM_TEST_MODE;
5801 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5803 val64 = readq(&bar0->mc_rldram_mrs);
5804 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5805 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5807 val64 |= MC_RLDRAM_MRS_ENABLE;
5808 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5810 while (iteration < 2) {
5811 val64 = 0x55555555aaaa0000ULL;
5812 if (iteration == 1) {
5813 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5815 writeq(val64, &bar0->mc_rldram_test_d0);
5817 val64 = 0xaaaa5a5555550000ULL;
5818 if (iteration == 1) {
5819 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5821 writeq(val64, &bar0->mc_rldram_test_d1);
5823 val64 = 0x55aaaaaaaa5a0000ULL;
5824 if (iteration == 1) {
5825 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5827 writeq(val64, &bar0->mc_rldram_test_d2);
5829 val64 = (u64) (0x0000003ffffe0100ULL);
5830 writeq(val64, &bar0->mc_rldram_test_add);
5832 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5833 MC_RLDRAM_TEST_GO;
5834 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5836 for (cnt = 0; cnt < 5; cnt++) {
5837 val64 = readq(&bar0->mc_rldram_test_ctrl);
5838 if (val64 & MC_RLDRAM_TEST_DONE)
5839 break;
5840 msleep(200);
5843 if (cnt == 5)
5844 break;
5846 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5847 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5849 for (cnt = 0; cnt < 5; cnt++) {
5850 val64 = readq(&bar0->mc_rldram_test_ctrl);
5851 if (val64 & MC_RLDRAM_TEST_DONE)
5852 break;
5853 msleep(500);
5856 if (cnt == 5)
5857 break;
5859 val64 = readq(&bar0->mc_rldram_test_ctrl);
5860 if (!(val64 & MC_RLDRAM_TEST_PASS))
5861 test_fail = 1;
5863 iteration++;
5866 *data = test_fail;
5868 /* Bring the adapter out of test mode */
5869 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5871 return test_fail;
5875 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5876 * @sp : private member of the device structure, which is a pointer to the
5877 * s2io_nic structure.
5878 * @ethtest : pointer to a ethtool command specific structure that will be
5879 * returned to the user.
5880 * @data : variable that returns the result of each of the test
5881 * conducted by the driver.
5882 * Description:
5883 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5884 * the health of the card.
5885 * Return value:
5886 * void
5889 static void s2io_ethtool_test(struct net_device *dev,
5890 struct ethtool_test *ethtest,
5891 uint64_t * data)
5893 struct s2io_nic *sp = dev->priv;
5894 int orig_state = netif_running(sp->dev);
5896 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5897 /* Offline Tests. */
5898 if (orig_state)
5899 s2io_close(sp->dev);
5901 if (s2io_register_test(sp, &data[0]))
5902 ethtest->flags |= ETH_TEST_FL_FAILED;
5904 s2io_reset(sp);
5906 if (s2io_rldram_test(sp, &data[3]))
5907 ethtest->flags |= ETH_TEST_FL_FAILED;
5909 s2io_reset(sp);
5911 if (s2io_eeprom_test(sp, &data[1]))
5912 ethtest->flags |= ETH_TEST_FL_FAILED;
5914 if (s2io_bist_test(sp, &data[4]))
5915 ethtest->flags |= ETH_TEST_FL_FAILED;
5917 if (orig_state)
5918 s2io_open(sp->dev);
5920 data[2] = 0;
5921 } else {
5922 /* Online Tests. */
5923 if (!orig_state) {
5924 DBG_PRINT(ERR_DBG,
5925 "%s: is not up, cannot run test\n",
5926 dev->name);
5927 data[0] = -1;
5928 data[1] = -1;
5929 data[2] = -1;
5930 data[3] = -1;
5931 data[4] = -1;
5934 if (s2io_link_test(sp, &data[2]))
5935 ethtest->flags |= ETH_TEST_FL_FAILED;
5937 data[0] = 0;
5938 data[1] = 0;
5939 data[3] = 0;
5940 data[4] = 0;
5944 static void s2io_get_ethtool_stats(struct net_device *dev,
5945 struct ethtool_stats *estats,
5946 u64 * tmp_stats)
5948 int i = 0, k;
5949 struct s2io_nic *sp = dev->priv;
5950 struct stat_block *stat_info = sp->mac_control.stats_info;
5952 s2io_updt_stats(sp);
5953 tmp_stats[i++] =
5954 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5955 le32_to_cpu(stat_info->tmac_frms);
5956 tmp_stats[i++] =
5957 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5958 le32_to_cpu(stat_info->tmac_data_octets);
5959 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5960 tmp_stats[i++] =
5961 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5962 le32_to_cpu(stat_info->tmac_mcst_frms);
5963 tmp_stats[i++] =
5964 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5965 le32_to_cpu(stat_info->tmac_bcst_frms);
5966 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5967 tmp_stats[i++] =
5968 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_ttl_octets);
5970 tmp_stats[i++] =
5971 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_ucst_frms);
5973 tmp_stats[i++] =
5974 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5975 le32_to_cpu(stat_info->tmac_nucst_frms);
5976 tmp_stats[i++] =
5977 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5978 le32_to_cpu(stat_info->tmac_any_err_frms);
5979 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5980 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5981 tmp_stats[i++] =
5982 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5983 le32_to_cpu(stat_info->tmac_vld_ip);
5984 tmp_stats[i++] =
5985 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5986 le32_to_cpu(stat_info->tmac_drop_ip);
5987 tmp_stats[i++] =
5988 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5989 le32_to_cpu(stat_info->tmac_icmp);
5990 tmp_stats[i++] =
5991 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5992 le32_to_cpu(stat_info->tmac_rst_tcp);
5993 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5994 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5995 le32_to_cpu(stat_info->tmac_udp);
5996 tmp_stats[i++] =
5997 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5998 le32_to_cpu(stat_info->rmac_vld_frms);
5999 tmp_stats[i++] =
6000 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6001 le32_to_cpu(stat_info->rmac_data_octets);
6002 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6003 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6004 tmp_stats[i++] =
6005 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6006 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6007 tmp_stats[i++] =
6008 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6009 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6010 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6011 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6012 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6013 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6014 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6015 tmp_stats[i++] =
6016 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6017 le32_to_cpu(stat_info->rmac_ttl_octets);
6018 tmp_stats[i++] =
6019 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6020 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6021 tmp_stats[i++] =
6022 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6023 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6024 tmp_stats[i++] =
6025 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6026 le32_to_cpu(stat_info->rmac_discarded_frms);
6027 tmp_stats[i++] =
6028 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6029 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6030 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6031 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6032 tmp_stats[i++] =
6033 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6034 le32_to_cpu(stat_info->rmac_usized_frms);
6035 tmp_stats[i++] =
6036 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6037 le32_to_cpu(stat_info->rmac_osized_frms);
6038 tmp_stats[i++] =
6039 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6040 le32_to_cpu(stat_info->rmac_frag_frms);
6041 tmp_stats[i++] =
6042 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6043 le32_to_cpu(stat_info->rmac_jabber_frms);
6044 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6045 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6046 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6047 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6048 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6049 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6050 tmp_stats[i++] =
6051 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6052 le32_to_cpu(stat_info->rmac_ip);
6053 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6054 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6055 tmp_stats[i++] =
6056 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6057 le32_to_cpu(stat_info->rmac_drop_ip);
6058 tmp_stats[i++] =
6059 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6060 le32_to_cpu(stat_info->rmac_icmp);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6062 tmp_stats[i++] =
6063 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6064 le32_to_cpu(stat_info->rmac_udp);
6065 tmp_stats[i++] =
6066 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6067 le32_to_cpu(stat_info->rmac_err_drp_udp);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6070 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6071 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6072 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6073 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6074 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6075 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6076 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6077 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6078 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6079 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6080 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6081 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6082 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6083 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6084 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6085 tmp_stats[i++] =
6086 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6087 le32_to_cpu(stat_info->rmac_pause_cnt);
6088 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6089 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6090 tmp_stats[i++] =
6091 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6092 le32_to_cpu(stat_info->rmac_accepted_ip);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6104 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6105 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6106 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6107 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6108 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6109 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6110 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6111 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6113 /* Enhanced statistics exist only for Hercules */
6114 if(sp->device_type == XFRAME_II_DEVICE) {
6115 tmp_stats[i++] =
6116 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6117 tmp_stats[i++] =
6118 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6119 tmp_stats[i++] =
6120 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6121 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6122 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6123 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6124 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6125 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6126 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6127 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6128 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6129 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6130 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6131 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6132 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6133 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6136 tmp_stats[i++] = 0;
6137 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6138 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6139 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6140 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6141 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6142 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6143 for (k = 0; k < MAX_RX_RINGS; k++)
6144 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6145 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6146 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6147 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6148 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6149 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6150 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6151 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6152 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6153 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6154 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6155 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6156 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6157 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6158 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6159 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6160 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6161 if (stat_info->sw_stat.num_aggregations) {
6162 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6163 int count = 0;
6165 * Since 64-bit divide does not work on all platforms,
6166 * do repeated subtraction.
6168 while (tmp >= stat_info->sw_stat.num_aggregations) {
6169 tmp -= stat_info->sw_stat.num_aggregations;
6170 count++;
6172 tmp_stats[i++] = count;
6174 else
6175 tmp_stats[i++] = 0;
6176 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6177 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6178 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6179 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6180 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6181 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6183 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6184 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6186 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6211 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6212 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6213 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6214 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6215 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6216 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6217 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6220 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6222 return (XENA_REG_SPACE);
6226 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6228 struct s2io_nic *sp = dev->priv;
6230 return (sp->rx_csum);
6233 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6235 struct s2io_nic *sp = dev->priv;
6237 if (data)
6238 sp->rx_csum = 1;
6239 else
6240 sp->rx_csum = 0;
6242 return 0;
6245 static int s2io_get_eeprom_len(struct net_device *dev)
6247 return (XENA_EEPROM_SPACE);
6250 static int s2io_get_sset_count(struct net_device *dev, int sset)
6252 struct s2io_nic *sp = dev->priv;
6254 switch (sset) {
6255 case ETH_SS_TEST:
6256 return S2IO_TEST_LEN;
6257 case ETH_SS_STATS:
6258 switch(sp->device_type) {
6259 case XFRAME_I_DEVICE:
6260 return XFRAME_I_STAT_LEN;
6261 case XFRAME_II_DEVICE:
6262 return XFRAME_II_STAT_LEN;
6263 default:
6264 return 0;
6266 default:
6267 return -EOPNOTSUPP;
6271 static void s2io_ethtool_get_strings(struct net_device *dev,
6272 u32 stringset, u8 * data)
6274 int stat_size = 0;
6275 struct s2io_nic *sp = dev->priv;
6277 switch (stringset) {
6278 case ETH_SS_TEST:
6279 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6280 break;
6281 case ETH_SS_STATS:
6282 stat_size = sizeof(ethtool_xena_stats_keys);
6283 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6284 if(sp->device_type == XFRAME_II_DEVICE) {
6285 memcpy(data + stat_size,
6286 &ethtool_enhanced_stats_keys,
6287 sizeof(ethtool_enhanced_stats_keys));
6288 stat_size += sizeof(ethtool_enhanced_stats_keys);
6291 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6292 sizeof(ethtool_driver_stats_keys));
6296 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6298 if (data)
6299 dev->features |= NETIF_F_IP_CSUM;
6300 else
6301 dev->features &= ~NETIF_F_IP_CSUM;
6303 return 0;
6306 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6308 return (dev->features & NETIF_F_TSO) != 0;
6310 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6312 if (data)
6313 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6314 else
6315 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6317 return 0;
6320 static const struct ethtool_ops netdev_ethtool_ops = {
6321 .get_settings = s2io_ethtool_gset,
6322 .set_settings = s2io_ethtool_sset,
6323 .get_drvinfo = s2io_ethtool_gdrvinfo,
6324 .get_regs_len = s2io_ethtool_get_regs_len,
6325 .get_regs = s2io_ethtool_gregs,
6326 .get_link = ethtool_op_get_link,
6327 .get_eeprom_len = s2io_get_eeprom_len,
6328 .get_eeprom = s2io_ethtool_geeprom,
6329 .set_eeprom = s2io_ethtool_seeprom,
6330 .get_ringparam = s2io_ethtool_gringparam,
6331 .get_pauseparam = s2io_ethtool_getpause_data,
6332 .set_pauseparam = s2io_ethtool_setpause_data,
6333 .get_rx_csum = s2io_ethtool_get_rx_csum,
6334 .set_rx_csum = s2io_ethtool_set_rx_csum,
6335 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6336 .set_sg = ethtool_op_set_sg,
6337 .get_tso = s2io_ethtool_op_get_tso,
6338 .set_tso = s2io_ethtool_op_set_tso,
6339 .set_ufo = ethtool_op_set_ufo,
6340 .self_test = s2io_ethtool_test,
6341 .get_strings = s2io_ethtool_get_strings,
6342 .phys_id = s2io_ethtool_idnic,
6343 .get_ethtool_stats = s2io_get_ethtool_stats,
6344 .get_sset_count = s2io_get_sset_count,
6348 * s2io_ioctl - Entry point for the Ioctl
6349 * @dev : Device pointer.
6350 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6351 * a proprietary structure used to pass information to the driver.
6352 * @cmd : This is used to distinguish between the different commands that
6353 * can be passed to the IOCTL functions.
6354 * Description:
6355 * Currently there are no special functionality supported in IOCTL, hence
6356 * function always return EOPNOTSUPPORTED
6359 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6361 return -EOPNOTSUPP;
6365 * s2io_change_mtu - entry point to change MTU size for the device.
6366 * @dev : device pointer.
6367 * @new_mtu : the new MTU size for the device.
6368 * Description: A driver entry point to change MTU size for the device.
6369 * Before changing the MTU the device must be stopped.
6370 * Return value:
6371 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6372 * file on failure.
6375 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6377 struct s2io_nic *sp = dev->priv;
6378 int ret = 0;
6380 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6381 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6382 dev->name);
6383 return -EPERM;
6386 dev->mtu = new_mtu;
6387 if (netif_running(dev)) {
6388 s2io_card_down(sp);
6389 netif_stop_queue(dev);
6390 ret = s2io_card_up(sp);
6391 if (ret) {
6392 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6393 __FUNCTION__);
6394 return ret;
6396 if (netif_queue_stopped(dev))
6397 netif_wake_queue(dev);
6398 } else { /* Device is down */
6399 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6400 u64 val64 = new_mtu;
6402 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6405 return ret;
6409 * s2io_tasklet - Bottom half of the ISR.
6410 * @dev_adr : address of the device structure in dma_addr_t format.
6411 * Description:
6412 * This is the tasklet or the bottom half of the ISR. This is
6413 * an extension of the ISR which is scheduled by the scheduler to be run
6414 * when the load on the CPU is low. All low priority tasks of the ISR can
6415 * be pushed into the tasklet. For now the tasklet is used only to
6416 * replenish the Rx buffers in the Rx buffer descriptors.
6417 * Return value:
6418 * void.
6421 static void s2io_tasklet(unsigned long dev_addr)
6423 struct net_device *dev = (struct net_device *) dev_addr;
6424 struct s2io_nic *sp = dev->priv;
6425 int i, ret;
6426 struct mac_info *mac_control;
6427 struct config_param *config;
6429 mac_control = &sp->mac_control;
6430 config = &sp->config;
6432 if (!TASKLET_IN_USE) {
6433 for (i = 0; i < config->rx_ring_num; i++) {
6434 ret = fill_rx_buffers(sp, i);
6435 if (ret == -ENOMEM) {
6436 DBG_PRINT(INFO_DBG, "%s: Out of ",
6437 dev->name);
6438 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6439 break;
6440 } else if (ret == -EFILL) {
6441 DBG_PRINT(INFO_DBG,
6442 "%s: Rx Ring %d is full\n",
6443 dev->name, i);
6444 break;
6447 clear_bit(0, (&sp->tasklet_status));
6452 * s2io_set_link - Set the LInk status
6453 * @data: long pointer to device private structue
6454 * Description: Sets the link status for the adapter
6457 static void s2io_set_link(struct work_struct *work)
6459 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6460 struct net_device *dev = nic->dev;
6461 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6462 register u64 val64;
6463 u16 subid;
6465 rtnl_lock();
6467 if (!netif_running(dev))
6468 goto out_unlock;
6470 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6471 /* The card is being reset, no point doing anything */
6472 goto out_unlock;
6475 subid = nic->pdev->subsystem_device;
6476 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6478 * Allow a small delay for the NICs self initiated
6479 * cleanup to complete.
6481 msleep(100);
6484 val64 = readq(&bar0->adapter_status);
6485 if (LINK_IS_UP(val64)) {
6486 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6487 if (verify_xena_quiescence(nic)) {
6488 val64 = readq(&bar0->adapter_control);
6489 val64 |= ADAPTER_CNTL_EN;
6490 writeq(val64, &bar0->adapter_control);
6491 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6492 nic->device_type, subid)) {
6493 val64 = readq(&bar0->gpio_control);
6494 val64 |= GPIO_CTRL_GPIO_0;
6495 writeq(val64, &bar0->gpio_control);
6496 val64 = readq(&bar0->gpio_control);
6497 } else {
6498 val64 |= ADAPTER_LED_ON;
6499 writeq(val64, &bar0->adapter_control);
6501 nic->device_enabled_once = TRUE;
6502 } else {
6503 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6504 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6505 netif_stop_queue(dev);
6508 val64 = readq(&bar0->adapter_control);
6509 val64 |= ADAPTER_LED_ON;
6510 writeq(val64, &bar0->adapter_control);
6511 s2io_link(nic, LINK_UP);
6512 } else {
6513 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6514 subid)) {
6515 val64 = readq(&bar0->gpio_control);
6516 val64 &= ~GPIO_CTRL_GPIO_0;
6517 writeq(val64, &bar0->gpio_control);
6518 val64 = readq(&bar0->gpio_control);
6520 /* turn off LED */
6521 val64 = readq(&bar0->adapter_control);
6522 val64 = val64 &(~ADAPTER_LED_ON);
6523 writeq(val64, &bar0->adapter_control);
6524 s2io_link(nic, LINK_DOWN);
6526 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6528 out_unlock:
6529 rtnl_unlock();
6532 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6533 struct buffAdd *ba,
6534 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6535 u64 *temp2, int size)
6537 struct net_device *dev = sp->dev;
6538 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6540 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6541 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6542 /* allocate skb */
6543 if (*skb) {
6544 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6546 * As Rx frame are not going to be processed,
6547 * using same mapped address for the Rxd
6548 * buffer pointer
6550 rxdp1->Buffer0_ptr = *temp0;
6551 } else {
6552 *skb = dev_alloc_skb(size);
6553 if (!(*skb)) {
6554 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6555 DBG_PRINT(INFO_DBG, "memory to allocate ");
6556 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6557 sp->mac_control.stats_info->sw_stat. \
6558 mem_alloc_fail_cnt++;
6559 return -ENOMEM ;
6561 sp->mac_control.stats_info->sw_stat.mem_allocated
6562 += (*skb)->truesize;
6563 /* storing the mapped addr in a temp variable
6564 * such it will be used for next rxd whose
6565 * Host Control is NULL
6567 rxdp1->Buffer0_ptr = *temp0 =
6568 pci_map_single( sp->pdev, (*skb)->data,
6569 size - NET_IP_ALIGN,
6570 PCI_DMA_FROMDEVICE);
6571 if( (rxdp1->Buffer0_ptr == 0) ||
6572 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6573 goto memalloc_failed;
6575 rxdp->Host_Control = (unsigned long) (*skb);
6577 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6578 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6579 /* Two buffer Mode */
6580 if (*skb) {
6581 rxdp3->Buffer2_ptr = *temp2;
6582 rxdp3->Buffer0_ptr = *temp0;
6583 rxdp3->Buffer1_ptr = *temp1;
6584 } else {
6585 *skb = dev_alloc_skb(size);
6586 if (!(*skb)) {
6587 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6588 DBG_PRINT(INFO_DBG, "memory to allocate ");
6589 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6590 sp->mac_control.stats_info->sw_stat. \
6591 mem_alloc_fail_cnt++;
6592 return -ENOMEM;
6594 sp->mac_control.stats_info->sw_stat.mem_allocated
6595 += (*skb)->truesize;
6596 rxdp3->Buffer2_ptr = *temp2 =
6597 pci_map_single(sp->pdev, (*skb)->data,
6598 dev->mtu + 4,
6599 PCI_DMA_FROMDEVICE);
6600 if( (rxdp3->Buffer2_ptr == 0) ||
6601 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6602 goto memalloc_failed;
6604 rxdp3->Buffer0_ptr = *temp0 =
6605 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6606 PCI_DMA_FROMDEVICE);
6607 if( (rxdp3->Buffer0_ptr == 0) ||
6608 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6609 pci_unmap_single (sp->pdev,
6610 (dma_addr_t)rxdp3->Buffer2_ptr,
6611 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6612 goto memalloc_failed;
6614 rxdp->Host_Control = (unsigned long) (*skb);
6616 /* Buffer-1 will be dummy buffer not used */
6617 rxdp3->Buffer1_ptr = *temp1 =
6618 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6619 PCI_DMA_FROMDEVICE);
6620 if( (rxdp3->Buffer1_ptr == 0) ||
6621 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6622 pci_unmap_single (sp->pdev,
6623 (dma_addr_t)rxdp3->Buffer0_ptr,
6624 BUF0_LEN, PCI_DMA_FROMDEVICE);
6625 pci_unmap_single (sp->pdev,
6626 (dma_addr_t)rxdp3->Buffer2_ptr,
6627 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6628 goto memalloc_failed;
6632 return 0;
6633 memalloc_failed:
6634 stats->pci_map_fail_cnt++;
6635 stats->mem_freed += (*skb)->truesize;
6636 dev_kfree_skb(*skb);
6637 return -ENOMEM;
6640 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6641 int size)
6643 struct net_device *dev = sp->dev;
6644 if (sp->rxd_mode == RXD_MODE_1) {
6645 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6646 } else if (sp->rxd_mode == RXD_MODE_3B) {
6647 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6648 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6649 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6653 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6655 int i, j, k, blk_cnt = 0, size;
6656 struct mac_info * mac_control = &sp->mac_control;
6657 struct config_param *config = &sp->config;
6658 struct net_device *dev = sp->dev;
6659 struct RxD_t *rxdp = NULL;
6660 struct sk_buff *skb = NULL;
6661 struct buffAdd *ba = NULL;
6662 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6664 /* Calculate the size based on ring mode */
6665 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6666 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6667 if (sp->rxd_mode == RXD_MODE_1)
6668 size += NET_IP_ALIGN;
6669 else if (sp->rxd_mode == RXD_MODE_3B)
6670 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6672 for (i = 0; i < config->rx_ring_num; i++) {
6673 blk_cnt = config->rx_cfg[i].num_rxd /
6674 (rxd_count[sp->rxd_mode] +1);
6676 for (j = 0; j < blk_cnt; j++) {
6677 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6678 rxdp = mac_control->rings[i].
6679 rx_blocks[j].rxds[k].virt_addr;
6680 if(sp->rxd_mode == RXD_MODE_3B)
6681 ba = &mac_control->rings[i].ba[j][k];
6682 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6683 &skb,(u64 *)&temp0_64,
6684 (u64 *)&temp1_64,
6685 (u64 *)&temp2_64,
6686 size) == ENOMEM) {
6687 return 0;
6690 set_rxd_buffer_size(sp, rxdp, size);
6691 wmb();
6692 /* flip the Ownership bit to Hardware */
6693 rxdp->Control_1 |= RXD_OWN_XENA;
6697 return 0;
6701 static int s2io_add_isr(struct s2io_nic * sp)
6703 int ret = 0;
6704 struct net_device *dev = sp->dev;
6705 int err = 0;
6707 if (sp->config.intr_type == MSI_X)
6708 ret = s2io_enable_msi_x(sp);
6709 if (ret) {
6710 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6711 sp->config.intr_type = INTA;
6714 /* Store the values of the MSIX table in the struct s2io_nic structure */
6715 store_xmsi_data(sp);
6717 /* After proper initialization of H/W, register ISR */
6718 if (sp->config.intr_type == MSI_X) {
6719 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6721 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6722 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6723 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6724 dev->name, i);
6725 err = request_irq(sp->entries[i].vector,
6726 s2io_msix_fifo_handle, 0, sp->desc[i],
6727 sp->s2io_entries[i].arg);
6728 /* If either data or addr is zero print it */
6729 if(!(sp->msix_info[i].addr &&
6730 sp->msix_info[i].data)) {
6731 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6732 "Data:0x%lx\n",sp->desc[i],
6733 (unsigned long long)
6734 sp->msix_info[i].addr,
6735 (unsigned long)
6736 ntohl(sp->msix_info[i].data));
6737 } else {
6738 msix_tx_cnt++;
6740 } else {
6741 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6742 dev->name, i);
6743 err = request_irq(sp->entries[i].vector,
6744 s2io_msix_ring_handle, 0, sp->desc[i],
6745 sp->s2io_entries[i].arg);
6746 /* If either data or addr is zero print it */
6747 if(!(sp->msix_info[i].addr &&
6748 sp->msix_info[i].data)) {
6749 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6750 "Data:0x%lx\n",sp->desc[i],
6751 (unsigned long long)
6752 sp->msix_info[i].addr,
6753 (unsigned long)
6754 ntohl(sp->msix_info[i].data));
6755 } else {
6756 msix_rx_cnt++;
6759 if (err) {
6760 remove_msix_isr(sp);
6761 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6762 "failed\n", dev->name, i);
6763 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6764 dev->name);
6765 sp->config.intr_type = INTA;
6766 break;
6768 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6770 if (!err) {
6771 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6772 msix_tx_cnt);
6773 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6774 msix_rx_cnt);
6777 if (sp->config.intr_type == INTA) {
6778 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6779 sp->name, dev);
6780 if (err) {
6781 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6782 dev->name);
6783 return -1;
6786 return 0;
6788 static void s2io_rem_isr(struct s2io_nic * sp)
6790 if (sp->config.intr_type == MSI_X)
6791 remove_msix_isr(sp);
6792 else
6793 remove_inta_isr(sp);
6796 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6798 int cnt = 0;
6799 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6800 unsigned long flags;
6801 register u64 val64 = 0;
6803 if (!is_s2io_card_up(sp))
6804 return;
6806 del_timer_sync(&sp->alarm_timer);
6807 /* If s2io_set_link task is executing, wait till it completes. */
6808 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6809 msleep(50);
6811 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6813 /* disable Tx and Rx traffic on the NIC */
6814 if (do_io)
6815 stop_nic(sp);
6817 s2io_rem_isr(sp);
6819 /* Kill tasklet. */
6820 tasklet_kill(&sp->task);
6822 /* Check if the device is Quiescent and then Reset the NIC */
6823 while(do_io) {
6824 /* As per the HW requirement we need to replenish the
6825 * receive buffer to avoid the ring bump. Since there is
6826 * no intention of processing the Rx frame at this pointwe are
6827 * just settting the ownership bit of rxd in Each Rx
6828 * ring to HW and set the appropriate buffer size
6829 * based on the ring mode
6831 rxd_owner_bit_reset(sp);
6833 val64 = readq(&bar0->adapter_status);
6834 if (verify_xena_quiescence(sp)) {
6835 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6836 break;
6839 msleep(50);
6840 cnt++;
6841 if (cnt == 10) {
6842 DBG_PRINT(ERR_DBG,
6843 "s2io_close:Device not Quiescent ");
6844 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6845 (unsigned long long) val64);
6846 break;
6849 if (do_io)
6850 s2io_reset(sp);
6852 spin_lock_irqsave(&sp->tx_lock, flags);
6853 /* Free all Tx buffers */
6854 free_tx_buffers(sp);
6855 spin_unlock_irqrestore(&sp->tx_lock, flags);
6857 /* Free all Rx buffers */
6858 spin_lock_irqsave(&sp->rx_lock, flags);
6859 free_rx_buffers(sp);
6860 spin_unlock_irqrestore(&sp->rx_lock, flags);
6862 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6865 static void s2io_card_down(struct s2io_nic * sp)
6867 do_s2io_card_down(sp, 1);
6870 static int s2io_card_up(struct s2io_nic * sp)
6872 int i, ret = 0;
6873 struct mac_info *mac_control;
6874 struct config_param *config;
6875 struct net_device *dev = (struct net_device *) sp->dev;
6876 u16 interruptible;
6878 /* Initialize the H/W I/O registers */
6879 ret = init_nic(sp);
6880 if (ret != 0) {
6881 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6882 dev->name);
6883 if (ret != -EIO)
6884 s2io_reset(sp);
6885 return ret;
6889 * Initializing the Rx buffers. For now we are considering only 1
6890 * Rx ring and initializing buffers into 30 Rx blocks
6892 mac_control = &sp->mac_control;
6893 config = &sp->config;
6895 for (i = 0; i < config->rx_ring_num; i++) {
6896 if ((ret = fill_rx_buffers(sp, i))) {
6897 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6898 dev->name);
6899 s2io_reset(sp);
6900 free_rx_buffers(sp);
6901 return -ENOMEM;
6903 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6904 atomic_read(&sp->rx_bufs_left[i]));
6906 /* Maintain the state prior to the open */
6907 if (sp->promisc_flg)
6908 sp->promisc_flg = 0;
6909 if (sp->m_cast_flg) {
6910 sp->m_cast_flg = 0;
6911 sp->all_multi_pos= 0;
6914 /* Setting its receive mode */
6915 s2io_set_multicast(dev);
6917 if (sp->lro) {
6918 /* Initialize max aggregatable pkts per session based on MTU */
6919 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6920 /* Check if we can use(if specified) user provided value */
6921 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6922 sp->lro_max_aggr_per_sess = lro_max_pkts;
6925 /* Enable Rx Traffic and interrupts on the NIC */
6926 if (start_nic(sp)) {
6927 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6928 s2io_reset(sp);
6929 free_rx_buffers(sp);
6930 return -ENODEV;
6933 /* Add interrupt service routine */
6934 if (s2io_add_isr(sp) != 0) {
6935 if (sp->config.intr_type == MSI_X)
6936 s2io_rem_isr(sp);
6937 s2io_reset(sp);
6938 free_rx_buffers(sp);
6939 return -ENODEV;
6942 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6944 /* Enable tasklet for the device */
6945 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6947 /* Enable select interrupts */
6948 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6949 if (sp->config.intr_type != INTA)
6950 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6951 else {
6952 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6953 interruptible |= TX_PIC_INTR;
6954 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6957 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6958 return 0;
6962 * s2io_restart_nic - Resets the NIC.
6963 * @data : long pointer to the device private structure
6964 * Description:
6965 * This function is scheduled to be run by the s2io_tx_watchdog
6966 * function after 0.5 secs to reset the NIC. The idea is to reduce
6967 * the run time of the watch dog routine which is run holding a
6968 * spin lock.
6971 static void s2io_restart_nic(struct work_struct *work)
6973 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6974 struct net_device *dev = sp->dev;
6976 rtnl_lock();
6978 if (!netif_running(dev))
6979 goto out_unlock;
6981 s2io_card_down(sp);
6982 if (s2io_card_up(sp)) {
6983 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6984 dev->name);
6986 netif_wake_queue(dev);
6987 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6988 dev->name);
6989 out_unlock:
6990 rtnl_unlock();
6994 * s2io_tx_watchdog - Watchdog for transmit side.
6995 * @dev : Pointer to net device structure
6996 * Description:
6997 * This function is triggered if the Tx Queue is stopped
6998 * for a pre-defined amount of time when the Interface is still up.
6999 * If the Interface is jammed in such a situation, the hardware is
7000 * reset (by s2io_close) and restarted again (by s2io_open) to
7001 * overcome any problem that might have been caused in the hardware.
7002 * Return value:
7003 * void
7006 static void s2io_tx_watchdog(struct net_device *dev)
7008 struct s2io_nic *sp = dev->priv;
7010 if (netif_carrier_ok(dev)) {
7011 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7012 schedule_work(&sp->rst_timer_task);
7013 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7018 * rx_osm_handler - To perform some OS related operations on SKB.
7019 * @sp: private member of the device structure,pointer to s2io_nic structure.
7020 * @skb : the socket buffer pointer.
7021 * @len : length of the packet
7022 * @cksum : FCS checksum of the frame.
7023 * @ring_no : the ring from which this RxD was extracted.
7024 * Description:
7025 * This function is called by the Rx interrupt serivce routine to perform
7026 * some OS related operations on the SKB before passing it to the upper
7027 * layers. It mainly checks if the checksum is OK, if so adds it to the
7028 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7029 * to the upper layer. If the checksum is wrong, it increments the Rx
7030 * packet error count, frees the SKB and returns error.
7031 * Return value:
7032 * SUCCESS on success and -1 on failure.
7034 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7036 struct s2io_nic *sp = ring_data->nic;
7037 struct net_device *dev = (struct net_device *) sp->dev;
7038 struct sk_buff *skb = (struct sk_buff *)
7039 ((unsigned long) rxdp->Host_Control);
7040 int ring_no = ring_data->ring_no;
7041 u16 l3_csum, l4_csum;
7042 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7043 struct lro *lro;
7044 u8 err_mask;
7046 skb->dev = dev;
7048 if (err) {
7049 /* Check for parity error */
7050 if (err & 0x1) {
7051 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7053 err_mask = err >> 48;
7054 switch(err_mask) {
7055 case 1:
7056 sp->mac_control.stats_info->sw_stat.
7057 rx_parity_err_cnt++;
7058 break;
7060 case 2:
7061 sp->mac_control.stats_info->sw_stat.
7062 rx_abort_cnt++;
7063 break;
7065 case 3:
7066 sp->mac_control.stats_info->sw_stat.
7067 rx_parity_abort_cnt++;
7068 break;
7070 case 4:
7071 sp->mac_control.stats_info->sw_stat.
7072 rx_rda_fail_cnt++;
7073 break;
7075 case 5:
7076 sp->mac_control.stats_info->sw_stat.
7077 rx_unkn_prot_cnt++;
7078 break;
7080 case 6:
7081 sp->mac_control.stats_info->sw_stat.
7082 rx_fcs_err_cnt++;
7083 break;
7085 case 7:
7086 sp->mac_control.stats_info->sw_stat.
7087 rx_buf_size_err_cnt++;
7088 break;
7090 case 8:
7091 sp->mac_control.stats_info->sw_stat.
7092 rx_rxd_corrupt_cnt++;
7093 break;
7095 case 15:
7096 sp->mac_control.stats_info->sw_stat.
7097 rx_unkn_err_cnt++;
7098 break;
7101 * Drop the packet if bad transfer code. Exception being
7102 * 0x5, which could be due to unsupported IPv6 extension header.
7103 * In this case, we let stack handle the packet.
7104 * Note that in this case, since checksum will be incorrect,
7105 * stack will validate the same.
7107 if (err_mask != 0x5) {
7108 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7109 dev->name, err_mask);
7110 sp->stats.rx_crc_errors++;
7111 sp->mac_control.stats_info->sw_stat.mem_freed
7112 += skb->truesize;
7113 dev_kfree_skb(skb);
7114 atomic_dec(&sp->rx_bufs_left[ring_no]);
7115 rxdp->Host_Control = 0;
7116 return 0;
7120 /* Updating statistics */
7121 sp->stats.rx_packets++;
7122 rxdp->Host_Control = 0;
7123 if (sp->rxd_mode == RXD_MODE_1) {
7124 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7126 sp->stats.rx_bytes += len;
7127 skb_put(skb, len);
7129 } else if (sp->rxd_mode == RXD_MODE_3B) {
7130 int get_block = ring_data->rx_curr_get_info.block_index;
7131 int get_off = ring_data->rx_curr_get_info.offset;
7132 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7133 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7134 unsigned char *buff = skb_push(skb, buf0_len);
7136 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7137 sp->stats.rx_bytes += buf0_len + buf2_len;
7138 memcpy(buff, ba->ba_0, buf0_len);
7139 skb_put(skb, buf2_len);
7142 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7143 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7144 (sp->rx_csum)) {
7145 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7146 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7147 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7149 * NIC verifies if the Checksum of the received
7150 * frame is Ok or not and accordingly returns
7151 * a flag in the RxD.
7153 skb->ip_summed = CHECKSUM_UNNECESSARY;
7154 if (sp->lro) {
7155 u32 tcp_len;
7156 u8 *tcp;
7157 int ret = 0;
7159 ret = s2io_club_tcp_session(skb->data, &tcp,
7160 &tcp_len, &lro,
7161 rxdp, sp);
7162 switch (ret) {
7163 case 3: /* Begin anew */
7164 lro->parent = skb;
7165 goto aggregate;
7166 case 1: /* Aggregate */
7168 lro_append_pkt(sp, lro,
7169 skb, tcp_len);
7170 goto aggregate;
7172 case 4: /* Flush session */
7174 lro_append_pkt(sp, lro,
7175 skb, tcp_len);
7176 queue_rx_frame(lro->parent);
7177 clear_lro_session(lro);
7178 sp->mac_control.stats_info->
7179 sw_stat.flush_max_pkts++;
7180 goto aggregate;
7182 case 2: /* Flush both */
7183 lro->parent->data_len =
7184 lro->frags_len;
7185 sp->mac_control.stats_info->
7186 sw_stat.sending_both++;
7187 queue_rx_frame(lro->parent);
7188 clear_lro_session(lro);
7189 goto send_up;
7190 case 0: /* sessions exceeded */
7191 case -1: /* non-TCP or not
7192 * L2 aggregatable
7194 case 5: /*
7195 * First pkt in session not
7196 * L3/L4 aggregatable
7198 break;
7199 default:
7200 DBG_PRINT(ERR_DBG,
7201 "%s: Samadhana!!\n",
7202 __FUNCTION__);
7203 BUG();
7206 } else {
7208 * Packet with erroneous checksum, let the
7209 * upper layers deal with it.
7211 skb->ip_summed = CHECKSUM_NONE;
7213 } else {
7214 skb->ip_summed = CHECKSUM_NONE;
7216 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7217 if (!sp->lro) {
7218 skb->protocol = eth_type_trans(skb, dev);
7219 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7220 vlan_strip_flag)) {
7221 /* Queueing the vlan frame to the upper layer */
7222 if (napi)
7223 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7224 RXD_GET_VLAN_TAG(rxdp->Control_2));
7225 else
7226 vlan_hwaccel_rx(skb, sp->vlgrp,
7227 RXD_GET_VLAN_TAG(rxdp->Control_2));
7228 } else {
7229 if (napi)
7230 netif_receive_skb(skb);
7231 else
7232 netif_rx(skb);
7234 } else {
7235 send_up:
7236 queue_rx_frame(skb);
7238 dev->last_rx = jiffies;
7239 aggregate:
7240 atomic_dec(&sp->rx_bufs_left[ring_no]);
7241 return SUCCESS;
7245 * s2io_link - stops/starts the Tx queue.
7246 * @sp : private member of the device structure, which is a pointer to the
7247 * s2io_nic structure.
7248 * @link : inidicates whether link is UP/DOWN.
7249 * Description:
7250 * This function stops/starts the Tx queue depending on whether the link
7251 * status of the NIC is is down or up. This is called by the Alarm
7252 * interrupt handler whenever a link change interrupt comes up.
7253 * Return value:
7254 * void.
7257 static void s2io_link(struct s2io_nic * sp, int link)
7259 struct net_device *dev = (struct net_device *) sp->dev;
7261 if (link != sp->last_link_state) {
7262 if (link == LINK_DOWN) {
7263 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7264 netif_carrier_off(dev);
7265 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7266 sp->mac_control.stats_info->sw_stat.link_up_time =
7267 jiffies - sp->start_time;
7268 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7269 } else {
7270 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7271 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7272 sp->mac_control.stats_info->sw_stat.link_down_time =
7273 jiffies - sp->start_time;
7274 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7275 netif_carrier_on(dev);
7278 sp->last_link_state = link;
7279 sp->start_time = jiffies;
7283 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7284 * @sp : private member of the device structure, which is a pointer to the
7285 * s2io_nic structure.
7286 * Description:
7287 * This function initializes a few of the PCI and PCI-X configuration registers
7288 * with recommended values.
7289 * Return value:
7290 * void
7293 static void s2io_init_pci(struct s2io_nic * sp)
7295 u16 pci_cmd = 0, pcix_cmd = 0;
7297 /* Enable Data Parity Error Recovery in PCI-X command register. */
7298 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7299 &(pcix_cmd));
7300 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7301 (pcix_cmd | 1));
7302 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7303 &(pcix_cmd));
7305 /* Set the PErr Response bit in PCI command register. */
7306 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7307 pci_write_config_word(sp->pdev, PCI_COMMAND,
7308 (pci_cmd | PCI_COMMAND_PARITY));
7309 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7312 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7314 if ( tx_fifo_num > 8) {
7315 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7316 "supported\n");
7317 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7318 tx_fifo_num = 8;
7320 if ( rx_ring_num > 8) {
7321 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7322 "supported\n");
7323 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7324 rx_ring_num = 8;
7326 if (*dev_intr_type != INTA)
7327 napi = 0;
7329 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7330 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7331 "Defaulting to INTA\n");
7332 *dev_intr_type = INTA;
7335 if ((*dev_intr_type == MSI_X) &&
7336 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7337 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7338 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7339 "Defaulting to INTA\n");
7340 *dev_intr_type = INTA;
7343 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7344 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7345 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7346 rx_ring_mode = 1;
7348 return SUCCESS;
7352 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7353 * or Traffic class respectively.
7354 * @nic: device peivate variable
7355 * Description: The function configures the receive steering to
7356 * desired receive ring.
7357 * Return Value: SUCCESS on success and
7358 * '-1' on failure (endian settings incorrect).
7360 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7362 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7363 register u64 val64 = 0;
7365 if (ds_codepoint > 63)
7366 return FAILURE;
7368 val64 = RTS_DS_MEM_DATA(ring);
7369 writeq(val64, &bar0->rts_ds_mem_data);
7371 val64 = RTS_DS_MEM_CTRL_WE |
7372 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7373 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7375 writeq(val64, &bar0->rts_ds_mem_ctrl);
7377 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7378 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7379 S2IO_BIT_RESET);
7383 * s2io_init_nic - Initialization of the adapter .
7384 * @pdev : structure containing the PCI related information of the device.
7385 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7386 * Description:
7387 * The function initializes an adapter identified by the pci_dec structure.
7388 * All OS related initialization including memory and device structure and
7389 * initlaization of the device private variable is done. Also the swapper
7390 * control register is initialized to enable read and write into the I/O
7391 * registers of the device.
7392 * Return value:
7393 * returns 0 on success and negative on failure.
7396 static int __devinit
7397 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7399 struct s2io_nic *sp;
7400 struct net_device *dev;
7401 int i, j, ret;
7402 int dma_flag = FALSE;
7403 u32 mac_up, mac_down;
7404 u64 val64 = 0, tmp64 = 0;
7405 struct XENA_dev_config __iomem *bar0 = NULL;
7406 u16 subid;
7407 struct mac_info *mac_control;
7408 struct config_param *config;
7409 int mode;
7410 u8 dev_intr_type = intr_type;
7411 DECLARE_MAC_BUF(mac);
7413 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7414 return ret;
7416 if ((ret = pci_enable_device(pdev))) {
7417 DBG_PRINT(ERR_DBG,
7418 "s2io_init_nic: pci_enable_device failed\n");
7419 return ret;
7422 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7423 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7424 dma_flag = TRUE;
7425 if (pci_set_consistent_dma_mask
7426 (pdev, DMA_64BIT_MASK)) {
7427 DBG_PRINT(ERR_DBG,
7428 "Unable to obtain 64bit DMA for \
7429 consistent allocations\n");
7430 pci_disable_device(pdev);
7431 return -ENOMEM;
7433 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7434 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7435 } else {
7436 pci_disable_device(pdev);
7437 return -ENOMEM;
7439 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7440 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7441 pci_disable_device(pdev);
7442 return -ENODEV;
7445 dev = alloc_etherdev(sizeof(struct s2io_nic));
7446 if (dev == NULL) {
7447 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7448 pci_disable_device(pdev);
7449 pci_release_regions(pdev);
7450 return -ENODEV;
7453 pci_set_master(pdev);
7454 pci_set_drvdata(pdev, dev);
7455 SET_NETDEV_DEV(dev, &pdev->dev);
7457 /* Private member variable initialized to s2io NIC structure */
7458 sp = dev->priv;
7459 memset(sp, 0, sizeof(struct s2io_nic));
7460 sp->dev = dev;
7461 sp->pdev = pdev;
7462 sp->high_dma_flag = dma_flag;
7463 sp->device_enabled_once = FALSE;
7464 if (rx_ring_mode == 1)
7465 sp->rxd_mode = RXD_MODE_1;
7466 if (rx_ring_mode == 2)
7467 sp->rxd_mode = RXD_MODE_3B;
7469 sp->config.intr_type = dev_intr_type;
7471 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7472 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7473 sp->device_type = XFRAME_II_DEVICE;
7474 else
7475 sp->device_type = XFRAME_I_DEVICE;
7477 sp->lro = lro_enable;
7479 /* Initialize some PCI/PCI-X fields of the NIC. */
7480 s2io_init_pci(sp);
7483 * Setting the device configuration parameters.
7484 * Most of these parameters can be specified by the user during
7485 * module insertion as they are module loadable parameters. If
7486 * these parameters are not not specified during load time, they
7487 * are initialized with default values.
7489 mac_control = &sp->mac_control;
7490 config = &sp->config;
7492 config->napi = napi;
7494 /* Tx side parameters. */
7495 config->tx_fifo_num = tx_fifo_num;
7496 for (i = 0; i < MAX_TX_FIFOS; i++) {
7497 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7498 config->tx_cfg[i].fifo_priority = i;
7501 /* mapping the QoS priority to the configured fifos */
7502 for (i = 0; i < MAX_TX_FIFOS; i++)
7503 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7505 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7506 for (i = 0; i < config->tx_fifo_num; i++) {
7507 config->tx_cfg[i].f_no_snoop =
7508 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7509 if (config->tx_cfg[i].fifo_len < 65) {
7510 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7511 break;
7514 /* + 2 because one Txd for skb->data and one Txd for UFO */
7515 config->max_txds = MAX_SKB_FRAGS + 2;
7517 /* Rx side parameters. */
7518 config->rx_ring_num = rx_ring_num;
7519 for (i = 0; i < MAX_RX_RINGS; i++) {
7520 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7521 (rxd_count[sp->rxd_mode] + 1);
7522 config->rx_cfg[i].ring_priority = i;
7525 for (i = 0; i < rx_ring_num; i++) {
7526 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7527 config->rx_cfg[i].f_no_snoop =
7528 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7531 /* Setting Mac Control parameters */
7532 mac_control->rmac_pause_time = rmac_pause_time;
7533 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7534 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7537 /* Initialize Ring buffer parameters. */
7538 for (i = 0; i < config->rx_ring_num; i++)
7539 atomic_set(&sp->rx_bufs_left[i], 0);
7541 /* initialize the shared memory used by the NIC and the host */
7542 if (init_shared_mem(sp)) {
7543 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7544 dev->name);
7545 ret = -ENOMEM;
7546 goto mem_alloc_failed;
7549 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7550 pci_resource_len(pdev, 0));
7551 if (!sp->bar0) {
7552 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7553 dev->name);
7554 ret = -ENOMEM;
7555 goto bar0_remap_failed;
7558 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7559 pci_resource_len(pdev, 2));
7560 if (!sp->bar1) {
7561 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7562 dev->name);
7563 ret = -ENOMEM;
7564 goto bar1_remap_failed;
7567 dev->irq = pdev->irq;
7568 dev->base_addr = (unsigned long) sp->bar0;
7570 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7571 for (j = 0; j < MAX_TX_FIFOS; j++) {
7572 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7573 (sp->bar1 + (j * 0x00020000));
7576 /* Driver entry points */
7577 dev->open = &s2io_open;
7578 dev->stop = &s2io_close;
7579 dev->hard_start_xmit = &s2io_xmit;
7580 dev->get_stats = &s2io_get_stats;
7581 dev->set_multicast_list = &s2io_set_multicast;
7582 dev->do_ioctl = &s2io_ioctl;
7583 dev->set_mac_address = &s2io_set_mac_addr;
7584 dev->change_mtu = &s2io_change_mtu;
7585 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7586 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7587 dev->vlan_rx_register = s2io_vlan_rx_register;
7590 * will use eth_mac_addr() for dev->set_mac_address
7591 * mac address will be set every time dev->open() is called
7593 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7595 #ifdef CONFIG_NET_POLL_CONTROLLER
7596 dev->poll_controller = s2io_netpoll;
7597 #endif
7599 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7600 if (sp->high_dma_flag == TRUE)
7601 dev->features |= NETIF_F_HIGHDMA;
7602 dev->features |= NETIF_F_TSO;
7603 dev->features |= NETIF_F_TSO6;
7604 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7605 dev->features |= NETIF_F_UFO;
7606 dev->features |= NETIF_F_HW_CSUM;
7609 dev->tx_timeout = &s2io_tx_watchdog;
7610 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7611 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7612 INIT_WORK(&sp->set_link_task, s2io_set_link);
7614 pci_save_state(sp->pdev);
7616 /* Setting swapper control on the NIC, for proper reset operation */
7617 if (s2io_set_swapper(sp)) {
7618 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7619 dev->name);
7620 ret = -EAGAIN;
7621 goto set_swap_failed;
7624 /* Verify if the Herc works on the slot its placed into */
7625 if (sp->device_type & XFRAME_II_DEVICE) {
7626 mode = s2io_verify_pci_mode(sp);
7627 if (mode < 0) {
7628 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7629 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7630 ret = -EBADSLT;
7631 goto set_swap_failed;
7635 /* Not needed for Herc */
7636 if (sp->device_type & XFRAME_I_DEVICE) {
7638 * Fix for all "FFs" MAC address problems observed on
7639 * Alpha platforms
7641 fix_mac_address(sp);
7642 s2io_reset(sp);
7646 * MAC address initialization.
7647 * For now only one mac address will be read and used.
7649 bar0 = sp->bar0;
7650 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7651 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7652 writeq(val64, &bar0->rmac_addr_cmd_mem);
7653 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7654 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7655 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7656 mac_down = (u32) tmp64;
7657 mac_up = (u32) (tmp64 >> 32);
7659 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7660 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7661 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7662 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7663 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7664 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7666 /* Set the factory defined MAC address initially */
7667 dev->addr_len = ETH_ALEN;
7668 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7669 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7671 /* Store the values of the MSIX table in the s2io_nic structure */
7672 store_xmsi_data(sp);
7673 /* reset Nic and bring it to known state */
7674 s2io_reset(sp);
7677 * Initialize the tasklet status and link state flags
7678 * and the card state parameter
7680 sp->tasklet_status = 0;
7681 sp->state = 0;
7683 /* Initialize spinlocks */
7684 spin_lock_init(&sp->tx_lock);
7686 if (!napi)
7687 spin_lock_init(&sp->put_lock);
7688 spin_lock_init(&sp->rx_lock);
7691 * SXE-002: Configure link and activity LED to init state
7692 * on driver load.
7694 subid = sp->pdev->subsystem_device;
7695 if ((subid & 0xFF) >= 0x07) {
7696 val64 = readq(&bar0->gpio_control);
7697 val64 |= 0x0000800000000000ULL;
7698 writeq(val64, &bar0->gpio_control);
7699 val64 = 0x0411040400000000ULL;
7700 writeq(val64, (void __iomem *) bar0 + 0x2700);
7701 val64 = readq(&bar0->gpio_control);
7704 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7706 if (register_netdev(dev)) {
7707 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7708 ret = -ENODEV;
7709 goto register_failed;
7711 s2io_vpd_read(sp);
7712 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7713 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7714 sp->product_name, pdev->revision);
7715 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7716 s2io_driver_version);
7717 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7718 dev->name, print_mac(mac, dev->dev_addr));
7719 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7720 if (sp->device_type & XFRAME_II_DEVICE) {
7721 mode = s2io_print_pci_mode(sp);
7722 if (mode < 0) {
7723 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7724 ret = -EBADSLT;
7725 unregister_netdev(dev);
7726 goto set_swap_failed;
7729 switch(sp->rxd_mode) {
7730 case RXD_MODE_1:
7731 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7732 dev->name);
7733 break;
7734 case RXD_MODE_3B:
7735 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7736 dev->name);
7737 break;
7740 if (napi)
7741 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7742 switch(sp->config.intr_type) {
7743 case INTA:
7744 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7745 break;
7746 case MSI_X:
7747 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7748 break;
7750 if (sp->lro)
7751 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7752 dev->name);
7753 if (ufo)
7754 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7755 " enabled\n", dev->name);
7756 /* Initialize device name */
7757 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7760 * Make Link state as off at this point, when the Link change
7761 * interrupt comes the state will be automatically changed to
7762 * the right state.
7764 netif_carrier_off(dev);
7766 return 0;
7768 register_failed:
7769 set_swap_failed:
7770 iounmap(sp->bar1);
7771 bar1_remap_failed:
7772 iounmap(sp->bar0);
7773 bar0_remap_failed:
7774 mem_alloc_failed:
7775 free_shared_mem(sp);
7776 pci_disable_device(pdev);
7777 pci_release_regions(pdev);
7778 pci_set_drvdata(pdev, NULL);
7779 free_netdev(dev);
7781 return ret;
7785 * s2io_rem_nic - Free the PCI device
7786 * @pdev: structure containing the PCI related information of the device.
7787 * Description: This function is called by the Pci subsystem to release a
7788 * PCI device and free up all resource held up by the device. This could
7789 * be in response to a Hot plug event or when the driver is to be removed
7790 * from memory.
7793 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7795 struct net_device *dev =
7796 (struct net_device *) pci_get_drvdata(pdev);
7797 struct s2io_nic *sp;
7799 if (dev == NULL) {
7800 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7801 return;
7804 flush_scheduled_work();
7806 sp = dev->priv;
7807 unregister_netdev(dev);
7809 free_shared_mem(sp);
7810 iounmap(sp->bar0);
7811 iounmap(sp->bar1);
7812 pci_release_regions(pdev);
7813 pci_set_drvdata(pdev, NULL);
7814 free_netdev(dev);
7815 pci_disable_device(pdev);
7819 * s2io_starter - Entry point for the driver
7820 * Description: This function is the entry point for the driver. It verifies
7821 * the module loadable parameters and initializes PCI configuration space.
7824 static int __init s2io_starter(void)
7826 return pci_register_driver(&s2io_driver);
7830 * s2io_closer - Cleanup routine for the driver
7831 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7834 static __exit void s2io_closer(void)
7836 pci_unregister_driver(&s2io_driver);
7837 DBG_PRINT(INIT_DBG, "cleanup done\n");
7840 module_init(s2io_starter);
7841 module_exit(s2io_closer);
7843 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7844 struct tcphdr **tcp, struct RxD_t *rxdp)
7846 int ip_off;
7847 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7849 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7850 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7851 __FUNCTION__);
7852 return -1;
7855 /* TODO:
7856 * By default the VLAN field in the MAC is stripped by the card, if this
7857 * feature is turned off in rx_pa_cfg register, then the ip_off field
7858 * has to be shifted by a further 2 bytes
7860 switch (l2_type) {
7861 case 0: /* DIX type */
7862 case 4: /* DIX type with VLAN */
7863 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7864 break;
7865 /* LLC, SNAP etc are considered non-mergeable */
7866 default:
7867 return -1;
7870 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7871 ip_len = (u8)((*ip)->ihl);
7872 ip_len <<= 2;
7873 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7875 return 0;
7878 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7879 struct tcphdr *tcp)
7881 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7882 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7883 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7884 return -1;
7885 return 0;
7888 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7890 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7893 static void initiate_new_session(struct lro *lro, u8 *l2h,
7894 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7896 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7897 lro->l2h = l2h;
7898 lro->iph = ip;
7899 lro->tcph = tcp;
7900 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7901 lro->tcp_ack = ntohl(tcp->ack_seq);
7902 lro->sg_num = 1;
7903 lro->total_len = ntohs(ip->tot_len);
7904 lro->frags_len = 0;
7906 * check if we saw TCP timestamp. Other consistency checks have
7907 * already been done.
7909 if (tcp->doff == 8) {
7910 u32 *ptr;
7911 ptr = (u32 *)(tcp+1);
7912 lro->saw_ts = 1;
7913 lro->cur_tsval = *(ptr+1);
7914 lro->cur_tsecr = *(ptr+2);
7916 lro->in_use = 1;
7919 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7921 struct iphdr *ip = lro->iph;
7922 struct tcphdr *tcp = lro->tcph;
7923 __sum16 nchk;
7924 struct stat_block *statinfo = sp->mac_control.stats_info;
7925 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7927 /* Update L3 header */
7928 ip->tot_len = htons(lro->total_len);
7929 ip->check = 0;
7930 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7931 ip->check = nchk;
7933 /* Update L4 header */
7934 tcp->ack_seq = lro->tcp_ack;
7935 tcp->window = lro->window;
7937 /* Update tsecr field if this session has timestamps enabled */
7938 if (lro->saw_ts) {
7939 u32 *ptr = (u32 *)(tcp + 1);
7940 *(ptr+2) = lro->cur_tsecr;
7943 /* Update counters required for calculation of
7944 * average no. of packets aggregated.
7946 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7947 statinfo->sw_stat.num_aggregations++;
7950 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7951 struct tcphdr *tcp, u32 l4_pyld)
7953 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7954 lro->total_len += l4_pyld;
7955 lro->frags_len += l4_pyld;
7956 lro->tcp_next_seq += l4_pyld;
7957 lro->sg_num++;
7959 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7960 lro->tcp_ack = tcp->ack_seq;
7961 lro->window = tcp->window;
7963 if (lro->saw_ts) {
7964 u32 *ptr;
7965 /* Update tsecr and tsval from this packet */
7966 ptr = (u32 *) (tcp + 1);
7967 lro->cur_tsval = *(ptr + 1);
7968 lro->cur_tsecr = *(ptr + 2);
7972 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7973 struct tcphdr *tcp, u32 tcp_pyld_len)
7975 u8 *ptr;
7977 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7979 if (!tcp_pyld_len) {
7980 /* Runt frame or a pure ack */
7981 return -1;
7984 if (ip->ihl != 5) /* IP has options */
7985 return -1;
7987 /* If we see CE codepoint in IP header, packet is not mergeable */
7988 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7989 return -1;
7991 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7992 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7993 tcp->ece || tcp->cwr || !tcp->ack) {
7995 * Currently recognize only the ack control word and
7996 * any other control field being set would result in
7997 * flushing the LRO session
7999 return -1;
8003 * Allow only one TCP timestamp option. Don't aggregate if
8004 * any other options are detected.
8006 if (tcp->doff != 5 && tcp->doff != 8)
8007 return -1;
8009 if (tcp->doff == 8) {
8010 ptr = (u8 *)(tcp + 1);
8011 while (*ptr == TCPOPT_NOP)
8012 ptr++;
8013 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8014 return -1;
8016 /* Ensure timestamp value increases monotonically */
8017 if (l_lro)
8018 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8019 return -1;
8021 /* timestamp echo reply should be non-zero */
8022 if (*((u32 *)(ptr+6)) == 0)
8023 return -1;
8026 return 0;
8029 static int
8030 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8031 struct RxD_t *rxdp, struct s2io_nic *sp)
8033 struct iphdr *ip;
8034 struct tcphdr *tcph;
8035 int ret = 0, i;
8037 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8038 rxdp))) {
8039 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8040 ip->saddr, ip->daddr);
8041 } else {
8042 return ret;
8045 tcph = (struct tcphdr *)*tcp;
8046 *tcp_len = get_l4_pyld_length(ip, tcph);
8047 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8048 struct lro *l_lro = &sp->lro0_n[i];
8049 if (l_lro->in_use) {
8050 if (check_for_socket_match(l_lro, ip, tcph))
8051 continue;
8052 /* Sock pair matched */
8053 *lro = l_lro;
8055 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8056 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8057 "0x%x, actual 0x%x\n", __FUNCTION__,
8058 (*lro)->tcp_next_seq,
8059 ntohl(tcph->seq));
8061 sp->mac_control.stats_info->
8062 sw_stat.outof_sequence_pkts++;
8063 ret = 2;
8064 break;
8067 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8068 ret = 1; /* Aggregate */
8069 else
8070 ret = 2; /* Flush both */
8071 break;
8075 if (ret == 0) {
8076 /* Before searching for available LRO objects,
8077 * check if the pkt is L3/L4 aggregatable. If not
8078 * don't create new LRO session. Just send this
8079 * packet up.
8081 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8082 return 5;
8085 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8086 struct lro *l_lro = &sp->lro0_n[i];
8087 if (!(l_lro->in_use)) {
8088 *lro = l_lro;
8089 ret = 3; /* Begin anew */
8090 break;
8095 if (ret == 0) { /* sessions exceeded */
8096 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8097 __FUNCTION__);
8098 *lro = NULL;
8099 return ret;
8102 switch (ret) {
8103 case 3:
8104 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8105 break;
8106 case 2:
8107 update_L3L4_header(sp, *lro);
8108 break;
8109 case 1:
8110 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8111 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8112 update_L3L4_header(sp, *lro);
8113 ret = 4; /* Flush the LRO */
8115 break;
8116 default:
8117 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8118 __FUNCTION__);
8119 break;
8122 return ret;
8125 static void clear_lro_session(struct lro *lro)
8127 static u16 lro_struct_size = sizeof(struct lro);
8129 memset(lro, 0, lro_struct_size);
8132 static void queue_rx_frame(struct sk_buff *skb)
8134 struct net_device *dev = skb->dev;
8136 skb->protocol = eth_type_trans(skb, dev);
8137 if (napi)
8138 netif_receive_skb(skb);
8139 else
8140 netif_rx(skb);
8143 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8144 struct sk_buff *skb,
8145 u32 tcp_len)
8147 struct sk_buff *first = lro->parent;
8149 first->len += tcp_len;
8150 first->data_len = lro->frags_len;
8151 skb_pull(skb, (skb->len - tcp_len));
8152 if (skb_shinfo(first)->frag_list)
8153 lro->last_frag->next = skb;
8154 else
8155 skb_shinfo(first)->frag_list = skb;
8156 first->truesize += skb->truesize;
8157 lro->last_frag = skb;
8158 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8159 return;
8163 * s2io_io_error_detected - called when PCI error is detected
8164 * @pdev: Pointer to PCI device
8165 * @state: The current pci connection state
8167 * This function is called after a PCI bus error affecting
8168 * this device has been detected.
8170 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8171 pci_channel_state_t state)
8173 struct net_device *netdev = pci_get_drvdata(pdev);
8174 struct s2io_nic *sp = netdev->priv;
8176 netif_device_detach(netdev);
8178 if (netif_running(netdev)) {
8179 /* Bring down the card, while avoiding PCI I/O */
8180 do_s2io_card_down(sp, 0);
8182 pci_disable_device(pdev);
8184 return PCI_ERS_RESULT_NEED_RESET;
8188 * s2io_io_slot_reset - called after the pci bus has been reset.
8189 * @pdev: Pointer to PCI device
8191 * Restart the card from scratch, as if from a cold-boot.
8192 * At this point, the card has exprienced a hard reset,
8193 * followed by fixups by BIOS, and has its config space
8194 * set up identically to what it was at cold boot.
8196 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8198 struct net_device *netdev = pci_get_drvdata(pdev);
8199 struct s2io_nic *sp = netdev->priv;
8201 if (pci_enable_device(pdev)) {
8202 printk(KERN_ERR "s2io: "
8203 "Cannot re-enable PCI device after reset.\n");
8204 return PCI_ERS_RESULT_DISCONNECT;
8207 pci_set_master(pdev);
8208 s2io_reset(sp);
8210 return PCI_ERS_RESULT_RECOVERED;
8214 * s2io_io_resume - called when traffic can start flowing again.
8215 * @pdev: Pointer to PCI device
8217 * This callback is called when the error recovery driver tells
8218 * us that its OK to resume normal operation.
8220 static void s2io_io_resume(struct pci_dev *pdev)
8222 struct net_device *netdev = pci_get_drvdata(pdev);
8223 struct s2io_nic *sp = netdev->priv;
8225 if (netif_running(netdev)) {
8226 if (s2io_card_up(sp)) {
8227 printk(KERN_ERR "s2io: "
8228 "Can't bring device back up after reset.\n");
8229 return;
8232 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8233 s2io_card_down(sp);
8234 printk(KERN_ERR "s2io: "
8235 "Can't resetore mac addr after reset.\n");
8236 return;
8240 netif_device_attach(netdev);
8241 netif_wake_queue(netdev);