2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
130 struct inet_connection_sock
*icsk
= inet_csk(sk
);
131 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
134 icsk
->icsk_ack
.last_seg_size
= 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
140 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
141 icsk
->icsk_ack
.rcv_mss
= len
;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len
+= skb
->data
- skb_transport_header(skb
);
149 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
156 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len
-= tcp_sk(sk
)->tcp_header_len
;
162 icsk
->icsk_ack
.last_seg_size
= len
;
164 icsk
->icsk_ack
.rcv_mss
= len
;
168 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
174 static void tcp_incr_quickack(struct sock
*sk
)
176 struct inet_connection_sock
*icsk
= inet_csk(sk
);
177 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
181 if (quickacks
> icsk
->icsk_ack
.quick
)
182 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
185 static void tcp_enter_quickack_mode(struct sock
*sk
)
187 struct inet_connection_sock
*icsk
= inet_csk(sk
);
188 tcp_incr_quickack(sk
);
189 icsk
->icsk_ack
.pingpong
= 0;
190 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
199 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
200 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
205 if (tp
->ecn_flags
& TCP_ECN_OK
)
206 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
211 if (tcp_hdr(skb
)->cwr
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
222 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
225 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
226 case INET_ECN_NOT_ECT
:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
232 tcp_enter_quickack_mode((struct sock
*)tp
);
235 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
238 tp
->ecn_flags
|= TCP_ECN_SEEN
;
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
244 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
245 tp
->ecn_flags
&= ~TCP_ECN_OK
;
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
250 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
251 tp
->ecn_flags
&= ~TCP_ECN_OK
;
254 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
256 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
261 /* Buffer size and advertised window tuning.
263 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 static void tcp_fixup_sndbuf(struct sock
*sk
)
268 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
270 sndmem
*= TCP_INIT_CWND
;
271 if (sk
->sk_sndbuf
< sndmem
)
272 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
275 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277 * All tcp_full_space() is split to two parts: "network" buffer, allocated
278 * forward and advertised in receiver window (tp->rcv_wnd) and
279 * "application buffer", required to isolate scheduling/application
280 * latencies from network.
281 * window_clamp is maximal advertised window. It can be less than
282 * tcp_full_space(), in this case tcp_full_space() - window_clamp
283 * is reserved for "application" buffer. The less window_clamp is
284 * the smoother our behaviour from viewpoint of network, but the lower
285 * throughput and the higher sensitivity of the connection to losses. 8)
287 * rcv_ssthresh is more strict window_clamp used at "slow start"
288 * phase to predict further behaviour of this connection.
289 * It is used for two goals:
290 * - to enforce header prediction at sender, even when application
291 * requires some significant "application buffer". It is check #1.
292 * - to prevent pruning of receive queue because of misprediction
293 * of receiver window. Check #2.
295 * The scheme does not work when sender sends good segments opening
296 * window and then starts to feed us spaghetti. But it should work
297 * in common situations. Otherwise, we have to rely on queue collapsing.
300 /* Slow part of check#2. */
301 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
303 struct tcp_sock
*tp
= tcp_sk(sk
);
305 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
306 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
308 while (tp
->rcv_ssthresh
<= window
) {
309 if (truesize
<= skb
->len
)
310 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
318 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
320 struct tcp_sock
*tp
= tcp_sk(sk
);
323 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
324 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
325 !tcp_memory_pressure
) {
328 /* Check #2. Increase window, if skb with such overhead
329 * will fit to rcvbuf in future.
331 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
332 incr
= 2 * tp
->advmss
;
334 incr
= __tcp_grow_window(sk
, skb
);
337 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
339 inet_csk(sk
)->icsk_ack
.quick
|= 1;
344 /* 3. Tuning rcvbuf, when connection enters established state. */
346 static void tcp_fixup_rcvbuf(struct sock
*sk
)
348 u32 mss
= tcp_sk(sk
)->advmss
;
349 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
352 /* Limit to 10 segments if mss <= 1460,
353 * or 14600/mss segments, with a minimum of two segments.
356 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
358 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
359 while (tcp_win_from_space(rcvmem
) < mss
)
364 if (sk
->sk_rcvbuf
< rcvmem
)
365 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
368 /* 4. Try to fixup all. It is made immediately after connection enters
371 static void tcp_init_buffer_space(struct sock
*sk
)
373 struct tcp_sock
*tp
= tcp_sk(sk
);
376 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
377 tcp_fixup_rcvbuf(sk
);
378 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
379 tcp_fixup_sndbuf(sk
);
381 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
383 maxwin
= tcp_full_space(sk
);
385 if (tp
->window_clamp
>= maxwin
) {
386 tp
->window_clamp
= maxwin
;
388 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
389 tp
->window_clamp
= max(maxwin
-
390 (maxwin
>> sysctl_tcp_app_win
),
394 /* Force reservation of one segment. */
395 if (sysctl_tcp_app_win
&&
396 tp
->window_clamp
> 2 * tp
->advmss
&&
397 tp
->window_clamp
+ tp
->advmss
> maxwin
)
398 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
400 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
401 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
404 /* 5. Recalculate window clamp after socket hit its memory bounds. */
405 static void tcp_clamp_window(struct sock
*sk
)
407 struct tcp_sock
*tp
= tcp_sk(sk
);
408 struct inet_connection_sock
*icsk
= inet_csk(sk
);
410 icsk
->icsk_ack
.quick
= 0;
412 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
413 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
414 !tcp_memory_pressure
&&
415 atomic_long_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
416 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
419 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
420 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
423 /* Initialize RCV_MSS value.
424 * RCV_MSS is an our guess about MSS used by the peer.
425 * We haven't any direct information about the MSS.
426 * It's better to underestimate the RCV_MSS rather than overestimate.
427 * Overestimations make us ACKing less frequently than needed.
428 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430 void tcp_initialize_rcv_mss(struct sock
*sk
)
432 const struct tcp_sock
*tp
= tcp_sk(sk
);
433 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
435 hint
= min(hint
, tp
->rcv_wnd
/ 2);
436 hint
= min(hint
, TCP_MSS_DEFAULT
);
437 hint
= max(hint
, TCP_MIN_MSS
);
439 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
441 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
443 /* Receiver "autotuning" code.
445 * The algorithm for RTT estimation w/o timestamps is based on
446 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
447 * <http://public.lanl.gov/radiant/pubs.html#DRS>
449 * More detail on this code can be found at
450 * <http://staff.psc.edu/jheffner/>,
451 * though this reference is out of date. A new paper
454 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
456 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
462 if (new_sample
!= 0) {
463 /* If we sample in larger samples in the non-timestamp
464 * case, we could grossly overestimate the RTT especially
465 * with chatty applications or bulk transfer apps which
466 * are stalled on filesystem I/O.
468 * Also, since we are only going for a minimum in the
469 * non-timestamp case, we do not smooth things out
470 * else with timestamps disabled convergence takes too
474 m
-= (new_sample
>> 3);
476 } else if (m
< new_sample
)
479 /* No previous measure. */
483 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
484 tp
->rcv_rtt_est
.rtt
= new_sample
;
487 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
489 if (tp
->rcv_rtt_est
.time
== 0)
491 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
493 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
496 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
497 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
500 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
501 const struct sk_buff
*skb
)
503 struct tcp_sock
*tp
= tcp_sk(sk
);
504 if (tp
->rx_opt
.rcv_tsecr
&&
505 (TCP_SKB_CB(skb
)->end_seq
-
506 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
507 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
511 * This function should be called every time data is copied to user space.
512 * It calculates the appropriate TCP receive buffer space.
514 void tcp_rcv_space_adjust(struct sock
*sk
)
516 struct tcp_sock
*tp
= tcp_sk(sk
);
520 if (tp
->rcvq_space
.time
== 0)
523 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
524 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
527 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
529 space
= max(tp
->rcvq_space
.space
, space
);
531 if (tp
->rcvq_space
.space
!= space
) {
534 tp
->rcvq_space
.space
= space
;
536 if (sysctl_tcp_moderate_rcvbuf
&&
537 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
538 int new_clamp
= space
;
540 /* Receive space grows, normalize in order to
541 * take into account packet headers and sk_buff
542 * structure overhead.
547 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
548 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
551 space
= min(space
, sysctl_tcp_rmem
[2]);
552 if (space
> sk
->sk_rcvbuf
) {
553 sk
->sk_rcvbuf
= space
;
555 /* Make the window clamp follow along. */
556 tp
->window_clamp
= new_clamp
;
562 tp
->rcvq_space
.seq
= tp
->copied_seq
;
563 tp
->rcvq_space
.time
= tcp_time_stamp
;
566 /* There is something which you must keep in mind when you analyze the
567 * behavior of the tp->ato delayed ack timeout interval. When a
568 * connection starts up, we want to ack as quickly as possible. The
569 * problem is that "good" TCP's do slow start at the beginning of data
570 * transmission. The means that until we send the first few ACK's the
571 * sender will sit on his end and only queue most of his data, because
572 * he can only send snd_cwnd unacked packets at any given time. For
573 * each ACK we send, he increments snd_cwnd and transmits more of his
576 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
578 struct tcp_sock
*tp
= tcp_sk(sk
);
579 struct inet_connection_sock
*icsk
= inet_csk(sk
);
582 inet_csk_schedule_ack(sk
);
584 tcp_measure_rcv_mss(sk
, skb
);
586 tcp_rcv_rtt_measure(tp
);
588 now
= tcp_time_stamp
;
590 if (!icsk
->icsk_ack
.ato
) {
591 /* The _first_ data packet received, initialize
592 * delayed ACK engine.
594 tcp_incr_quickack(sk
);
595 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
597 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
599 if (m
<= TCP_ATO_MIN
/ 2) {
600 /* The fastest case is the first. */
601 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
602 } else if (m
< icsk
->icsk_ack
.ato
) {
603 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
604 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
605 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
606 } else if (m
> icsk
->icsk_rto
) {
607 /* Too long gap. Apparently sender failed to
608 * restart window, so that we send ACKs quickly.
610 tcp_incr_quickack(sk
);
614 icsk
->icsk_ack
.lrcvtime
= now
;
616 TCP_ECN_check_ce(tp
, skb
);
619 tcp_grow_window(sk
, skb
);
622 /* Called to compute a smoothed rtt estimate. The data fed to this
623 * routine either comes from timestamps, or from segments that were
624 * known _not_ to have been retransmitted [see Karn/Partridge
625 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
626 * piece by Van Jacobson.
627 * NOTE: the next three routines used to be one big routine.
628 * To save cycles in the RFC 1323 implementation it was better to break
629 * it up into three procedures. -- erics
631 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
633 struct tcp_sock
*tp
= tcp_sk(sk
);
634 long m
= mrtt
; /* RTT */
636 /* The following amusing code comes from Jacobson's
637 * article in SIGCOMM '88. Note that rtt and mdev
638 * are scaled versions of rtt and mean deviation.
639 * This is designed to be as fast as possible
640 * m stands for "measurement".
642 * On a 1990 paper the rto value is changed to:
643 * RTO = rtt + 4 * mdev
645 * Funny. This algorithm seems to be very broken.
646 * These formulae increase RTO, when it should be decreased, increase
647 * too slowly, when it should be increased quickly, decrease too quickly
648 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
649 * does not matter how to _calculate_ it. Seems, it was trap
650 * that VJ failed to avoid. 8)
655 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
656 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
658 m
= -m
; /* m is now abs(error) */
659 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
660 /* This is similar to one of Eifel findings.
661 * Eifel blocks mdev updates when rtt decreases.
662 * This solution is a bit different: we use finer gain
663 * for mdev in this case (alpha*beta).
664 * Like Eifel it also prevents growth of rto,
665 * but also it limits too fast rto decreases,
666 * happening in pure Eifel.
671 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
673 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
674 if (tp
->mdev
> tp
->mdev_max
) {
675 tp
->mdev_max
= tp
->mdev
;
676 if (tp
->mdev_max
> tp
->rttvar
)
677 tp
->rttvar
= tp
->mdev_max
;
679 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
680 if (tp
->mdev_max
< tp
->rttvar
)
681 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
682 tp
->rtt_seq
= tp
->snd_nxt
;
683 tp
->mdev_max
= tcp_rto_min(sk
);
686 /* no previous measure. */
687 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
688 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
689 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
690 tp
->rtt_seq
= tp
->snd_nxt
;
694 /* Calculate rto without backoff. This is the second half of Van Jacobson's
695 * routine referred to above.
697 static inline void tcp_set_rto(struct sock
*sk
)
699 const struct tcp_sock
*tp
= tcp_sk(sk
);
700 /* Old crap is replaced with new one. 8)
703 * 1. If rtt variance happened to be less 50msec, it is hallucination.
704 * It cannot be less due to utterly erratic ACK generation made
705 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
706 * to do with delayed acks, because at cwnd>2 true delack timeout
707 * is invisible. Actually, Linux-2.4 also generates erratic
708 * ACKs in some circumstances.
710 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
712 /* 2. Fixups made earlier cannot be right.
713 * If we do not estimate RTO correctly without them,
714 * all the algo is pure shit and should be replaced
715 * with correct one. It is exactly, which we pretend to do.
718 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
719 * guarantees that rto is higher.
724 /* Save metrics learned by this TCP session.
725 This function is called only, when TCP finishes successfully
726 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
728 void tcp_update_metrics(struct sock
*sk
)
730 struct tcp_sock
*tp
= tcp_sk(sk
);
731 struct dst_entry
*dst
= __sk_dst_get(sk
);
733 if (sysctl_tcp_nometrics_save
)
738 if (dst
&& (dst
->flags
& DST_HOST
)) {
739 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
743 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
744 /* This session failed to estimate rtt. Why?
745 * Probably, no packets returned in time.
748 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
749 dst_metric_set(dst
, RTAX_RTT
, 0);
753 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
756 /* If newly calculated rtt larger than stored one,
757 * store new one. Otherwise, use EWMA. Remember,
758 * rtt overestimation is always better than underestimation.
760 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
762 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
764 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
767 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
772 /* Scale deviation to rttvar fixed point */
777 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
781 var
-= (var
- m
) >> 2;
783 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
786 if (tcp_in_initial_slowstart(tp
)) {
787 /* Slow start still did not finish. */
788 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
789 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
790 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
791 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
792 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
793 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
794 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
795 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
796 icsk
->icsk_ca_state
== TCP_CA_Open
) {
797 /* Cong. avoidance phase, cwnd is reliable. */
798 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
799 dst_metric_set(dst
, RTAX_SSTHRESH
,
800 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
801 if (!dst_metric_locked(dst
, RTAX_CWND
))
802 dst_metric_set(dst
, RTAX_CWND
,
803 (dst_metric(dst
, RTAX_CWND
) +
806 /* Else slow start did not finish, cwnd is non-sense,
807 ssthresh may be also invalid.
809 if (!dst_metric_locked(dst
, RTAX_CWND
))
810 dst_metric_set(dst
, RTAX_CWND
,
811 (dst_metric(dst
, RTAX_CWND
) +
812 tp
->snd_ssthresh
) >> 1);
813 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
814 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
815 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
816 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
819 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
820 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
821 tp
->reordering
!= sysctl_tcp_reordering
)
822 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
827 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
829 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
832 cwnd
= TCP_INIT_CWND
;
833 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
839 struct tcp_sock
*tp
= tcp_sk(sk
);
840 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
842 tp
->prior_ssthresh
= 0;
844 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
847 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
848 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
849 tcp_packets_in_flight(tp
) + 1U);
850 tp
->snd_cwnd_cnt
= 0;
851 tp
->high_seq
= tp
->snd_nxt
;
852 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
853 TCP_ECN_queue_cwr(tp
);
855 tcp_set_ca_state(sk
, TCP_CA_CWR
);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock
*tp
)
865 /* RFC3517 uses different metric in lost marker => reset on change */
867 tp
->lost_skb_hint
= NULL
;
868 tp
->rx_opt
.sack_ok
&= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock
*tp
)
874 tp
->rx_opt
.sack_ok
|= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock
*sk
)
881 struct tcp_sock
*tp
= tcp_sk(sk
);
882 struct dst_entry
*dst
= __sk_dst_get(sk
);
889 if (dst_metric_locked(dst
, RTAX_CWND
))
890 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
891 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
892 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
893 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
894 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
896 /* ssthresh may have been reduced unnecessarily during.
897 * 3WHS. Restore it back to its initial default.
899 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
901 if (dst_metric(dst
, RTAX_REORDERING
) &&
902 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
903 tcp_disable_fack(tp
);
904 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
907 if (dst_metric(dst
, RTAX_RTT
) == 0 || tp
->srtt
== 0)
910 /* Initial rtt is determined from SYN,SYN-ACK.
911 * The segment is small and rtt may appear much
912 * less than real one. Use per-dst memory
913 * to make it more realistic.
915 * A bit of theory. RTT is time passed after "normal" sized packet
916 * is sent until it is ACKed. In normal circumstances sending small
917 * packets force peer to delay ACKs and calculation is correct too.
918 * The algorithm is adaptive and, provided we follow specs, it
919 * NEVER underestimate RTT. BUT! If peer tries to make some clever
920 * tricks sort of "quick acks" for time long enough to decrease RTT
921 * to low value, and then abruptly stops to do it and starts to delay
922 * ACKs, wait for troubles.
924 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
925 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
926 tp
->rtt_seq
= tp
->snd_nxt
;
928 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
929 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
930 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
935 /* RFC2988bis: We've failed to get a valid RTT sample from
936 * 3WHS. This is most likely due to retransmission,
937 * including spurious one. Reset the RTO back to 3secs
938 * from the more aggressive 1sec to avoid more spurious
941 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_FALLBACK
;
942 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_FALLBACK
;
944 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
945 * retransmitted. In light of RFC2988bis' more aggressive 1sec
946 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
947 * retransmission has occurred.
949 if (tp
->total_retrans
> 1)
952 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
953 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
956 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
959 struct tcp_sock
*tp
= tcp_sk(sk
);
960 if (metric
> tp
->reordering
) {
963 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
965 /* This exciting event is worth to be remembered. 8) */
967 mib_idx
= LINUX_MIB_TCPTSREORDER
;
968 else if (tcp_is_reno(tp
))
969 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
970 else if (tcp_is_fack(tp
))
971 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
973 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
975 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
976 #if FASTRETRANS_DEBUG > 1
977 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
978 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
982 tp
->undo_marker
? tp
->undo_retrans
: 0);
984 tcp_disable_fack(tp
);
988 /* This must be called before lost_out is incremented */
989 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
991 if ((tp
->retransmit_skb_hint
== NULL
) ||
992 before(TCP_SKB_CB(skb
)->seq
,
993 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
994 tp
->retransmit_skb_hint
= skb
;
997 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
998 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1001 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1003 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1004 tcp_verify_retransmit_hint(tp
, skb
);
1006 tp
->lost_out
+= tcp_skb_pcount(skb
);
1007 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1011 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1012 struct sk_buff
*skb
)
1014 tcp_verify_retransmit_hint(tp
, skb
);
1016 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1017 tp
->lost_out
+= tcp_skb_pcount(skb
);
1018 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1022 /* This procedure tags the retransmission queue when SACKs arrive.
1024 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1025 * Packets in queue with these bits set are counted in variables
1026 * sacked_out, retrans_out and lost_out, correspondingly.
1028 * Valid combinations are:
1029 * Tag InFlight Description
1030 * 0 1 - orig segment is in flight.
1031 * S 0 - nothing flies, orig reached receiver.
1032 * L 0 - nothing flies, orig lost by net.
1033 * R 2 - both orig and retransmit are in flight.
1034 * L|R 1 - orig is lost, retransmit is in flight.
1035 * S|R 1 - orig reached receiver, retrans is still in flight.
1036 * (L|S|R is logically valid, it could occur when L|R is sacked,
1037 * but it is equivalent to plain S and code short-curcuits it to S.
1038 * L|S is logically invalid, it would mean -1 packet in flight 8))
1040 * These 6 states form finite state machine, controlled by the following events:
1041 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1042 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1043 * 3. Loss detection event of one of three flavors:
1044 * A. Scoreboard estimator decided the packet is lost.
1045 * A'. Reno "three dupacks" marks head of queue lost.
1046 * A''. Its FACK modfication, head until snd.fack is lost.
1047 * B. SACK arrives sacking data transmitted after never retransmitted
1048 * hole was sent out.
1049 * C. SACK arrives sacking SND.NXT at the moment, when the
1050 * segment was retransmitted.
1051 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1053 * It is pleasant to note, that state diagram turns out to be commutative,
1054 * so that we are allowed not to be bothered by order of our actions,
1055 * when multiple events arrive simultaneously. (see the function below).
1057 * Reordering detection.
1058 * --------------------
1059 * Reordering metric is maximal distance, which a packet can be displaced
1060 * in packet stream. With SACKs we can estimate it:
1062 * 1. SACK fills old hole and the corresponding segment was not
1063 * ever retransmitted -> reordering. Alas, we cannot use it
1064 * when segment was retransmitted.
1065 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1066 * for retransmitted and already SACKed segment -> reordering..
1067 * Both of these heuristics are not used in Loss state, when we cannot
1068 * account for retransmits accurately.
1070 * SACK block validation.
1071 * ----------------------
1073 * SACK block range validation checks that the received SACK block fits to
1074 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1075 * Note that SND.UNA is not included to the range though being valid because
1076 * it means that the receiver is rather inconsistent with itself reporting
1077 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1078 * perfectly valid, however, in light of RFC2018 which explicitly states
1079 * that "SACK block MUST reflect the newest segment. Even if the newest
1080 * segment is going to be discarded ...", not that it looks very clever
1081 * in case of head skb. Due to potentional receiver driven attacks, we
1082 * choose to avoid immediate execution of a walk in write queue due to
1083 * reneging and defer head skb's loss recovery to standard loss recovery
1084 * procedure that will eventually trigger (nothing forbids us doing this).
1086 * Implements also blockage to start_seq wrap-around. Problem lies in the
1087 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1088 * there's no guarantee that it will be before snd_nxt (n). The problem
1089 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1092 * <- outs wnd -> <- wrapzone ->
1093 * u e n u_w e_w s n_w
1095 * |<------------+------+----- TCP seqno space --------------+---------->|
1096 * ...-- <2^31 ->| |<--------...
1097 * ...---- >2^31 ------>| |<--------...
1099 * Current code wouldn't be vulnerable but it's better still to discard such
1100 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1101 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1102 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1103 * equal to the ideal case (infinite seqno space without wrap caused issues).
1105 * With D-SACK the lower bound is extended to cover sequence space below
1106 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1107 * again, D-SACK block must not to go across snd_una (for the same reason as
1108 * for the normal SACK blocks, explained above). But there all simplicity
1109 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1110 * fully below undo_marker they do not affect behavior in anyway and can
1111 * therefore be safely ignored. In rare cases (which are more or less
1112 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1113 * fragmentation and packet reordering past skb's retransmission. To consider
1114 * them correctly, the acceptable range must be extended even more though
1115 * the exact amount is rather hard to quantify. However, tp->max_window can
1116 * be used as an exaggerated estimate.
1118 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1119 u32 start_seq
, u32 end_seq
)
1121 /* Too far in future, or reversed (interpretation is ambiguous) */
1122 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1125 /* Nasty start_seq wrap-around check (see comments above) */
1126 if (!before(start_seq
, tp
->snd_nxt
))
1129 /* In outstanding window? ...This is valid exit for D-SACKs too.
1130 * start_seq == snd_una is non-sensical (see comments above)
1132 if (after(start_seq
, tp
->snd_una
))
1135 if (!is_dsack
|| !tp
->undo_marker
)
1138 /* ...Then it's D-SACK, and must reside below snd_una completely */
1139 if (after(end_seq
, tp
->snd_una
))
1142 if (!before(start_seq
, tp
->undo_marker
))
1146 if (!after(end_seq
, tp
->undo_marker
))
1149 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1150 * start_seq < undo_marker and end_seq >= undo_marker.
1152 return !before(start_seq
, end_seq
- tp
->max_window
);
1155 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1156 * Event "C". Later note: FACK people cheated me again 8), we have to account
1157 * for reordering! Ugly, but should help.
1159 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1160 * less than what is now known to be received by the other end (derived from
1161 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1162 * retransmitted skbs to avoid some costly processing per ACKs.
1164 static void tcp_mark_lost_retrans(struct sock
*sk
)
1166 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1167 struct tcp_sock
*tp
= tcp_sk(sk
);
1168 struct sk_buff
*skb
;
1170 u32 new_low_seq
= tp
->snd_nxt
;
1171 u32 received_upto
= tcp_highest_sack_seq(tp
);
1173 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1174 !after(received_upto
, tp
->lost_retrans_low
) ||
1175 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1178 tcp_for_write_queue(skb
, sk
) {
1179 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1181 if (skb
== tcp_send_head(sk
))
1183 if (cnt
== tp
->retrans_out
)
1185 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1188 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1191 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1192 * constraint here (see above) but figuring out that at
1193 * least tp->reordering SACK blocks reside between ack_seq
1194 * and received_upto is not easy task to do cheaply with
1195 * the available datastructures.
1197 * Whether FACK should check here for tp->reordering segs
1198 * in-between one could argue for either way (it would be
1199 * rather simple to implement as we could count fack_count
1200 * during the walk and do tp->fackets_out - fack_count).
1202 if (after(received_upto
, ack_seq
)) {
1203 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1204 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1206 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1207 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1209 if (before(ack_seq
, new_low_seq
))
1210 new_low_seq
= ack_seq
;
1211 cnt
+= tcp_skb_pcount(skb
);
1215 if (tp
->retrans_out
)
1216 tp
->lost_retrans_low
= new_low_seq
;
1219 static int tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1220 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1223 struct tcp_sock
*tp
= tcp_sk(sk
);
1224 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1225 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1228 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1231 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1232 } else if (num_sacks
> 1) {
1233 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1234 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1236 if (!after(end_seq_0
, end_seq_1
) &&
1237 !before(start_seq_0
, start_seq_1
)) {
1240 NET_INC_STATS_BH(sock_net(sk
),
1241 LINUX_MIB_TCPDSACKOFORECV
);
1245 /* D-SACK for already forgotten data... Do dumb counting. */
1246 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1247 !after(end_seq_0
, prior_snd_una
) &&
1248 after(end_seq_0
, tp
->undo_marker
))
1254 struct tcp_sacktag_state
{
1260 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1261 * the incoming SACK may not exactly match but we can find smaller MSS
1262 * aligned portion of it that matches. Therefore we might need to fragment
1263 * which may fail and creates some hassle (caller must handle error case
1266 * FIXME: this could be merged to shift decision code
1268 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1269 u32 start_seq
, u32 end_seq
)
1272 unsigned int pkt_len
;
1275 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1276 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1278 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1279 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1280 mss
= tcp_skb_mss(skb
);
1281 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1284 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1288 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1293 /* Round if necessary so that SACKs cover only full MSSes
1294 * and/or the remaining small portion (if present)
1296 if (pkt_len
> mss
) {
1297 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1298 if (!in_sack
&& new_len
< pkt_len
) {
1300 if (new_len
> skb
->len
)
1305 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1313 static u8
tcp_sacktag_one(const struct sk_buff
*skb
, struct sock
*sk
,
1314 struct tcp_sacktag_state
*state
,
1315 int dup_sack
, int pcount
)
1317 struct tcp_sock
*tp
= tcp_sk(sk
);
1318 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1319 int fack_count
= state
->fack_count
;
1321 /* Account D-SACK for retransmitted packet. */
1322 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1323 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1324 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1326 if (sacked
& TCPCB_SACKED_ACKED
)
1327 state
->reord
= min(fack_count
, state
->reord
);
1330 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1331 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1334 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1335 if (sacked
& TCPCB_SACKED_RETRANS
) {
1336 /* If the segment is not tagged as lost,
1337 * we do not clear RETRANS, believing
1338 * that retransmission is still in flight.
1340 if (sacked
& TCPCB_LOST
) {
1341 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1342 tp
->lost_out
-= pcount
;
1343 tp
->retrans_out
-= pcount
;
1346 if (!(sacked
& TCPCB_RETRANS
)) {
1347 /* New sack for not retransmitted frame,
1348 * which was in hole. It is reordering.
1350 if (before(TCP_SKB_CB(skb
)->seq
,
1351 tcp_highest_sack_seq(tp
)))
1352 state
->reord
= min(fack_count
,
1355 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1356 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1357 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1360 if (sacked
& TCPCB_LOST
) {
1361 sacked
&= ~TCPCB_LOST
;
1362 tp
->lost_out
-= pcount
;
1366 sacked
|= TCPCB_SACKED_ACKED
;
1367 state
->flag
|= FLAG_DATA_SACKED
;
1368 tp
->sacked_out
+= pcount
;
1370 fack_count
+= pcount
;
1372 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1373 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1374 before(TCP_SKB_CB(skb
)->seq
,
1375 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1376 tp
->lost_cnt_hint
+= pcount
;
1378 if (fack_count
> tp
->fackets_out
)
1379 tp
->fackets_out
= fack_count
;
1382 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1383 * frames and clear it. undo_retrans is decreased above, L|R frames
1384 * are accounted above as well.
1386 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1387 sacked
&= ~TCPCB_SACKED_RETRANS
;
1388 tp
->retrans_out
-= pcount
;
1394 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1395 struct tcp_sacktag_state
*state
,
1396 unsigned int pcount
, int shifted
, int mss
,
1399 struct tcp_sock
*tp
= tcp_sk(sk
);
1400 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1404 if (skb
== tp
->lost_skb_hint
)
1405 tp
->lost_cnt_hint
+= pcount
;
1407 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1408 TCP_SKB_CB(skb
)->seq
+= shifted
;
1410 skb_shinfo(prev
)->gso_segs
+= pcount
;
1411 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1412 skb_shinfo(skb
)->gso_segs
-= pcount
;
1414 /* When we're adding to gso_segs == 1, gso_size will be zero,
1415 * in theory this shouldn't be necessary but as long as DSACK
1416 * code can come after this skb later on it's better to keep
1417 * setting gso_size to something.
1419 if (!skb_shinfo(prev
)->gso_size
) {
1420 skb_shinfo(prev
)->gso_size
= mss
;
1421 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1424 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1425 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1426 skb_shinfo(skb
)->gso_size
= 0;
1427 skb_shinfo(skb
)->gso_type
= 0;
1430 /* We discard results */
1431 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1433 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1434 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1437 BUG_ON(!tcp_skb_pcount(skb
));
1438 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1442 /* Whole SKB was eaten :-) */
1444 if (skb
== tp
->retransmit_skb_hint
)
1445 tp
->retransmit_skb_hint
= prev
;
1446 if (skb
== tp
->scoreboard_skb_hint
)
1447 tp
->scoreboard_skb_hint
= prev
;
1448 if (skb
== tp
->lost_skb_hint
) {
1449 tp
->lost_skb_hint
= prev
;
1450 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1453 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1454 if (skb
== tcp_highest_sack(sk
))
1455 tcp_advance_highest_sack(sk
, skb
);
1457 tcp_unlink_write_queue(skb
, sk
);
1458 sk_wmem_free_skb(sk
, skb
);
1460 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1465 /* I wish gso_size would have a bit more sane initialization than
1466 * something-or-zero which complicates things
1468 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1470 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1473 /* Shifting pages past head area doesn't work */
1474 static int skb_can_shift(const struct sk_buff
*skb
)
1476 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1479 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1482 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1483 struct tcp_sacktag_state
*state
,
1484 u32 start_seq
, u32 end_seq
,
1487 struct tcp_sock
*tp
= tcp_sk(sk
);
1488 struct sk_buff
*prev
;
1494 if (!sk_can_gso(sk
))
1497 /* Normally R but no L won't result in plain S */
1499 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1501 if (!skb_can_shift(skb
))
1503 /* This frame is about to be dropped (was ACKed). */
1504 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1507 /* Can only happen with delayed DSACK + discard craziness */
1508 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1510 prev
= tcp_write_queue_prev(sk
, skb
);
1512 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1515 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1516 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1520 pcount
= tcp_skb_pcount(skb
);
1521 mss
= tcp_skb_seglen(skb
);
1523 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1524 * drop this restriction as unnecessary
1526 if (mss
!= tcp_skb_seglen(prev
))
1529 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1531 /* CHECKME: This is non-MSS split case only?, this will
1532 * cause skipped skbs due to advancing loop btw, original
1533 * has that feature too
1535 if (tcp_skb_pcount(skb
) <= 1)
1538 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1540 /* TODO: head merge to next could be attempted here
1541 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1542 * though it might not be worth of the additional hassle
1544 * ...we can probably just fallback to what was done
1545 * previously. We could try merging non-SACKed ones
1546 * as well but it probably isn't going to buy off
1547 * because later SACKs might again split them, and
1548 * it would make skb timestamp tracking considerably
1554 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1556 BUG_ON(len
> skb
->len
);
1558 /* MSS boundaries should be honoured or else pcount will
1559 * severely break even though it makes things bit trickier.
1560 * Optimize common case to avoid most of the divides
1562 mss
= tcp_skb_mss(skb
);
1564 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1565 * drop this restriction as unnecessary
1567 if (mss
!= tcp_skb_seglen(prev
))
1572 } else if (len
< mss
) {
1580 if (!skb_shift(prev
, skb
, len
))
1582 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1585 /* Hole filled allows collapsing with the next as well, this is very
1586 * useful when hole on every nth skb pattern happens
1588 if (prev
== tcp_write_queue_tail(sk
))
1590 skb
= tcp_write_queue_next(sk
, prev
);
1592 if (!skb_can_shift(skb
) ||
1593 (skb
== tcp_send_head(sk
)) ||
1594 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1595 (mss
!= tcp_skb_seglen(skb
)))
1599 if (skb_shift(prev
, skb
, len
)) {
1600 pcount
+= tcp_skb_pcount(skb
);
1601 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1605 state
->fack_count
+= pcount
;
1612 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1616 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1617 struct tcp_sack_block
*next_dup
,
1618 struct tcp_sacktag_state
*state
,
1619 u32 start_seq
, u32 end_seq
,
1622 struct tcp_sock
*tp
= tcp_sk(sk
);
1623 struct sk_buff
*tmp
;
1625 tcp_for_write_queue_from(skb
, sk
) {
1627 int dup_sack
= dup_sack_in
;
1629 if (skb
== tcp_send_head(sk
))
1632 /* queue is in-order => we can short-circuit the walk early */
1633 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1636 if ((next_dup
!= NULL
) &&
1637 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1638 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1639 next_dup
->start_seq
,
1645 /* skb reference here is a bit tricky to get right, since
1646 * shifting can eat and free both this skb and the next,
1647 * so not even _safe variant of the loop is enough.
1650 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1651 start_seq
, end_seq
, dup_sack
);
1660 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1666 if (unlikely(in_sack
< 0))
1670 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1673 tcp_skb_pcount(skb
));
1675 if (!before(TCP_SKB_CB(skb
)->seq
,
1676 tcp_highest_sack_seq(tp
)))
1677 tcp_advance_highest_sack(sk
, skb
);
1680 state
->fack_count
+= tcp_skb_pcount(skb
);
1685 /* Avoid all extra work that is being done by sacktag while walking in
1688 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1689 struct tcp_sacktag_state
*state
,
1692 tcp_for_write_queue_from(skb
, sk
) {
1693 if (skb
== tcp_send_head(sk
))
1696 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1699 state
->fack_count
+= tcp_skb_pcount(skb
);
1704 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1706 struct tcp_sack_block
*next_dup
,
1707 struct tcp_sacktag_state
*state
,
1710 if (next_dup
== NULL
)
1713 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1714 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1715 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1716 next_dup
->start_seq
, next_dup
->end_seq
,
1723 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1725 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1729 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1732 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1733 struct tcp_sock
*tp
= tcp_sk(sk
);
1734 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1735 TCP_SKB_CB(ack_skb
)->sacked
);
1736 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1737 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1738 struct tcp_sack_block
*cache
;
1739 struct tcp_sacktag_state state
;
1740 struct sk_buff
*skb
;
1741 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1743 int found_dup_sack
= 0;
1745 int first_sack_index
;
1748 state
.reord
= tp
->packets_out
;
1750 if (!tp
->sacked_out
) {
1751 if (WARN_ON(tp
->fackets_out
))
1752 tp
->fackets_out
= 0;
1753 tcp_highest_sack_reset(sk
);
1756 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1757 num_sacks
, prior_snd_una
);
1759 state
.flag
|= FLAG_DSACKING_ACK
;
1761 /* Eliminate too old ACKs, but take into
1762 * account more or less fresh ones, they can
1763 * contain valid SACK info.
1765 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1768 if (!tp
->packets_out
)
1772 first_sack_index
= 0;
1773 for (i
= 0; i
< num_sacks
; i
++) {
1774 int dup_sack
= !i
&& found_dup_sack
;
1776 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1777 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1779 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1780 sp
[used_sacks
].start_seq
,
1781 sp
[used_sacks
].end_seq
)) {
1785 if (!tp
->undo_marker
)
1786 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1788 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1790 /* Don't count olds caused by ACK reordering */
1791 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1792 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1794 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1797 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1799 first_sack_index
= -1;
1803 /* Ignore very old stuff early */
1804 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1810 /* order SACK blocks to allow in order walk of the retrans queue */
1811 for (i
= used_sacks
- 1; i
> 0; i
--) {
1812 for (j
= 0; j
< i
; j
++) {
1813 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1814 swap(sp
[j
], sp
[j
+ 1]);
1816 /* Track where the first SACK block goes to */
1817 if (j
== first_sack_index
)
1818 first_sack_index
= j
+ 1;
1823 skb
= tcp_write_queue_head(sk
);
1824 state
.fack_count
= 0;
1827 if (!tp
->sacked_out
) {
1828 /* It's already past, so skip checking against it */
1829 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1831 cache
= tp
->recv_sack_cache
;
1832 /* Skip empty blocks in at head of the cache */
1833 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1838 while (i
< used_sacks
) {
1839 u32 start_seq
= sp
[i
].start_seq
;
1840 u32 end_seq
= sp
[i
].end_seq
;
1841 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1842 struct tcp_sack_block
*next_dup
= NULL
;
1844 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1845 next_dup
= &sp
[i
+ 1];
1847 /* Event "B" in the comment above. */
1848 if (after(end_seq
, tp
->high_seq
))
1849 state
.flag
|= FLAG_DATA_LOST
;
1851 /* Skip too early cached blocks */
1852 while (tcp_sack_cache_ok(tp
, cache
) &&
1853 !before(start_seq
, cache
->end_seq
))
1856 /* Can skip some work by looking recv_sack_cache? */
1857 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1858 after(end_seq
, cache
->start_seq
)) {
1861 if (before(start_seq
, cache
->start_seq
)) {
1862 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1864 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1871 /* Rest of the block already fully processed? */
1872 if (!after(end_seq
, cache
->end_seq
))
1875 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1879 /* ...tail remains todo... */
1880 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1881 /* ...but better entrypoint exists! */
1882 skb
= tcp_highest_sack(sk
);
1885 state
.fack_count
= tp
->fackets_out
;
1890 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1891 /* Check overlap against next cached too (past this one already) */
1896 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1897 skb
= tcp_highest_sack(sk
);
1900 state
.fack_count
= tp
->fackets_out
;
1902 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1905 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1906 start_seq
, end_seq
, dup_sack
);
1909 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1910 * due to in-order walk
1912 if (after(end_seq
, tp
->frto_highmark
))
1913 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1918 /* Clear the head of the cache sack blocks so we can skip it next time */
1919 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1920 tp
->recv_sack_cache
[i
].start_seq
= 0;
1921 tp
->recv_sack_cache
[i
].end_seq
= 0;
1923 for (j
= 0; j
< used_sacks
; j
++)
1924 tp
->recv_sack_cache
[i
++] = sp
[j
];
1926 tcp_mark_lost_retrans(sk
);
1928 tcp_verify_left_out(tp
);
1930 if ((state
.reord
< tp
->fackets_out
) &&
1931 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1932 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1933 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1937 #if FASTRETRANS_DEBUG > 0
1938 WARN_ON((int)tp
->sacked_out
< 0);
1939 WARN_ON((int)tp
->lost_out
< 0);
1940 WARN_ON((int)tp
->retrans_out
< 0);
1941 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1946 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1947 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1949 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1953 holes
= max(tp
->lost_out
, 1U);
1954 holes
= min(holes
, tp
->packets_out
);
1956 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1957 tp
->sacked_out
= tp
->packets_out
- holes
;
1963 /* If we receive more dupacks than we expected counting segments
1964 * in assumption of absent reordering, interpret this as reordering.
1965 * The only another reason could be bug in receiver TCP.
1967 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1969 struct tcp_sock
*tp
= tcp_sk(sk
);
1970 if (tcp_limit_reno_sacked(tp
))
1971 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1974 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1976 static void tcp_add_reno_sack(struct sock
*sk
)
1978 struct tcp_sock
*tp
= tcp_sk(sk
);
1980 tcp_check_reno_reordering(sk
, 0);
1981 tcp_verify_left_out(tp
);
1984 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1986 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1988 struct tcp_sock
*tp
= tcp_sk(sk
);
1991 /* One ACK acked hole. The rest eat duplicate ACKs. */
1992 if (acked
- 1 >= tp
->sacked_out
)
1995 tp
->sacked_out
-= acked
- 1;
1997 tcp_check_reno_reordering(sk
, acked
);
1998 tcp_verify_left_out(tp
);
2001 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2006 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
2008 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2011 /* F-RTO can only be used if TCP has never retransmitted anything other than
2012 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2014 int tcp_use_frto(struct sock
*sk
)
2016 const struct tcp_sock
*tp
= tcp_sk(sk
);
2017 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2018 struct sk_buff
*skb
;
2020 if (!sysctl_tcp_frto
)
2023 /* MTU probe and F-RTO won't really play nicely along currently */
2024 if (icsk
->icsk_mtup
.probe_size
)
2027 if (tcp_is_sackfrto(tp
))
2030 /* Avoid expensive walking of rexmit queue if possible */
2031 if (tp
->retrans_out
> 1)
2034 skb
= tcp_write_queue_head(sk
);
2035 if (tcp_skb_is_last(sk
, skb
))
2037 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2038 tcp_for_write_queue_from(skb
, sk
) {
2039 if (skb
== tcp_send_head(sk
))
2041 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2043 /* Short-circuit when first non-SACKed skb has been checked */
2044 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2050 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2051 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2052 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2053 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2054 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2055 * bits are handled if the Loss state is really to be entered (in
2056 * tcp_enter_frto_loss).
2058 * Do like tcp_enter_loss() would; when RTO expires the second time it
2060 * "Reduce ssthresh if it has not yet been made inside this window."
2062 void tcp_enter_frto(struct sock
*sk
)
2064 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2065 struct tcp_sock
*tp
= tcp_sk(sk
);
2066 struct sk_buff
*skb
;
2068 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2069 tp
->snd_una
== tp
->high_seq
||
2070 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2071 !icsk
->icsk_retransmits
)) {
2072 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2073 /* Our state is too optimistic in ssthresh() call because cwnd
2074 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2075 * recovery has not yet completed. Pattern would be this: RTO,
2076 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2078 * RFC4138 should be more specific on what to do, even though
2079 * RTO is quite unlikely to occur after the first Cumulative ACK
2080 * due to back-off and complexity of triggering events ...
2082 if (tp
->frto_counter
) {
2084 stored_cwnd
= tp
->snd_cwnd
;
2086 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2087 tp
->snd_cwnd
= stored_cwnd
;
2089 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2091 /* ... in theory, cong.control module could do "any tricks" in
2092 * ssthresh(), which means that ca_state, lost bits and lost_out
2093 * counter would have to be faked before the call occurs. We
2094 * consider that too expensive, unlikely and hacky, so modules
2095 * using these in ssthresh() must deal these incompatibility
2096 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2098 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2101 tp
->undo_marker
= tp
->snd_una
;
2102 tp
->undo_retrans
= 0;
2104 skb
= tcp_write_queue_head(sk
);
2105 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2106 tp
->undo_marker
= 0;
2107 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2108 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2109 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2111 tcp_verify_left_out(tp
);
2113 /* Too bad if TCP was application limited */
2114 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2116 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2117 * The last condition is necessary at least in tp->frto_counter case.
2119 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2120 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2121 after(tp
->high_seq
, tp
->snd_una
)) {
2122 tp
->frto_highmark
= tp
->high_seq
;
2124 tp
->frto_highmark
= tp
->snd_nxt
;
2126 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2127 tp
->high_seq
= tp
->snd_nxt
;
2128 tp
->frto_counter
= 1;
2131 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2132 * which indicates that we should follow the traditional RTO recovery,
2133 * i.e. mark everything lost and do go-back-N retransmission.
2135 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2137 struct tcp_sock
*tp
= tcp_sk(sk
);
2138 struct sk_buff
*skb
;
2141 tp
->retrans_out
= 0;
2142 if (tcp_is_reno(tp
))
2143 tcp_reset_reno_sack(tp
);
2145 tcp_for_write_queue(skb
, sk
) {
2146 if (skb
== tcp_send_head(sk
))
2149 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2151 * Count the retransmission made on RTO correctly (only when
2152 * waiting for the first ACK and did not get it)...
2154 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2155 /* For some reason this R-bit might get cleared? */
2156 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2157 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2158 /* ...enter this if branch just for the first segment */
2159 flag
|= FLAG_DATA_ACKED
;
2161 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2162 tp
->undo_marker
= 0;
2163 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2166 /* Marking forward transmissions that were made after RTO lost
2167 * can cause unnecessary retransmissions in some scenarios,
2168 * SACK blocks will mitigate that in some but not in all cases.
2169 * We used to not mark them but it was causing break-ups with
2170 * receivers that do only in-order receival.
2172 * TODO: we could detect presence of such receiver and select
2173 * different behavior per flow.
2175 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2176 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2177 tp
->lost_out
+= tcp_skb_pcount(skb
);
2178 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2181 tcp_verify_left_out(tp
);
2183 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2184 tp
->snd_cwnd_cnt
= 0;
2185 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2186 tp
->frto_counter
= 0;
2187 tp
->bytes_acked
= 0;
2189 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2190 sysctl_tcp_reordering
);
2191 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2192 tp
->high_seq
= tp
->snd_nxt
;
2193 TCP_ECN_queue_cwr(tp
);
2195 tcp_clear_all_retrans_hints(tp
);
2198 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2200 tp
->retrans_out
= 0;
2203 tp
->undo_marker
= 0;
2204 tp
->undo_retrans
= 0;
2207 void tcp_clear_retrans(struct tcp_sock
*tp
)
2209 tcp_clear_retrans_partial(tp
);
2211 tp
->fackets_out
= 0;
2215 /* Enter Loss state. If "how" is not zero, forget all SACK information
2216 * and reset tags completely, otherwise preserve SACKs. If receiver
2217 * dropped its ofo queue, we will know this due to reneging detection.
2219 void tcp_enter_loss(struct sock
*sk
, int how
)
2221 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2222 struct tcp_sock
*tp
= tcp_sk(sk
);
2223 struct sk_buff
*skb
;
2225 /* Reduce ssthresh if it has not yet been made inside this window. */
2226 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2227 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2228 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2229 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2230 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2233 tp
->snd_cwnd_cnt
= 0;
2234 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2236 tp
->bytes_acked
= 0;
2237 tcp_clear_retrans_partial(tp
);
2239 if (tcp_is_reno(tp
))
2240 tcp_reset_reno_sack(tp
);
2243 /* Push undo marker, if it was plain RTO and nothing
2244 * was retransmitted. */
2245 tp
->undo_marker
= tp
->snd_una
;
2248 tp
->fackets_out
= 0;
2250 tcp_clear_all_retrans_hints(tp
);
2252 tcp_for_write_queue(skb
, sk
) {
2253 if (skb
== tcp_send_head(sk
))
2256 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2257 tp
->undo_marker
= 0;
2258 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2259 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2260 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2261 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2262 tp
->lost_out
+= tcp_skb_pcount(skb
);
2263 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2266 tcp_verify_left_out(tp
);
2268 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2269 sysctl_tcp_reordering
);
2270 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2271 tp
->high_seq
= tp
->snd_nxt
;
2272 TCP_ECN_queue_cwr(tp
);
2273 /* Abort F-RTO algorithm if one is in progress */
2274 tp
->frto_counter
= 0;
2277 /* If ACK arrived pointing to a remembered SACK, it means that our
2278 * remembered SACKs do not reflect real state of receiver i.e.
2279 * receiver _host_ is heavily congested (or buggy).
2281 * Do processing similar to RTO timeout.
2283 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2285 if (flag
& FLAG_SACK_RENEGING
) {
2286 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2287 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2289 tcp_enter_loss(sk
, 1);
2290 icsk
->icsk_retransmits
++;
2291 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2292 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2293 icsk
->icsk_rto
, TCP_RTO_MAX
);
2299 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2301 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2304 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2305 * counter when SACK is enabled (without SACK, sacked_out is used for
2308 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2309 * segments up to the highest received SACK block so far and holes in
2312 * With reordering, holes may still be in flight, so RFC3517 recovery
2313 * uses pure sacked_out (total number of SACKed segments) even though
2314 * it violates the RFC that uses duplicate ACKs, often these are equal
2315 * but when e.g. out-of-window ACKs or packet duplication occurs,
2316 * they differ. Since neither occurs due to loss, TCP should really
2319 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2321 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2324 static inline int tcp_skb_timedout(const struct sock
*sk
,
2325 const struct sk_buff
*skb
)
2327 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2330 static inline int tcp_head_timedout(const struct sock
*sk
)
2332 const struct tcp_sock
*tp
= tcp_sk(sk
);
2334 return tp
->packets_out
&&
2335 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2338 /* Linux NewReno/SACK/FACK/ECN state machine.
2339 * --------------------------------------
2341 * "Open" Normal state, no dubious events, fast path.
2342 * "Disorder" In all the respects it is "Open",
2343 * but requires a bit more attention. It is entered when
2344 * we see some SACKs or dupacks. It is split of "Open"
2345 * mainly to move some processing from fast path to slow one.
2346 * "CWR" CWND was reduced due to some Congestion Notification event.
2347 * It can be ECN, ICMP source quench, local device congestion.
2348 * "Recovery" CWND was reduced, we are fast-retransmitting.
2349 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2351 * tcp_fastretrans_alert() is entered:
2352 * - each incoming ACK, if state is not "Open"
2353 * - when arrived ACK is unusual, namely:
2358 * Counting packets in flight is pretty simple.
2360 * in_flight = packets_out - left_out + retrans_out
2362 * packets_out is SND.NXT-SND.UNA counted in packets.
2364 * retrans_out is number of retransmitted segments.
2366 * left_out is number of segments left network, but not ACKed yet.
2368 * left_out = sacked_out + lost_out
2370 * sacked_out: Packets, which arrived to receiver out of order
2371 * and hence not ACKed. With SACKs this number is simply
2372 * amount of SACKed data. Even without SACKs
2373 * it is easy to give pretty reliable estimate of this number,
2374 * counting duplicate ACKs.
2376 * lost_out: Packets lost by network. TCP has no explicit
2377 * "loss notification" feedback from network (for now).
2378 * It means that this number can be only _guessed_.
2379 * Actually, it is the heuristics to predict lossage that
2380 * distinguishes different algorithms.
2382 * F.e. after RTO, when all the queue is considered as lost,
2383 * lost_out = packets_out and in_flight = retrans_out.
2385 * Essentially, we have now two algorithms counting
2388 * FACK: It is the simplest heuristics. As soon as we decided
2389 * that something is lost, we decide that _all_ not SACKed
2390 * packets until the most forward SACK are lost. I.e.
2391 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2392 * It is absolutely correct estimate, if network does not reorder
2393 * packets. And it loses any connection to reality when reordering
2394 * takes place. We use FACK by default until reordering
2395 * is suspected on the path to this destination.
2397 * NewReno: when Recovery is entered, we assume that one segment
2398 * is lost (classic Reno). While we are in Recovery and
2399 * a partial ACK arrives, we assume that one more packet
2400 * is lost (NewReno). This heuristics are the same in NewReno
2403 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2404 * deflation etc. CWND is real congestion window, never inflated, changes
2405 * only according to classic VJ rules.
2407 * Really tricky (and requiring careful tuning) part of algorithm
2408 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2409 * The first determines the moment _when_ we should reduce CWND and,
2410 * hence, slow down forward transmission. In fact, it determines the moment
2411 * when we decide that hole is caused by loss, rather than by a reorder.
2413 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2414 * holes, caused by lost packets.
2416 * And the most logically complicated part of algorithm is undo
2417 * heuristics. We detect false retransmits due to both too early
2418 * fast retransmit (reordering) and underestimated RTO, analyzing
2419 * timestamps and D-SACKs. When we detect that some segments were
2420 * retransmitted by mistake and CWND reduction was wrong, we undo
2421 * window reduction and abort recovery phase. This logic is hidden
2422 * inside several functions named tcp_try_undo_<something>.
2425 /* This function decides, when we should leave Disordered state
2426 * and enter Recovery phase, reducing congestion window.
2428 * Main question: may we further continue forward transmission
2429 * with the same cwnd?
2431 static int tcp_time_to_recover(struct sock
*sk
)
2433 struct tcp_sock
*tp
= tcp_sk(sk
);
2436 /* Do not perform any recovery during F-RTO algorithm */
2437 if (tp
->frto_counter
)
2440 /* Trick#1: The loss is proven. */
2444 /* Not-A-Trick#2 : Classic rule... */
2445 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2448 /* Trick#3 : when we use RFC2988 timer restart, fast
2449 * retransmit can be triggered by timeout of queue head.
2451 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2454 /* Trick#4: It is still not OK... But will it be useful to delay
2457 packets_out
= tp
->packets_out
;
2458 if (packets_out
<= tp
->reordering
&&
2459 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2460 !tcp_may_send_now(sk
)) {
2461 /* We have nothing to send. This connection is limited
2462 * either by receiver window or by application.
2467 /* If a thin stream is detected, retransmit after first
2468 * received dupack. Employ only if SACK is supported in order
2469 * to avoid possible corner-case series of spurious retransmissions
2470 * Use only if there are no unsent data.
2472 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2473 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2474 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2480 /* New heuristics: it is possible only after we switched to restart timer
2481 * each time when something is ACKed. Hence, we can detect timed out packets
2482 * during fast retransmit without falling to slow start.
2484 * Usefulness of this as is very questionable, since we should know which of
2485 * the segments is the next to timeout which is relatively expensive to find
2486 * in general case unless we add some data structure just for that. The
2487 * current approach certainly won't find the right one too often and when it
2488 * finally does find _something_ it usually marks large part of the window
2489 * right away (because a retransmission with a larger timestamp blocks the
2490 * loop from advancing). -ij
2492 static void tcp_timeout_skbs(struct sock
*sk
)
2494 struct tcp_sock
*tp
= tcp_sk(sk
);
2495 struct sk_buff
*skb
;
2497 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2500 skb
= tp
->scoreboard_skb_hint
;
2501 if (tp
->scoreboard_skb_hint
== NULL
)
2502 skb
= tcp_write_queue_head(sk
);
2504 tcp_for_write_queue_from(skb
, sk
) {
2505 if (skb
== tcp_send_head(sk
))
2507 if (!tcp_skb_timedout(sk
, skb
))
2510 tcp_skb_mark_lost(tp
, skb
);
2513 tp
->scoreboard_skb_hint
= skb
;
2515 tcp_verify_left_out(tp
);
2518 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2519 * is against sacked "cnt", otherwise it's against facked "cnt"
2521 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2523 struct tcp_sock
*tp
= tcp_sk(sk
);
2524 struct sk_buff
*skb
;
2529 WARN_ON(packets
> tp
->packets_out
);
2530 if (tp
->lost_skb_hint
) {
2531 skb
= tp
->lost_skb_hint
;
2532 cnt
= tp
->lost_cnt_hint
;
2533 /* Head already handled? */
2534 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2537 skb
= tcp_write_queue_head(sk
);
2541 tcp_for_write_queue_from(skb
, sk
) {
2542 if (skb
== tcp_send_head(sk
))
2544 /* TODO: do this better */
2545 /* this is not the most efficient way to do this... */
2546 tp
->lost_skb_hint
= skb
;
2547 tp
->lost_cnt_hint
= cnt
;
2549 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2553 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2554 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2555 cnt
+= tcp_skb_pcount(skb
);
2557 if (cnt
> packets
) {
2558 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2559 (oldcnt
>= packets
))
2562 mss
= skb_shinfo(skb
)->gso_size
;
2563 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2569 tcp_skb_mark_lost(tp
, skb
);
2574 tcp_verify_left_out(tp
);
2577 /* Account newly detected lost packet(s) */
2579 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2581 struct tcp_sock
*tp
= tcp_sk(sk
);
2583 if (tcp_is_reno(tp
)) {
2584 tcp_mark_head_lost(sk
, 1, 1);
2585 } else if (tcp_is_fack(tp
)) {
2586 int lost
= tp
->fackets_out
- tp
->reordering
;
2589 tcp_mark_head_lost(sk
, lost
, 0);
2591 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2592 if (sacked_upto
>= 0)
2593 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2594 else if (fast_rexmit
)
2595 tcp_mark_head_lost(sk
, 1, 1);
2598 tcp_timeout_skbs(sk
);
2601 /* CWND moderation, preventing bursts due to too big ACKs
2602 * in dubious situations.
2604 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2606 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2607 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2608 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2611 /* Lower bound on congestion window is slow start threshold
2612 * unless congestion avoidance choice decides to overide it.
2614 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2616 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2618 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2621 /* Decrease cwnd each second ack. */
2622 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2624 struct tcp_sock
*tp
= tcp_sk(sk
);
2625 int decr
= tp
->snd_cwnd_cnt
+ 1;
2627 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2628 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2629 tp
->snd_cwnd_cnt
= decr
& 1;
2632 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2633 tp
->snd_cwnd
-= decr
;
2635 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2636 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2640 /* Nothing was retransmitted or returned timestamp is less
2641 * than timestamp of the first retransmission.
2643 static inline int tcp_packet_delayed(const struct tcp_sock
*tp
)
2645 return !tp
->retrans_stamp
||
2646 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2647 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2650 /* Undo procedures. */
2652 #if FASTRETRANS_DEBUG > 1
2653 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2655 struct tcp_sock
*tp
= tcp_sk(sk
);
2656 struct inet_sock
*inet
= inet_sk(sk
);
2658 if (sk
->sk_family
== AF_INET
) {
2659 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2661 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2662 tp
->snd_cwnd
, tcp_left_out(tp
),
2663 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2667 else if (sk
->sk_family
== AF_INET6
) {
2668 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2669 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2671 &np
->daddr
, ntohs(inet
->inet_dport
),
2672 tp
->snd_cwnd
, tcp_left_out(tp
),
2673 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2679 #define DBGUNDO(x...) do { } while (0)
2682 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2684 struct tcp_sock
*tp
= tcp_sk(sk
);
2686 if (tp
->prior_ssthresh
) {
2687 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2689 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2690 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2692 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2694 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2695 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2696 TCP_ECN_withdraw_cwr(tp
);
2699 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2701 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2704 static inline int tcp_may_undo(const struct tcp_sock
*tp
)
2706 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2709 /* People celebrate: "We love our President!" */
2710 static int tcp_try_undo_recovery(struct sock
*sk
)
2712 struct tcp_sock
*tp
= tcp_sk(sk
);
2714 if (tcp_may_undo(tp
)) {
2717 /* Happy end! We did not retransmit anything
2718 * or our original transmission succeeded.
2720 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2721 tcp_undo_cwr(sk
, true);
2722 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2723 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2725 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2727 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2728 tp
->undo_marker
= 0;
2730 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2731 /* Hold old state until something *above* high_seq
2732 * is ACKed. For Reno it is MUST to prevent false
2733 * fast retransmits (RFC2582). SACK TCP is safe. */
2734 tcp_moderate_cwnd(tp
);
2737 tcp_set_ca_state(sk
, TCP_CA_Open
);
2741 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2742 static void tcp_try_undo_dsack(struct sock
*sk
)
2744 struct tcp_sock
*tp
= tcp_sk(sk
);
2746 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2747 DBGUNDO(sk
, "D-SACK");
2748 tcp_undo_cwr(sk
, true);
2749 tp
->undo_marker
= 0;
2750 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2754 /* We can clear retrans_stamp when there are no retransmissions in the
2755 * window. It would seem that it is trivially available for us in
2756 * tp->retrans_out, however, that kind of assumptions doesn't consider
2757 * what will happen if errors occur when sending retransmission for the
2758 * second time. ...It could the that such segment has only
2759 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2760 * the head skb is enough except for some reneging corner cases that
2761 * are not worth the effort.
2763 * Main reason for all this complexity is the fact that connection dying
2764 * time now depends on the validity of the retrans_stamp, in particular,
2765 * that successive retransmissions of a segment must not advance
2766 * retrans_stamp under any conditions.
2768 static int tcp_any_retrans_done(const struct sock
*sk
)
2770 const struct tcp_sock
*tp
= tcp_sk(sk
);
2771 struct sk_buff
*skb
;
2773 if (tp
->retrans_out
)
2776 skb
= tcp_write_queue_head(sk
);
2777 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2783 /* Undo during fast recovery after partial ACK. */
2785 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2787 struct tcp_sock
*tp
= tcp_sk(sk
);
2788 /* Partial ACK arrived. Force Hoe's retransmit. */
2789 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2791 if (tcp_may_undo(tp
)) {
2792 /* Plain luck! Hole if filled with delayed
2793 * packet, rather than with a retransmit.
2795 if (!tcp_any_retrans_done(sk
))
2796 tp
->retrans_stamp
= 0;
2798 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2801 tcp_undo_cwr(sk
, false);
2802 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2804 /* So... Do not make Hoe's retransmit yet.
2805 * If the first packet was delayed, the rest
2806 * ones are most probably delayed as well.
2813 /* Undo during loss recovery after partial ACK. */
2814 static int tcp_try_undo_loss(struct sock
*sk
)
2816 struct tcp_sock
*tp
= tcp_sk(sk
);
2818 if (tcp_may_undo(tp
)) {
2819 struct sk_buff
*skb
;
2820 tcp_for_write_queue(skb
, sk
) {
2821 if (skb
== tcp_send_head(sk
))
2823 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2826 tcp_clear_all_retrans_hints(tp
);
2828 DBGUNDO(sk
, "partial loss");
2830 tcp_undo_cwr(sk
, true);
2831 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2832 inet_csk(sk
)->icsk_retransmits
= 0;
2833 tp
->undo_marker
= 0;
2834 if (tcp_is_sack(tp
))
2835 tcp_set_ca_state(sk
, TCP_CA_Open
);
2841 static inline void tcp_complete_cwr(struct sock
*sk
)
2843 struct tcp_sock
*tp
= tcp_sk(sk
);
2845 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2846 if (tp
->undo_marker
) {
2847 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
)
2848 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2850 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2851 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2853 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2856 static void tcp_try_keep_open(struct sock
*sk
)
2858 struct tcp_sock
*tp
= tcp_sk(sk
);
2859 int state
= TCP_CA_Open
;
2861 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2862 state
= TCP_CA_Disorder
;
2864 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2865 tcp_set_ca_state(sk
, state
);
2866 tp
->high_seq
= tp
->snd_nxt
;
2870 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2872 struct tcp_sock
*tp
= tcp_sk(sk
);
2874 tcp_verify_left_out(tp
);
2876 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2877 tp
->retrans_stamp
= 0;
2879 if (flag
& FLAG_ECE
)
2880 tcp_enter_cwr(sk
, 1);
2882 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2883 tcp_try_keep_open(sk
);
2884 tcp_moderate_cwnd(tp
);
2886 tcp_cwnd_down(sk
, flag
);
2890 static void tcp_mtup_probe_failed(struct sock
*sk
)
2892 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2894 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2895 icsk
->icsk_mtup
.probe_size
= 0;
2898 static void tcp_mtup_probe_success(struct sock
*sk
)
2900 struct tcp_sock
*tp
= tcp_sk(sk
);
2901 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2903 /* FIXME: breaks with very large cwnd */
2904 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2905 tp
->snd_cwnd
= tp
->snd_cwnd
*
2906 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2907 icsk
->icsk_mtup
.probe_size
;
2908 tp
->snd_cwnd_cnt
= 0;
2909 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2910 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2912 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2913 icsk
->icsk_mtup
.probe_size
= 0;
2914 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2917 /* Do a simple retransmit without using the backoff mechanisms in
2918 * tcp_timer. This is used for path mtu discovery.
2919 * The socket is already locked here.
2921 void tcp_simple_retransmit(struct sock
*sk
)
2923 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2924 struct tcp_sock
*tp
= tcp_sk(sk
);
2925 struct sk_buff
*skb
;
2926 unsigned int mss
= tcp_current_mss(sk
);
2927 u32 prior_lost
= tp
->lost_out
;
2929 tcp_for_write_queue(skb
, sk
) {
2930 if (skb
== tcp_send_head(sk
))
2932 if (tcp_skb_seglen(skb
) > mss
&&
2933 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2934 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2935 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2936 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2938 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2942 tcp_clear_retrans_hints_partial(tp
);
2944 if (prior_lost
== tp
->lost_out
)
2947 if (tcp_is_reno(tp
))
2948 tcp_limit_reno_sacked(tp
);
2950 tcp_verify_left_out(tp
);
2952 /* Don't muck with the congestion window here.
2953 * Reason is that we do not increase amount of _data_
2954 * in network, but units changed and effective
2955 * cwnd/ssthresh really reduced now.
2957 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2958 tp
->high_seq
= tp
->snd_nxt
;
2959 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2960 tp
->prior_ssthresh
= 0;
2961 tp
->undo_marker
= 0;
2962 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2964 tcp_xmit_retransmit_queue(sk
);
2966 EXPORT_SYMBOL(tcp_simple_retransmit
);
2968 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2969 * (proportional rate reduction with slow start reduction bound) as described in
2970 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2971 * It computes the number of packets to send (sndcnt) based on packets newly
2973 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2974 * cwnd reductions across a full RTT.
2975 * 2) If packets in flight is lower than ssthresh (such as due to excess
2976 * losses and/or application stalls), do not perform any further cwnd
2977 * reductions, but instead slow start up to ssthresh.
2979 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
2980 int fast_rexmit
, int flag
)
2982 struct tcp_sock
*tp
= tcp_sk(sk
);
2984 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2986 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2987 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2989 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2991 sndcnt
= min_t(int, delta
,
2992 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2993 newly_acked_sacked
) + 1);
2996 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2997 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
3000 /* Process an event, which can update packets-in-flight not trivially.
3001 * Main goal of this function is to calculate new estimate for left_out,
3002 * taking into account both packets sitting in receiver's buffer and
3003 * packets lost by network.
3005 * Besides that it does CWND reduction, when packet loss is detected
3006 * and changes state of machine.
3008 * It does _not_ decide what to send, it is made in function
3009 * tcp_xmit_retransmit_queue().
3011 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
3012 int newly_acked_sacked
, int flag
)
3014 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3015 struct tcp_sock
*tp
= tcp_sk(sk
);
3016 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3017 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3018 (tcp_fackets_out(tp
) > tp
->reordering
));
3019 int fast_rexmit
= 0, mib_idx
;
3021 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
3023 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
3024 tp
->fackets_out
= 0;
3026 /* Now state machine starts.
3027 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3028 if (flag
& FLAG_ECE
)
3029 tp
->prior_ssthresh
= 0;
3031 /* B. In all the states check for reneging SACKs. */
3032 if (tcp_check_sack_reneging(sk
, flag
))
3035 /* C. Process data loss notification, provided it is valid. */
3036 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
3037 before(tp
->snd_una
, tp
->high_seq
) &&
3038 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
3039 tp
->fackets_out
> tp
->reordering
) {
3040 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
, 0);
3041 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
3044 /* D. Check consistency of the current state. */
3045 tcp_verify_left_out(tp
);
3047 /* E. Check state exit conditions. State can be terminated
3048 * when high_seq is ACKed. */
3049 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3050 WARN_ON(tp
->retrans_out
!= 0);
3051 tp
->retrans_stamp
= 0;
3052 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3053 switch (icsk
->icsk_ca_state
) {
3055 icsk
->icsk_retransmits
= 0;
3056 if (tcp_try_undo_recovery(sk
))
3061 /* CWR is to be held something *above* high_seq
3062 * is ACKed for CWR bit to reach receiver. */
3063 if (tp
->snd_una
!= tp
->high_seq
) {
3064 tcp_complete_cwr(sk
);
3065 tcp_set_ca_state(sk
, TCP_CA_Open
);
3069 case TCP_CA_Disorder
:
3070 tcp_try_undo_dsack(sk
);
3071 if (!tp
->undo_marker
||
3072 /* For SACK case do not Open to allow to undo
3073 * catching for all duplicate ACKs. */
3074 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3075 tp
->undo_marker
= 0;
3076 tcp_set_ca_state(sk
, TCP_CA_Open
);
3080 case TCP_CA_Recovery
:
3081 if (tcp_is_reno(tp
))
3082 tcp_reset_reno_sack(tp
);
3083 if (tcp_try_undo_recovery(sk
))
3085 tcp_complete_cwr(sk
);
3090 /* F. Process state. */
3091 switch (icsk
->icsk_ca_state
) {
3092 case TCP_CA_Recovery
:
3093 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3094 if (tcp_is_reno(tp
) && is_dupack
)
3095 tcp_add_reno_sack(sk
);
3097 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3100 if (flag
& FLAG_DATA_ACKED
)
3101 icsk
->icsk_retransmits
= 0;
3102 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3103 tcp_reset_reno_sack(tp
);
3104 if (!tcp_try_undo_loss(sk
)) {
3105 tcp_moderate_cwnd(tp
);
3106 tcp_xmit_retransmit_queue(sk
);
3109 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3111 /* Loss is undone; fall through to processing in Open state. */
3113 if (tcp_is_reno(tp
)) {
3114 if (flag
& FLAG_SND_UNA_ADVANCED
)
3115 tcp_reset_reno_sack(tp
);
3117 tcp_add_reno_sack(sk
);
3120 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3121 tcp_try_undo_dsack(sk
);
3123 if (!tcp_time_to_recover(sk
)) {
3124 tcp_try_to_open(sk
, flag
);
3128 /* MTU probe failure: don't reduce cwnd */
3129 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3130 icsk
->icsk_mtup
.probe_size
&&
3131 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3132 tcp_mtup_probe_failed(sk
);
3133 /* Restores the reduction we did in tcp_mtup_probe() */
3135 tcp_simple_retransmit(sk
);
3139 /* Otherwise enter Recovery state */
3141 if (tcp_is_reno(tp
))
3142 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3144 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3146 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3148 tp
->high_seq
= tp
->snd_nxt
;
3149 tp
->prior_ssthresh
= 0;
3150 tp
->undo_marker
= tp
->snd_una
;
3151 tp
->undo_retrans
= tp
->retrans_out
;
3153 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3154 if (!(flag
& FLAG_ECE
))
3155 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3156 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3157 TCP_ECN_queue_cwr(tp
);
3160 tp
->bytes_acked
= 0;
3161 tp
->snd_cwnd_cnt
= 0;
3162 tp
->prior_cwnd
= tp
->snd_cwnd
;
3163 tp
->prr_delivered
= 0;
3165 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3169 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3170 tcp_update_scoreboard(sk
, fast_rexmit
);
3171 tp
->prr_delivered
+= newly_acked_sacked
;
3172 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3173 tcp_xmit_retransmit_queue(sk
);
3176 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3178 tcp_rtt_estimator(sk
, seq_rtt
);
3180 inet_csk(sk
)->icsk_backoff
= 0;
3182 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3184 /* Read draft-ietf-tcplw-high-performance before mucking
3185 * with this code. (Supersedes RFC1323)
3187 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3189 /* RTTM Rule: A TSecr value received in a segment is used to
3190 * update the averaged RTT measurement only if the segment
3191 * acknowledges some new data, i.e., only if it advances the
3192 * left edge of the send window.
3194 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3195 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3197 * Changed: reset backoff as soon as we see the first valid sample.
3198 * If we do not, we get strongly overestimated rto. With timestamps
3199 * samples are accepted even from very old segments: f.e., when rtt=1
3200 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3201 * answer arrives rto becomes 120 seconds! If at least one of segments
3202 * in window is lost... Voila. --ANK (010210)
3204 struct tcp_sock
*tp
= tcp_sk(sk
);
3206 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3209 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3211 /* We don't have a timestamp. Can only use
3212 * packets that are not retransmitted to determine
3213 * rtt estimates. Also, we must not reset the
3214 * backoff for rto until we get a non-retransmitted
3215 * packet. This allows us to deal with a situation
3216 * where the network delay has increased suddenly.
3217 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3220 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3223 tcp_valid_rtt_meas(sk
, seq_rtt
);
3226 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3229 const struct tcp_sock
*tp
= tcp_sk(sk
);
3230 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3231 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3232 tcp_ack_saw_tstamp(sk
, flag
);
3233 else if (seq_rtt
>= 0)
3234 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3237 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3239 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3240 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3241 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3244 /* Restart timer after forward progress on connection.
3245 * RFC2988 recommends to restart timer to now+rto.
3247 static void tcp_rearm_rto(struct sock
*sk
)
3249 const struct tcp_sock
*tp
= tcp_sk(sk
);
3251 if (!tp
->packets_out
) {
3252 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3254 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3255 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3259 /* If we get here, the whole TSO packet has not been acked. */
3260 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3262 struct tcp_sock
*tp
= tcp_sk(sk
);
3265 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3267 packets_acked
= tcp_skb_pcount(skb
);
3268 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3270 packets_acked
-= tcp_skb_pcount(skb
);
3272 if (packets_acked
) {
3273 BUG_ON(tcp_skb_pcount(skb
) == 0);
3274 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3277 return packets_acked
;
3280 /* Remove acknowledged frames from the retransmission queue. If our packet
3281 * is before the ack sequence we can discard it as it's confirmed to have
3282 * arrived at the other end.
3284 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3287 struct tcp_sock
*tp
= tcp_sk(sk
);
3288 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3289 struct sk_buff
*skb
;
3290 u32 now
= tcp_time_stamp
;
3291 int fully_acked
= 1;
3294 u32 reord
= tp
->packets_out
;
3295 u32 prior_sacked
= tp
->sacked_out
;
3297 s32 ca_seq_rtt
= -1;
3298 ktime_t last_ackt
= net_invalid_timestamp();
3300 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3301 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3303 u8 sacked
= scb
->sacked
;
3305 /* Determine how many packets and what bytes were acked, tso and else */
3306 if (after(scb
->end_seq
, tp
->snd_una
)) {
3307 if (tcp_skb_pcount(skb
) == 1 ||
3308 !after(tp
->snd_una
, scb
->seq
))
3311 acked_pcount
= tcp_tso_acked(sk
, skb
);
3317 acked_pcount
= tcp_skb_pcount(skb
);
3320 if (sacked
& TCPCB_RETRANS
) {
3321 if (sacked
& TCPCB_SACKED_RETRANS
)
3322 tp
->retrans_out
-= acked_pcount
;
3323 flag
|= FLAG_RETRANS_DATA_ACKED
;
3326 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3327 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3329 ca_seq_rtt
= now
- scb
->when
;
3330 last_ackt
= skb
->tstamp
;
3332 seq_rtt
= ca_seq_rtt
;
3334 if (!(sacked
& TCPCB_SACKED_ACKED
))
3335 reord
= min(pkts_acked
, reord
);
3338 if (sacked
& TCPCB_SACKED_ACKED
)
3339 tp
->sacked_out
-= acked_pcount
;
3340 if (sacked
& TCPCB_LOST
)
3341 tp
->lost_out
-= acked_pcount
;
3343 tp
->packets_out
-= acked_pcount
;
3344 pkts_acked
+= acked_pcount
;
3346 /* Initial outgoing SYN's get put onto the write_queue
3347 * just like anything else we transmit. It is not
3348 * true data, and if we misinform our callers that
3349 * this ACK acks real data, we will erroneously exit
3350 * connection startup slow start one packet too
3351 * quickly. This is severely frowned upon behavior.
3353 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3354 flag
|= FLAG_DATA_ACKED
;
3356 flag
|= FLAG_SYN_ACKED
;
3357 tp
->retrans_stamp
= 0;
3363 tcp_unlink_write_queue(skb
, sk
);
3364 sk_wmem_free_skb(sk
, skb
);
3365 tp
->scoreboard_skb_hint
= NULL
;
3366 if (skb
== tp
->retransmit_skb_hint
)
3367 tp
->retransmit_skb_hint
= NULL
;
3368 if (skb
== tp
->lost_skb_hint
)
3369 tp
->lost_skb_hint
= NULL
;
3372 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3373 tp
->snd_up
= tp
->snd_una
;
3375 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3376 flag
|= FLAG_SACK_RENEGING
;
3378 if (flag
& FLAG_ACKED
) {
3379 const struct tcp_congestion_ops
*ca_ops
3380 = inet_csk(sk
)->icsk_ca_ops
;
3382 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3383 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3384 tcp_mtup_probe_success(sk
);
3387 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3390 if (tcp_is_reno(tp
)) {
3391 tcp_remove_reno_sacks(sk
, pkts_acked
);
3395 /* Non-retransmitted hole got filled? That's reordering */
3396 if (reord
< prior_fackets
)
3397 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3399 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3400 prior_sacked
- tp
->sacked_out
;
3401 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3404 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3406 if (ca_ops
->pkts_acked
) {
3409 /* Is the ACK triggering packet unambiguous? */
3410 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3411 /* High resolution needed and available? */
3412 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3413 !ktime_equal(last_ackt
,
3414 net_invalid_timestamp()))
3415 rtt_us
= ktime_us_delta(ktime_get_real(),
3417 else if (ca_seq_rtt
>= 0)
3418 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3421 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3425 #if FASTRETRANS_DEBUG > 0
3426 WARN_ON((int)tp
->sacked_out
< 0);
3427 WARN_ON((int)tp
->lost_out
< 0);
3428 WARN_ON((int)tp
->retrans_out
< 0);
3429 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3430 icsk
= inet_csk(sk
);
3432 printk(KERN_DEBUG
"Leak l=%u %d\n",
3433 tp
->lost_out
, icsk
->icsk_ca_state
);
3436 if (tp
->sacked_out
) {
3437 printk(KERN_DEBUG
"Leak s=%u %d\n",
3438 tp
->sacked_out
, icsk
->icsk_ca_state
);
3441 if (tp
->retrans_out
) {
3442 printk(KERN_DEBUG
"Leak r=%u %d\n",
3443 tp
->retrans_out
, icsk
->icsk_ca_state
);
3444 tp
->retrans_out
= 0;
3451 static void tcp_ack_probe(struct sock
*sk
)
3453 const struct tcp_sock
*tp
= tcp_sk(sk
);
3454 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3456 /* Was it a usable window open? */
3458 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3459 icsk
->icsk_backoff
= 0;
3460 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3461 /* Socket must be waked up by subsequent tcp_data_snd_check().
3462 * This function is not for random using!
3465 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3466 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3471 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3473 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3474 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3477 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3479 const struct tcp_sock
*tp
= tcp_sk(sk
);
3480 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3481 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3484 /* Check that window update is acceptable.
3485 * The function assumes that snd_una<=ack<=snd_next.
3487 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3488 const u32 ack
, const u32 ack_seq
,
3491 return after(ack
, tp
->snd_una
) ||
3492 after(ack_seq
, tp
->snd_wl1
) ||
3493 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3496 /* Update our send window.
3498 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3499 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3501 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3504 struct tcp_sock
*tp
= tcp_sk(sk
);
3506 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3508 if (likely(!tcp_hdr(skb
)->syn
))
3509 nwin
<<= tp
->rx_opt
.snd_wscale
;
3511 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3512 flag
|= FLAG_WIN_UPDATE
;
3513 tcp_update_wl(tp
, ack_seq
);
3515 if (tp
->snd_wnd
!= nwin
) {
3518 /* Note, it is the only place, where
3519 * fast path is recovered for sending TCP.
3522 tcp_fast_path_check(sk
);
3524 if (nwin
> tp
->max_window
) {
3525 tp
->max_window
= nwin
;
3526 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3536 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3537 * continue in congestion avoidance.
3539 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3541 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3542 tp
->snd_cwnd_cnt
= 0;
3543 tp
->bytes_acked
= 0;
3544 TCP_ECN_queue_cwr(tp
);
3545 tcp_moderate_cwnd(tp
);
3548 /* A conservative spurious RTO response algorithm: reduce cwnd using
3549 * rate halving and continue in congestion avoidance.
3551 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3553 tcp_enter_cwr(sk
, 0);
3556 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3558 if (flag
& FLAG_ECE
)
3559 tcp_ratehalving_spur_to_response(sk
);
3561 tcp_undo_cwr(sk
, true);
3564 /* F-RTO spurious RTO detection algorithm (RFC4138)
3566 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3567 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3568 * window (but not to or beyond highest sequence sent before RTO):
3569 * On First ACK, send two new segments out.
3570 * On Second ACK, RTO was likely spurious. Do spurious response (response
3571 * algorithm is not part of the F-RTO detection algorithm
3572 * given in RFC4138 but can be selected separately).
3573 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3574 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3575 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3576 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3578 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3579 * original window even after we transmit two new data segments.
3582 * on first step, wait until first cumulative ACK arrives, then move to
3583 * the second step. In second step, the next ACK decides.
3585 * F-RTO is implemented (mainly) in four functions:
3586 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3587 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3588 * called when tcp_use_frto() showed green light
3589 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3590 * - tcp_enter_frto_loss() is called if there is not enough evidence
3591 * to prove that the RTO is indeed spurious. It transfers the control
3592 * from F-RTO to the conventional RTO recovery
3594 static int tcp_process_frto(struct sock
*sk
, int flag
)
3596 struct tcp_sock
*tp
= tcp_sk(sk
);
3598 tcp_verify_left_out(tp
);
3600 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3601 if (flag
& FLAG_DATA_ACKED
)
3602 inet_csk(sk
)->icsk_retransmits
= 0;
3604 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3605 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3606 tp
->undo_marker
= 0;
3608 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3609 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3613 if (!tcp_is_sackfrto(tp
)) {
3614 /* RFC4138 shortcoming in step 2; should also have case c):
3615 * ACK isn't duplicate nor advances window, e.g., opposite dir
3618 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3621 if (!(flag
& FLAG_DATA_ACKED
)) {
3622 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3627 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3628 /* Prevent sending of new data. */
3629 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3630 tcp_packets_in_flight(tp
));
3634 if ((tp
->frto_counter
>= 2) &&
3635 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3636 ((flag
& FLAG_DATA_SACKED
) &&
3637 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3638 /* RFC4138 shortcoming (see comment above) */
3639 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3640 (flag
& FLAG_NOT_DUP
))
3643 tcp_enter_frto_loss(sk
, 3, flag
);
3648 if (tp
->frto_counter
== 1) {
3649 /* tcp_may_send_now needs to see updated state */
3650 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3651 tp
->frto_counter
= 2;
3653 if (!tcp_may_send_now(sk
))
3654 tcp_enter_frto_loss(sk
, 2, flag
);
3658 switch (sysctl_tcp_frto_response
) {
3660 tcp_undo_spur_to_response(sk
, flag
);
3663 tcp_conservative_spur_to_response(tp
);
3666 tcp_ratehalving_spur_to_response(sk
);
3669 tp
->frto_counter
= 0;
3670 tp
->undo_marker
= 0;
3671 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3676 /* This routine deals with incoming acks, but not outgoing ones. */
3677 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3679 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3680 struct tcp_sock
*tp
= tcp_sk(sk
);
3681 u32 prior_snd_una
= tp
->snd_una
;
3682 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3683 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3684 u32 prior_in_flight
;
3687 int prior_sacked
= tp
->sacked_out
;
3688 int newly_acked_sacked
= 0;
3691 /* If the ack is older than previous acks
3692 * then we can probably ignore it.
3694 if (before(ack
, prior_snd_una
))
3697 /* If the ack includes data we haven't sent yet, discard
3698 * this segment (RFC793 Section 3.9).
3700 if (after(ack
, tp
->snd_nxt
))
3703 if (after(ack
, prior_snd_una
))
3704 flag
|= FLAG_SND_UNA_ADVANCED
;
3706 if (sysctl_tcp_abc
) {
3707 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3708 tp
->bytes_acked
+= ack
- prior_snd_una
;
3709 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3710 /* we assume just one segment left network */
3711 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3715 prior_fackets
= tp
->fackets_out
;
3716 prior_in_flight
= tcp_packets_in_flight(tp
);
3718 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3719 /* Window is constant, pure forward advance.
3720 * No more checks are required.
3721 * Note, we use the fact that SND.UNA>=SND.WL2.
3723 tcp_update_wl(tp
, ack_seq
);
3725 flag
|= FLAG_WIN_UPDATE
;
3727 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3729 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3731 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3734 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3736 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3738 if (TCP_SKB_CB(skb
)->sacked
)
3739 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3741 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3744 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3747 /* We passed data and got it acked, remove any soft error
3748 * log. Something worked...
3750 sk
->sk_err_soft
= 0;
3751 icsk
->icsk_probes_out
= 0;
3752 tp
->rcv_tstamp
= tcp_time_stamp
;
3753 prior_packets
= tp
->packets_out
;
3757 /* See if we can take anything off of the retransmit queue. */
3758 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3760 newly_acked_sacked
= (prior_packets
- prior_sacked
) -
3761 (tp
->packets_out
- tp
->sacked_out
);
3763 if (tp
->frto_counter
)
3764 frto_cwnd
= tcp_process_frto(sk
, flag
);
3765 /* Guarantee sacktag reordering detection against wrap-arounds */
3766 if (before(tp
->frto_highmark
, tp
->snd_una
))
3767 tp
->frto_highmark
= 0;
3769 if (tcp_ack_is_dubious(sk
, flag
)) {
3770 /* Advance CWND, if state allows this. */
3771 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3772 tcp_may_raise_cwnd(sk
, flag
))
3773 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3774 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3775 newly_acked_sacked
, flag
);
3777 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3778 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3781 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3782 dst_confirm(__sk_dst_get(sk
));
3787 /* If this ack opens up a zero window, clear backoff. It was
3788 * being used to time the probes, and is probably far higher than
3789 * it needs to be for normal retransmission.
3791 if (tcp_send_head(sk
))
3796 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3800 if (TCP_SKB_CB(skb
)->sacked
) {
3801 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3802 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3803 tcp_try_keep_open(sk
);
3806 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3810 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3811 * But, this can also be called on packets in the established flow when
3812 * the fast version below fails.
3814 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3815 const u8
**hvpp
, int estab
)
3817 const unsigned char *ptr
;
3818 const struct tcphdr
*th
= tcp_hdr(skb
);
3819 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3821 ptr
= (const unsigned char *)(th
+ 1);
3822 opt_rx
->saw_tstamp
= 0;
3824 while (length
> 0) {
3825 int opcode
= *ptr
++;
3831 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3836 if (opsize
< 2) /* "silly options" */
3838 if (opsize
> length
)
3839 return; /* don't parse partial options */
3842 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3843 u16 in_mss
= get_unaligned_be16(ptr
);
3845 if (opt_rx
->user_mss
&&
3846 opt_rx
->user_mss
< in_mss
)
3847 in_mss
= opt_rx
->user_mss
;
3848 opt_rx
->mss_clamp
= in_mss
;
3853 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3854 !estab
&& sysctl_tcp_window_scaling
) {
3855 __u8 snd_wscale
= *(__u8
*)ptr
;
3856 opt_rx
->wscale_ok
= 1;
3857 if (snd_wscale
> 14) {
3858 if (net_ratelimit())
3859 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3860 "scaling value %d >14 received.\n",
3864 opt_rx
->snd_wscale
= snd_wscale
;
3867 case TCPOPT_TIMESTAMP
:
3868 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3869 ((estab
&& opt_rx
->tstamp_ok
) ||
3870 (!estab
&& sysctl_tcp_timestamps
))) {
3871 opt_rx
->saw_tstamp
= 1;
3872 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3873 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3876 case TCPOPT_SACK_PERM
:
3877 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3878 !estab
&& sysctl_tcp_sack
) {
3879 opt_rx
->sack_ok
= 1;
3880 tcp_sack_reset(opt_rx
);
3885 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3886 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3888 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3891 #ifdef CONFIG_TCP_MD5SIG
3894 * The MD5 Hash has already been
3895 * checked (see tcp_v{4,6}_do_rcv()).
3900 /* This option is variable length.
3903 case TCPOLEN_COOKIE_BASE
:
3904 /* not yet implemented */
3906 case TCPOLEN_COOKIE_PAIR
:
3907 /* not yet implemented */
3909 case TCPOLEN_COOKIE_MIN
+0:
3910 case TCPOLEN_COOKIE_MIN
+2:
3911 case TCPOLEN_COOKIE_MIN
+4:
3912 case TCPOLEN_COOKIE_MIN
+6:
3913 case TCPOLEN_COOKIE_MAX
:
3914 /* 16-bit multiple */
3915 opt_rx
->cookie_plus
= opsize
;
3930 EXPORT_SYMBOL(tcp_parse_options
);
3932 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3934 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3936 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3937 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3938 tp
->rx_opt
.saw_tstamp
= 1;
3940 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3942 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3948 /* Fast parse options. This hopes to only see timestamps.
3949 * If it is wrong it falls back on tcp_parse_options().
3951 static int tcp_fast_parse_options(const struct sk_buff
*skb
,
3952 const struct tcphdr
*th
,
3953 struct tcp_sock
*tp
, const u8
**hvpp
)
3955 /* In the spirit of fast parsing, compare doff directly to constant
3956 * values. Because equality is used, short doff can be ignored here.
3958 if (th
->doff
== (sizeof(*th
) / 4)) {
3959 tp
->rx_opt
.saw_tstamp
= 0;
3961 } else if (tp
->rx_opt
.tstamp_ok
&&
3962 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3963 if (tcp_parse_aligned_timestamp(tp
, th
))
3966 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3970 #ifdef CONFIG_TCP_MD5SIG
3972 * Parse MD5 Signature option
3974 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3976 int length
= (th
->doff
<< 2) - sizeof(*th
);
3977 const u8
*ptr
= (const u8
*)(th
+ 1);
3979 /* If the TCP option is too short, we can short cut */
3980 if (length
< TCPOLEN_MD5SIG
)
3983 while (length
> 0) {
3984 int opcode
= *ptr
++;
3995 if (opsize
< 2 || opsize
> length
)
3997 if (opcode
== TCPOPT_MD5SIG
)
3998 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4005 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4008 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
4010 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
4011 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
4014 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
4016 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
4017 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4018 * extra check below makes sure this can only happen
4019 * for pure ACK frames. -DaveM
4021 * Not only, also it occurs for expired timestamps.
4024 if (tcp_paws_check(&tp
->rx_opt
, 0))
4025 tcp_store_ts_recent(tp
);
4029 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4031 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4032 * it can pass through stack. So, the following predicate verifies that
4033 * this segment is not used for anything but congestion avoidance or
4034 * fast retransmit. Moreover, we even are able to eliminate most of such
4035 * second order effects, if we apply some small "replay" window (~RTO)
4036 * to timestamp space.
4038 * All these measures still do not guarantee that we reject wrapped ACKs
4039 * on networks with high bandwidth, when sequence space is recycled fastly,
4040 * but it guarantees that such events will be very rare and do not affect
4041 * connection seriously. This doesn't look nice, but alas, PAWS is really
4044 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4045 * states that events when retransmit arrives after original data are rare.
4046 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4047 * the biggest problem on large power networks even with minor reordering.
4048 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4049 * up to bandwidth of 18Gigabit/sec. 8) ]
4052 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4054 const struct tcp_sock
*tp
= tcp_sk(sk
);
4055 const struct tcphdr
*th
= tcp_hdr(skb
);
4056 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4057 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4059 return (/* 1. Pure ACK with correct sequence number. */
4060 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4062 /* 2. ... and duplicate ACK. */
4063 ack
== tp
->snd_una
&&
4065 /* 3. ... and does not update window. */
4066 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4068 /* 4. ... and sits in replay window. */
4069 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4072 static inline int tcp_paws_discard(const struct sock
*sk
,
4073 const struct sk_buff
*skb
)
4075 const struct tcp_sock
*tp
= tcp_sk(sk
);
4077 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4078 !tcp_disordered_ack(sk
, skb
);
4081 /* Check segment sequence number for validity.
4083 * Segment controls are considered valid, if the segment
4084 * fits to the window after truncation to the window. Acceptability
4085 * of data (and SYN, FIN, of course) is checked separately.
4086 * See tcp_data_queue(), for example.
4088 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4089 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4090 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4091 * (borrowed from freebsd)
4094 static inline int tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4096 return !before(end_seq
, tp
->rcv_wup
) &&
4097 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4100 /* When we get a reset we do this. */
4101 static void tcp_reset(struct sock
*sk
)
4103 /* We want the right error as BSD sees it (and indeed as we do). */
4104 switch (sk
->sk_state
) {
4106 sk
->sk_err
= ECONNREFUSED
;
4108 case TCP_CLOSE_WAIT
:
4114 sk
->sk_err
= ECONNRESET
;
4116 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4119 if (!sock_flag(sk
, SOCK_DEAD
))
4120 sk
->sk_error_report(sk
);
4126 * Process the FIN bit. This now behaves as it is supposed to work
4127 * and the FIN takes effect when it is validly part of sequence
4128 * space. Not before when we get holes.
4130 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4131 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4134 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4135 * close and we go into CLOSING (and later onto TIME-WAIT)
4137 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4139 static void tcp_fin(struct sock
*sk
)
4141 struct tcp_sock
*tp
= tcp_sk(sk
);
4143 inet_csk_schedule_ack(sk
);
4145 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4146 sock_set_flag(sk
, SOCK_DONE
);
4148 switch (sk
->sk_state
) {
4150 case TCP_ESTABLISHED
:
4151 /* Move to CLOSE_WAIT */
4152 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4153 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4156 case TCP_CLOSE_WAIT
:
4158 /* Received a retransmission of the FIN, do
4163 /* RFC793: Remain in the LAST-ACK state. */
4167 /* This case occurs when a simultaneous close
4168 * happens, we must ack the received FIN and
4169 * enter the CLOSING state.
4172 tcp_set_state(sk
, TCP_CLOSING
);
4175 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4177 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4180 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4181 * cases we should never reach this piece of code.
4183 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4184 __func__
, sk
->sk_state
);
4188 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4189 * Probably, we should reset in this case. For now drop them.
4191 __skb_queue_purge(&tp
->out_of_order_queue
);
4192 if (tcp_is_sack(tp
))
4193 tcp_sack_reset(&tp
->rx_opt
);
4196 if (!sock_flag(sk
, SOCK_DEAD
)) {
4197 sk
->sk_state_change(sk
);
4199 /* Do not send POLL_HUP for half duplex close. */
4200 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4201 sk
->sk_state
== TCP_CLOSE
)
4202 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4204 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4208 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4211 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4212 if (before(seq
, sp
->start_seq
))
4213 sp
->start_seq
= seq
;
4214 if (after(end_seq
, sp
->end_seq
))
4215 sp
->end_seq
= end_seq
;
4221 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4223 struct tcp_sock
*tp
= tcp_sk(sk
);
4225 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4228 if (before(seq
, tp
->rcv_nxt
))
4229 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4231 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4233 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4235 tp
->rx_opt
.dsack
= 1;
4236 tp
->duplicate_sack
[0].start_seq
= seq
;
4237 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4241 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4243 struct tcp_sock
*tp
= tcp_sk(sk
);
4245 if (!tp
->rx_opt
.dsack
)
4246 tcp_dsack_set(sk
, seq
, end_seq
);
4248 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4251 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4253 struct tcp_sock
*tp
= tcp_sk(sk
);
4255 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4256 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4257 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4258 tcp_enter_quickack_mode(sk
);
4260 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4261 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4263 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4264 end_seq
= tp
->rcv_nxt
;
4265 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4272 /* These routines update the SACK block as out-of-order packets arrive or
4273 * in-order packets close up the sequence space.
4275 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4278 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4279 struct tcp_sack_block
*swalk
= sp
+ 1;
4281 /* See if the recent change to the first SACK eats into
4282 * or hits the sequence space of other SACK blocks, if so coalesce.
4284 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4285 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4288 /* Zap SWALK, by moving every further SACK up by one slot.
4289 * Decrease num_sacks.
4291 tp
->rx_opt
.num_sacks
--;
4292 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4296 this_sack
++, swalk
++;
4300 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4302 struct tcp_sock
*tp
= tcp_sk(sk
);
4303 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4304 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4310 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4311 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4312 /* Rotate this_sack to the first one. */
4313 for (; this_sack
> 0; this_sack
--, sp
--)
4314 swap(*sp
, *(sp
- 1));
4316 tcp_sack_maybe_coalesce(tp
);
4321 /* Could not find an adjacent existing SACK, build a new one,
4322 * put it at the front, and shift everyone else down. We
4323 * always know there is at least one SACK present already here.
4325 * If the sack array is full, forget about the last one.
4327 if (this_sack
>= TCP_NUM_SACKS
) {
4329 tp
->rx_opt
.num_sacks
--;
4332 for (; this_sack
> 0; this_sack
--, sp
--)
4336 /* Build the new head SACK, and we're done. */
4337 sp
->start_seq
= seq
;
4338 sp
->end_seq
= end_seq
;
4339 tp
->rx_opt
.num_sacks
++;
4342 /* RCV.NXT advances, some SACKs should be eaten. */
4344 static void tcp_sack_remove(struct tcp_sock
*tp
)
4346 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4347 int num_sacks
= tp
->rx_opt
.num_sacks
;
4350 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4351 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4352 tp
->rx_opt
.num_sacks
= 0;
4356 for (this_sack
= 0; this_sack
< num_sacks
;) {
4357 /* Check if the start of the sack is covered by RCV.NXT. */
4358 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4361 /* RCV.NXT must cover all the block! */
4362 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4364 /* Zap this SACK, by moving forward any other SACKS. */
4365 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4366 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4373 tp
->rx_opt
.num_sacks
= num_sacks
;
4376 /* This one checks to see if we can put data from the
4377 * out_of_order queue into the receive_queue.
4379 static void tcp_ofo_queue(struct sock
*sk
)
4381 struct tcp_sock
*tp
= tcp_sk(sk
);
4382 __u32 dsack_high
= tp
->rcv_nxt
;
4383 struct sk_buff
*skb
;
4385 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4386 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4389 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4390 __u32 dsack
= dsack_high
;
4391 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4392 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4393 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4396 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4397 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4398 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4402 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4403 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4404 TCP_SKB_CB(skb
)->end_seq
);
4406 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4407 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4408 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4409 if (tcp_hdr(skb
)->fin
)
4414 static int tcp_prune_ofo_queue(struct sock
*sk
);
4415 static int tcp_prune_queue(struct sock
*sk
);
4417 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4419 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4420 !sk_rmem_schedule(sk
, size
)) {
4422 if (tcp_prune_queue(sk
) < 0)
4425 if (!sk_rmem_schedule(sk
, size
)) {
4426 if (!tcp_prune_ofo_queue(sk
))
4429 if (!sk_rmem_schedule(sk
, size
))
4436 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4438 const struct tcphdr
*th
= tcp_hdr(skb
);
4439 struct tcp_sock
*tp
= tcp_sk(sk
);
4442 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4446 __skb_pull(skb
, th
->doff
* 4);
4448 TCP_ECN_accept_cwr(tp
, skb
);
4450 tp
->rx_opt
.dsack
= 0;
4452 /* Queue data for delivery to the user.
4453 * Packets in sequence go to the receive queue.
4454 * Out of sequence packets to the out_of_order_queue.
4456 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4457 if (tcp_receive_window(tp
) == 0)
4460 /* Ok. In sequence. In window. */
4461 if (tp
->ucopy
.task
== current
&&
4462 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4463 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4464 int chunk
= min_t(unsigned int, skb
->len
,
4467 __set_current_state(TASK_RUNNING
);
4470 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4471 tp
->ucopy
.len
-= chunk
;
4472 tp
->copied_seq
+= chunk
;
4473 eaten
= (chunk
== skb
->len
);
4474 tcp_rcv_space_adjust(sk
);
4482 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4485 skb_set_owner_r(skb
, sk
);
4486 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4488 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4490 tcp_event_data_recv(sk
, skb
);
4494 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4497 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4498 * gap in queue is filled.
4500 if (skb_queue_empty(&tp
->out_of_order_queue
))
4501 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4504 if (tp
->rx_opt
.num_sacks
)
4505 tcp_sack_remove(tp
);
4507 tcp_fast_path_check(sk
);
4511 else if (!sock_flag(sk
, SOCK_DEAD
))
4512 sk
->sk_data_ready(sk
, 0);
4516 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4517 /* A retransmit, 2nd most common case. Force an immediate ack. */
4518 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4519 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4522 tcp_enter_quickack_mode(sk
);
4523 inet_csk_schedule_ack(sk
);
4529 /* Out of window. F.e. zero window probe. */
4530 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4533 tcp_enter_quickack_mode(sk
);
4535 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4536 /* Partial packet, seq < rcv_next < end_seq */
4537 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4538 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4539 TCP_SKB_CB(skb
)->end_seq
);
4541 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4543 /* If window is closed, drop tail of packet. But after
4544 * remembering D-SACK for its head made in previous line.
4546 if (!tcp_receive_window(tp
))
4551 TCP_ECN_check_ce(tp
, skb
);
4553 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4556 /* Disable header prediction. */
4558 inet_csk_schedule_ack(sk
);
4560 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4561 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4563 skb_set_owner_r(skb
, sk
);
4565 if (!skb_peek(&tp
->out_of_order_queue
)) {
4566 /* Initial out of order segment, build 1 SACK. */
4567 if (tcp_is_sack(tp
)) {
4568 tp
->rx_opt
.num_sacks
= 1;
4569 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4570 tp
->selective_acks
[0].end_seq
=
4571 TCP_SKB_CB(skb
)->end_seq
;
4573 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4575 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4576 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4577 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4579 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4580 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4582 if (!tp
->rx_opt
.num_sacks
||
4583 tp
->selective_acks
[0].end_seq
!= seq
)
4586 /* Common case: data arrive in order after hole. */
4587 tp
->selective_acks
[0].end_seq
= end_seq
;
4591 /* Find place to insert this segment. */
4593 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4595 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4599 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4602 /* Do skb overlap to previous one? */
4603 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4604 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4605 /* All the bits are present. Drop. */
4607 tcp_dsack_set(sk
, seq
, end_seq
);
4610 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4611 /* Partial overlap. */
4612 tcp_dsack_set(sk
, seq
,
4613 TCP_SKB_CB(skb1
)->end_seq
);
4615 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4619 skb1
= skb_queue_prev(
4620 &tp
->out_of_order_queue
,
4625 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4627 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4629 /* And clean segments covered by new one as whole. */
4630 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4631 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4633 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4635 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4636 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4640 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4641 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4642 TCP_SKB_CB(skb1
)->end_seq
);
4647 if (tcp_is_sack(tp
))
4648 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4652 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4653 struct sk_buff_head
*list
)
4655 struct sk_buff
*next
= NULL
;
4657 if (!skb_queue_is_last(list
, skb
))
4658 next
= skb_queue_next(list
, skb
);
4660 __skb_unlink(skb
, list
);
4662 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4667 /* Collapse contiguous sequence of skbs head..tail with
4668 * sequence numbers start..end.
4670 * If tail is NULL, this means until the end of the list.
4672 * Segments with FIN/SYN are not collapsed (only because this
4676 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4677 struct sk_buff
*head
, struct sk_buff
*tail
,
4680 struct sk_buff
*skb
, *n
;
4683 /* First, check that queue is collapsible and find
4684 * the point where collapsing can be useful. */
4688 skb_queue_walk_from_safe(list
, skb
, n
) {
4691 /* No new bits? It is possible on ofo queue. */
4692 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4693 skb
= tcp_collapse_one(sk
, skb
, list
);
4699 /* The first skb to collapse is:
4701 * - bloated or contains data before "start" or
4702 * overlaps to the next one.
4704 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4705 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4706 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4707 end_of_skbs
= false;
4711 if (!skb_queue_is_last(list
, skb
)) {
4712 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4714 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4715 end_of_skbs
= false;
4720 /* Decided to skip this, advance start seq. */
4721 start
= TCP_SKB_CB(skb
)->end_seq
;
4723 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4726 while (before(start
, end
)) {
4727 struct sk_buff
*nskb
;
4728 unsigned int header
= skb_headroom(skb
);
4729 int copy
= SKB_MAX_ORDER(header
, 0);
4731 /* Too big header? This can happen with IPv6. */
4734 if (end
- start
< copy
)
4736 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4740 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4741 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4743 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4745 skb_reserve(nskb
, header
);
4746 memcpy(nskb
->head
, skb
->head
, header
);
4747 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4748 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4749 __skb_queue_before(list
, skb
, nskb
);
4750 skb_set_owner_r(nskb
, sk
);
4752 /* Copy data, releasing collapsed skbs. */
4754 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4755 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4759 size
= min(copy
, size
);
4760 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4762 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4766 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4767 skb
= tcp_collapse_one(sk
, skb
, list
);
4770 tcp_hdr(skb
)->syn
||
4778 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4779 * and tcp_collapse() them until all the queue is collapsed.
4781 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4783 struct tcp_sock
*tp
= tcp_sk(sk
);
4784 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4785 struct sk_buff
*head
;
4791 start
= TCP_SKB_CB(skb
)->seq
;
4792 end
= TCP_SKB_CB(skb
)->end_seq
;
4796 struct sk_buff
*next
= NULL
;
4798 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4799 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4802 /* Segment is terminated when we see gap or when
4803 * we are at the end of all the queue. */
4805 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4806 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4807 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4808 head
, skb
, start
, end
);
4812 /* Start new segment */
4813 start
= TCP_SKB_CB(skb
)->seq
;
4814 end
= TCP_SKB_CB(skb
)->end_seq
;
4816 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4817 start
= TCP_SKB_CB(skb
)->seq
;
4818 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4819 end
= TCP_SKB_CB(skb
)->end_seq
;
4825 * Purge the out-of-order queue.
4826 * Return true if queue was pruned.
4828 static int tcp_prune_ofo_queue(struct sock
*sk
)
4830 struct tcp_sock
*tp
= tcp_sk(sk
);
4833 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4834 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4835 __skb_queue_purge(&tp
->out_of_order_queue
);
4837 /* Reset SACK state. A conforming SACK implementation will
4838 * do the same at a timeout based retransmit. When a connection
4839 * is in a sad state like this, we care only about integrity
4840 * of the connection not performance.
4842 if (tp
->rx_opt
.sack_ok
)
4843 tcp_sack_reset(&tp
->rx_opt
);
4850 /* Reduce allocated memory if we can, trying to get
4851 * the socket within its memory limits again.
4853 * Return less than zero if we should start dropping frames
4854 * until the socket owning process reads some of the data
4855 * to stabilize the situation.
4857 static int tcp_prune_queue(struct sock
*sk
)
4859 struct tcp_sock
*tp
= tcp_sk(sk
);
4861 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4863 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4865 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4866 tcp_clamp_window(sk
);
4867 else if (tcp_memory_pressure
)
4868 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4870 tcp_collapse_ofo_queue(sk
);
4871 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4872 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4873 skb_peek(&sk
->sk_receive_queue
),
4875 tp
->copied_seq
, tp
->rcv_nxt
);
4878 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4881 /* Collapsing did not help, destructive actions follow.
4882 * This must not ever occur. */
4884 tcp_prune_ofo_queue(sk
);
4886 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4889 /* If we are really being abused, tell the caller to silently
4890 * drop receive data on the floor. It will get retransmitted
4891 * and hopefully then we'll have sufficient space.
4893 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4895 /* Massive buffer overcommit. */
4900 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4901 * As additional protections, we do not touch cwnd in retransmission phases,
4902 * and if application hit its sndbuf limit recently.
4904 void tcp_cwnd_application_limited(struct sock
*sk
)
4906 struct tcp_sock
*tp
= tcp_sk(sk
);
4908 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4909 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4910 /* Limited by application or receiver window. */
4911 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4912 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4913 if (win_used
< tp
->snd_cwnd
) {
4914 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4915 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4917 tp
->snd_cwnd_used
= 0;
4919 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4922 static int tcp_should_expand_sndbuf(const struct sock
*sk
)
4924 const struct tcp_sock
*tp
= tcp_sk(sk
);
4926 /* If the user specified a specific send buffer setting, do
4929 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4932 /* If we are under global TCP memory pressure, do not expand. */
4933 if (tcp_memory_pressure
)
4936 /* If we are under soft global TCP memory pressure, do not expand. */
4937 if (atomic_long_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4940 /* If we filled the congestion window, do not expand. */
4941 if (tp
->packets_out
>= tp
->snd_cwnd
)
4947 /* When incoming ACK allowed to free some skb from write_queue,
4948 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4949 * on the exit from tcp input handler.
4951 * PROBLEM: sndbuf expansion does not work well with largesend.
4953 static void tcp_new_space(struct sock
*sk
)
4955 struct tcp_sock
*tp
= tcp_sk(sk
);
4957 if (tcp_should_expand_sndbuf(sk
)) {
4958 int sndmem
= SKB_TRUESIZE(max_t(u32
,
4959 tp
->rx_opt
.mss_clamp
,
4962 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4963 tp
->reordering
+ 1);
4964 sndmem
*= 2 * demanded
;
4965 if (sndmem
> sk
->sk_sndbuf
)
4966 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4967 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4970 sk
->sk_write_space(sk
);
4973 static void tcp_check_space(struct sock
*sk
)
4975 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4976 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4977 if (sk
->sk_socket
&&
4978 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4983 static inline void tcp_data_snd_check(struct sock
*sk
)
4985 tcp_push_pending_frames(sk
);
4986 tcp_check_space(sk
);
4990 * Check if sending an ack is needed.
4992 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4994 struct tcp_sock
*tp
= tcp_sk(sk
);
4996 /* More than one full frame received... */
4997 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4998 /* ... and right edge of window advances far enough.
4999 * (tcp_recvmsg() will send ACK otherwise). Or...
5001 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5002 /* We ACK each frame or... */
5003 tcp_in_quickack_mode(sk
) ||
5004 /* We have out of order data. */
5005 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5006 /* Then ack it now */
5009 /* Else, send delayed ack. */
5010 tcp_send_delayed_ack(sk
);
5014 static inline void tcp_ack_snd_check(struct sock
*sk
)
5016 if (!inet_csk_ack_scheduled(sk
)) {
5017 /* We sent a data segment already. */
5020 __tcp_ack_snd_check(sk
, 1);
5024 * This routine is only called when we have urgent data
5025 * signaled. Its the 'slow' part of tcp_urg. It could be
5026 * moved inline now as tcp_urg is only called from one
5027 * place. We handle URGent data wrong. We have to - as
5028 * BSD still doesn't use the correction from RFC961.
5029 * For 1003.1g we should support a new option TCP_STDURG to permit
5030 * either form (or just set the sysctl tcp_stdurg).
5033 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5035 struct tcp_sock
*tp
= tcp_sk(sk
);
5036 u32 ptr
= ntohs(th
->urg_ptr
);
5038 if (ptr
&& !sysctl_tcp_stdurg
)
5040 ptr
+= ntohl(th
->seq
);
5042 /* Ignore urgent data that we've already seen and read. */
5043 if (after(tp
->copied_seq
, ptr
))
5046 /* Do not replay urg ptr.
5048 * NOTE: interesting situation not covered by specs.
5049 * Misbehaving sender may send urg ptr, pointing to segment,
5050 * which we already have in ofo queue. We are not able to fetch
5051 * such data and will stay in TCP_URG_NOTYET until will be eaten
5052 * by recvmsg(). Seems, we are not obliged to handle such wicked
5053 * situations. But it is worth to think about possibility of some
5054 * DoSes using some hypothetical application level deadlock.
5056 if (before(ptr
, tp
->rcv_nxt
))
5059 /* Do we already have a newer (or duplicate) urgent pointer? */
5060 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5063 /* Tell the world about our new urgent pointer. */
5066 /* We may be adding urgent data when the last byte read was
5067 * urgent. To do this requires some care. We cannot just ignore
5068 * tp->copied_seq since we would read the last urgent byte again
5069 * as data, nor can we alter copied_seq until this data arrives
5070 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5072 * NOTE. Double Dutch. Rendering to plain English: author of comment
5073 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5074 * and expect that both A and B disappear from stream. This is _wrong_.
5075 * Though this happens in BSD with high probability, this is occasional.
5076 * Any application relying on this is buggy. Note also, that fix "works"
5077 * only in this artificial test. Insert some normal data between A and B and we will
5078 * decline of BSD again. Verdict: it is better to remove to trap
5081 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5082 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5083 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5085 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5086 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5091 tp
->urg_data
= TCP_URG_NOTYET
;
5094 /* Disable header prediction. */
5098 /* This is the 'fast' part of urgent handling. */
5099 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5101 struct tcp_sock
*tp
= tcp_sk(sk
);
5103 /* Check if we get a new urgent pointer - normally not. */
5105 tcp_check_urg(sk
, th
);
5107 /* Do we wait for any urgent data? - normally not... */
5108 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5109 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5112 /* Is the urgent pointer pointing into this packet? */
5113 if (ptr
< skb
->len
) {
5115 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5117 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5118 if (!sock_flag(sk
, SOCK_DEAD
))
5119 sk
->sk_data_ready(sk
, 0);
5124 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5126 struct tcp_sock
*tp
= tcp_sk(sk
);
5127 int chunk
= skb
->len
- hlen
;
5131 if (skb_csum_unnecessary(skb
))
5132 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5134 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5138 tp
->ucopy
.len
-= chunk
;
5139 tp
->copied_seq
+= chunk
;
5140 tcp_rcv_space_adjust(sk
);
5147 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5148 struct sk_buff
*skb
)
5152 if (sock_owned_by_user(sk
)) {
5154 result
= __tcp_checksum_complete(skb
);
5157 result
= __tcp_checksum_complete(skb
);
5162 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5163 struct sk_buff
*skb
)
5165 return !skb_csum_unnecessary(skb
) &&
5166 __tcp_checksum_complete_user(sk
, skb
);
5169 #ifdef CONFIG_NET_DMA
5170 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5173 struct tcp_sock
*tp
= tcp_sk(sk
);
5174 int chunk
= skb
->len
- hlen
;
5176 int copied_early
= 0;
5178 if (tp
->ucopy
.wakeup
)
5181 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5182 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5184 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5186 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5188 tp
->ucopy
.iov
, chunk
,
5189 tp
->ucopy
.pinned_list
);
5194 tp
->ucopy
.dma_cookie
= dma_cookie
;
5197 tp
->ucopy
.len
-= chunk
;
5198 tp
->copied_seq
+= chunk
;
5199 tcp_rcv_space_adjust(sk
);
5201 if ((tp
->ucopy
.len
== 0) ||
5202 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5203 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5204 tp
->ucopy
.wakeup
= 1;
5205 sk
->sk_data_ready(sk
, 0);
5207 } else if (chunk
> 0) {
5208 tp
->ucopy
.wakeup
= 1;
5209 sk
->sk_data_ready(sk
, 0);
5212 return copied_early
;
5214 #endif /* CONFIG_NET_DMA */
5216 /* Does PAWS and seqno based validation of an incoming segment, flags will
5217 * play significant role here.
5219 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5220 const struct tcphdr
*th
, int syn_inerr
)
5222 const u8
*hash_location
;
5223 struct tcp_sock
*tp
= tcp_sk(sk
);
5225 /* RFC1323: H1. Apply PAWS check first. */
5226 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5227 tp
->rx_opt
.saw_tstamp
&&
5228 tcp_paws_discard(sk
, skb
)) {
5230 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5231 tcp_send_dupack(sk
, skb
);
5234 /* Reset is accepted even if it did not pass PAWS. */
5237 /* Step 1: check sequence number */
5238 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5239 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5240 * (RST) segments are validated by checking their SEQ-fields."
5241 * And page 69: "If an incoming segment is not acceptable,
5242 * an acknowledgment should be sent in reply (unless the RST
5243 * bit is set, if so drop the segment and return)".
5246 tcp_send_dupack(sk
, skb
);
5250 /* Step 2: check RST bit */
5256 /* ts_recent update must be made after we are sure that the packet
5259 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5261 /* step 3: check security and precedence [ignored] */
5263 /* step 4: Check for a SYN in window. */
5264 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5266 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5267 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5280 * TCP receive function for the ESTABLISHED state.
5282 * It is split into a fast path and a slow path. The fast path is
5284 * - A zero window was announced from us - zero window probing
5285 * is only handled properly in the slow path.
5286 * - Out of order segments arrived.
5287 * - Urgent data is expected.
5288 * - There is no buffer space left
5289 * - Unexpected TCP flags/window values/header lengths are received
5290 * (detected by checking the TCP header against pred_flags)
5291 * - Data is sent in both directions. Fast path only supports pure senders
5292 * or pure receivers (this means either the sequence number or the ack
5293 * value must stay constant)
5294 * - Unexpected TCP option.
5296 * When these conditions are not satisfied it drops into a standard
5297 * receive procedure patterned after RFC793 to handle all cases.
5298 * The first three cases are guaranteed by proper pred_flags setting,
5299 * the rest is checked inline. Fast processing is turned on in
5300 * tcp_data_queue when everything is OK.
5302 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5303 const struct tcphdr
*th
, unsigned int len
)
5305 struct tcp_sock
*tp
= tcp_sk(sk
);
5309 * Header prediction.
5310 * The code loosely follows the one in the famous
5311 * "30 instruction TCP receive" Van Jacobson mail.
5313 * Van's trick is to deposit buffers into socket queue
5314 * on a device interrupt, to call tcp_recv function
5315 * on the receive process context and checksum and copy
5316 * the buffer to user space. smart...
5318 * Our current scheme is not silly either but we take the
5319 * extra cost of the net_bh soft interrupt processing...
5320 * We do checksum and copy also but from device to kernel.
5323 tp
->rx_opt
.saw_tstamp
= 0;
5325 /* pred_flags is 0xS?10 << 16 + snd_wnd
5326 * if header_prediction is to be made
5327 * 'S' will always be tp->tcp_header_len >> 2
5328 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5329 * turn it off (when there are holes in the receive
5330 * space for instance)
5331 * PSH flag is ignored.
5334 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5335 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5336 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5337 int tcp_header_len
= tp
->tcp_header_len
;
5339 /* Timestamp header prediction: tcp_header_len
5340 * is automatically equal to th->doff*4 due to pred_flags
5344 /* Check timestamp */
5345 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5346 /* No? Slow path! */
5347 if (!tcp_parse_aligned_timestamp(tp
, th
))
5350 /* If PAWS failed, check it more carefully in slow path */
5351 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5354 /* DO NOT update ts_recent here, if checksum fails
5355 * and timestamp was corrupted part, it will result
5356 * in a hung connection since we will drop all
5357 * future packets due to the PAWS test.
5361 if (len
<= tcp_header_len
) {
5362 /* Bulk data transfer: sender */
5363 if (len
== tcp_header_len
) {
5364 /* Predicted packet is in window by definition.
5365 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5366 * Hence, check seq<=rcv_wup reduces to:
5368 if (tcp_header_len
==
5369 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5370 tp
->rcv_nxt
== tp
->rcv_wup
)
5371 tcp_store_ts_recent(tp
);
5373 /* We know that such packets are checksummed
5376 tcp_ack(sk
, skb
, 0);
5378 tcp_data_snd_check(sk
);
5380 } else { /* Header too small */
5381 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5386 int copied_early
= 0;
5388 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5389 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5390 #ifdef CONFIG_NET_DMA
5391 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5396 if (tp
->ucopy
.task
== current
&&
5397 sock_owned_by_user(sk
) && !copied_early
) {
5398 __set_current_state(TASK_RUNNING
);
5400 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5404 /* Predicted packet is in window by definition.
5405 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5406 * Hence, check seq<=rcv_wup reduces to:
5408 if (tcp_header_len
==
5409 (sizeof(struct tcphdr
) +
5410 TCPOLEN_TSTAMP_ALIGNED
) &&
5411 tp
->rcv_nxt
== tp
->rcv_wup
)
5412 tcp_store_ts_recent(tp
);
5414 tcp_rcv_rtt_measure_ts(sk
, skb
);
5416 __skb_pull(skb
, tcp_header_len
);
5417 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5418 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5421 tcp_cleanup_rbuf(sk
, skb
->len
);
5424 if (tcp_checksum_complete_user(sk
, skb
))
5427 /* Predicted packet is in window by definition.
5428 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5429 * Hence, check seq<=rcv_wup reduces to:
5431 if (tcp_header_len
==
5432 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5433 tp
->rcv_nxt
== tp
->rcv_wup
)
5434 tcp_store_ts_recent(tp
);
5436 tcp_rcv_rtt_measure_ts(sk
, skb
);
5438 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5441 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5443 /* Bulk data transfer: receiver */
5444 __skb_pull(skb
, tcp_header_len
);
5445 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5446 skb_set_owner_r(skb
, sk
);
5447 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5450 tcp_event_data_recv(sk
, skb
);
5452 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5453 /* Well, only one small jumplet in fast path... */
5454 tcp_ack(sk
, skb
, FLAG_DATA
);
5455 tcp_data_snd_check(sk
);
5456 if (!inet_csk_ack_scheduled(sk
))
5460 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5461 __tcp_ack_snd_check(sk
, 0);
5463 #ifdef CONFIG_NET_DMA
5465 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5471 sk
->sk_data_ready(sk
, 0);
5477 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5481 * Standard slow path.
5484 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5489 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5492 tcp_rcv_rtt_measure_ts(sk
, skb
);
5494 /* Process urgent data. */
5495 tcp_urg(sk
, skb
, th
);
5497 /* step 7: process the segment text */
5498 tcp_data_queue(sk
, skb
);
5500 tcp_data_snd_check(sk
);
5501 tcp_ack_snd_check(sk
);
5505 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5511 EXPORT_SYMBOL(tcp_rcv_established
);
5513 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5514 const struct tcphdr
*th
, unsigned int len
)
5516 const u8
*hash_location
;
5517 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5518 struct tcp_sock
*tp
= tcp_sk(sk
);
5519 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5520 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5522 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5526 * "If the state is SYN-SENT then
5527 * first check the ACK bit
5528 * If the ACK bit is set
5529 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5530 * a reset (unless the RST bit is set, if so drop
5531 * the segment and return)"
5533 * We do not send data with SYN, so that RFC-correct
5536 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5537 goto reset_and_undo
;
5539 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5540 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5542 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5543 goto reset_and_undo
;
5546 /* Now ACK is acceptable.
5548 * "If the RST bit is set
5549 * If the ACK was acceptable then signal the user "error:
5550 * connection reset", drop the segment, enter CLOSED state,
5551 * delete TCB, and return."
5560 * "fifth, if neither of the SYN or RST bits is set then
5561 * drop the segment and return."
5567 goto discard_and_undo
;
5570 * "If the SYN bit is on ...
5571 * are acceptable then ...
5572 * (our SYN has been ACKed), change the connection
5573 * state to ESTABLISHED..."
5576 TCP_ECN_rcv_synack(tp
, th
);
5578 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5579 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5581 /* Ok.. it's good. Set up sequence numbers and
5582 * move to established.
5584 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5585 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5587 /* RFC1323: The window in SYN & SYN/ACK segments is
5590 tp
->snd_wnd
= ntohs(th
->window
);
5591 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5593 if (!tp
->rx_opt
.wscale_ok
) {
5594 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5595 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5598 if (tp
->rx_opt
.saw_tstamp
) {
5599 tp
->rx_opt
.tstamp_ok
= 1;
5600 tp
->tcp_header_len
=
5601 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5602 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5603 tcp_store_ts_recent(tp
);
5605 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5608 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5609 tcp_enable_fack(tp
);
5612 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5613 tcp_initialize_rcv_mss(sk
);
5615 /* Remember, tcp_poll() does not lock socket!
5616 * Change state from SYN-SENT only after copied_seq
5617 * is initialized. */
5618 tp
->copied_seq
= tp
->rcv_nxt
;
5621 cvp
->cookie_pair_size
> 0 &&
5622 tp
->rx_opt
.cookie_plus
> 0) {
5623 int cookie_size
= tp
->rx_opt
.cookie_plus
5624 - TCPOLEN_COOKIE_BASE
;
5625 int cookie_pair_size
= cookie_size
5626 + cvp
->cookie_desired
;
5628 /* A cookie extension option was sent and returned.
5629 * Note that each incoming SYNACK replaces the
5630 * Responder cookie. The initial exchange is most
5631 * fragile, as protection against spoofing relies
5632 * entirely upon the sequence and timestamp (above).
5633 * This replacement strategy allows the correct pair to
5634 * pass through, while any others will be filtered via
5635 * Responder verification later.
5637 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5638 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5639 hash_location
, cookie_size
);
5640 cvp
->cookie_pair_size
= cookie_pair_size
;
5645 tcp_set_state(sk
, TCP_ESTABLISHED
);
5647 security_inet_conn_established(sk
, skb
);
5649 /* Make sure socket is routed, for correct metrics. */
5650 icsk
->icsk_af_ops
->rebuild_header(sk
);
5652 tcp_init_metrics(sk
);
5654 tcp_init_congestion_control(sk
);
5656 /* Prevent spurious tcp_cwnd_restart() on first data
5659 tp
->lsndtime
= tcp_time_stamp
;
5661 tcp_init_buffer_space(sk
);
5663 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5664 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5666 if (!tp
->rx_opt
.snd_wscale
)
5667 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5671 if (!sock_flag(sk
, SOCK_DEAD
)) {
5672 sk
->sk_state_change(sk
);
5673 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5676 if (sk
->sk_write_pending
||
5677 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5678 icsk
->icsk_ack
.pingpong
) {
5679 /* Save one ACK. Data will be ready after
5680 * several ticks, if write_pending is set.
5682 * It may be deleted, but with this feature tcpdumps
5683 * look so _wonderfully_ clever, that I was not able
5684 * to stand against the temptation 8) --ANK
5686 inet_csk_schedule_ack(sk
);
5687 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5688 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5689 tcp_incr_quickack(sk
);
5690 tcp_enter_quickack_mode(sk
);
5691 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5692 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5703 /* No ACK in the segment */
5707 * "If the RST bit is set
5709 * Otherwise (no ACK) drop the segment and return."
5712 goto discard_and_undo
;
5716 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5717 tcp_paws_reject(&tp
->rx_opt
, 0))
5718 goto discard_and_undo
;
5721 /* We see SYN without ACK. It is attempt of
5722 * simultaneous connect with crossed SYNs.
5723 * Particularly, it can be connect to self.
5725 tcp_set_state(sk
, TCP_SYN_RECV
);
5727 if (tp
->rx_opt
.saw_tstamp
) {
5728 tp
->rx_opt
.tstamp_ok
= 1;
5729 tcp_store_ts_recent(tp
);
5730 tp
->tcp_header_len
=
5731 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5733 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5736 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5737 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5739 /* RFC1323: The window in SYN & SYN/ACK segments is
5742 tp
->snd_wnd
= ntohs(th
->window
);
5743 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5744 tp
->max_window
= tp
->snd_wnd
;
5746 TCP_ECN_rcv_syn(tp
, th
);
5749 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5750 tcp_initialize_rcv_mss(sk
);
5752 tcp_send_synack(sk
);
5754 /* Note, we could accept data and URG from this segment.
5755 * There are no obstacles to make this.
5757 * However, if we ignore data in ACKless segments sometimes,
5758 * we have no reasons to accept it sometimes.
5759 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5760 * is not flawless. So, discard packet for sanity.
5761 * Uncomment this return to process the data.
5768 /* "fifth, if neither of the SYN or RST bits is set then
5769 * drop the segment and return."
5773 tcp_clear_options(&tp
->rx_opt
);
5774 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5778 tcp_clear_options(&tp
->rx_opt
);
5779 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5784 * This function implements the receiving procedure of RFC 793 for
5785 * all states except ESTABLISHED and TIME_WAIT.
5786 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5787 * address independent.
5790 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5791 const struct tcphdr
*th
, unsigned int len
)
5793 struct tcp_sock
*tp
= tcp_sk(sk
);
5794 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5798 tp
->rx_opt
.saw_tstamp
= 0;
5800 switch (sk
->sk_state
) {
5812 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5815 /* Now we have several options: In theory there is
5816 * nothing else in the frame. KA9Q has an option to
5817 * send data with the syn, BSD accepts data with the
5818 * syn up to the [to be] advertised window and
5819 * Solaris 2.1 gives you a protocol error. For now
5820 * we just ignore it, that fits the spec precisely
5821 * and avoids incompatibilities. It would be nice in
5822 * future to drop through and process the data.
5824 * Now that TTCP is starting to be used we ought to
5826 * But, this leaves one open to an easy denial of
5827 * service attack, and SYN cookies can't defend
5828 * against this problem. So, we drop the data
5829 * in the interest of security over speed unless
5830 * it's still in use.
5838 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5842 /* Do step6 onward by hand. */
5843 tcp_urg(sk
, skb
, th
);
5845 tcp_data_snd_check(sk
);
5849 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5853 /* step 5: check the ACK field */
5855 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5857 switch (sk
->sk_state
) {
5860 tp
->copied_seq
= tp
->rcv_nxt
;
5862 tcp_set_state(sk
, TCP_ESTABLISHED
);
5863 sk
->sk_state_change(sk
);
5865 /* Note, that this wakeup is only for marginal
5866 * crossed SYN case. Passively open sockets
5867 * are not waked up, because sk->sk_sleep ==
5868 * NULL and sk->sk_socket == NULL.
5872 SOCK_WAKE_IO
, POLL_OUT
);
5874 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5875 tp
->snd_wnd
= ntohs(th
->window
) <<
5876 tp
->rx_opt
.snd_wscale
;
5877 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5879 if (tp
->rx_opt
.tstamp_ok
)
5880 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5882 /* Make sure socket is routed, for
5885 icsk
->icsk_af_ops
->rebuild_header(sk
);
5887 tcp_init_metrics(sk
);
5889 tcp_init_congestion_control(sk
);
5891 /* Prevent spurious tcp_cwnd_restart() on
5892 * first data packet.
5894 tp
->lsndtime
= tcp_time_stamp
;
5897 tcp_initialize_rcv_mss(sk
);
5898 tcp_init_buffer_space(sk
);
5899 tcp_fast_path_on(tp
);
5906 if (tp
->snd_una
== tp
->write_seq
) {
5907 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5908 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5909 dst_confirm(__sk_dst_get(sk
));
5911 if (!sock_flag(sk
, SOCK_DEAD
))
5912 /* Wake up lingering close() */
5913 sk
->sk_state_change(sk
);
5917 if (tp
->linger2
< 0 ||
5918 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5919 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5921 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5925 tmo
= tcp_fin_time(sk
);
5926 if (tmo
> TCP_TIMEWAIT_LEN
) {
5927 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5928 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5929 /* Bad case. We could lose such FIN otherwise.
5930 * It is not a big problem, but it looks confusing
5931 * and not so rare event. We still can lose it now,
5932 * if it spins in bh_lock_sock(), but it is really
5935 inet_csk_reset_keepalive_timer(sk
, tmo
);
5937 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5945 if (tp
->snd_una
== tp
->write_seq
) {
5946 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5952 if (tp
->snd_una
== tp
->write_seq
) {
5953 tcp_update_metrics(sk
);
5962 /* step 6: check the URG bit */
5963 tcp_urg(sk
, skb
, th
);
5965 /* step 7: process the segment text */
5966 switch (sk
->sk_state
) {
5967 case TCP_CLOSE_WAIT
:
5970 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5974 /* RFC 793 says to queue data in these states,
5975 * RFC 1122 says we MUST send a reset.
5976 * BSD 4.4 also does reset.
5978 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5979 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5980 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5981 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5987 case TCP_ESTABLISHED
:
5988 tcp_data_queue(sk
, skb
);
5993 /* tcp_data could move socket to TIME-WAIT */
5994 if (sk
->sk_state
!= TCP_CLOSE
) {
5995 tcp_data_snd_check(sk
);
5996 tcp_ack_snd_check(sk
);
6005 EXPORT_SYMBOL(tcp_rcv_state_process
);