4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
34 #include <linux/compat.h>
35 #include <linux/syscalls.h>
36 #include <linux/kprobes.h>
38 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
42 #ifndef SET_UNALIGN_CTL
43 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
45 #ifndef GET_UNALIGN_CTL
46 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
49 # define SET_FPEMU_CTL(a,b) (-EINVAL)
52 # define GET_FPEMU_CTL(a,b) (-EINVAL)
55 # define SET_FPEXC_CTL(a,b) (-EINVAL)
58 # define GET_FPEXC_CTL(a,b) (-EINVAL)
62 * this is where the system-wide overflow UID and GID are defined, for
63 * architectures that now have 32-bit UID/GID but didn't in the past
66 int overflowuid
= DEFAULT_OVERFLOWUID
;
67 int overflowgid
= DEFAULT_OVERFLOWGID
;
70 EXPORT_SYMBOL(overflowuid
);
71 EXPORT_SYMBOL(overflowgid
);
75 * the same as above, but for filesystems which can only store a 16-bit
76 * UID and GID. as such, this is needed on all architectures
79 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
80 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
82 EXPORT_SYMBOL(fs_overflowuid
);
83 EXPORT_SYMBOL(fs_overflowgid
);
86 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
93 * Notifier list for kernel code which wants to be called
94 * at shutdown. This is used to stop any idling DMA operations
98 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
101 * Notifier chain core routines. The exported routines below
102 * are layered on top of these, with appropriate locking added.
105 static int notifier_chain_register(struct notifier_block
**nl
,
106 struct notifier_block
*n
)
108 while ((*nl
) != NULL
) {
109 if (n
->priority
> (*nl
)->priority
)
114 rcu_assign_pointer(*nl
, n
);
118 static int notifier_chain_unregister(struct notifier_block
**nl
,
119 struct notifier_block
*n
)
121 while ((*nl
) != NULL
) {
123 rcu_assign_pointer(*nl
, n
->next
);
131 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
132 unsigned long val
, void *v
)
134 int ret
= NOTIFY_DONE
;
135 struct notifier_block
*nb
;
137 nb
= rcu_dereference(*nl
);
139 ret
= nb
->notifier_call(nb
, val
, v
);
140 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
142 nb
= rcu_dereference(nb
->next
);
148 * Atomic notifier chain routines. Registration and unregistration
149 * use a mutex, and call_chain is synchronized by RCU (no locks).
153 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
154 * @nh: Pointer to head of the atomic notifier chain
155 * @n: New entry in notifier chain
157 * Adds a notifier to an atomic notifier chain.
159 * Currently always returns zero.
162 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
163 struct notifier_block
*n
)
168 spin_lock_irqsave(&nh
->lock
, flags
);
169 ret
= notifier_chain_register(&nh
->head
, n
);
170 spin_unlock_irqrestore(&nh
->lock
, flags
);
174 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
177 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
178 * @nh: Pointer to head of the atomic notifier chain
179 * @n: Entry to remove from notifier chain
181 * Removes a notifier from an atomic notifier chain.
183 * Returns zero on success or %-ENOENT on failure.
185 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
186 struct notifier_block
*n
)
191 spin_lock_irqsave(&nh
->lock
, flags
);
192 ret
= notifier_chain_unregister(&nh
->head
, n
);
193 spin_unlock_irqrestore(&nh
->lock
, flags
);
198 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
201 * atomic_notifier_call_chain - Call functions in an atomic notifier chain
202 * @nh: Pointer to head of the atomic notifier chain
203 * @val: Value passed unmodified to notifier function
204 * @v: Pointer passed unmodified to notifier function
206 * Calls each function in a notifier chain in turn. The functions
207 * run in an atomic context, so they must not block.
208 * This routine uses RCU to synchronize with changes to the chain.
210 * If the return value of the notifier can be and'ed
211 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain
212 * will return immediately, with the return value of
213 * the notifier function which halted execution.
214 * Otherwise the return value is the return value
215 * of the last notifier function called.
218 int atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
219 unsigned long val
, void *v
)
224 ret
= notifier_call_chain(&nh
->head
, val
, v
);
229 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
232 * Blocking notifier chain routines. All access to the chain is
233 * synchronized by an rwsem.
237 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
238 * @nh: Pointer to head of the blocking notifier chain
239 * @n: New entry in notifier chain
241 * Adds a notifier to a blocking notifier chain.
242 * Must be called in process context.
244 * Currently always returns zero.
247 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
248 struct notifier_block
*n
)
253 * This code gets used during boot-up, when task switching is
254 * not yet working and interrupts must remain disabled. At
255 * such times we must not call down_write().
257 if (unlikely(system_state
== SYSTEM_BOOTING
))
258 return notifier_chain_register(&nh
->head
, n
);
260 down_write(&nh
->rwsem
);
261 ret
= notifier_chain_register(&nh
->head
, n
);
262 up_write(&nh
->rwsem
);
266 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
269 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
270 * @nh: Pointer to head of the blocking notifier chain
271 * @n: Entry to remove from notifier chain
273 * Removes a notifier from a blocking notifier chain.
274 * Must be called from process context.
276 * Returns zero on success or %-ENOENT on failure.
278 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
279 struct notifier_block
*n
)
284 * This code gets used during boot-up, when task switching is
285 * not yet working and interrupts must remain disabled. At
286 * such times we must not call down_write().
288 if (unlikely(system_state
== SYSTEM_BOOTING
))
289 return notifier_chain_unregister(&nh
->head
, n
);
291 down_write(&nh
->rwsem
);
292 ret
= notifier_chain_unregister(&nh
->head
, n
);
293 up_write(&nh
->rwsem
);
297 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
300 * blocking_notifier_call_chain - Call functions in a blocking notifier chain
301 * @nh: Pointer to head of the blocking notifier chain
302 * @val: Value passed unmodified to notifier function
303 * @v: Pointer passed unmodified to notifier function
305 * Calls each function in a notifier chain in turn. The functions
306 * run in a process context, so they are allowed to block.
308 * If the return value of the notifier can be and'ed
309 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain
310 * will return immediately, with the return value of
311 * the notifier function which halted execution.
312 * Otherwise the return value is the return value
313 * of the last notifier function called.
316 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
317 unsigned long val
, void *v
)
321 down_read(&nh
->rwsem
);
322 ret
= notifier_call_chain(&nh
->head
, val
, v
);
327 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
330 * Raw notifier chain routines. There is no protection;
331 * the caller must provide it. Use at your own risk!
335 * raw_notifier_chain_register - Add notifier to a raw notifier chain
336 * @nh: Pointer to head of the raw notifier chain
337 * @n: New entry in notifier chain
339 * Adds a notifier to a raw notifier chain.
340 * All locking must be provided by the caller.
342 * Currently always returns zero.
345 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
346 struct notifier_block
*n
)
348 return notifier_chain_register(&nh
->head
, n
);
351 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
354 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
355 * @nh: Pointer to head of the raw notifier chain
356 * @n: Entry to remove from notifier chain
358 * Removes a notifier from a raw notifier chain.
359 * All locking must be provided by the caller.
361 * Returns zero on success or %-ENOENT on failure.
363 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
364 struct notifier_block
*n
)
366 return notifier_chain_unregister(&nh
->head
, n
);
369 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
372 * raw_notifier_call_chain - Call functions in a raw notifier chain
373 * @nh: Pointer to head of the raw notifier chain
374 * @val: Value passed unmodified to notifier function
375 * @v: Pointer passed unmodified to notifier function
377 * Calls each function in a notifier chain in turn. The functions
378 * run in an undefined context.
379 * All locking must be provided by the caller.
381 * If the return value of the notifier can be and'ed
382 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain
383 * will return immediately, with the return value of
384 * the notifier function which halted execution.
385 * Otherwise the return value is the return value
386 * of the last notifier function called.
389 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
390 unsigned long val
, void *v
)
392 return notifier_call_chain(&nh
->head
, val
, v
);
395 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
398 * register_reboot_notifier - Register function to be called at reboot time
399 * @nb: Info about notifier function to be called
401 * Registers a function with the list of functions
402 * to be called at reboot time.
404 * Currently always returns zero, as blocking_notifier_chain_register
405 * always returns zero.
408 int register_reboot_notifier(struct notifier_block
* nb
)
410 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
413 EXPORT_SYMBOL(register_reboot_notifier
);
416 * unregister_reboot_notifier - Unregister previously registered reboot notifier
417 * @nb: Hook to be unregistered
419 * Unregisters a previously registered reboot
422 * Returns zero on success, or %-ENOENT on failure.
425 int unregister_reboot_notifier(struct notifier_block
* nb
)
427 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
430 EXPORT_SYMBOL(unregister_reboot_notifier
);
432 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
436 if (p
->uid
!= current
->euid
&&
437 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
441 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
445 no_nice
= security_task_setnice(p
, niceval
);
452 set_user_nice(p
, niceval
);
457 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
459 struct task_struct
*g
, *p
;
460 struct user_struct
*user
;
463 if (which
> 2 || which
< 0)
466 /* normalize: avoid signed division (rounding problems) */
473 read_lock(&tasklist_lock
);
478 p
= find_task_by_pid(who
);
480 error
= set_one_prio(p
, niceval
, error
);
484 who
= process_group(current
);
485 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
486 error
= set_one_prio(p
, niceval
, error
);
487 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
490 user
= current
->user
;
494 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
495 goto out_unlock
; /* No processes for this user */
499 error
= set_one_prio(p
, niceval
, error
);
500 while_each_thread(g
, p
);
501 if (who
!= current
->uid
)
502 free_uid(user
); /* For find_user() */
506 read_unlock(&tasklist_lock
);
512 * Ugh. To avoid negative return values, "getpriority()" will
513 * not return the normal nice-value, but a negated value that
514 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
515 * to stay compatible.
517 asmlinkage
long sys_getpriority(int which
, int who
)
519 struct task_struct
*g
, *p
;
520 struct user_struct
*user
;
521 long niceval
, retval
= -ESRCH
;
523 if (which
> 2 || which
< 0)
526 read_lock(&tasklist_lock
);
531 p
= find_task_by_pid(who
);
533 niceval
= 20 - task_nice(p
);
534 if (niceval
> retval
)
540 who
= process_group(current
);
541 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
542 niceval
= 20 - task_nice(p
);
543 if (niceval
> retval
)
545 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
548 user
= current
->user
;
552 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
553 goto out_unlock
; /* No processes for this user */
557 niceval
= 20 - task_nice(p
);
558 if (niceval
> retval
)
561 while_each_thread(g
, p
);
562 if (who
!= current
->uid
)
563 free_uid(user
); /* for find_user() */
567 read_unlock(&tasklist_lock
);
573 * emergency_restart - reboot the system
575 * Without shutting down any hardware or taking any locks
576 * reboot the system. This is called when we know we are in
577 * trouble so this is our best effort to reboot. This is
578 * safe to call in interrupt context.
580 void emergency_restart(void)
582 machine_emergency_restart();
584 EXPORT_SYMBOL_GPL(emergency_restart
);
586 void kernel_restart_prepare(char *cmd
)
588 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
589 system_state
= SYSTEM_RESTART
;
594 * kernel_restart - reboot the system
595 * @cmd: pointer to buffer containing command to execute for restart
598 * Shutdown everything and perform a clean reboot.
599 * This is not safe to call in interrupt context.
601 void kernel_restart(char *cmd
)
603 kernel_restart_prepare(cmd
);
605 printk(KERN_EMERG
"Restarting system.\n");
607 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
610 machine_restart(cmd
);
612 EXPORT_SYMBOL_GPL(kernel_restart
);
615 * kernel_kexec - reboot the system
617 * Move into place and start executing a preloaded standalone
618 * executable. If nothing was preloaded return an error.
620 void kernel_kexec(void)
623 struct kimage
*image
;
624 image
= xchg(&kexec_image
, NULL
);
628 kernel_restart_prepare(NULL
);
629 printk(KERN_EMERG
"Starting new kernel\n");
631 machine_kexec(image
);
634 EXPORT_SYMBOL_GPL(kernel_kexec
);
636 void kernel_shutdown_prepare(enum system_states state
)
638 blocking_notifier_call_chain(&reboot_notifier_list
,
639 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
640 system_state
= state
;
644 * kernel_halt - halt the system
646 * Shutdown everything and perform a clean system halt.
648 void kernel_halt(void)
650 kernel_shutdown_prepare(SYSTEM_HALT
);
651 printk(KERN_EMERG
"System halted.\n");
655 EXPORT_SYMBOL_GPL(kernel_halt
);
658 * kernel_power_off - power_off the system
660 * Shutdown everything and perform a clean system power_off.
662 void kernel_power_off(void)
664 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
665 printk(KERN_EMERG
"Power down.\n");
668 EXPORT_SYMBOL_GPL(kernel_power_off
);
670 * Reboot system call: for obvious reasons only root may call it,
671 * and even root needs to set up some magic numbers in the registers
672 * so that some mistake won't make this reboot the whole machine.
673 * You can also set the meaning of the ctrl-alt-del-key here.
675 * reboot doesn't sync: do that yourself before calling this.
677 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
681 /* We only trust the superuser with rebooting the system. */
682 if (!capable(CAP_SYS_BOOT
))
685 /* For safety, we require "magic" arguments. */
686 if (magic1
!= LINUX_REBOOT_MAGIC1
||
687 (magic2
!= LINUX_REBOOT_MAGIC2
&&
688 magic2
!= LINUX_REBOOT_MAGIC2A
&&
689 magic2
!= LINUX_REBOOT_MAGIC2B
&&
690 magic2
!= LINUX_REBOOT_MAGIC2C
))
693 /* Instead of trying to make the power_off code look like
694 * halt when pm_power_off is not set do it the easy way.
696 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
697 cmd
= LINUX_REBOOT_CMD_HALT
;
701 case LINUX_REBOOT_CMD_RESTART
:
702 kernel_restart(NULL
);
705 case LINUX_REBOOT_CMD_CAD_ON
:
709 case LINUX_REBOOT_CMD_CAD_OFF
:
713 case LINUX_REBOOT_CMD_HALT
:
719 case LINUX_REBOOT_CMD_POWER_OFF
:
725 case LINUX_REBOOT_CMD_RESTART2
:
726 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
730 buffer
[sizeof(buffer
) - 1] = '\0';
732 kernel_restart(buffer
);
735 case LINUX_REBOOT_CMD_KEXEC
:
740 #ifdef CONFIG_SOFTWARE_SUSPEND
741 case LINUX_REBOOT_CMD_SW_SUSPEND
:
743 int ret
= software_suspend();
757 static void deferred_cad(void *dummy
)
759 kernel_restart(NULL
);
763 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
764 * As it's called within an interrupt, it may NOT sync: the only choice
765 * is whether to reboot at once, or just ignore the ctrl-alt-del.
767 void ctrl_alt_del(void)
769 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
772 schedule_work(&cad_work
);
774 kill_proc(cad_pid
, SIGINT
, 1);
779 * Unprivileged users may change the real gid to the effective gid
780 * or vice versa. (BSD-style)
782 * If you set the real gid at all, or set the effective gid to a value not
783 * equal to the real gid, then the saved gid is set to the new effective gid.
785 * This makes it possible for a setgid program to completely drop its
786 * privileges, which is often a useful assertion to make when you are doing
787 * a security audit over a program.
789 * The general idea is that a program which uses just setregid() will be
790 * 100% compatible with BSD. A program which uses just setgid() will be
791 * 100% compatible with POSIX with saved IDs.
793 * SMP: There are not races, the GIDs are checked only by filesystem
794 * operations (as far as semantic preservation is concerned).
796 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
798 int old_rgid
= current
->gid
;
799 int old_egid
= current
->egid
;
800 int new_rgid
= old_rgid
;
801 int new_egid
= old_egid
;
804 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
808 if (rgid
!= (gid_t
) -1) {
809 if ((old_rgid
== rgid
) ||
810 (current
->egid
==rgid
) ||
816 if (egid
!= (gid_t
) -1) {
817 if ((old_rgid
== egid
) ||
818 (current
->egid
== egid
) ||
819 (current
->sgid
== egid
) ||
826 if (new_egid
!= old_egid
)
828 current
->mm
->dumpable
= suid_dumpable
;
831 if (rgid
!= (gid_t
) -1 ||
832 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
833 current
->sgid
= new_egid
;
834 current
->fsgid
= new_egid
;
835 current
->egid
= new_egid
;
836 current
->gid
= new_rgid
;
837 key_fsgid_changed(current
);
838 proc_id_connector(current
, PROC_EVENT_GID
);
843 * setgid() is implemented like SysV w/ SAVED_IDS
845 * SMP: Same implicit races as above.
847 asmlinkage
long sys_setgid(gid_t gid
)
849 int old_egid
= current
->egid
;
852 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
856 if (capable(CAP_SETGID
))
860 current
->mm
->dumpable
= suid_dumpable
;
863 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
865 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
869 current
->mm
->dumpable
= suid_dumpable
;
872 current
->egid
= current
->fsgid
= gid
;
877 key_fsgid_changed(current
);
878 proc_id_connector(current
, PROC_EVENT_GID
);
882 static int set_user(uid_t new_ruid
, int dumpclear
)
884 struct user_struct
*new_user
;
886 new_user
= alloc_uid(new_ruid
);
890 if (atomic_read(&new_user
->processes
) >=
891 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
892 new_user
!= &root_user
) {
897 switch_uid(new_user
);
901 current
->mm
->dumpable
= suid_dumpable
;
904 current
->uid
= new_ruid
;
909 * Unprivileged users may change the real uid to the effective uid
910 * or vice versa. (BSD-style)
912 * If you set the real uid at all, or set the effective uid to a value not
913 * equal to the real uid, then the saved uid is set to the new effective uid.
915 * This makes it possible for a setuid program to completely drop its
916 * privileges, which is often a useful assertion to make when you are doing
917 * a security audit over a program.
919 * The general idea is that a program which uses just setreuid() will be
920 * 100% compatible with BSD. A program which uses just setuid() will be
921 * 100% compatible with POSIX with saved IDs.
923 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
925 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
928 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
932 new_ruid
= old_ruid
= current
->uid
;
933 new_euid
= old_euid
= current
->euid
;
934 old_suid
= current
->suid
;
936 if (ruid
!= (uid_t
) -1) {
938 if ((old_ruid
!= ruid
) &&
939 (current
->euid
!= ruid
) &&
940 !capable(CAP_SETUID
))
944 if (euid
!= (uid_t
) -1) {
946 if ((old_ruid
!= euid
) &&
947 (current
->euid
!= euid
) &&
948 (current
->suid
!= euid
) &&
949 !capable(CAP_SETUID
))
953 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
956 if (new_euid
!= old_euid
)
958 current
->mm
->dumpable
= suid_dumpable
;
961 current
->fsuid
= current
->euid
= new_euid
;
962 if (ruid
!= (uid_t
) -1 ||
963 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
964 current
->suid
= current
->euid
;
965 current
->fsuid
= current
->euid
;
967 key_fsuid_changed(current
);
968 proc_id_connector(current
, PROC_EVENT_UID
);
970 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
976 * setuid() is implemented like SysV with SAVED_IDS
978 * Note that SAVED_ID's is deficient in that a setuid root program
979 * like sendmail, for example, cannot set its uid to be a normal
980 * user and then switch back, because if you're root, setuid() sets
981 * the saved uid too. If you don't like this, blame the bright people
982 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
983 * will allow a root program to temporarily drop privileges and be able to
984 * regain them by swapping the real and effective uid.
986 asmlinkage
long sys_setuid(uid_t uid
)
988 int old_euid
= current
->euid
;
989 int old_ruid
, old_suid
, new_ruid
, new_suid
;
992 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
996 old_ruid
= new_ruid
= current
->uid
;
997 old_suid
= current
->suid
;
1000 if (capable(CAP_SETUID
)) {
1001 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1004 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1007 if (old_euid
!= uid
)
1009 current
->mm
->dumpable
= suid_dumpable
;
1012 current
->fsuid
= current
->euid
= uid
;
1013 current
->suid
= new_suid
;
1015 key_fsuid_changed(current
);
1016 proc_id_connector(current
, PROC_EVENT_UID
);
1018 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1023 * This function implements a generic ability to update ruid, euid,
1024 * and suid. This allows you to implement the 4.4 compatible seteuid().
1026 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1028 int old_ruid
= current
->uid
;
1029 int old_euid
= current
->euid
;
1030 int old_suid
= current
->suid
;
1033 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1037 if (!capable(CAP_SETUID
)) {
1038 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1039 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1041 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1042 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1044 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1045 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1048 if (ruid
!= (uid_t
) -1) {
1049 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1052 if (euid
!= (uid_t
) -1) {
1053 if (euid
!= current
->euid
)
1055 current
->mm
->dumpable
= suid_dumpable
;
1058 current
->euid
= euid
;
1060 current
->fsuid
= current
->euid
;
1061 if (suid
!= (uid_t
) -1)
1062 current
->suid
= suid
;
1064 key_fsuid_changed(current
);
1065 proc_id_connector(current
, PROC_EVENT_UID
);
1067 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1070 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1074 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1075 !(retval
= put_user(current
->euid
, euid
)))
1076 retval
= put_user(current
->suid
, suid
);
1082 * Same as above, but for rgid, egid, sgid.
1084 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1088 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1092 if (!capable(CAP_SETGID
)) {
1093 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1094 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1096 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1097 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1099 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1100 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1103 if (egid
!= (gid_t
) -1) {
1104 if (egid
!= current
->egid
)
1106 current
->mm
->dumpable
= suid_dumpable
;
1109 current
->egid
= egid
;
1111 current
->fsgid
= current
->egid
;
1112 if (rgid
!= (gid_t
) -1)
1113 current
->gid
= rgid
;
1114 if (sgid
!= (gid_t
) -1)
1115 current
->sgid
= sgid
;
1117 key_fsgid_changed(current
);
1118 proc_id_connector(current
, PROC_EVENT_GID
);
1122 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1126 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1127 !(retval
= put_user(current
->egid
, egid
)))
1128 retval
= put_user(current
->sgid
, sgid
);
1135 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1136 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1137 * whatever uid it wants to). It normally shadows "euid", except when
1138 * explicitly set by setfsuid() or for access..
1140 asmlinkage
long sys_setfsuid(uid_t uid
)
1144 old_fsuid
= current
->fsuid
;
1145 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1148 if (uid
== current
->uid
|| uid
== current
->euid
||
1149 uid
== current
->suid
|| uid
== current
->fsuid
||
1150 capable(CAP_SETUID
))
1152 if (uid
!= old_fsuid
)
1154 current
->mm
->dumpable
= suid_dumpable
;
1157 current
->fsuid
= uid
;
1160 key_fsuid_changed(current
);
1161 proc_id_connector(current
, PROC_EVENT_UID
);
1163 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1169 * Samma på svenska..
1171 asmlinkage
long sys_setfsgid(gid_t gid
)
1175 old_fsgid
= current
->fsgid
;
1176 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1179 if (gid
== current
->gid
|| gid
== current
->egid
||
1180 gid
== current
->sgid
|| gid
== current
->fsgid
||
1181 capable(CAP_SETGID
))
1183 if (gid
!= old_fsgid
)
1185 current
->mm
->dumpable
= suid_dumpable
;
1188 current
->fsgid
= gid
;
1189 key_fsgid_changed(current
);
1190 proc_id_connector(current
, PROC_EVENT_GID
);
1195 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1198 * In the SMP world we might just be unlucky and have one of
1199 * the times increment as we use it. Since the value is an
1200 * atomically safe type this is just fine. Conceptually its
1201 * as if the syscall took an instant longer to occur.
1205 struct task_struct
*tsk
= current
;
1206 struct task_struct
*t
;
1207 cputime_t utime
, stime
, cutime
, cstime
;
1209 spin_lock_irq(&tsk
->sighand
->siglock
);
1210 utime
= tsk
->signal
->utime
;
1211 stime
= tsk
->signal
->stime
;
1214 utime
= cputime_add(utime
, t
->utime
);
1215 stime
= cputime_add(stime
, t
->stime
);
1219 cutime
= tsk
->signal
->cutime
;
1220 cstime
= tsk
->signal
->cstime
;
1221 spin_unlock_irq(&tsk
->sighand
->siglock
);
1223 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1224 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1225 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1226 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1227 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1230 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1234 * This needs some heavy checking ...
1235 * I just haven't the stomach for it. I also don't fully
1236 * understand sessions/pgrp etc. Let somebody who does explain it.
1238 * OK, I think I have the protection semantics right.... this is really
1239 * only important on a multi-user system anyway, to make sure one user
1240 * can't send a signal to a process owned by another. -TYT, 12/12/91
1242 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1246 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1248 struct task_struct
*p
;
1249 struct task_struct
*group_leader
= current
->group_leader
;
1253 pid
= group_leader
->pid
;
1259 /* From this point forward we keep holding onto the tasklist lock
1260 * so that our parent does not change from under us. -DaveM
1262 write_lock_irq(&tasklist_lock
);
1265 p
= find_task_by_pid(pid
);
1270 if (!thread_group_leader(p
))
1273 if (p
->real_parent
== group_leader
) {
1275 if (p
->signal
->session
!= group_leader
->signal
->session
)
1282 if (p
!= group_leader
)
1287 if (p
->signal
->leader
)
1291 struct task_struct
*p
;
1293 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1294 if (p
->signal
->session
== group_leader
->signal
->session
)
1296 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1301 err
= security_task_setpgid(p
, pgid
);
1305 if (process_group(p
) != pgid
) {
1306 detach_pid(p
, PIDTYPE_PGID
);
1307 p
->signal
->pgrp
= pgid
;
1308 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1313 /* All paths lead to here, thus we are safe. -DaveM */
1314 write_unlock_irq(&tasklist_lock
);
1318 asmlinkage
long sys_getpgid(pid_t pid
)
1321 return process_group(current
);
1324 struct task_struct
*p
;
1326 read_lock(&tasklist_lock
);
1327 p
= find_task_by_pid(pid
);
1331 retval
= security_task_getpgid(p
);
1333 retval
= process_group(p
);
1335 read_unlock(&tasklist_lock
);
1340 #ifdef __ARCH_WANT_SYS_GETPGRP
1342 asmlinkage
long sys_getpgrp(void)
1344 /* SMP - assuming writes are word atomic this is fine */
1345 return process_group(current
);
1350 asmlinkage
long sys_getsid(pid_t pid
)
1353 return current
->signal
->session
;
1356 struct task_struct
*p
;
1358 read_lock(&tasklist_lock
);
1359 p
= find_task_by_pid(pid
);
1363 retval
= security_task_getsid(p
);
1365 retval
= p
->signal
->session
;
1367 read_unlock(&tasklist_lock
);
1372 asmlinkage
long sys_setsid(void)
1374 struct task_struct
*group_leader
= current
->group_leader
;
1378 mutex_lock(&tty_mutex
);
1379 write_lock_irq(&tasklist_lock
);
1381 /* Fail if I am already a session leader */
1382 if (group_leader
->signal
->leader
)
1385 session
= group_leader
->pid
;
1386 /* Fail if a process group id already exists that equals the
1387 * proposed session id.
1389 * Don't check if session id == 1 because kernel threads use this
1390 * session id and so the check will always fail and make it so
1391 * init cannot successfully call setsid.
1393 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1396 group_leader
->signal
->leader
= 1;
1397 __set_special_pids(session
, session
);
1398 group_leader
->signal
->tty
= NULL
;
1399 group_leader
->signal
->tty_old_pgrp
= 0;
1400 err
= process_group(group_leader
);
1402 write_unlock_irq(&tasklist_lock
);
1403 mutex_unlock(&tty_mutex
);
1408 * Supplementary group IDs
1411 /* init to 2 - one for init_task, one to ensure it is never freed */
1412 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1414 struct group_info
*groups_alloc(int gidsetsize
)
1416 struct group_info
*group_info
;
1420 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1421 /* Make sure we always allocate at least one indirect block pointer */
1422 nblocks
= nblocks
? : 1;
1423 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1426 group_info
->ngroups
= gidsetsize
;
1427 group_info
->nblocks
= nblocks
;
1428 atomic_set(&group_info
->usage
, 1);
1430 if (gidsetsize
<= NGROUPS_SMALL
) {
1431 group_info
->blocks
[0] = group_info
->small_block
;
1433 for (i
= 0; i
< nblocks
; i
++) {
1435 b
= (void *)__get_free_page(GFP_USER
);
1437 goto out_undo_partial_alloc
;
1438 group_info
->blocks
[i
] = b
;
1443 out_undo_partial_alloc
:
1445 free_page((unsigned long)group_info
->blocks
[i
]);
1451 EXPORT_SYMBOL(groups_alloc
);
1453 void groups_free(struct group_info
*group_info
)
1455 if (group_info
->blocks
[0] != group_info
->small_block
) {
1457 for (i
= 0; i
< group_info
->nblocks
; i
++)
1458 free_page((unsigned long)group_info
->blocks
[i
]);
1463 EXPORT_SYMBOL(groups_free
);
1465 /* export the group_info to a user-space array */
1466 static int groups_to_user(gid_t __user
*grouplist
,
1467 struct group_info
*group_info
)
1470 int count
= group_info
->ngroups
;
1472 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1473 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1474 int off
= i
* NGROUPS_PER_BLOCK
;
1475 int len
= cp_count
* sizeof(*grouplist
);
1477 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1485 /* fill a group_info from a user-space array - it must be allocated already */
1486 static int groups_from_user(struct group_info
*group_info
,
1487 gid_t __user
*grouplist
)
1490 int count
= group_info
->ngroups
;
1492 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1493 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1494 int off
= i
* NGROUPS_PER_BLOCK
;
1495 int len
= cp_count
* sizeof(*grouplist
);
1497 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1505 /* a simple Shell sort */
1506 static void groups_sort(struct group_info
*group_info
)
1508 int base
, max
, stride
;
1509 int gidsetsize
= group_info
->ngroups
;
1511 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1516 max
= gidsetsize
- stride
;
1517 for (base
= 0; base
< max
; base
++) {
1519 int right
= left
+ stride
;
1520 gid_t tmp
= GROUP_AT(group_info
, right
);
1522 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1523 GROUP_AT(group_info
, right
) =
1524 GROUP_AT(group_info
, left
);
1528 GROUP_AT(group_info
, right
) = tmp
;
1534 /* a simple bsearch */
1535 int groups_search(struct group_info
*group_info
, gid_t grp
)
1537 unsigned int left
, right
;
1543 right
= group_info
->ngroups
;
1544 while (left
< right
) {
1545 unsigned int mid
= (left
+right
)/2;
1546 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1557 /* validate and set current->group_info */
1558 int set_current_groups(struct group_info
*group_info
)
1561 struct group_info
*old_info
;
1563 retval
= security_task_setgroups(group_info
);
1567 groups_sort(group_info
);
1568 get_group_info(group_info
);
1571 old_info
= current
->group_info
;
1572 current
->group_info
= group_info
;
1573 task_unlock(current
);
1575 put_group_info(old_info
);
1580 EXPORT_SYMBOL(set_current_groups
);
1582 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1587 * SMP: Nobody else can change our grouplist. Thus we are
1594 /* no need to grab task_lock here; it cannot change */
1595 i
= current
->group_info
->ngroups
;
1597 if (i
> gidsetsize
) {
1601 if (groups_to_user(grouplist
, current
->group_info
)) {
1611 * SMP: Our groups are copy-on-write. We can set them safely
1612 * without another task interfering.
1615 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1617 struct group_info
*group_info
;
1620 if (!capable(CAP_SETGID
))
1622 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1625 group_info
= groups_alloc(gidsetsize
);
1628 retval
= groups_from_user(group_info
, grouplist
);
1630 put_group_info(group_info
);
1634 retval
= set_current_groups(group_info
);
1635 put_group_info(group_info
);
1641 * Check whether we're fsgid/egid or in the supplemental group..
1643 int in_group_p(gid_t grp
)
1646 if (grp
!= current
->fsgid
) {
1647 retval
= groups_search(current
->group_info
, grp
);
1652 EXPORT_SYMBOL(in_group_p
);
1654 int in_egroup_p(gid_t grp
)
1657 if (grp
!= current
->egid
) {
1658 retval
= groups_search(current
->group_info
, grp
);
1663 EXPORT_SYMBOL(in_egroup_p
);
1665 DECLARE_RWSEM(uts_sem
);
1667 EXPORT_SYMBOL(uts_sem
);
1669 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1673 down_read(&uts_sem
);
1674 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1680 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1683 char tmp
[__NEW_UTS_LEN
];
1685 if (!capable(CAP_SYS_ADMIN
))
1687 if (len
< 0 || len
> __NEW_UTS_LEN
)
1689 down_write(&uts_sem
);
1691 if (!copy_from_user(tmp
, name
, len
)) {
1692 memcpy(system_utsname
.nodename
, tmp
, len
);
1693 system_utsname
.nodename
[len
] = 0;
1700 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1702 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1708 down_read(&uts_sem
);
1709 i
= 1 + strlen(system_utsname
.nodename
);
1713 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1722 * Only setdomainname; getdomainname can be implemented by calling
1725 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1728 char tmp
[__NEW_UTS_LEN
];
1730 if (!capable(CAP_SYS_ADMIN
))
1732 if (len
< 0 || len
> __NEW_UTS_LEN
)
1735 down_write(&uts_sem
);
1737 if (!copy_from_user(tmp
, name
, len
)) {
1738 memcpy(system_utsname
.domainname
, tmp
, len
);
1739 system_utsname
.domainname
[len
] = 0;
1746 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1748 if (resource
>= RLIM_NLIMITS
)
1751 struct rlimit value
;
1752 task_lock(current
->group_leader
);
1753 value
= current
->signal
->rlim
[resource
];
1754 task_unlock(current
->group_leader
);
1755 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1759 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1762 * Back compatibility for getrlimit. Needed for some apps.
1765 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1768 if (resource
>= RLIM_NLIMITS
)
1771 task_lock(current
->group_leader
);
1772 x
= current
->signal
->rlim
[resource
];
1773 task_unlock(current
->group_leader
);
1774 if(x
.rlim_cur
> 0x7FFFFFFF)
1775 x
.rlim_cur
= 0x7FFFFFFF;
1776 if(x
.rlim_max
> 0x7FFFFFFF)
1777 x
.rlim_max
= 0x7FFFFFFF;
1778 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1783 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1785 struct rlimit new_rlim
, *old_rlim
;
1786 unsigned long it_prof_secs
;
1789 if (resource
>= RLIM_NLIMITS
)
1791 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1793 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1795 old_rlim
= current
->signal
->rlim
+ resource
;
1796 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1797 !capable(CAP_SYS_RESOURCE
))
1799 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1802 retval
= security_task_setrlimit(resource
, &new_rlim
);
1806 task_lock(current
->group_leader
);
1807 *old_rlim
= new_rlim
;
1808 task_unlock(current
->group_leader
);
1810 if (resource
!= RLIMIT_CPU
)
1814 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1815 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1816 * very long-standing error, and fixing it now risks breakage of
1817 * applications, so we live with it
1819 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1822 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1823 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1824 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1827 if (rlim_cur
== 0) {
1829 * The caller is asking for an immediate RLIMIT_CPU
1830 * expiry. But we use the zero value to mean "it was
1831 * never set". So let's cheat and make it one second
1836 cputime
= secs_to_cputime(rlim_cur
);
1837 read_lock(&tasklist_lock
);
1838 spin_lock_irq(¤t
->sighand
->siglock
);
1839 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1840 spin_unlock_irq(¤t
->sighand
->siglock
);
1841 read_unlock(&tasklist_lock
);
1848 * It would make sense to put struct rusage in the task_struct,
1849 * except that would make the task_struct be *really big*. After
1850 * task_struct gets moved into malloc'ed memory, it would
1851 * make sense to do this. It will make moving the rest of the information
1852 * a lot simpler! (Which we're not doing right now because we're not
1853 * measuring them yet).
1855 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1856 * races with threads incrementing their own counters. But since word
1857 * reads are atomic, we either get new values or old values and we don't
1858 * care which for the sums. We always take the siglock to protect reading
1859 * the c* fields from p->signal from races with exit.c updating those
1860 * fields when reaping, so a sample either gets all the additions of a
1861 * given child after it's reaped, or none so this sample is before reaping.
1863 * tasklist_lock locking optimisation:
1864 * If we are current and single threaded, we do not need to take the tasklist
1865 * lock or the siglock. No one else can take our signal_struct away,
1866 * no one else can reap the children to update signal->c* counters, and
1867 * no one else can race with the signal-> fields.
1868 * If we do not take the tasklist_lock, the signal-> fields could be read
1869 * out of order while another thread was just exiting. So we place a
1870 * read memory barrier when we avoid the lock. On the writer side,
1871 * write memory barrier is implied in __exit_signal as __exit_signal releases
1872 * the siglock spinlock after updating the signal-> fields.
1874 * We don't really need the siglock when we access the non c* fields
1875 * of the signal_struct (for RUSAGE_SELF) even in multithreaded
1876 * case, since we take the tasklist lock for read and the non c* signal->
1877 * fields are updated only in __exit_signal, which is called with
1878 * tasklist_lock taken for write, hence these two threads cannot execute
1883 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1885 struct task_struct
*t
;
1886 unsigned long flags
;
1887 cputime_t utime
, stime
;
1890 memset((char *) r
, 0, sizeof *r
);
1891 utime
= stime
= cputime_zero
;
1893 if (p
!= current
|| !thread_group_empty(p
))
1897 read_lock(&tasklist_lock
);
1898 if (unlikely(!p
->signal
)) {
1899 read_unlock(&tasklist_lock
);
1903 /* See locking comments above */
1908 case RUSAGE_CHILDREN
:
1909 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1910 utime
= p
->signal
->cutime
;
1911 stime
= p
->signal
->cstime
;
1912 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1913 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1914 r
->ru_minflt
= p
->signal
->cmin_flt
;
1915 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1916 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1918 if (who
== RUSAGE_CHILDREN
)
1922 utime
= cputime_add(utime
, p
->signal
->utime
);
1923 stime
= cputime_add(stime
, p
->signal
->stime
);
1924 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1925 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1926 r
->ru_minflt
+= p
->signal
->min_flt
;
1927 r
->ru_majflt
+= p
->signal
->maj_flt
;
1930 utime
= cputime_add(utime
, t
->utime
);
1931 stime
= cputime_add(stime
, t
->stime
);
1932 r
->ru_nvcsw
+= t
->nvcsw
;
1933 r
->ru_nivcsw
+= t
->nivcsw
;
1934 r
->ru_minflt
+= t
->min_flt
;
1935 r
->ru_majflt
+= t
->maj_flt
;
1945 read_unlock(&tasklist_lock
);
1946 cputime_to_timeval(utime
, &r
->ru_utime
);
1947 cputime_to_timeval(stime
, &r
->ru_stime
);
1950 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1953 k_getrusage(p
, who
, &r
);
1954 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1957 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1959 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1961 return getrusage(current
, who
, ru
);
1964 asmlinkage
long sys_umask(int mask
)
1966 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1970 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1971 unsigned long arg4
, unsigned long arg5
)
1975 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1980 case PR_SET_PDEATHSIG
:
1981 if (!valid_signal(arg2
)) {
1985 current
->pdeath_signal
= arg2
;
1987 case PR_GET_PDEATHSIG
:
1988 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1990 case PR_GET_DUMPABLE
:
1991 error
= current
->mm
->dumpable
;
1993 case PR_SET_DUMPABLE
:
1994 if (arg2
< 0 || arg2
> 2) {
1998 current
->mm
->dumpable
= arg2
;
2001 case PR_SET_UNALIGN
:
2002 error
= SET_UNALIGN_CTL(current
, arg2
);
2004 case PR_GET_UNALIGN
:
2005 error
= GET_UNALIGN_CTL(current
, arg2
);
2008 error
= SET_FPEMU_CTL(current
, arg2
);
2011 error
= GET_FPEMU_CTL(current
, arg2
);
2014 error
= SET_FPEXC_CTL(current
, arg2
);
2017 error
= GET_FPEXC_CTL(current
, arg2
);
2020 error
= PR_TIMING_STATISTICAL
;
2023 if (arg2
== PR_TIMING_STATISTICAL
)
2029 case PR_GET_KEEPCAPS
:
2030 if (current
->keep_capabilities
)
2033 case PR_SET_KEEPCAPS
:
2034 if (arg2
!= 0 && arg2
!= 1) {
2038 current
->keep_capabilities
= arg2
;
2041 struct task_struct
*me
= current
;
2042 unsigned char ncomm
[sizeof(me
->comm
)];
2044 ncomm
[sizeof(me
->comm
)-1] = 0;
2045 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2046 sizeof(me
->comm
)-1) < 0)
2048 set_task_comm(me
, ncomm
);
2052 struct task_struct
*me
= current
;
2053 unsigned char tcomm
[sizeof(me
->comm
)];
2055 get_task_comm(tcomm
, me
);
2056 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))