2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
64 #include <asm/uaccess.h>
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
69 #define DPRINTK(fmt, args...)
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
75 #define VPRINTK(fmt, args...)
78 #define MAX_SPEED 0xffff
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
82 static struct pktcdvd_device
*pkt_devs
[MAX_WRITERS
];
83 static struct proc_dir_entry
*pkt_proc
;
85 static struct mutex ctl_mutex
; /* Serialize open/close/setup/teardown */
86 static mempool_t
*psd_pool
;
89 static void pkt_bio_finished(struct pktcdvd_device
*pd
)
91 BUG_ON(atomic_read(&pd
->cdrw
.pending_bios
) <= 0);
92 if (atomic_dec_and_test(&pd
->cdrw
.pending_bios
)) {
93 VPRINTK("pktcdvd: queue empty\n");
94 atomic_set(&pd
->iosched
.attention
, 1);
99 static void pkt_bio_destructor(struct bio
*bio
)
101 kfree(bio
->bi_io_vec
);
105 static struct bio
*pkt_bio_alloc(int nr_iovecs
)
107 struct bio_vec
*bvl
= NULL
;
110 bio
= kmalloc(sizeof(struct bio
), GFP_KERNEL
);
115 bvl
= kcalloc(nr_iovecs
, sizeof(struct bio_vec
), GFP_KERNEL
);
119 bio
->bi_max_vecs
= nr_iovecs
;
120 bio
->bi_io_vec
= bvl
;
121 bio
->bi_destructor
= pkt_bio_destructor
;
132 * Allocate a packet_data struct
134 static struct packet_data
*pkt_alloc_packet_data(int frames
)
137 struct packet_data
*pkt
;
139 pkt
= kzalloc(sizeof(struct packet_data
), GFP_KERNEL
);
143 pkt
->frames
= frames
;
144 pkt
->w_bio
= pkt_bio_alloc(frames
);
148 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++) {
149 pkt
->pages
[i
] = alloc_page(GFP_KERNEL
|__GFP_ZERO
);
154 spin_lock_init(&pkt
->lock
);
156 for (i
= 0; i
< frames
; i
++) {
157 struct bio
*bio
= pkt_bio_alloc(1);
160 pkt
->r_bios
[i
] = bio
;
166 for (i
= 0; i
< frames
; i
++) {
167 struct bio
*bio
= pkt
->r_bios
[i
];
173 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++)
175 __free_page(pkt
->pages
[i
]);
184 * Free a packet_data struct
186 static void pkt_free_packet_data(struct packet_data
*pkt
)
190 for (i
= 0; i
< pkt
->frames
; i
++) {
191 struct bio
*bio
= pkt
->r_bios
[i
];
195 for (i
= 0; i
< pkt
->frames
/ FRAMES_PER_PAGE
; i
++)
196 __free_page(pkt
->pages
[i
]);
201 static void pkt_shrink_pktlist(struct pktcdvd_device
*pd
)
203 struct packet_data
*pkt
, *next
;
205 BUG_ON(!list_empty(&pd
->cdrw
.pkt_active_list
));
207 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_free_list
, list
) {
208 pkt_free_packet_data(pkt
);
210 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
213 static int pkt_grow_pktlist(struct pktcdvd_device
*pd
, int nr_packets
)
215 struct packet_data
*pkt
;
217 BUG_ON(!list_empty(&pd
->cdrw
.pkt_free_list
));
219 while (nr_packets
> 0) {
220 pkt
= pkt_alloc_packet_data(pd
->settings
.size
>> 2);
222 pkt_shrink_pktlist(pd
);
225 pkt
->id
= nr_packets
;
227 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
233 static inline struct pkt_rb_node
*pkt_rbtree_next(struct pkt_rb_node
*node
)
235 struct rb_node
*n
= rb_next(&node
->rb_node
);
238 return rb_entry(n
, struct pkt_rb_node
, rb_node
);
241 static void pkt_rbtree_erase(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
243 rb_erase(&node
->rb_node
, &pd
->bio_queue
);
244 mempool_free(node
, pd
->rb_pool
);
245 pd
->bio_queue_size
--;
246 BUG_ON(pd
->bio_queue_size
< 0);
250 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
252 static struct pkt_rb_node
*pkt_rbtree_find(struct pktcdvd_device
*pd
, sector_t s
)
254 struct rb_node
*n
= pd
->bio_queue
.rb_node
;
255 struct rb_node
*next
;
256 struct pkt_rb_node
*tmp
;
259 BUG_ON(pd
->bio_queue_size
> 0);
264 tmp
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
265 if (s
<= tmp
->bio
->bi_sector
)
274 if (s
> tmp
->bio
->bi_sector
) {
275 tmp
= pkt_rbtree_next(tmp
);
279 BUG_ON(s
> tmp
->bio
->bi_sector
);
284 * Insert a node into the pd->bio_queue rb tree.
286 static void pkt_rbtree_insert(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
288 struct rb_node
**p
= &pd
->bio_queue
.rb_node
;
289 struct rb_node
*parent
= NULL
;
290 sector_t s
= node
->bio
->bi_sector
;
291 struct pkt_rb_node
*tmp
;
295 tmp
= rb_entry(parent
, struct pkt_rb_node
, rb_node
);
296 if (s
< tmp
->bio
->bi_sector
)
301 rb_link_node(&node
->rb_node
, parent
, p
);
302 rb_insert_color(&node
->rb_node
, &pd
->bio_queue
);
303 pd
->bio_queue_size
++;
307 * Add a bio to a single linked list defined by its head and tail pointers.
309 static void pkt_add_list_last(struct bio
*bio
, struct bio
**list_head
, struct bio
**list_tail
)
313 BUG_ON((*list_head
) == NULL
);
314 (*list_tail
)->bi_next
= bio
;
317 BUG_ON((*list_head
) != NULL
);
324 * Remove and return the first bio from a single linked list defined by its
325 * head and tail pointers.
327 static inline struct bio
*pkt_get_list_first(struct bio
**list_head
, struct bio
**list_tail
)
331 if (*list_head
== NULL
)
335 *list_head
= bio
->bi_next
;
336 if (*list_head
== NULL
)
344 * Send a packet_command to the underlying block device and
345 * wait for completion.
347 static int pkt_generic_packet(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
349 char sense
[SCSI_SENSE_BUFFERSIZE
];
352 DECLARE_COMPLETION(wait
);
355 q
= bdev_get_queue(pd
->bdev
);
357 rq
= blk_get_request(q
, (cgc
->data_direction
== CGC_DATA_WRITE
) ? WRITE
: READ
,
360 rq
->rq_disk
= pd
->bdev
->bd_disk
;
364 rq
->data
= cgc
->buffer
;
365 rq
->data_len
= cgc
->buflen
;
367 memset(sense
, 0, sizeof(sense
));
369 rq
->flags
|= REQ_BLOCK_PC
| REQ_HARDBARRIER
;
371 rq
->flags
|= REQ_QUIET
;
372 memcpy(rq
->cmd
, cgc
->cmd
, CDROM_PACKET_SIZE
);
373 if (sizeof(rq
->cmd
) > CDROM_PACKET_SIZE
)
374 memset(rq
->cmd
+ CDROM_PACKET_SIZE
, 0, sizeof(rq
->cmd
) - CDROM_PACKET_SIZE
);
375 rq
->cmd_len
= COMMAND_SIZE(rq
->cmd
[0]);
378 rq
->flags
|= REQ_NOMERGE
;
380 rq
->end_io
= blk_end_sync_rq
;
381 elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 1);
382 generic_unplug_device(q
);
383 wait_for_completion(&wait
);
393 * A generic sense dump / resolve mechanism should be implemented across
394 * all ATAPI + SCSI devices.
396 static void pkt_dump_sense(struct packet_command
*cgc
)
398 static char *info
[9] = { "No sense", "Recovered error", "Not ready",
399 "Medium error", "Hardware error", "Illegal request",
400 "Unit attention", "Data protect", "Blank check" };
402 struct request_sense
*sense
= cgc
->sense
;
405 for (i
= 0; i
< CDROM_PACKET_SIZE
; i
++)
406 printk(" %02x", cgc
->cmd
[i
]);
410 printk("no sense\n");
414 printk("sense %02x.%02x.%02x", sense
->sense_key
, sense
->asc
, sense
->ascq
);
416 if (sense
->sense_key
> 8) {
417 printk(" (INVALID)\n");
421 printk(" (%s)\n", info
[sense
->sense_key
]);
425 * flush the drive cache to media
427 static int pkt_flush_cache(struct pktcdvd_device
*pd
)
429 struct packet_command cgc
;
431 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
432 cgc
.cmd
[0] = GPCMD_FLUSH_CACHE
;
436 * the IMMED bit -- we default to not setting it, although that
437 * would allow a much faster close, this is safer
442 return pkt_generic_packet(pd
, &cgc
);
446 * speed is given as the normal factor, e.g. 4 for 4x
448 static int pkt_set_speed(struct pktcdvd_device
*pd
, unsigned write_speed
, unsigned read_speed
)
450 struct packet_command cgc
;
451 struct request_sense sense
;
454 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
456 cgc
.cmd
[0] = GPCMD_SET_SPEED
;
457 cgc
.cmd
[2] = (read_speed
>> 8) & 0xff;
458 cgc
.cmd
[3] = read_speed
& 0xff;
459 cgc
.cmd
[4] = (write_speed
>> 8) & 0xff;
460 cgc
.cmd
[5] = write_speed
& 0xff;
462 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
463 pkt_dump_sense(&cgc
);
469 * Queue a bio for processing by the low-level CD device. Must be called
470 * from process context.
472 static void pkt_queue_bio(struct pktcdvd_device
*pd
, struct bio
*bio
)
474 spin_lock(&pd
->iosched
.lock
);
475 if (bio_data_dir(bio
) == READ
) {
476 pkt_add_list_last(bio
, &pd
->iosched
.read_queue
,
477 &pd
->iosched
.read_queue_tail
);
479 pkt_add_list_last(bio
, &pd
->iosched
.write_queue
,
480 &pd
->iosched
.write_queue_tail
);
482 spin_unlock(&pd
->iosched
.lock
);
484 atomic_set(&pd
->iosched
.attention
, 1);
485 wake_up(&pd
->wqueue
);
489 * Process the queued read/write requests. This function handles special
490 * requirements for CDRW drives:
491 * - A cache flush command must be inserted before a read request if the
492 * previous request was a write.
493 * - Switching between reading and writing is slow, so don't do it more often
495 * - Optimize for throughput at the expense of latency. This means that streaming
496 * writes will never be interrupted by a read, but if the drive has to seek
497 * before the next write, switch to reading instead if there are any pending
499 * - Set the read speed according to current usage pattern. When only reading
500 * from the device, it's best to use the highest possible read speed, but
501 * when switching often between reading and writing, it's better to have the
502 * same read and write speeds.
504 static void pkt_iosched_process_queue(struct pktcdvd_device
*pd
)
507 if (atomic_read(&pd
->iosched
.attention
) == 0)
509 atomic_set(&pd
->iosched
.attention
, 0);
513 int reads_queued
, writes_queued
;
515 spin_lock(&pd
->iosched
.lock
);
516 reads_queued
= (pd
->iosched
.read_queue
!= NULL
);
517 writes_queued
= (pd
->iosched
.write_queue
!= NULL
);
518 spin_unlock(&pd
->iosched
.lock
);
520 if (!reads_queued
&& !writes_queued
)
523 if (pd
->iosched
.writing
) {
524 int need_write_seek
= 1;
525 spin_lock(&pd
->iosched
.lock
);
526 bio
= pd
->iosched
.write_queue
;
527 spin_unlock(&pd
->iosched
.lock
);
528 if (bio
&& (bio
->bi_sector
== pd
->iosched
.last_write
))
530 if (need_write_seek
&& reads_queued
) {
531 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
532 VPRINTK("pktcdvd: write, waiting\n");
536 pd
->iosched
.writing
= 0;
539 if (!reads_queued
&& writes_queued
) {
540 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
541 VPRINTK("pktcdvd: read, waiting\n");
544 pd
->iosched
.writing
= 1;
548 spin_lock(&pd
->iosched
.lock
);
549 if (pd
->iosched
.writing
) {
550 bio
= pkt_get_list_first(&pd
->iosched
.write_queue
,
551 &pd
->iosched
.write_queue_tail
);
553 bio
= pkt_get_list_first(&pd
->iosched
.read_queue
,
554 &pd
->iosched
.read_queue_tail
);
556 spin_unlock(&pd
->iosched
.lock
);
561 if (bio_data_dir(bio
) == READ
)
562 pd
->iosched
.successive_reads
+= bio
->bi_size
>> 10;
564 pd
->iosched
.successive_reads
= 0;
565 pd
->iosched
.last_write
= bio
->bi_sector
+ bio_sectors(bio
);
567 if (pd
->iosched
.successive_reads
>= HI_SPEED_SWITCH
) {
568 if (pd
->read_speed
== pd
->write_speed
) {
569 pd
->read_speed
= MAX_SPEED
;
570 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
573 if (pd
->read_speed
!= pd
->write_speed
) {
574 pd
->read_speed
= pd
->write_speed
;
575 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
579 atomic_inc(&pd
->cdrw
.pending_bios
);
580 generic_make_request(bio
);
585 * Special care is needed if the underlying block device has a small
586 * max_phys_segments value.
588 static int pkt_set_segment_merging(struct pktcdvd_device
*pd
, request_queue_t
*q
)
590 if ((pd
->settings
.size
<< 9) / CD_FRAMESIZE
<= q
->max_phys_segments
) {
592 * The cdrom device can handle one segment/frame
594 clear_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
596 } else if ((pd
->settings
.size
<< 9) / PAGE_SIZE
<= q
->max_phys_segments
) {
598 * We can handle this case at the expense of some extra memory
599 * copies during write operations
601 set_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
604 printk("pktcdvd: cdrom max_phys_segments too small\n");
610 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
612 static void pkt_copy_bio_data(struct bio
*src_bio
, int seg
, int offs
, struct page
*dst_page
, int dst_offs
)
614 unsigned int copy_size
= CD_FRAMESIZE
;
616 while (copy_size
> 0) {
617 struct bio_vec
*src_bvl
= bio_iovec_idx(src_bio
, seg
);
618 void *vfrom
= kmap_atomic(src_bvl
->bv_page
, KM_USER0
) +
619 src_bvl
->bv_offset
+ offs
;
620 void *vto
= page_address(dst_page
) + dst_offs
;
621 int len
= min_t(int, copy_size
, src_bvl
->bv_len
- offs
);
624 memcpy(vto
, vfrom
, len
);
625 kunmap_atomic(vfrom
, KM_USER0
);
635 * Copy all data for this packet to pkt->pages[], so that
636 * a) The number of required segments for the write bio is minimized, which
637 * is necessary for some scsi controllers.
638 * b) The data can be used as cache to avoid read requests if we receive a
639 * new write request for the same zone.
641 static void pkt_make_local_copy(struct packet_data
*pkt
, struct bio_vec
*bvec
)
645 /* Copy all data to pkt->pages[] */
648 for (f
= 0; f
< pkt
->frames
; f
++) {
649 if (bvec
[f
].bv_page
!= pkt
->pages
[p
]) {
650 void *vfrom
= kmap_atomic(bvec
[f
].bv_page
, KM_USER0
) + bvec
[f
].bv_offset
;
651 void *vto
= page_address(pkt
->pages
[p
]) + offs
;
652 memcpy(vto
, vfrom
, CD_FRAMESIZE
);
653 kunmap_atomic(vfrom
, KM_USER0
);
654 bvec
[f
].bv_page
= pkt
->pages
[p
];
655 bvec
[f
].bv_offset
= offs
;
657 BUG_ON(bvec
[f
].bv_offset
!= offs
);
659 offs
+= CD_FRAMESIZE
;
660 if (offs
>= PAGE_SIZE
) {
667 static int pkt_end_io_read(struct bio
*bio
, unsigned int bytes_done
, int err
)
669 struct packet_data
*pkt
= bio
->bi_private
;
670 struct pktcdvd_device
*pd
= pkt
->pd
;
676 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio
,
677 (unsigned long long)pkt
->sector
, (unsigned long long)bio
->bi_sector
, err
);
680 atomic_inc(&pkt
->io_errors
);
681 if (atomic_dec_and_test(&pkt
->io_wait
)) {
682 atomic_inc(&pkt
->run_sm
);
683 wake_up(&pd
->wqueue
);
685 pkt_bio_finished(pd
);
690 static int pkt_end_io_packet_write(struct bio
*bio
, unsigned int bytes_done
, int err
)
692 struct packet_data
*pkt
= bio
->bi_private
;
693 struct pktcdvd_device
*pd
= pkt
->pd
;
699 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt
->id
, err
);
701 pd
->stats
.pkt_ended
++;
703 pkt_bio_finished(pd
);
704 atomic_dec(&pkt
->io_wait
);
705 atomic_inc(&pkt
->run_sm
);
706 wake_up(&pd
->wqueue
);
711 * Schedule reads for the holes in a packet
713 static void pkt_gather_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
718 char written
[PACKET_MAX_SIZE
];
720 BUG_ON(!pkt
->orig_bios
);
722 atomic_set(&pkt
->io_wait
, 0);
723 atomic_set(&pkt
->io_errors
, 0);
726 * Figure out which frames we need to read before we can write.
728 memset(written
, 0, sizeof(written
));
729 spin_lock(&pkt
->lock
);
730 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
731 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
732 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
733 pd
->stats
.secs_w
+= num_frames
* (CD_FRAMESIZE
>> 9);
734 BUG_ON(first_frame
< 0);
735 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
736 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++)
739 spin_unlock(&pkt
->lock
);
741 if (pkt
->cache_valid
) {
742 VPRINTK("pkt_gather_data: zone %llx cached\n",
743 (unsigned long long)pkt
->sector
);
748 * Schedule reads for missing parts of the packet.
750 for (f
= 0; f
< pkt
->frames
; f
++) {
754 bio
= pkt
->r_bios
[f
];
756 bio
->bi_max_vecs
= 1;
757 bio
->bi_sector
= pkt
->sector
+ f
* (CD_FRAMESIZE
>> 9);
758 bio
->bi_bdev
= pd
->bdev
;
759 bio
->bi_end_io
= pkt_end_io_read
;
760 bio
->bi_private
= pkt
;
762 p
= (f
* CD_FRAMESIZE
) / PAGE_SIZE
;
763 offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
764 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
765 f
, pkt
->pages
[p
], offset
);
766 if (!bio_add_page(bio
, pkt
->pages
[p
], CD_FRAMESIZE
, offset
))
769 atomic_inc(&pkt
->io_wait
);
771 pkt_queue_bio(pd
, bio
);
776 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
777 frames_read
, (unsigned long long)pkt
->sector
);
778 pd
->stats
.pkt_started
++;
779 pd
->stats
.secs_rg
+= frames_read
* (CD_FRAMESIZE
>> 9);
783 * Find a packet matching zone, or the least recently used packet if
786 static struct packet_data
*pkt_get_packet_data(struct pktcdvd_device
*pd
, int zone
)
788 struct packet_data
*pkt
;
790 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_free_list
, list
) {
791 if (pkt
->sector
== zone
|| pkt
->list
.next
== &pd
->cdrw
.pkt_free_list
) {
792 list_del_init(&pkt
->list
);
793 if (pkt
->sector
!= zone
)
794 pkt
->cache_valid
= 0;
802 static void pkt_put_packet_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
804 if (pkt
->cache_valid
) {
805 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
807 list_add_tail(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
812 * recover a failed write, query for relocation if possible
814 * returns 1 if recovery is possible, or 0 if not
817 static int pkt_start_recovery(struct packet_data
*pkt
)
820 * FIXME. We need help from the file system to implement
825 struct request
*rq
= pkt
->rq
;
826 struct pktcdvd_device
*pd
= rq
->rq_disk
->private_data
;
827 struct block_device
*pkt_bdev
;
828 struct super_block
*sb
= NULL
;
829 unsigned long old_block
, new_block
;
832 pkt_bdev
= bdget(kdev_t_to_nr(pd
->pkt_dev
));
834 sb
= get_super(pkt_bdev
);
841 if (!sb
->s_op
|| !sb
->s_op
->relocate_blocks
)
844 old_block
= pkt
->sector
/ (CD_FRAMESIZE
>> 9);
845 if (sb
->s_op
->relocate_blocks(sb
, old_block
, &new_block
))
848 new_sector
= new_block
* (CD_FRAMESIZE
>> 9);
849 pkt
->sector
= new_sector
;
851 pkt
->bio
->bi_sector
= new_sector
;
852 pkt
->bio
->bi_next
= NULL
;
853 pkt
->bio
->bi_flags
= 1 << BIO_UPTODATE
;
854 pkt
->bio
->bi_idx
= 0;
856 BUG_ON(pkt
->bio
->bi_rw
!= (1 << BIO_RW
));
857 BUG_ON(pkt
->bio
->bi_vcnt
!= pkt
->frames
);
858 BUG_ON(pkt
->bio
->bi_size
!= pkt
->frames
* CD_FRAMESIZE
);
859 BUG_ON(pkt
->bio
->bi_end_io
!= pkt_end_io_packet_write
);
860 BUG_ON(pkt
->bio
->bi_private
!= pkt
);
871 static inline void pkt_set_state(struct packet_data
*pkt
, enum packet_data_state state
)
874 static const char *state_name
[] = {
875 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
877 enum packet_data_state old_state
= pkt
->state
;
878 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt
->id
, (unsigned long long)pkt
->sector
,
879 state_name
[old_state
], state_name
[state
]);
885 * Scan the work queue to see if we can start a new packet.
886 * returns non-zero if any work was done.
888 static int pkt_handle_queue(struct pktcdvd_device
*pd
)
890 struct packet_data
*pkt
, *p
;
891 struct bio
*bio
= NULL
;
892 sector_t zone
= 0; /* Suppress gcc warning */
893 struct pkt_rb_node
*node
, *first_node
;
896 VPRINTK("handle_queue\n");
898 atomic_set(&pd
->scan_queue
, 0);
900 if (list_empty(&pd
->cdrw
.pkt_free_list
)) {
901 VPRINTK("handle_queue: no pkt\n");
906 * Try to find a zone we are not already working on.
908 spin_lock(&pd
->lock
);
909 first_node
= pkt_rbtree_find(pd
, pd
->current_sector
);
911 n
= rb_first(&pd
->bio_queue
);
913 first_node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
918 zone
= ZONE(bio
->bi_sector
, pd
);
919 list_for_each_entry(p
, &pd
->cdrw
.pkt_active_list
, list
) {
920 if (p
->sector
== zone
) {
927 node
= pkt_rbtree_next(node
);
929 n
= rb_first(&pd
->bio_queue
);
931 node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
933 if (node
== first_node
)
936 spin_unlock(&pd
->lock
);
938 VPRINTK("handle_queue: no bio\n");
942 pkt
= pkt_get_packet_data(pd
, zone
);
944 pd
->current_sector
= zone
+ pd
->settings
.size
;
946 BUG_ON(pkt
->frames
!= pd
->settings
.size
>> 2);
950 * Scan work queue for bios in the same zone and link them
953 spin_lock(&pd
->lock
);
954 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone
);
955 while ((node
= pkt_rbtree_find(pd
, zone
)) != NULL
) {
957 VPRINTK("pkt_handle_queue: found zone=%llx\n",
958 (unsigned long long)ZONE(bio
->bi_sector
, pd
));
959 if (ZONE(bio
->bi_sector
, pd
) != zone
)
961 pkt_rbtree_erase(pd
, node
);
962 spin_lock(&pkt
->lock
);
963 pkt_add_list_last(bio
, &pkt
->orig_bios
, &pkt
->orig_bios_tail
);
964 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
965 spin_unlock(&pkt
->lock
);
967 spin_unlock(&pd
->lock
);
969 pkt
->sleep_time
= max(PACKET_WAIT_TIME
, 1);
970 pkt_set_state(pkt
, PACKET_WAITING_STATE
);
971 atomic_set(&pkt
->run_sm
, 1);
973 spin_lock(&pd
->cdrw
.active_list_lock
);
974 list_add(&pkt
->list
, &pd
->cdrw
.pkt_active_list
);
975 spin_unlock(&pd
->cdrw
.active_list_lock
);
981 * Assemble a bio to write one packet and queue the bio for processing
982 * by the underlying block device.
984 static void pkt_start_write(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
989 struct bio_vec
*bvec
= pkt
->w_bio
->bi_io_vec
;
991 for (f
= 0; f
< pkt
->frames
; f
++) {
992 bvec
[f
].bv_page
= pkt
->pages
[(f
* CD_FRAMESIZE
) / PAGE_SIZE
];
993 bvec
[f
].bv_offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
997 * Fill-in bvec with data from orig_bios.
1000 spin_lock(&pkt
->lock
);
1001 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
1002 int segment
= bio
->bi_idx
;
1004 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
1005 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
1006 BUG_ON(first_frame
< 0);
1007 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
1008 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++) {
1009 struct bio_vec
*src_bvl
= bio_iovec_idx(bio
, segment
);
1011 while (src_offs
>= src_bvl
->bv_len
) {
1012 src_offs
-= src_bvl
->bv_len
;
1014 BUG_ON(segment
>= bio
->bi_vcnt
);
1015 src_bvl
= bio_iovec_idx(bio
, segment
);
1018 if (src_bvl
->bv_len
- src_offs
>= CD_FRAMESIZE
) {
1019 bvec
[f
].bv_page
= src_bvl
->bv_page
;
1020 bvec
[f
].bv_offset
= src_bvl
->bv_offset
+ src_offs
;
1022 pkt_copy_bio_data(bio
, segment
, src_offs
,
1023 bvec
[f
].bv_page
, bvec
[f
].bv_offset
);
1025 src_offs
+= CD_FRAMESIZE
;
1029 pkt_set_state(pkt
, PACKET_WRITE_WAIT_STATE
);
1030 spin_unlock(&pkt
->lock
);
1032 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1033 frames_write
, (unsigned long long)pkt
->sector
);
1034 BUG_ON(frames_write
!= pkt
->write_size
);
1036 if (test_bit(PACKET_MERGE_SEGS
, &pd
->flags
) || (pkt
->write_size
< pkt
->frames
)) {
1037 pkt_make_local_copy(pkt
, bvec
);
1038 pkt
->cache_valid
= 1;
1040 pkt
->cache_valid
= 0;
1043 /* Start the write request */
1044 bio_init(pkt
->w_bio
);
1045 pkt
->w_bio
->bi_max_vecs
= PACKET_MAX_SIZE
;
1046 pkt
->w_bio
->bi_sector
= pkt
->sector
;
1047 pkt
->w_bio
->bi_bdev
= pd
->bdev
;
1048 pkt
->w_bio
->bi_end_io
= pkt_end_io_packet_write
;
1049 pkt
->w_bio
->bi_private
= pkt
;
1050 for (f
= 0; f
< pkt
->frames
; f
++)
1051 if (!bio_add_page(pkt
->w_bio
, bvec
[f
].bv_page
, CD_FRAMESIZE
, bvec
[f
].bv_offset
))
1053 VPRINTK("pktcdvd: vcnt=%d\n", pkt
->w_bio
->bi_vcnt
);
1055 atomic_set(&pkt
->io_wait
, 1);
1056 pkt
->w_bio
->bi_rw
= WRITE
;
1057 pkt_queue_bio(pd
, pkt
->w_bio
);
1060 static void pkt_finish_packet(struct packet_data
*pkt
, int uptodate
)
1062 struct bio
*bio
, *next
;
1065 pkt
->cache_valid
= 0;
1067 /* Finish all bios corresponding to this packet */
1068 bio
= pkt
->orig_bios
;
1070 next
= bio
->bi_next
;
1071 bio
->bi_next
= NULL
;
1072 bio_endio(bio
, bio
->bi_size
, uptodate
? 0 : -EIO
);
1075 pkt
->orig_bios
= pkt
->orig_bios_tail
= NULL
;
1078 static void pkt_run_state_machine(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1082 VPRINTK("run_state_machine: pkt %d\n", pkt
->id
);
1085 switch (pkt
->state
) {
1086 case PACKET_WAITING_STATE
:
1087 if ((pkt
->write_size
< pkt
->frames
) && (pkt
->sleep_time
> 0))
1090 pkt
->sleep_time
= 0;
1091 pkt_gather_data(pd
, pkt
);
1092 pkt_set_state(pkt
, PACKET_READ_WAIT_STATE
);
1095 case PACKET_READ_WAIT_STATE
:
1096 if (atomic_read(&pkt
->io_wait
) > 0)
1099 if (atomic_read(&pkt
->io_errors
) > 0) {
1100 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1102 pkt_start_write(pd
, pkt
);
1106 case PACKET_WRITE_WAIT_STATE
:
1107 if (atomic_read(&pkt
->io_wait
) > 0)
1110 if (test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
)) {
1111 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1113 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1117 case PACKET_RECOVERY_STATE
:
1118 if (pkt_start_recovery(pkt
)) {
1119 pkt_start_write(pd
, pkt
);
1121 VPRINTK("No recovery possible\n");
1122 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1126 case PACKET_FINISHED_STATE
:
1127 uptodate
= test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
);
1128 pkt_finish_packet(pkt
, uptodate
);
1138 static void pkt_handle_packets(struct pktcdvd_device
*pd
)
1140 struct packet_data
*pkt
, *next
;
1142 VPRINTK("pkt_handle_packets\n");
1145 * Run state machine for active packets
1147 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1148 if (atomic_read(&pkt
->run_sm
) > 0) {
1149 atomic_set(&pkt
->run_sm
, 0);
1150 pkt_run_state_machine(pd
, pkt
);
1155 * Move no longer active packets to the free list
1157 spin_lock(&pd
->cdrw
.active_list_lock
);
1158 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_active_list
, list
) {
1159 if (pkt
->state
== PACKET_FINISHED_STATE
) {
1160 list_del(&pkt
->list
);
1161 pkt_put_packet_data(pd
, pkt
);
1162 pkt_set_state(pkt
, PACKET_IDLE_STATE
);
1163 atomic_set(&pd
->scan_queue
, 1);
1166 spin_unlock(&pd
->cdrw
.active_list_lock
);
1169 static void pkt_count_states(struct pktcdvd_device
*pd
, int *states
)
1171 struct packet_data
*pkt
;
1174 for (i
= 0; i
< PACKET_NUM_STATES
; i
++)
1177 spin_lock(&pd
->cdrw
.active_list_lock
);
1178 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1179 states
[pkt
->state
]++;
1181 spin_unlock(&pd
->cdrw
.active_list_lock
);
1185 * kcdrwd is woken up when writes have been queued for one of our
1186 * registered devices
1188 static int kcdrwd(void *foobar
)
1190 struct pktcdvd_device
*pd
= foobar
;
1191 struct packet_data
*pkt
;
1192 long min_sleep_time
, residue
;
1194 set_user_nice(current
, -20);
1197 DECLARE_WAITQUEUE(wait
, current
);
1200 * Wait until there is something to do
1202 add_wait_queue(&pd
->wqueue
, &wait
);
1204 set_current_state(TASK_INTERRUPTIBLE
);
1206 /* Check if we need to run pkt_handle_queue */
1207 if (atomic_read(&pd
->scan_queue
) > 0)
1210 /* Check if we need to run the state machine for some packet */
1211 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1212 if (atomic_read(&pkt
->run_sm
) > 0)
1216 /* Check if we need to process the iosched queues */
1217 if (atomic_read(&pd
->iosched
.attention
) != 0)
1220 /* Otherwise, go to sleep */
1221 if (PACKET_DEBUG
> 1) {
1222 int states
[PACKET_NUM_STATES
];
1223 pkt_count_states(pd
, states
);
1224 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1225 states
[0], states
[1], states
[2], states
[3],
1226 states
[4], states
[5]);
1229 min_sleep_time
= MAX_SCHEDULE_TIMEOUT
;
1230 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1231 if (pkt
->sleep_time
&& pkt
->sleep_time
< min_sleep_time
)
1232 min_sleep_time
= pkt
->sleep_time
;
1235 generic_unplug_device(bdev_get_queue(pd
->bdev
));
1237 VPRINTK("kcdrwd: sleeping\n");
1238 residue
= schedule_timeout(min_sleep_time
);
1239 VPRINTK("kcdrwd: wake up\n");
1241 /* make swsusp happy with our thread */
1244 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1245 if (!pkt
->sleep_time
)
1247 pkt
->sleep_time
-= min_sleep_time
- residue
;
1248 if (pkt
->sleep_time
<= 0) {
1249 pkt
->sleep_time
= 0;
1250 atomic_inc(&pkt
->run_sm
);
1254 if (signal_pending(current
)) {
1255 flush_signals(current
);
1257 if (kthread_should_stop())
1261 set_current_state(TASK_RUNNING
);
1262 remove_wait_queue(&pd
->wqueue
, &wait
);
1264 if (kthread_should_stop())
1268 * if pkt_handle_queue returns true, we can queue
1271 while (pkt_handle_queue(pd
))
1275 * Handle packet state machine
1277 pkt_handle_packets(pd
);
1280 * Handle iosched queues
1282 pkt_iosched_process_queue(pd
);
1288 static void pkt_print_settings(struct pktcdvd_device
*pd
)
1290 printk("pktcdvd: %s packets, ", pd
->settings
.fp
? "Fixed" : "Variable");
1291 printk("%u blocks, ", pd
->settings
.size
>> 2);
1292 printk("Mode-%c disc\n", pd
->settings
.block_mode
== 8 ? '1' : '2');
1295 static int pkt_mode_sense(struct pktcdvd_device
*pd
, struct packet_command
*cgc
, int page_code
, int page_control
)
1297 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1299 cgc
->cmd
[0] = GPCMD_MODE_SENSE_10
;
1300 cgc
->cmd
[2] = page_code
| (page_control
<< 6);
1301 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1302 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1303 cgc
->data_direction
= CGC_DATA_READ
;
1304 return pkt_generic_packet(pd
, cgc
);
1307 static int pkt_mode_select(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
1309 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1310 memset(cgc
->buffer
, 0, 2);
1311 cgc
->cmd
[0] = GPCMD_MODE_SELECT_10
;
1312 cgc
->cmd
[1] = 0x10; /* PF */
1313 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1314 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1315 cgc
->data_direction
= CGC_DATA_WRITE
;
1316 return pkt_generic_packet(pd
, cgc
);
1319 static int pkt_get_disc_info(struct pktcdvd_device
*pd
, disc_information
*di
)
1321 struct packet_command cgc
;
1324 /* set up command and get the disc info */
1325 init_cdrom_command(&cgc
, di
, sizeof(*di
), CGC_DATA_READ
);
1326 cgc
.cmd
[0] = GPCMD_READ_DISC_INFO
;
1327 cgc
.cmd
[8] = cgc
.buflen
= 2;
1330 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1333 /* not all drives have the same disc_info length, so requeue
1334 * packet with the length the drive tells us it can supply
1336 cgc
.buflen
= be16_to_cpu(di
->disc_information_length
) +
1337 sizeof(di
->disc_information_length
);
1339 if (cgc
.buflen
> sizeof(disc_information
))
1340 cgc
.buflen
= sizeof(disc_information
);
1342 cgc
.cmd
[8] = cgc
.buflen
;
1343 return pkt_generic_packet(pd
, &cgc
);
1346 static int pkt_get_track_info(struct pktcdvd_device
*pd
, __u16 track
, __u8 type
, track_information
*ti
)
1348 struct packet_command cgc
;
1351 init_cdrom_command(&cgc
, ti
, 8, CGC_DATA_READ
);
1352 cgc
.cmd
[0] = GPCMD_READ_TRACK_RZONE_INFO
;
1353 cgc
.cmd
[1] = type
& 3;
1354 cgc
.cmd
[4] = (track
& 0xff00) >> 8;
1355 cgc
.cmd
[5] = track
& 0xff;
1359 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1362 cgc
.buflen
= be16_to_cpu(ti
->track_information_length
) +
1363 sizeof(ti
->track_information_length
);
1365 if (cgc
.buflen
> sizeof(track_information
))
1366 cgc
.buflen
= sizeof(track_information
);
1368 cgc
.cmd
[8] = cgc
.buflen
;
1369 return pkt_generic_packet(pd
, &cgc
);
1372 static int pkt_get_last_written(struct pktcdvd_device
*pd
, long *last_written
)
1374 disc_information di
;
1375 track_information ti
;
1379 if ((ret
= pkt_get_disc_info(pd
, &di
)))
1382 last_track
= (di
.last_track_msb
<< 8) | di
.last_track_lsb
;
1383 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1386 /* if this track is blank, try the previous. */
1389 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1393 /* if last recorded field is valid, return it. */
1395 *last_written
= be32_to_cpu(ti
.last_rec_address
);
1397 /* make it up instead */
1398 *last_written
= be32_to_cpu(ti
.track_start
) +
1399 be32_to_cpu(ti
.track_size
);
1401 *last_written
-= (be32_to_cpu(ti
.free_blocks
) + 7);
1407 * write mode select package based on pd->settings
1409 static int pkt_set_write_settings(struct pktcdvd_device
*pd
)
1411 struct packet_command cgc
;
1412 struct request_sense sense
;
1413 write_param_page
*wp
;
1417 /* doesn't apply to DVD+RW or DVD-RAM */
1418 if ((pd
->mmc3_profile
== 0x1a) || (pd
->mmc3_profile
== 0x12))
1421 memset(buffer
, 0, sizeof(buffer
));
1422 init_cdrom_command(&cgc
, buffer
, sizeof(*wp
), CGC_DATA_READ
);
1424 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1425 pkt_dump_sense(&cgc
);
1429 size
= 2 + ((buffer
[0] << 8) | (buffer
[1] & 0xff));
1430 pd
->mode_offset
= (buffer
[6] << 8) | (buffer
[7] & 0xff);
1431 if (size
> sizeof(buffer
))
1432 size
= sizeof(buffer
);
1437 init_cdrom_command(&cgc
, buffer
, size
, CGC_DATA_READ
);
1439 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1440 pkt_dump_sense(&cgc
);
1445 * write page is offset header + block descriptor length
1447 wp
= (write_param_page
*) &buffer
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1449 wp
->fp
= pd
->settings
.fp
;
1450 wp
->track_mode
= pd
->settings
.track_mode
;
1451 wp
->write_type
= pd
->settings
.write_type
;
1452 wp
->data_block_type
= pd
->settings
.block_mode
;
1454 wp
->multi_session
= 0;
1456 #ifdef PACKET_USE_LS
1461 if (wp
->data_block_type
== PACKET_BLOCK_MODE1
) {
1462 wp
->session_format
= 0;
1464 } else if (wp
->data_block_type
== PACKET_BLOCK_MODE2
) {
1465 wp
->session_format
= 0x20;
1469 memcpy(&wp
->mcn
[1], PACKET_MCN
, sizeof(wp
->mcn
) - 1);
1475 printk("pktcdvd: write mode wrong %d\n", wp
->data_block_type
);
1478 wp
->packet_size
= cpu_to_be32(pd
->settings
.size
>> 2);
1480 cgc
.buflen
= cgc
.cmd
[8] = size
;
1481 if ((ret
= pkt_mode_select(pd
, &cgc
))) {
1482 pkt_dump_sense(&cgc
);
1486 pkt_print_settings(pd
);
1491 * 1 -- we can write to this track, 0 -- we can't
1493 static int pkt_writable_track(struct pktcdvd_device
*pd
, track_information
*ti
)
1495 switch (pd
->mmc3_profile
) {
1496 case 0x1a: /* DVD+RW */
1497 case 0x12: /* DVD-RAM */
1498 /* The track is always writable on DVD+RW/DVD-RAM */
1504 if (!ti
->packet
|| !ti
->fp
)
1508 * "good" settings as per Mt Fuji.
1510 if (ti
->rt
== 0 && ti
->blank
== 0)
1513 if (ti
->rt
== 0 && ti
->blank
== 1)
1516 if (ti
->rt
== 1 && ti
->blank
== 0)
1519 printk("pktcdvd: bad state %d-%d-%d\n", ti
->rt
, ti
->blank
, ti
->packet
);
1524 * 1 -- we can write to this disc, 0 -- we can't
1526 static int pkt_writable_disc(struct pktcdvd_device
*pd
, disc_information
*di
)
1528 switch (pd
->mmc3_profile
) {
1529 case 0x0a: /* CD-RW */
1530 case 0xffff: /* MMC3 not supported */
1532 case 0x1a: /* DVD+RW */
1533 case 0x13: /* DVD-RW */
1534 case 0x12: /* DVD-RAM */
1537 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd
->mmc3_profile
);
1542 * for disc type 0xff we should probably reserve a new track.
1543 * but i'm not sure, should we leave this to user apps? probably.
1545 if (di
->disc_type
== 0xff) {
1546 printk("pktcdvd: Unknown disc. No track?\n");
1550 if (di
->disc_type
!= 0x20 && di
->disc_type
!= 0) {
1551 printk("pktcdvd: Wrong disc type (%x)\n", di
->disc_type
);
1555 if (di
->erasable
== 0) {
1556 printk("pktcdvd: Disc not erasable\n");
1560 if (di
->border_status
== PACKET_SESSION_RESERVED
) {
1561 printk("pktcdvd: Can't write to last track (reserved)\n");
1568 static int pkt_probe_settings(struct pktcdvd_device
*pd
)
1570 struct packet_command cgc
;
1571 unsigned char buf
[12];
1572 disc_information di
;
1573 track_information ti
;
1576 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1577 cgc
.cmd
[0] = GPCMD_GET_CONFIGURATION
;
1579 ret
= pkt_generic_packet(pd
, &cgc
);
1580 pd
->mmc3_profile
= ret
? 0xffff : buf
[6] << 8 | buf
[7];
1582 memset(&di
, 0, sizeof(disc_information
));
1583 memset(&ti
, 0, sizeof(track_information
));
1585 if ((ret
= pkt_get_disc_info(pd
, &di
))) {
1586 printk("failed get_disc\n");
1590 if (!pkt_writable_disc(pd
, &di
))
1593 pd
->type
= di
.erasable
? PACKET_CDRW
: PACKET_CDR
;
1595 track
= 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1596 if ((ret
= pkt_get_track_info(pd
, track
, 1, &ti
))) {
1597 printk("pktcdvd: failed get_track\n");
1601 if (!pkt_writable_track(pd
, &ti
)) {
1602 printk("pktcdvd: can't write to this track\n");
1607 * we keep packet size in 512 byte units, makes it easier to
1608 * deal with request calculations.
1610 pd
->settings
.size
= be32_to_cpu(ti
.fixed_packet_size
) << 2;
1611 if (pd
->settings
.size
== 0) {
1612 printk("pktcdvd: detected zero packet size!\n");
1615 if (pd
->settings
.size
> PACKET_MAX_SECTORS
) {
1616 printk("pktcdvd: packet size is too big\n");
1619 pd
->settings
.fp
= ti
.fp
;
1620 pd
->offset
= (be32_to_cpu(ti
.track_start
) << 2) & (pd
->settings
.size
- 1);
1623 pd
->nwa
= be32_to_cpu(ti
.next_writable
);
1624 set_bit(PACKET_NWA_VALID
, &pd
->flags
);
1628 * in theory we could use lra on -RW media as well and just zero
1629 * blocks that haven't been written yet, but in practice that
1630 * is just a no-go. we'll use that for -R, naturally.
1633 pd
->lra
= be32_to_cpu(ti
.last_rec_address
);
1634 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1636 pd
->lra
= 0xffffffff;
1637 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1643 pd
->settings
.link_loss
= 7;
1644 pd
->settings
.write_type
= 0; /* packet */
1645 pd
->settings
.track_mode
= ti
.track_mode
;
1648 * mode1 or mode2 disc
1650 switch (ti
.data_mode
) {
1652 pd
->settings
.block_mode
= PACKET_BLOCK_MODE1
;
1655 pd
->settings
.block_mode
= PACKET_BLOCK_MODE2
;
1658 printk("pktcdvd: unknown data mode\n");
1665 * enable/disable write caching on drive
1667 static int pkt_write_caching(struct pktcdvd_device
*pd
, int set
)
1669 struct packet_command cgc
;
1670 struct request_sense sense
;
1671 unsigned char buf
[64];
1674 memset(buf
, 0, sizeof(buf
));
1675 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1677 cgc
.buflen
= pd
->mode_offset
+ 12;
1680 * caching mode page might not be there, so quiet this command
1684 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WCACHING_PAGE
, 0)))
1687 buf
[pd
->mode_offset
+ 10] |= (!!set
<< 2);
1689 cgc
.buflen
= cgc
.cmd
[8] = 2 + ((buf
[0] << 8) | (buf
[1] & 0xff));
1690 ret
= pkt_mode_select(pd
, &cgc
);
1692 printk("pktcdvd: write caching control failed\n");
1693 pkt_dump_sense(&cgc
);
1694 } else if (!ret
&& set
)
1695 printk("pktcdvd: enabled write caching on %s\n", pd
->name
);
1699 static int pkt_lock_door(struct pktcdvd_device
*pd
, int lockflag
)
1701 struct packet_command cgc
;
1703 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1704 cgc
.cmd
[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL
;
1705 cgc
.cmd
[4] = lockflag
? 1 : 0;
1706 return pkt_generic_packet(pd
, &cgc
);
1710 * Returns drive maximum write speed
1712 static int pkt_get_max_speed(struct pktcdvd_device
*pd
, unsigned *write_speed
)
1714 struct packet_command cgc
;
1715 struct request_sense sense
;
1716 unsigned char buf
[256+18];
1717 unsigned char *cap_buf
;
1720 memset(buf
, 0, sizeof(buf
));
1721 cap_buf
= &buf
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1722 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_UNKNOWN
);
1725 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1727 cgc
.buflen
= pd
->mode_offset
+ cap_buf
[1] + 2 +
1728 sizeof(struct mode_page_header
);
1729 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1731 pkt_dump_sense(&cgc
);
1736 offset
= 20; /* Obsoleted field, used by older drives */
1737 if (cap_buf
[1] >= 28)
1738 offset
= 28; /* Current write speed selected */
1739 if (cap_buf
[1] >= 30) {
1740 /* If the drive reports at least one "Logical Unit Write
1741 * Speed Performance Descriptor Block", use the information
1742 * in the first block. (contains the highest speed)
1744 int num_spdb
= (cap_buf
[30] << 8) + cap_buf
[31];
1749 *write_speed
= (cap_buf
[offset
] << 8) | cap_buf
[offset
+ 1];
1753 /* These tables from cdrecord - I don't have orange book */
1754 /* standard speed CD-RW (1-4x) */
1755 static char clv_to_speed
[16] = {
1756 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1757 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1759 /* high speed CD-RW (-10x) */
1760 static char hs_clv_to_speed
[16] = {
1761 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1762 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1764 /* ultra high speed CD-RW */
1765 static char us_clv_to_speed
[16] = {
1766 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1767 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1771 * reads the maximum media speed from ATIP
1773 static int pkt_media_speed(struct pktcdvd_device
*pd
, unsigned *speed
)
1775 struct packet_command cgc
;
1776 struct request_sense sense
;
1777 unsigned char buf
[64];
1778 unsigned int size
, st
, sp
;
1781 init_cdrom_command(&cgc
, buf
, 2, CGC_DATA_READ
);
1783 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1785 cgc
.cmd
[2] = 4; /* READ ATIP */
1787 ret
= pkt_generic_packet(pd
, &cgc
);
1789 pkt_dump_sense(&cgc
);
1792 size
= ((unsigned int) buf
[0]<<8) + buf
[1] + 2;
1793 if (size
> sizeof(buf
))
1796 init_cdrom_command(&cgc
, buf
, size
, CGC_DATA_READ
);
1798 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1802 ret
= pkt_generic_packet(pd
, &cgc
);
1804 pkt_dump_sense(&cgc
);
1808 if (!buf
[6] & 0x40) {
1809 printk("pktcdvd: Disc type is not CD-RW\n");
1812 if (!buf
[6] & 0x4) {
1813 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1817 st
= (buf
[6] >> 3) & 0x7; /* disc sub-type */
1819 sp
= buf
[16] & 0xf; /* max speed from ATIP A1 field */
1821 /* Info from cdrecord */
1823 case 0: /* standard speed */
1824 *speed
= clv_to_speed
[sp
];
1826 case 1: /* high speed */
1827 *speed
= hs_clv_to_speed
[sp
];
1829 case 2: /* ultra high speed */
1830 *speed
= us_clv_to_speed
[sp
];
1833 printk("pktcdvd: Unknown disc sub-type %d\n",st
);
1837 printk("pktcdvd: Max. media speed: %d\n",*speed
);
1840 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp
,st
);
1845 static int pkt_perform_opc(struct pktcdvd_device
*pd
)
1847 struct packet_command cgc
;
1848 struct request_sense sense
;
1851 VPRINTK("pktcdvd: Performing OPC\n");
1853 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1855 cgc
.timeout
= 60*HZ
;
1856 cgc
.cmd
[0] = GPCMD_SEND_OPC
;
1858 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1859 pkt_dump_sense(&cgc
);
1863 static int pkt_open_write(struct pktcdvd_device
*pd
)
1866 unsigned int write_speed
, media_write_speed
, read_speed
;
1868 if ((ret
= pkt_probe_settings(pd
))) {
1869 VPRINTK("pktcdvd: %s failed probe\n", pd
->name
);
1873 if ((ret
= pkt_set_write_settings(pd
))) {
1874 DPRINTK("pktcdvd: %s failed saving write settings\n", pd
->name
);
1878 pkt_write_caching(pd
, USE_WCACHING
);
1880 if ((ret
= pkt_get_max_speed(pd
, &write_speed
)))
1881 write_speed
= 16 * 177;
1882 switch (pd
->mmc3_profile
) {
1883 case 0x13: /* DVD-RW */
1884 case 0x1a: /* DVD+RW */
1885 case 0x12: /* DVD-RAM */
1886 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed
);
1889 if ((ret
= pkt_media_speed(pd
, &media_write_speed
)))
1890 media_write_speed
= 16;
1891 write_speed
= min(write_speed
, media_write_speed
* 177);
1892 DPRINTK("pktcdvd: write speed %ux\n", write_speed
/ 176);
1895 read_speed
= write_speed
;
1897 if ((ret
= pkt_set_speed(pd
, write_speed
, read_speed
))) {
1898 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd
->name
);
1901 pd
->write_speed
= write_speed
;
1902 pd
->read_speed
= read_speed
;
1904 if ((ret
= pkt_perform_opc(pd
))) {
1905 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd
->name
);
1912 * called at open time.
1914 static int pkt_open_dev(struct pktcdvd_device
*pd
, int write
)
1921 * We need to re-open the cdrom device without O_NONBLOCK to be able
1922 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1923 * so bdget() can't fail.
1925 bdget(pd
->bdev
->bd_dev
);
1926 if ((ret
= blkdev_get(pd
->bdev
, FMODE_READ
, O_RDONLY
)))
1929 if ((ret
= bd_claim(pd
->bdev
, pd
)))
1932 if ((ret
= pkt_get_last_written(pd
, &lba
))) {
1933 printk("pktcdvd: pkt_get_last_written failed\n");
1937 set_capacity(pd
->disk
, lba
<< 2);
1938 set_capacity(pd
->bdev
->bd_disk
, lba
<< 2);
1939 bd_set_size(pd
->bdev
, (loff_t
)lba
<< 11);
1941 q
= bdev_get_queue(pd
->bdev
);
1943 if ((ret
= pkt_open_write(pd
)))
1946 * Some CDRW drives can not handle writes larger than one packet,
1947 * even if the size is a multiple of the packet size.
1949 spin_lock_irq(q
->queue_lock
);
1950 blk_queue_max_sectors(q
, pd
->settings
.size
);
1951 spin_unlock_irq(q
->queue_lock
);
1952 set_bit(PACKET_WRITABLE
, &pd
->flags
);
1954 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
1955 clear_bit(PACKET_WRITABLE
, &pd
->flags
);
1958 if ((ret
= pkt_set_segment_merging(pd
, q
)))
1962 if (!pkt_grow_pktlist(pd
, CONFIG_CDROM_PKTCDVD_BUFFERS
)) {
1963 printk("pktcdvd: not enough memory for buffers\n");
1967 printk("pktcdvd: %lukB available on disc\n", lba
<< 1);
1973 bd_release(pd
->bdev
);
1975 blkdev_put(pd
->bdev
);
1981 * called when the device is closed. makes sure that the device flushes
1982 * the internal cache before we close.
1984 static void pkt_release_dev(struct pktcdvd_device
*pd
, int flush
)
1986 if (flush
&& pkt_flush_cache(pd
))
1987 DPRINTK("pktcdvd: %s not flushing cache\n", pd
->name
);
1989 pkt_lock_door(pd
, 0);
1991 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
1992 bd_release(pd
->bdev
);
1993 blkdev_put(pd
->bdev
);
1995 pkt_shrink_pktlist(pd
);
1998 static struct pktcdvd_device
*pkt_find_dev_from_minor(int dev_minor
)
2000 if (dev_minor
>= MAX_WRITERS
)
2002 return pkt_devs
[dev_minor
];
2005 static int pkt_open(struct inode
*inode
, struct file
*file
)
2007 struct pktcdvd_device
*pd
= NULL
;
2010 VPRINTK("pktcdvd: entering open\n");
2012 mutex_lock(&ctl_mutex
);
2013 pd
= pkt_find_dev_from_minor(iminor(inode
));
2018 BUG_ON(pd
->refcnt
< 0);
2021 if (pd
->refcnt
> 1) {
2022 if ((file
->f_mode
& FMODE_WRITE
) &&
2023 !test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2028 ret
= pkt_open_dev(pd
, file
->f_mode
& FMODE_WRITE
);
2032 * needed here as well, since ext2 (among others) may change
2033 * the blocksize at mount time
2035 set_blocksize(inode
->i_bdev
, CD_FRAMESIZE
);
2038 mutex_unlock(&ctl_mutex
);
2044 VPRINTK("pktcdvd: failed open (%d)\n", ret
);
2045 mutex_unlock(&ctl_mutex
);
2049 static int pkt_close(struct inode
*inode
, struct file
*file
)
2051 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2054 mutex_lock(&ctl_mutex
);
2056 BUG_ON(pd
->refcnt
< 0);
2057 if (pd
->refcnt
== 0) {
2058 int flush
= test_bit(PACKET_WRITABLE
, &pd
->flags
);
2059 pkt_release_dev(pd
, flush
);
2061 mutex_unlock(&ctl_mutex
);
2066 static int pkt_end_io_read_cloned(struct bio
*bio
, unsigned int bytes_done
, int err
)
2068 struct packet_stacked_data
*psd
= bio
->bi_private
;
2069 struct pktcdvd_device
*pd
= psd
->pd
;
2075 bio_endio(psd
->bio
, psd
->bio
->bi_size
, err
);
2076 mempool_free(psd
, psd_pool
);
2077 pkt_bio_finished(pd
);
2081 static int pkt_make_request(request_queue_t
*q
, struct bio
*bio
)
2083 struct pktcdvd_device
*pd
;
2084 char b
[BDEVNAME_SIZE
];
2086 struct packet_data
*pkt
;
2087 int was_empty
, blocked_bio
;
2088 struct pkt_rb_node
*node
;
2092 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio
->bi_bdev
, b
));
2097 * Clone READ bios so we can have our own bi_end_io callback.
2099 if (bio_data_dir(bio
) == READ
) {
2100 struct bio
*cloned_bio
= bio_clone(bio
, GFP_NOIO
);
2101 struct packet_stacked_data
*psd
= mempool_alloc(psd_pool
, GFP_NOIO
);
2105 cloned_bio
->bi_bdev
= pd
->bdev
;
2106 cloned_bio
->bi_private
= psd
;
2107 cloned_bio
->bi_end_io
= pkt_end_io_read_cloned
;
2108 pd
->stats
.secs_r
+= bio
->bi_size
>> 9;
2109 pkt_queue_bio(pd
, cloned_bio
);
2113 if (!test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2114 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2115 pd
->name
, (unsigned long long)bio
->bi_sector
);
2119 if (!bio
->bi_size
|| (bio
->bi_size
% CD_FRAMESIZE
)) {
2120 printk("pktcdvd: wrong bio size\n");
2124 blk_queue_bounce(q
, &bio
);
2126 zone
= ZONE(bio
->bi_sector
, pd
);
2127 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2128 (unsigned long long)bio
->bi_sector
,
2129 (unsigned long long)(bio
->bi_sector
+ bio_sectors(bio
)));
2131 /* Check if we have to split the bio */
2133 struct bio_pair
*bp
;
2137 last_zone
= ZONE(bio
->bi_sector
+ bio_sectors(bio
) - 1, pd
);
2138 if (last_zone
!= zone
) {
2139 BUG_ON(last_zone
!= zone
+ pd
->settings
.size
);
2140 first_sectors
= last_zone
- bio
->bi_sector
;
2141 bp
= bio_split(bio
, bio_split_pool
, first_sectors
);
2143 pkt_make_request(q
, &bp
->bio1
);
2144 pkt_make_request(q
, &bp
->bio2
);
2145 bio_pair_release(bp
);
2151 * If we find a matching packet in state WAITING or READ_WAIT, we can
2152 * just append this bio to that packet.
2154 spin_lock(&pd
->cdrw
.active_list_lock
);
2156 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
2157 if (pkt
->sector
== zone
) {
2158 spin_lock(&pkt
->lock
);
2159 if ((pkt
->state
== PACKET_WAITING_STATE
) ||
2160 (pkt
->state
== PACKET_READ_WAIT_STATE
)) {
2161 pkt_add_list_last(bio
, &pkt
->orig_bios
,
2162 &pkt
->orig_bios_tail
);
2163 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
2164 if ((pkt
->write_size
>= pkt
->frames
) &&
2165 (pkt
->state
== PACKET_WAITING_STATE
)) {
2166 atomic_inc(&pkt
->run_sm
);
2167 wake_up(&pd
->wqueue
);
2169 spin_unlock(&pkt
->lock
);
2170 spin_unlock(&pd
->cdrw
.active_list_lock
);
2175 spin_unlock(&pkt
->lock
);
2178 spin_unlock(&pd
->cdrw
.active_list_lock
);
2181 * No matching packet found. Store the bio in the work queue.
2183 node
= mempool_alloc(pd
->rb_pool
, GFP_NOIO
);
2185 spin_lock(&pd
->lock
);
2186 BUG_ON(pd
->bio_queue_size
< 0);
2187 was_empty
= (pd
->bio_queue_size
== 0);
2188 pkt_rbtree_insert(pd
, node
);
2189 spin_unlock(&pd
->lock
);
2192 * Wake up the worker thread.
2194 atomic_set(&pd
->scan_queue
, 1);
2196 /* This wake_up is required for correct operation */
2197 wake_up(&pd
->wqueue
);
2198 } else if (!list_empty(&pd
->cdrw
.pkt_free_list
) && !blocked_bio
) {
2200 * This wake up is not required for correct operation,
2201 * but improves performance in some cases.
2203 wake_up(&pd
->wqueue
);
2207 bio_io_error(bio
, bio
->bi_size
);
2213 static int pkt_merge_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*bvec
)
2215 struct pktcdvd_device
*pd
= q
->queuedata
;
2216 sector_t zone
= ZONE(bio
->bi_sector
, pd
);
2217 int used
= ((bio
->bi_sector
- zone
) << 9) + bio
->bi_size
;
2218 int remaining
= (pd
->settings
.size
<< 9) - used
;
2222 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2223 * boundary, pkt_make_request() will split the bio.
2225 remaining2
= PAGE_SIZE
- bio
->bi_size
;
2226 remaining
= max(remaining
, remaining2
);
2228 BUG_ON(remaining
< 0);
2232 static void pkt_init_queue(struct pktcdvd_device
*pd
)
2234 request_queue_t
*q
= pd
->disk
->queue
;
2236 blk_queue_make_request(q
, pkt_make_request
);
2237 blk_queue_hardsect_size(q
, CD_FRAMESIZE
);
2238 blk_queue_max_sectors(q
, PACKET_MAX_SECTORS
);
2239 blk_queue_merge_bvec(q
, pkt_merge_bvec
);
2243 static int pkt_seq_show(struct seq_file
*m
, void *p
)
2245 struct pktcdvd_device
*pd
= m
->private;
2247 char bdev_buf
[BDEVNAME_SIZE
];
2248 int states
[PACKET_NUM_STATES
];
2250 seq_printf(m
, "Writer %s mapped to %s:\n", pd
->name
,
2251 bdevname(pd
->bdev
, bdev_buf
));
2253 seq_printf(m
, "\nSettings:\n");
2254 seq_printf(m
, "\tpacket size:\t\t%dkB\n", pd
->settings
.size
/ 2);
2256 if (pd
->settings
.write_type
== 0)
2260 seq_printf(m
, "\twrite type:\t\t%s\n", msg
);
2262 seq_printf(m
, "\tpacket type:\t\t%s\n", pd
->settings
.fp
? "Fixed" : "Variable");
2263 seq_printf(m
, "\tlink loss:\t\t%d\n", pd
->settings
.link_loss
);
2265 seq_printf(m
, "\ttrack mode:\t\t%d\n", pd
->settings
.track_mode
);
2267 if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE1
)
2269 else if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE2
)
2273 seq_printf(m
, "\tblock mode:\t\t%s\n", msg
);
2275 seq_printf(m
, "\nStatistics:\n");
2276 seq_printf(m
, "\tpackets started:\t%lu\n", pd
->stats
.pkt_started
);
2277 seq_printf(m
, "\tpackets ended:\t\t%lu\n", pd
->stats
.pkt_ended
);
2278 seq_printf(m
, "\twritten:\t\t%lukB\n", pd
->stats
.secs_w
>> 1);
2279 seq_printf(m
, "\tread gather:\t\t%lukB\n", pd
->stats
.secs_rg
>> 1);
2280 seq_printf(m
, "\tread:\t\t\t%lukB\n", pd
->stats
.secs_r
>> 1);
2282 seq_printf(m
, "\nMisc:\n");
2283 seq_printf(m
, "\treference count:\t%d\n", pd
->refcnt
);
2284 seq_printf(m
, "\tflags:\t\t\t0x%lx\n", pd
->flags
);
2285 seq_printf(m
, "\tread speed:\t\t%ukB/s\n", pd
->read_speed
);
2286 seq_printf(m
, "\twrite speed:\t\t%ukB/s\n", pd
->write_speed
);
2287 seq_printf(m
, "\tstart offset:\t\t%lu\n", pd
->offset
);
2288 seq_printf(m
, "\tmode page offset:\t%u\n", pd
->mode_offset
);
2290 seq_printf(m
, "\nQueue state:\n");
2291 seq_printf(m
, "\tbios queued:\t\t%d\n", pd
->bio_queue_size
);
2292 seq_printf(m
, "\tbios pending:\t\t%d\n", atomic_read(&pd
->cdrw
.pending_bios
));
2293 seq_printf(m
, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd
->current_sector
);
2295 pkt_count_states(pd
, states
);
2296 seq_printf(m
, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2297 states
[0], states
[1], states
[2], states
[3], states
[4], states
[5]);
2302 static int pkt_seq_open(struct inode
*inode
, struct file
*file
)
2304 return single_open(file
, pkt_seq_show
, PDE(inode
)->data
);
2307 static struct file_operations pkt_proc_fops
= {
2308 .open
= pkt_seq_open
,
2310 .llseek
= seq_lseek
,
2311 .release
= single_release
2314 static int pkt_new_dev(struct pktcdvd_device
*pd
, dev_t dev
)
2318 char b
[BDEVNAME_SIZE
];
2319 struct proc_dir_entry
*proc
;
2320 struct block_device
*bdev
;
2322 if (pd
->pkt_dev
== dev
) {
2323 printk("pktcdvd: Recursive setup not allowed\n");
2326 for (i
= 0; i
< MAX_WRITERS
; i
++) {
2327 struct pktcdvd_device
*pd2
= pkt_devs
[i
];
2330 if (pd2
->bdev
->bd_dev
== dev
) {
2331 printk("pktcdvd: %s already setup\n", bdevname(pd2
->bdev
, b
));
2334 if (pd2
->pkt_dev
== dev
) {
2335 printk("pktcdvd: Can't chain pktcdvd devices\n");
2343 ret
= blkdev_get(bdev
, FMODE_READ
, O_RDONLY
| O_NONBLOCK
);
2347 /* This is safe, since we have a reference from open(). */
2348 __module_get(THIS_MODULE
);
2351 set_blocksize(bdev
, CD_FRAMESIZE
);
2355 atomic_set(&pd
->cdrw
.pending_bios
, 0);
2356 pd
->cdrw
.thread
= kthread_run(kcdrwd
, pd
, "%s", pd
->name
);
2357 if (IS_ERR(pd
->cdrw
.thread
)) {
2358 printk("pktcdvd: can't start kernel thread\n");
2363 proc
= create_proc_entry(pd
->name
, 0, pkt_proc
);
2366 proc
->proc_fops
= &pkt_proc_fops
;
2368 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd
->name
, bdevname(bdev
, b
));
2373 /* This is safe: open() is still holding a reference. */
2374 module_put(THIS_MODULE
);
2378 static int pkt_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2380 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2382 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd
, imajor(inode
), iminor(inode
));
2386 * forward selected CDROM ioctls to CD-ROM, for UDF
2388 case CDROMMULTISESSION
:
2389 case CDROMREADTOCENTRY
:
2390 case CDROM_LAST_WRITTEN
:
2391 case CDROM_SEND_PACKET
:
2392 case SCSI_IOCTL_SEND_COMMAND
:
2393 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2397 * The door gets locked when the device is opened, so we
2398 * have to unlock it or else the eject command fails.
2400 if (pd
->refcnt
== 1)
2401 pkt_lock_door(pd
, 0);
2402 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2405 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd
->name
, cmd
);
2412 static int pkt_media_changed(struct gendisk
*disk
)
2414 struct pktcdvd_device
*pd
= disk
->private_data
;
2415 struct gendisk
*attached_disk
;
2421 attached_disk
= pd
->bdev
->bd_disk
;
2424 return attached_disk
->fops
->media_changed(attached_disk
);
2427 static struct block_device_operations pktcdvd_ops
= {
2428 .owner
= THIS_MODULE
,
2430 .release
= pkt_close
,
2432 .media_changed
= pkt_media_changed
,
2436 * Set up mapping from pktcdvd device to CD-ROM device.
2438 static int pkt_setup_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2442 struct pktcdvd_device
*pd
;
2443 struct gendisk
*disk
;
2444 dev_t dev
= new_decode_dev(ctrl_cmd
->dev
);
2446 for (idx
= 0; idx
< MAX_WRITERS
; idx
++)
2449 if (idx
== MAX_WRITERS
) {
2450 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS
);
2454 pd
= kzalloc(sizeof(struct pktcdvd_device
), GFP_KERNEL
);
2458 pd
->rb_pool
= mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE
,
2459 sizeof(struct pkt_rb_node
));
2463 disk
= alloc_disk(1);
2468 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
2469 INIT_LIST_HEAD(&pd
->cdrw
.pkt_active_list
);
2470 spin_lock_init(&pd
->cdrw
.active_list_lock
);
2472 spin_lock_init(&pd
->lock
);
2473 spin_lock_init(&pd
->iosched
.lock
);
2474 sprintf(pd
->name
, "pktcdvd%d", idx
);
2475 init_waitqueue_head(&pd
->wqueue
);
2476 pd
->bio_queue
= RB_ROOT
;
2478 disk
->major
= pkt_major
;
2479 disk
->first_minor
= idx
;
2480 disk
->fops
= &pktcdvd_ops
;
2481 disk
->flags
= GENHD_FL_REMOVABLE
;
2482 sprintf(disk
->disk_name
, "pktcdvd%d", idx
);
2483 disk
->private_data
= pd
;
2484 disk
->queue
= blk_alloc_queue(GFP_KERNEL
);
2488 pd
->pkt_dev
= MKDEV(disk
->major
, disk
->first_minor
);
2489 ret
= pkt_new_dev(pd
, dev
);
2495 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2499 blk_cleanup_queue(disk
->queue
);
2504 mempool_destroy(pd
->rb_pool
);
2510 * Tear down mapping from pktcdvd device to CD-ROM device.
2512 static int pkt_remove_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2514 struct pktcdvd_device
*pd
;
2516 dev_t pkt_dev
= new_decode_dev(ctrl_cmd
->pkt_dev
);
2518 for (idx
= 0; idx
< MAX_WRITERS
; idx
++) {
2520 if (pd
&& (pd
->pkt_dev
== pkt_dev
))
2523 if (idx
== MAX_WRITERS
) {
2524 DPRINTK("pktcdvd: dev not setup\n");
2531 if (!IS_ERR(pd
->cdrw
.thread
))
2532 kthread_stop(pd
->cdrw
.thread
);
2534 blkdev_put(pd
->bdev
);
2536 remove_proc_entry(pd
->name
, pkt_proc
);
2537 DPRINTK("pktcdvd: writer %s unmapped\n", pd
->name
);
2539 del_gendisk(pd
->disk
);
2540 blk_cleanup_queue(pd
->disk
->queue
);
2543 pkt_devs
[idx
] = NULL
;
2544 mempool_destroy(pd
->rb_pool
);
2547 /* This is safe: open() is still holding a reference. */
2548 module_put(THIS_MODULE
);
2552 static void pkt_get_status(struct pkt_ctrl_command
*ctrl_cmd
)
2554 struct pktcdvd_device
*pd
= pkt_find_dev_from_minor(ctrl_cmd
->dev_index
);
2556 ctrl_cmd
->dev
= new_encode_dev(pd
->bdev
->bd_dev
);
2557 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2560 ctrl_cmd
->pkt_dev
= 0;
2562 ctrl_cmd
->num_devices
= MAX_WRITERS
;
2565 static int pkt_ctl_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2567 void __user
*argp
= (void __user
*)arg
;
2568 struct pkt_ctrl_command ctrl_cmd
;
2571 if (cmd
!= PACKET_CTRL_CMD
)
2574 if (copy_from_user(&ctrl_cmd
, argp
, sizeof(struct pkt_ctrl_command
)))
2577 switch (ctrl_cmd
.command
) {
2578 case PKT_CTRL_CMD_SETUP
:
2579 if (!capable(CAP_SYS_ADMIN
))
2581 mutex_lock(&ctl_mutex
);
2582 ret
= pkt_setup_dev(&ctrl_cmd
);
2583 mutex_unlock(&ctl_mutex
);
2585 case PKT_CTRL_CMD_TEARDOWN
:
2586 if (!capable(CAP_SYS_ADMIN
))
2588 mutex_lock(&ctl_mutex
);
2589 ret
= pkt_remove_dev(&ctrl_cmd
);
2590 mutex_unlock(&ctl_mutex
);
2592 case PKT_CTRL_CMD_STATUS
:
2593 mutex_lock(&ctl_mutex
);
2594 pkt_get_status(&ctrl_cmd
);
2595 mutex_unlock(&ctl_mutex
);
2601 if (copy_to_user(argp
, &ctrl_cmd
, sizeof(struct pkt_ctrl_command
)))
2607 static struct file_operations pkt_ctl_fops
= {
2608 .ioctl
= pkt_ctl_ioctl
,
2609 .owner
= THIS_MODULE
,
2612 static struct miscdevice pkt_misc
= {
2613 .minor
= MISC_DYNAMIC_MINOR
,
2615 .devfs_name
= "pktcdvd/control",
2616 .fops
= &pkt_ctl_fops
2619 static int __init
pkt_init(void)
2623 psd_pool
= mempool_create_kmalloc_pool(PSD_POOL_SIZE
,
2624 sizeof(struct packet_stacked_data
));
2628 ret
= register_blkdev(pkt_major
, "pktcdvd");
2630 printk("pktcdvd: Unable to register block device\n");
2636 ret
= misc_register(&pkt_misc
);
2638 printk("pktcdvd: Unable to register misc device\n");
2642 mutex_init(&ctl_mutex
);
2644 pkt_proc
= proc_mkdir("pktcdvd", proc_root_driver
);
2649 unregister_blkdev(pkt_major
, "pktcdvd");
2651 mempool_destroy(psd_pool
);
2655 static void __exit
pkt_exit(void)
2657 remove_proc_entry("pktcdvd", proc_root_driver
);
2658 misc_deregister(&pkt_misc
);
2659 unregister_blkdev(pkt_major
, "pktcdvd");
2660 mempool_destroy(psd_pool
);
2663 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2664 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2665 MODULE_LICENSE("GPL");
2667 module_init(pkt_init
);
2668 module_exit(pkt_exit
);