2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/interrupt.h>
26 #include <linux/gfp.h>
27 #include <linux/mii.h>
28 #include <linux/mutex.h>
30 #include <asm/div64.h>
32 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
33 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
34 #define IPG_RESET_MASK \
35 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
36 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
39 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
40 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
41 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
43 #define ipg_r32(reg) ioread32(ioaddr + (reg))
44 #define ipg_r16(reg) ioread16(ioaddr + (reg))
45 #define ipg_r8(reg) ioread8(ioaddr + (reg))
52 #define DRV_NAME "ipg"
54 MODULE_AUTHOR("IC Plus Corp. 2003");
55 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
56 MODULE_LICENSE("GPL");
61 #define IPG_MAX_RXFRAME_SIZE 0x0600
62 #define IPG_RXFRAG_SIZE 0x0600
63 #define IPG_RXSUPPORT_SIZE 0x0600
64 #define IPG_IS_JUMBO false
67 * Variable record -- index by leading revision/length
68 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
70 static unsigned short DefaultPhyParam
[] = {
71 /* 11/12/03 IP1000A v1-3 rev=0x40 */
72 /*--------------------------------------------------------------------------
73 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
74 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
75 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
76 --------------------------------------------------------------------------*/
77 /* 12/17/03 IP1000A v1-4 rev=0x40 */
78 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
80 30, 0x005e, 9, 0x0700,
81 /* 01/09/04 IP1000A v1-5 rev=0x41 */
82 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
84 30, 0x005e, 9, 0x0700,
88 static const char *ipg_brand_name
[] = {
89 "IC PLUS IP1000 1000/100/10 based NIC",
90 "Sundance Technology ST2021 based NIC",
91 "Tamarack Microelectronics TC9020/9021 based NIC",
95 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl
) = {
96 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
97 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
98 { PCI_VDEVICE(DLINK
, 0x9021), 2 },
99 { PCI_VDEVICE(DLINK
, 0x4020), 3 },
103 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
105 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
107 struct ipg_nic_private
*sp
= netdev_priv(dev
);
112 static void ipg_dump_rfdlist(struct net_device
*dev
)
114 struct ipg_nic_private
*sp
= netdev_priv(dev
);
115 void __iomem
*ioaddr
= sp
->ioaddr
;
119 IPG_DEBUG_MSG("_dump_rfdlist\n");
121 printk(KERN_INFO
"rx_current = %2.2x\n", sp
->rx_current
);
122 printk(KERN_INFO
"rx_dirty = %2.2x\n", sp
->rx_dirty
);
123 printk(KERN_INFO
"RFDList start address = %16.16lx\n",
124 (unsigned long) sp
->rxd_map
);
125 printk(KERN_INFO
"RFDListPtr register = %8.8x%8.8x\n",
126 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
128 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
129 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
130 printk(KERN_INFO
"%2.2x %4.4x RFDNextPtr = %16.16lx\n", i
,
131 offset
, (unsigned long) sp
->rxd
[i
].next_desc
);
132 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
133 printk(KERN_INFO
"%2.2x %4.4x RFS = %16.16lx\n", i
,
134 offset
, (unsigned long) sp
->rxd
[i
].rfs
);
135 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
136 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
137 offset
, (unsigned long) sp
->rxd
[i
].frag_info
);
141 static void ipg_dump_tfdlist(struct net_device
*dev
)
143 struct ipg_nic_private
*sp
= netdev_priv(dev
);
144 void __iomem
*ioaddr
= sp
->ioaddr
;
148 IPG_DEBUG_MSG("_dump_tfdlist\n");
150 printk(KERN_INFO
"tx_current = %2.2x\n", sp
->tx_current
);
151 printk(KERN_INFO
"tx_dirty = %2.2x\n", sp
->tx_dirty
);
152 printk(KERN_INFO
"TFDList start address = %16.16lx\n",
153 (unsigned long) sp
->txd_map
);
154 printk(KERN_INFO
"TFDListPtr register = %8.8x%8.8x\n",
155 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
157 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
158 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
159 printk(KERN_INFO
"%2.2x %4.4x TFDNextPtr = %16.16lx\n", i
,
160 offset
, (unsigned long) sp
->txd
[i
].next_desc
);
162 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
163 printk(KERN_INFO
"%2.2x %4.4x TFC = %16.16lx\n", i
,
164 offset
, (unsigned long) sp
->txd
[i
].tfc
);
165 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
166 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
167 offset
, (unsigned long) sp
->txd
[i
].frag_info
);
172 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
174 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
175 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
178 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
180 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
181 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
184 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
186 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
188 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
191 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
193 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
194 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
197 static u16
read_phy_bit(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
201 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
203 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
205 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
211 * Read a register from the Physical Layer device located
212 * on the IPG NIC, using the IPG PHYCTRL register.
214 static int mdio_read(struct net_device
*dev
, int phy_id
, int phy_reg
)
216 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
218 * The GMII mangement frame structure for a read is as follows:
220 * |Preamble|st|op|phyad|regad|ta| data |idle|
221 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
223 * <32 1s> = 32 consecutive logic 1 values
224 * A = bit of Physical Layer device address (MSB first)
225 * R = bit of register address (MSB first)
226 * z = High impedance state
227 * D = bit of read data (MSB first)
229 * Transmission order is 'Preamble' field first, bits transmitted
230 * left to right (first to last).
236 { GMII_PREAMBLE
, 32 }, /* Preamble */
237 { GMII_ST
, 2 }, /* ST */
238 { GMII_READ
, 2 }, /* OP */
239 { phy_id
, 5 }, /* PHYAD */
240 { phy_reg
, 5 }, /* REGAD */
241 { 0x0000, 2 }, /* TA */
242 { 0x0000, 16 }, /* DATA */
243 { 0x0000, 1 } /* IDLE */
248 polarity
= ipg_r8(PHY_CTRL
);
249 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
251 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
252 for (j
= 0; j
< 5; j
++) {
253 for (i
= 0; i
< p
[j
].len
; i
++) {
254 /* For each variable length field, the MSB must be
255 * transmitted first. Rotate through the field bits,
256 * starting with the MSB, and move each bit into the
257 * the 1st (2^1) bit position (this is the bit position
258 * corresponding to the MgmtData bit of the PhyCtrl
259 * register for the IPG).
263 * First write a '0' to bit 1 of the PhyCtrl
264 * register, then write a '1' to bit 1 of the
267 * To do this, right shift the MSB of ST by the value:
268 * [field length - 1 - #ST bits already written]
269 * then left shift this result by 1.
271 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
272 data
&= IPG_PC_MGMTDATA
;
273 data
|= polarity
| IPG_PC_MGMTDIR
;
275 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
279 send_three_state(ioaddr
, polarity
);
281 read_phy_bit(ioaddr
, polarity
);
284 * For a read cycle, the bits for the next two fields (TA and
285 * DATA) are driven by the PHY (the IPG reads these bits).
287 for (i
= 0; i
< p
[6].len
; i
++) {
289 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
292 send_three_state(ioaddr
, polarity
);
293 send_three_state(ioaddr
, polarity
);
294 send_three_state(ioaddr
, polarity
);
295 send_end(ioaddr
, polarity
);
297 /* Return the value of the DATA field. */
302 * Write to a register from the Physical Layer device located
303 * on the IPG NIC, using the IPG PHYCTRL register.
305 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
307 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
309 * The GMII mangement frame structure for a read is as follows:
311 * |Preamble|st|op|phyad|regad|ta| data |idle|
312 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
314 * <32 1s> = 32 consecutive logic 1 values
315 * A = bit of Physical Layer device address (MSB first)
316 * R = bit of register address (MSB first)
317 * z = High impedance state
318 * D = bit of write data (MSB first)
320 * Transmission order is 'Preamble' field first, bits transmitted
321 * left to right (first to last).
327 { GMII_PREAMBLE
, 32 }, /* Preamble */
328 { GMII_ST
, 2 }, /* ST */
329 { GMII_WRITE
, 2 }, /* OP */
330 { phy_id
, 5 }, /* PHYAD */
331 { phy_reg
, 5 }, /* REGAD */
332 { 0x0002, 2 }, /* TA */
333 { val
& 0xffff, 16 }, /* DATA */
334 { 0x0000, 1 } /* IDLE */
339 polarity
= ipg_r8(PHY_CTRL
);
340 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
342 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
343 for (j
= 0; j
< 7; j
++) {
344 for (i
= 0; i
< p
[j
].len
; i
++) {
345 /* For each variable length field, the MSB must be
346 * transmitted first. Rotate through the field bits,
347 * starting with the MSB, and move each bit into the
348 * the 1st (2^1) bit position (this is the bit position
349 * corresponding to the MgmtData bit of the PhyCtrl
350 * register for the IPG).
354 * First write a '0' to bit 1 of the PhyCtrl
355 * register, then write a '1' to bit 1 of the
358 * To do this, right shift the MSB of ST by the value:
359 * [field length - 1 - #ST bits already written]
360 * then left shift this result by 1.
362 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
363 data
&= IPG_PC_MGMTDATA
;
364 data
|= polarity
| IPG_PC_MGMTDIR
;
366 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
370 /* The last cycle is a tri-state, so read from the PHY. */
371 for (j
= 7; j
< 8; j
++) {
372 for (i
= 0; i
< p
[j
].len
; i
++) {
373 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
375 p
[j
].field
|= ((ipg_r8(PHY_CTRL
) &
376 IPG_PC_MGMTDATA
) >> 1) << (p
[j
].len
- 1 - i
);
378 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
383 static void ipg_set_led_mode(struct net_device
*dev
)
385 struct ipg_nic_private
*sp
= netdev_priv(dev
);
386 void __iomem
*ioaddr
= sp
->ioaddr
;
389 mode
= ipg_r32(ASIC_CTRL
);
390 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
392 if ((sp
->led_mode
& 0x03) > 1)
393 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
395 if ((sp
->led_mode
& 0x01) == 1)
396 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
398 if ((sp
->led_mode
& 0x08) == 8)
399 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
401 ipg_w32(mode
, ASIC_CTRL
);
404 static void ipg_set_phy_set(struct net_device
*dev
)
406 struct ipg_nic_private
*sp
= netdev_priv(dev
);
407 void __iomem
*ioaddr
= sp
->ioaddr
;
410 physet
= ipg_r8(PHY_SET
);
411 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
412 physet
|= ((sp
->led_mode
& 0x70) >> 4);
413 ipg_w8(physet
, PHY_SET
);
416 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
418 /* Assert functional resets via the IPG AsicCtrl
419 * register as specified by the 'resetflags' input
422 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
423 unsigned int timeout_count
= 0;
425 IPG_DEBUG_MSG("_reset\n");
427 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
429 /* Delay added to account for problem with 10Mbps reset. */
430 mdelay(IPG_AC_RESETWAIT
);
432 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
433 mdelay(IPG_AC_RESETWAIT
);
434 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
437 /* Set LED Mode in Asic Control */
438 ipg_set_led_mode(dev
);
440 /* Set PHYSet Register Value */
441 ipg_set_phy_set(dev
);
445 /* Find the GMII PHY address. */
446 static int ipg_find_phyaddr(struct net_device
*dev
)
448 unsigned int phyaddr
, i
;
450 for (i
= 0; i
< 32; i
++) {
453 /* Search for the correct PHY address among 32 possible. */
454 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
456 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
460 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
462 if ((status
!= 0xFFFF) && (status
!= 0))
470 * Configure IPG based on result of IEEE 802.3 PHY
473 static int ipg_config_autoneg(struct net_device
*dev
)
475 struct ipg_nic_private
*sp
= netdev_priv(dev
);
476 void __iomem
*ioaddr
= sp
->ioaddr
;
477 unsigned int txflowcontrol
;
478 unsigned int rxflowcontrol
;
479 unsigned int fullduplex
;
484 IPG_DEBUG_MSG("_config_autoneg\n");
486 asicctrl
= ipg_r32(ASIC_CTRL
);
487 phyctrl
= ipg_r8(PHY_CTRL
);
488 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
490 /* Set flags for use in resolving auto-negotiation, assuming
491 * non-1000Mbps, half duplex, no flow control.
497 /* To accommodate a problem in 10Mbps operation,
498 * set a global flag if PHY running in 10Mbps mode.
502 printk(KERN_INFO
"%s: Link speed = ", dev
->name
);
504 /* Determine actual speed of operation. */
505 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
506 case IPG_PC_LINK_SPEED_10MBPS
:
508 printk(KERN_INFO
"%s: 10Mbps operational mode enabled.\n",
512 case IPG_PC_LINK_SPEED_100MBPS
:
513 printk("100Mbps.\n");
515 case IPG_PC_LINK_SPEED_1000MBPS
:
516 printk("1000Mbps.\n");
519 printk("undefined!\n");
523 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
529 /* Configure full duplex, and flow control. */
530 if (fullduplex
== 1) {
531 /* Configure IPG for full duplex operation. */
532 printk(KERN_INFO
"%s: setting full duplex, ", dev
->name
);
534 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
536 if (txflowcontrol
== 1) {
537 printk("TX flow control");
538 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
540 printk("no TX flow control");
541 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
544 if (rxflowcontrol
== 1) {
545 printk(", RX flow control.");
546 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
548 printk(", no RX flow control.");
549 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
554 /* Configure IPG for half duplex operation. */
555 printk(KERN_INFO
"%s: setting half duplex, "
556 "no TX flow control, no RX flow control.\n", dev
->name
);
558 mac_ctrl_val
&= ~IPG_MC_DUPLEX_SELECT_FD
&
559 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
560 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
562 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
566 /* Determine and configure multicast operation and set
567 * receive mode for IPG.
569 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
571 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
572 struct netdev_hw_addr
*ha
;
573 unsigned int hashindex
;
577 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
579 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
581 if (dev
->flags
& IFF_PROMISC
) {
582 /* NIC to be configured in promiscuous mode. */
583 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
584 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
585 ((dev
->flags
& IFF_MULTICAST
) &&
586 (netdev_mc_count(dev
) > IPG_MULTICAST_HASHTABLE_SIZE
))) {
587 /* NIC to be configured to receive all multicast
589 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
590 } else if ((dev
->flags
& IFF_MULTICAST
) && !netdev_mc_empty(dev
)) {
591 /* NIC to be configured to receive selected
592 * multicast addresses. */
593 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
596 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
597 * The IPG applies a cyclic-redundancy-check (the same CRC
598 * used to calculate the frame data FCS) to the destination
599 * address all incoming multicast frames whose destination
600 * address has the multicast bit set. The least significant
601 * 6 bits of the CRC result are used as an addressing index
602 * into the hash table. If the value of the bit addressed by
603 * this index is a 1, the frame is passed to the host system.
606 /* Clear hashtable. */
607 hashtable
[0] = 0x00000000;
608 hashtable
[1] = 0x00000000;
610 /* Cycle through all multicast addresses to filter. */
611 netdev_for_each_mc_addr(ha
, dev
) {
612 /* Calculate CRC result for each multicast address. */
613 hashindex
= crc32_le(0xffffffff, ha
->addr
,
616 /* Use only the least significant 6 bits. */
617 hashindex
= hashindex
& 0x3F;
619 /* Within "hashtable", set bit number "hashindex"
622 set_bit(hashindex
, (void *)hashtable
);
625 /* Write the value of the hashtable, to the 4, 16 bit
626 * HASHTABLE IPG registers.
628 ipg_w32(hashtable
[0], HASHTABLE_0
);
629 ipg_w32(hashtable
[1], HASHTABLE_1
);
631 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
633 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
636 static int ipg_io_config(struct net_device
*dev
)
638 struct ipg_nic_private
*sp
= netdev_priv(dev
);
639 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
643 IPG_DEBUG_MSG("_io_config\n");
645 origmacctrl
= ipg_r32(MAC_CTRL
);
647 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
649 /* Based on compilation option, determine if FCS is to be
650 * stripped on receive frames by IPG.
652 if (!IPG_STRIP_FCS_ON_RX
)
653 restoremacctrl
|= IPG_MC_RCV_FCS
;
655 /* Determine if transmitter and/or receiver are
656 * enabled so we may restore MACCTRL correctly.
658 if (origmacctrl
& IPG_MC_TX_ENABLED
)
659 restoremacctrl
|= IPG_MC_TX_ENABLE
;
661 if (origmacctrl
& IPG_MC_RX_ENABLED
)
662 restoremacctrl
|= IPG_MC_RX_ENABLE
;
664 /* Transmitter and receiver must be disabled before setting
667 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
668 IPG_MC_RSVD_MASK
, MAC_CTRL
);
670 /* Now that transmitter and receiver are disabled, write
673 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
675 /* Set RECEIVEMODE register. */
676 ipg_nic_set_multicast_list(dev
);
678 ipg_w16(sp
->max_rxframe_size
, MAX_FRAME_SIZE
);
680 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
681 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
682 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
683 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
684 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
685 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
686 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
687 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
688 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
689 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
690 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
691 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
693 /* IPG multi-frag frame bug workaround.
694 * Per silicon revision B3 eratta.
696 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
698 /* IPG TX poll now bug workaround.
699 * Per silicon revision B3 eratta.
701 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
703 /* IPG RX poll now bug workaround.
704 * Per silicon revision B3 eratta.
706 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
708 /* Now restore MACCTRL to original setting. */
709 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
711 /* Disable unused RMON statistics. */
712 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
714 /* Disable unused MIB statistics. */
715 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
716 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
717 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
718 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
719 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
720 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
726 * Create a receive buffer within system memory and update
727 * NIC private structure appropriately.
729 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
731 struct ipg_nic_private
*sp
= netdev_priv(dev
);
732 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
736 IPG_DEBUG_MSG("_get_rxbuff\n");
738 skb
= netdev_alloc_skb_ip_align(dev
, sp
->rxsupport_size
);
740 sp
->rx_buff
[entry
] = NULL
;
744 /* Associate the receive buffer with the IPG NIC. */
747 /* Save the address of the sk_buff structure. */
748 sp
->rx_buff
[entry
] = skb
;
750 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
751 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
753 /* Set the RFD fragment length. */
754 rxfragsize
= sp
->rxfrag_size
;
755 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
760 static int init_rfdlist(struct net_device
*dev
)
762 struct ipg_nic_private
*sp
= netdev_priv(dev
);
763 void __iomem
*ioaddr
= sp
->ioaddr
;
766 IPG_DEBUG_MSG("_init_rfdlist\n");
768 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
769 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
771 if (sp
->rx_buff
[i
]) {
772 pci_unmap_single(sp
->pdev
,
773 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
774 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
775 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
776 sp
->rx_buff
[i
] = NULL
;
779 /* Clear out the RFS field. */
780 rxfd
->rfs
= 0x0000000000000000;
782 if (ipg_get_rxbuff(dev
, i
) < 0) {
784 * A receive buffer was not ready, break the
787 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
789 /* Just in case we cannot allocate a single RFD.
793 printk(KERN_ERR
"%s: No memory available"
794 " for RFD list.\n", dev
->name
);
799 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
800 sizeof(struct ipg_rx
)*(i
+ 1));
802 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
807 /* Write the location of the RFDList to the IPG. */
808 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
809 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
814 static void init_tfdlist(struct net_device
*dev
)
816 struct ipg_nic_private
*sp
= netdev_priv(dev
);
817 void __iomem
*ioaddr
= sp
->ioaddr
;
820 IPG_DEBUG_MSG("_init_tfdlist\n");
822 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
823 struct ipg_tx
*txfd
= sp
->txd
+ i
;
825 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
827 if (sp
->tx_buff
[i
]) {
828 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
829 sp
->tx_buff
[i
] = NULL
;
832 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
833 sizeof(struct ipg_tx
)*(i
+ 1));
835 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
840 /* Write the location of the TFDList to the IPG. */
841 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
843 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
844 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
846 sp
->reset_current_tfd
= 1;
850 * Free all transmit buffers which have already been transferred
851 * via DMA to the IPG.
853 static void ipg_nic_txfree(struct net_device
*dev
)
855 struct ipg_nic_private
*sp
= netdev_priv(dev
);
856 unsigned int released
, pending
, dirty
;
858 IPG_DEBUG_MSG("_nic_txfree\n");
860 pending
= sp
->tx_current
- sp
->tx_dirty
;
861 dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
863 for (released
= 0; released
< pending
; released
++) {
864 struct sk_buff
*skb
= sp
->tx_buff
[dirty
];
865 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
867 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd
->tfc
);
869 /* Look at each TFD's TFC field beginning
870 * at the last freed TFD up to the current TFD.
871 * If the TFDDone bit is set, free the associated
874 if (!(txfd
->tfc
& cpu_to_le64(IPG_TFC_TFDDONE
)))
877 /* Free the transmit buffer. */
879 pci_unmap_single(sp
->pdev
,
880 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
881 skb
->len
, PCI_DMA_TODEVICE
);
883 dev_kfree_skb_irq(skb
);
885 sp
->tx_buff
[dirty
] = NULL
;
887 dirty
= (dirty
+ 1) % IPG_TFDLIST_LENGTH
;
890 sp
->tx_dirty
+= released
;
892 if (netif_queue_stopped(dev
) &&
893 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
894 netif_wake_queue(dev
);
898 static void ipg_tx_timeout(struct net_device
*dev
)
900 struct ipg_nic_private
*sp
= netdev_priv(dev
);
901 void __iomem
*ioaddr
= sp
->ioaddr
;
903 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
906 spin_lock_irq(&sp
->lock
);
908 /* Re-configure after DMA reset. */
909 if (ipg_io_config(dev
) < 0) {
910 printk(KERN_INFO
"%s: Error during re-configuration.\n",
916 spin_unlock_irq(&sp
->lock
);
918 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
923 * For TxComplete interrupts, free all transmit
924 * buffers which have already been transferred via DMA
927 static void ipg_nic_txcleanup(struct net_device
*dev
)
929 struct ipg_nic_private
*sp
= netdev_priv(dev
);
930 void __iomem
*ioaddr
= sp
->ioaddr
;
933 IPG_DEBUG_MSG("_nic_txcleanup\n");
935 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
936 /* Reading the TXSTATUS register clears the
937 * TX_COMPLETE interrupt.
939 u32 txstatusdword
= ipg_r32(TX_STATUS
);
941 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword
);
943 /* Check for Transmit errors. Error bits only valid if
944 * TX_COMPLETE bit in the TXSTATUS register is a 1.
946 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
949 /* If in 10Mbps mode, indicate transmit is ready. */
950 if (sp
->tenmbpsmode
) {
951 netif_wake_queue(dev
);
954 /* Transmit error, increment stat counters. */
955 if (txstatusdword
& IPG_TS_TX_ERROR
) {
956 IPG_DEBUG_MSG("Transmit error.\n");
957 sp
->stats
.tx_errors
++;
960 /* Late collision, re-enable transmitter. */
961 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
962 IPG_DEBUG_MSG("Late collision on transmit.\n");
963 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
964 IPG_MC_RSVD_MASK
, MAC_CTRL
);
967 /* Maximum collisions, re-enable transmitter. */
968 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
969 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
970 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
971 IPG_MC_RSVD_MASK
, MAC_CTRL
);
974 /* Transmit underrun, reset and re-enable
977 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
978 IPG_DEBUG_MSG("Transmitter underrun.\n");
979 sp
->stats
.tx_fifo_errors
++;
980 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
981 IPG_AC_NETWORK
| IPG_AC_FIFO
);
983 /* Re-configure after DMA reset. */
984 if (ipg_io_config(dev
) < 0) {
986 "%s: Error during re-configuration.\n",
991 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
992 IPG_MC_RSVD_MASK
, MAC_CTRL
);
999 /* Provides statistical information about the IPG NIC. */
1000 static struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
1002 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1003 void __iomem
*ioaddr
= sp
->ioaddr
;
1007 IPG_DEBUG_MSG("_nic_get_stats\n");
1009 /* Check to see if the NIC has been initialized via nic_open,
1010 * before trying to read statistic registers.
1012 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1015 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1016 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1017 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1018 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1019 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1020 sp
->stats
.rx_errors
+= temp1
;
1021 sp
->stats
.rx_missed_errors
+= temp1
;
1022 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1023 ipg_r32(IPG_LATECOLLISIONS
);
1024 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1025 sp
->stats
.collisions
+= temp1
;
1026 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1027 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1028 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1029 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1031 /* detailed tx_errors */
1032 sp
->stats
.tx_carrier_errors
+= temp2
;
1034 /* detailed rx_errors */
1035 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1036 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1037 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1039 /* Unutilized IPG statistic registers. */
1040 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1045 /* Restore used receive buffers. */
1046 static int ipg_nic_rxrestore(struct net_device
*dev
)
1048 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1049 const unsigned int curr
= sp
->rx_current
;
1050 unsigned int dirty
= sp
->rx_dirty
;
1052 IPG_DEBUG_MSG("_nic_rxrestore\n");
1054 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1055 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1057 /* rx_copybreak may poke hole here and there. */
1058 if (sp
->rx_buff
[entry
])
1061 /* Generate a new receive buffer to replace the
1062 * current buffer (which will be released by the
1065 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1066 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1071 /* Reset the RFS field. */
1072 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1074 sp
->rx_dirty
= dirty
;
1079 /* use jumboindex and jumbosize to control jumbo frame status
1080 * initial status is jumboindex=-1 and jumbosize=0
1081 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1082 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1083 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1084 * previous receiving and need to continue dumping the current one
1092 FRAME_NO_START_NO_END
= 0,
1093 FRAME_WITH_START
= 1,
1094 FRAME_WITH_END
= 10,
1095 FRAME_WITH_START_WITH_END
= 11
1098 static void ipg_nic_rx_free_skb(struct net_device
*dev
)
1100 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1101 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1103 if (sp
->rx_buff
[entry
]) {
1104 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1106 pci_unmap_single(sp
->pdev
,
1107 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1108 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1109 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1110 sp
->rx_buff
[entry
] = NULL
;
1114 static int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1116 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1117 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1118 int type
= FRAME_NO_START_NO_END
;
1120 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1121 type
+= FRAME_WITH_START
;
1122 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1123 type
+= FRAME_WITH_END
;
1127 static int ipg_nic_rx_check_error(struct net_device
*dev
)
1129 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1130 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1131 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1133 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1134 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1135 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1136 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1137 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1138 (unsigned long) rxfd
->rfs
);
1140 /* Increment general receive error statistic. */
1141 sp
->stats
.rx_errors
++;
1143 /* Increment detailed receive error statistics. */
1144 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1145 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1147 sp
->stats
.rx_fifo_errors
++;
1150 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1151 IPG_DEBUG_MSG("RX runt occurred.\n");
1152 sp
->stats
.rx_length_errors
++;
1155 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1156 * error count handled by a IPG statistic register.
1159 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1160 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1161 sp
->stats
.rx_frame_errors
++;
1164 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1165 * handled by a IPG statistic register.
1168 /* Free the memory associated with the RX
1169 * buffer since it is erroneous and we will
1170 * not pass it to higher layer processes.
1172 if (sp
->rx_buff
[entry
]) {
1173 pci_unmap_single(sp
->pdev
,
1174 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1175 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1177 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1178 sp
->rx_buff
[entry
] = NULL
;
1180 return ERROR_PACKET
;
1182 return NORMAL_PACKET
;
1185 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1186 struct ipg_nic_private
*sp
,
1187 struct ipg_rx
*rxfd
, unsigned entry
)
1189 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1190 struct sk_buff
*skb
;
1193 if (jumbo
->found_start
) {
1194 dev_kfree_skb_irq(jumbo
->skb
);
1195 jumbo
->found_start
= 0;
1196 jumbo
->current_size
= 0;
1200 /* 1: found error, 0 no error */
1201 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1204 skb
= sp
->rx_buff
[entry
];
1208 /* accept this frame and send to upper layer */
1209 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1210 if (framelen
> sp
->rxfrag_size
)
1211 framelen
= sp
->rxfrag_size
;
1213 skb_put(skb
, framelen
);
1214 skb
->protocol
= eth_type_trans(skb
, dev
);
1215 skb_checksum_none_assert(skb
);
1217 sp
->rx_buff
[entry
] = NULL
;
1220 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1221 struct ipg_nic_private
*sp
,
1222 struct ipg_rx
*rxfd
, unsigned entry
)
1224 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1225 struct pci_dev
*pdev
= sp
->pdev
;
1226 struct sk_buff
*skb
;
1228 /* 1: found error, 0 no error */
1229 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1232 /* accept this frame and send to upper layer */
1233 skb
= sp
->rx_buff
[entry
];
1237 if (jumbo
->found_start
)
1238 dev_kfree_skb_irq(jumbo
->skb
);
1240 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1241 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1243 skb_put(skb
, sp
->rxfrag_size
);
1245 jumbo
->found_start
= 1;
1246 jumbo
->current_size
= sp
->rxfrag_size
;
1249 sp
->rx_buff
[entry
] = NULL
;
1252 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1253 struct ipg_nic_private
*sp
,
1254 struct ipg_rx
*rxfd
, unsigned entry
)
1256 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1258 /* 1: found error, 0 no error */
1259 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1260 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1265 if (jumbo
->found_start
) {
1266 int framelen
, endframelen
;
1268 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1270 endframelen
= framelen
- jumbo
->current_size
;
1271 if (framelen
> sp
->rxsupport_size
)
1272 dev_kfree_skb_irq(jumbo
->skb
);
1274 memcpy(skb_put(jumbo
->skb
, endframelen
),
1275 skb
->data
, endframelen
);
1277 jumbo
->skb
->protocol
=
1278 eth_type_trans(jumbo
->skb
, dev
);
1280 skb_checksum_none_assert(jumbo
->skb
);
1281 netif_rx(jumbo
->skb
);
1285 jumbo
->found_start
= 0;
1286 jumbo
->current_size
= 0;
1289 ipg_nic_rx_free_skb(dev
);
1291 dev_kfree_skb_irq(jumbo
->skb
);
1292 jumbo
->found_start
= 0;
1293 jumbo
->current_size
= 0;
1298 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1299 struct ipg_nic_private
*sp
,
1300 struct ipg_rx
*rxfd
, unsigned entry
)
1302 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1304 /* 1: found error, 0 no error */
1305 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1306 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1309 if (jumbo
->found_start
) {
1310 jumbo
->current_size
+= sp
->rxfrag_size
;
1311 if (jumbo
->current_size
<= sp
->rxsupport_size
) {
1312 memcpy(skb_put(jumbo
->skb
,
1314 skb
->data
, sp
->rxfrag_size
);
1317 ipg_nic_rx_free_skb(dev
);
1320 dev_kfree_skb_irq(jumbo
->skb
);
1321 jumbo
->found_start
= 0;
1322 jumbo
->current_size
= 0;
1327 static int ipg_nic_rx_jumbo(struct net_device
*dev
)
1329 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1330 unsigned int curr
= sp
->rx_current
;
1331 void __iomem
*ioaddr
= sp
->ioaddr
;
1334 IPG_DEBUG_MSG("_nic_rx\n");
1336 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1337 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1338 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1340 if (!(rxfd
->rfs
& cpu_to_le64(IPG_RFS_RFDDONE
)))
1343 switch (ipg_nic_rx_check_frame_type(dev
)) {
1344 case FRAME_WITH_START_WITH_END
:
1345 ipg_nic_rx_with_start_and_end(dev
, sp
, rxfd
, entry
);
1347 case FRAME_WITH_START
:
1348 ipg_nic_rx_with_start(dev
, sp
, rxfd
, entry
);
1350 case FRAME_WITH_END
:
1351 ipg_nic_rx_with_end(dev
, sp
, rxfd
, entry
);
1353 case FRAME_NO_START_NO_END
:
1354 ipg_nic_rx_no_start_no_end(dev
, sp
, rxfd
, entry
);
1359 sp
->rx_current
= curr
;
1361 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1362 /* There are more RFDs to process, however the
1363 * allocated amount of RFD processing time has
1364 * expired. Assert Interrupt Requested to make
1365 * sure we come back to process the remaining RFDs.
1367 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1370 ipg_nic_rxrestore(dev
);
1375 static int ipg_nic_rx(struct net_device
*dev
)
1377 /* Transfer received Ethernet frames to higher network layers. */
1378 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1379 unsigned int curr
= sp
->rx_current
;
1380 void __iomem
*ioaddr
= sp
->ioaddr
;
1381 struct ipg_rx
*rxfd
;
1384 IPG_DEBUG_MSG("_nic_rx\n");
1386 #define __RFS_MASK \
1387 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1389 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1390 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1391 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1392 unsigned int framelen
;
1394 rxfd
= sp
->rxd
+ entry
;
1396 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1399 /* Get received frame length. */
1400 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1402 /* Check for jumbo frame arrival with too small
1405 if (framelen
> sp
->rxfrag_size
) {
1407 ("RFS FrameLen > allocated fragment size.\n");
1409 framelen
= sp
->rxfrag_size
;
1412 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1413 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1414 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1415 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1417 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1418 (unsigned long int) rxfd
->rfs
);
1420 /* Increment general receive error statistic. */
1421 sp
->stats
.rx_errors
++;
1423 /* Increment detailed receive error statistics. */
1424 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1425 IPG_DEBUG_MSG("RX FIFO overrun occurred.\n");
1426 sp
->stats
.rx_fifo_errors
++;
1429 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1430 IPG_DEBUG_MSG("RX runt occurred.\n");
1431 sp
->stats
.rx_length_errors
++;
1434 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1435 /* Do nothing, error count handled by a IPG
1436 * statistic register.
1439 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1440 IPG_DEBUG_MSG("RX alignment error occurred.\n");
1441 sp
->stats
.rx_frame_errors
++;
1444 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1445 /* Do nothing, error count handled by a IPG
1446 * statistic register.
1449 /* Free the memory associated with the RX
1450 * buffer since it is erroneous and we will
1451 * not pass it to higher layer processes.
1454 __le64 info
= rxfd
->frag_info
;
1456 pci_unmap_single(sp
->pdev
,
1457 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1458 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1460 dev_kfree_skb_irq(skb
);
1464 /* Adjust the new buffer length to accommodate the size
1465 * of the received frame.
1467 skb_put(skb
, framelen
);
1469 /* Set the buffer's protocol field to Ethernet. */
1470 skb
->protocol
= eth_type_trans(skb
, dev
);
1472 /* The IPG encountered an error with (or
1473 * there were no) IP/TCP/UDP checksums.
1474 * This may or may not indicate an invalid
1475 * IP/TCP/UDP frame was received. Let the
1476 * upper layer decide.
1478 skb_checksum_none_assert(skb
);
1480 /* Hand off frame for higher layer processing.
1481 * The function netif_rx() releases the sk_buff
1482 * when processing completes.
1487 /* Assure RX buffer is not reused by IPG. */
1488 sp
->rx_buff
[entry
] = NULL
;
1492 * If there are more RFDs to process and the allocated amount of RFD
1493 * processing time has expired, assert Interrupt Requested to make
1494 * sure we come back to process the remaining RFDs.
1496 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1497 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1500 /* Check if the RFD list contained no receive frame data. */
1502 sp
->EmptyRFDListCount
++;
1504 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1505 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1506 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1507 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1509 rxfd
= sp
->rxd
+ entry
;
1511 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1513 /* An unexpected event, additional code needed to handle
1514 * properly. So for the time being, just disregard the
1518 /* Free the memory associated with the RX
1519 * buffer since it is erroneous and we will
1520 * not pass it to higher layer processes.
1522 if (sp
->rx_buff
[entry
]) {
1523 pci_unmap_single(sp
->pdev
,
1524 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1525 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1526 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1529 /* Assure RX buffer is not reused by IPG. */
1530 sp
->rx_buff
[entry
] = NULL
;
1533 sp
->rx_current
= curr
;
1535 /* Check to see if there are a minimum number of used
1536 * RFDs before restoring any (should improve performance.)
1538 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1539 ipg_nic_rxrestore(dev
);
1544 static void ipg_reset_after_host_error(struct work_struct
*work
)
1546 struct ipg_nic_private
*sp
=
1547 container_of(work
, struct ipg_nic_private
, task
.work
);
1548 struct net_device
*dev
= sp
->dev
;
1551 * Acknowledge HostError interrupt by resetting
1554 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1559 if (ipg_io_config(dev
) < 0) {
1560 printk(KERN_INFO
"%s: Cannot recover from PCI error.\n",
1562 schedule_delayed_work(&sp
->task
, HZ
);
1566 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1568 struct net_device
*dev
= dev_inst
;
1569 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1570 void __iomem
*ioaddr
= sp
->ioaddr
;
1571 unsigned int handled
= 0;
1574 IPG_DEBUG_MSG("_interrupt_handler\n");
1577 ipg_nic_rxrestore(dev
);
1579 spin_lock(&sp
->lock
);
1581 /* Get interrupt source information, and acknowledge
1582 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1583 * IntRequested, MacControlFrame, LinkEvent) interrupts
1584 * if issued. Also, all IPG interrupts are disabled by
1585 * reading IntStatusAck.
1587 status
= ipg_r16(INT_STATUS_ACK
);
1589 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status
);
1591 /* Shared IRQ of remove event. */
1592 if (!(status
& IPG_IS_RSVD_MASK
))
1597 if (unlikely(!netif_running(dev
)))
1600 /* If RFDListEnd interrupt, restore all used RFDs. */
1601 if (status
& IPG_IS_RFD_LIST_END
) {
1602 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1604 /* The RFD list end indicates an RFD was encountered
1605 * with a 0 NextPtr, or with an RFDDone bit set to 1
1606 * (indicating the RFD is not read for use by the
1607 * IPG.) Try to restore all RFDs.
1609 ipg_nic_rxrestore(dev
);
1612 /* Increment the RFDlistendCount counter. */
1613 sp
->RFDlistendCount
++;
1617 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1618 * IntRequested interrupt, process received frames. */
1619 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1620 (status
& IPG_IS_RFD_LIST_END
) ||
1621 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1622 (status
& IPG_IS_INT_REQUESTED
)) {
1624 /* Increment the RFD list checked counter if interrupted
1625 * only to check the RFD list. */
1626 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1627 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1628 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1629 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1630 IPG_IS_UPDATE_STATS
)))
1631 sp
->RFDListCheckedCount
++;
1635 ipg_nic_rx_jumbo(dev
);
1640 /* If TxDMAComplete interrupt, free used TFDs. */
1641 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1642 ipg_nic_txfree(dev
);
1644 /* TxComplete interrupts indicate one of numerous actions.
1645 * Determine what action to take based on TXSTATUS register.
1647 if (status
& IPG_IS_TX_COMPLETE
)
1648 ipg_nic_txcleanup(dev
);
1650 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1651 if (status
& IPG_IS_UPDATE_STATS
)
1652 ipg_nic_get_stats(dev
);
1654 /* If HostError interrupt, reset IPG. */
1655 if (status
& IPG_IS_HOST_ERROR
) {
1656 IPG_DDEBUG_MSG("HostError Interrupt\n");
1658 schedule_delayed_work(&sp
->task
, 0);
1661 /* If LinkEvent interrupt, resolve autonegotiation. */
1662 if (status
& IPG_IS_LINK_EVENT
) {
1663 if (ipg_config_autoneg(dev
) < 0)
1664 printk(KERN_INFO
"%s: Auto-negotiation error.\n",
1668 /* If MACCtrlFrame interrupt, do nothing. */
1669 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1670 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1672 /* If RxComplete interrupt, do nothing. */
1673 if (status
& IPG_IS_RX_COMPLETE
)
1674 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1676 /* If RxEarly interrupt, do nothing. */
1677 if (status
& IPG_IS_RX_EARLY
)
1678 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1681 /* Re-enable IPG interrupts. */
1682 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1683 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1684 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1686 spin_unlock(&sp
->lock
);
1688 return IRQ_RETVAL(handled
);
1691 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1695 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1696 if (sp
->rx_buff
[i
]) {
1697 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1699 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
1700 sp
->rx_buff
[i
] = NULL
;
1701 pci_unmap_single(sp
->pdev
,
1702 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1703 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1708 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1712 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1713 if (sp
->tx_buff
[i
]) {
1714 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1716 pci_unmap_single(sp
->pdev
,
1717 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1718 sp
->tx_buff
[i
]->len
, PCI_DMA_TODEVICE
);
1720 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
1722 sp
->tx_buff
[i
] = NULL
;
1727 static int ipg_nic_open(struct net_device
*dev
)
1729 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1730 void __iomem
*ioaddr
= sp
->ioaddr
;
1731 struct pci_dev
*pdev
= sp
->pdev
;
1734 IPG_DEBUG_MSG("_nic_open\n");
1736 sp
->rx_buf_sz
= sp
->rxsupport_size
;
1738 /* Check for interrupt line conflicts, and request interrupt
1741 * IMPORTANT: Disable IPG interrupts prior to registering
1744 ipg_w16(0x0000, INT_ENABLE
);
1746 /* Register the interrupt line to be used by the IPG within
1749 rc
= request_irq(pdev
->irq
, ipg_interrupt_handler
, IRQF_SHARED
,
1752 printk(KERN_INFO
"%s: Error when requesting interrupt.\n",
1757 dev
->irq
= pdev
->irq
;
1761 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1762 &sp
->rxd_map
, GFP_KERNEL
);
1764 goto err_free_irq_0
;
1766 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1767 &sp
->txd_map
, GFP_KERNEL
);
1771 rc
= init_rfdlist(dev
);
1773 printk(KERN_INFO
"%s: Error during configuration.\n",
1780 rc
= ipg_io_config(dev
);
1782 printk(KERN_INFO
"%s: Error during configuration.\n",
1784 goto err_release_tfdlist_3
;
1787 /* Resolve autonegotiation. */
1788 if (ipg_config_autoneg(dev
) < 0)
1789 printk(KERN_INFO
"%s: Auto-negotiation error.\n", dev
->name
);
1791 /* initialize JUMBO Frame control variable */
1792 sp
->jumbo
.found_start
= 0;
1793 sp
->jumbo
.current_size
= 0;
1794 sp
->jumbo
.skb
= NULL
;
1796 /* Enable transmit and receive operation of the IPG. */
1797 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1798 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1800 netif_start_queue(dev
);
1804 err_release_tfdlist_3
:
1808 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1810 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1812 free_irq(pdev
->irq
, dev
);
1816 static int ipg_nic_stop(struct net_device
*dev
)
1818 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1819 void __iomem
*ioaddr
= sp
->ioaddr
;
1820 struct pci_dev
*pdev
= sp
->pdev
;
1822 IPG_DEBUG_MSG("_nic_stop\n");
1824 netif_stop_queue(dev
);
1826 IPG_DUMPTFDLIST(dev
);
1829 (void) ipg_r16(INT_STATUS_ACK
);
1831 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1833 synchronize_irq(pdev
->irq
);
1834 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1840 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1841 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1843 free_irq(pdev
->irq
, dev
);
1848 static netdev_tx_t
ipg_nic_hard_start_xmit(struct sk_buff
*skb
,
1849 struct net_device
*dev
)
1851 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1852 void __iomem
*ioaddr
= sp
->ioaddr
;
1853 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1854 unsigned long flags
;
1855 struct ipg_tx
*txfd
;
1857 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1859 /* If in 10Mbps mode, stop the transmit queue so
1860 * no more transmit frames are accepted.
1862 if (sp
->tenmbpsmode
)
1863 netif_stop_queue(dev
);
1865 if (sp
->reset_current_tfd
) {
1866 sp
->reset_current_tfd
= 0;
1870 txfd
= sp
->txd
+ entry
;
1872 sp
->tx_buff
[entry
] = skb
;
1874 /* Clear all TFC fields, except TFDDONE. */
1875 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1877 /* Specify the TFC field within the TFD. */
1878 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1879 (IPG_TFC_FRAMEID
& sp
->tx_current
) |
1880 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1882 * 16--17 (WordAlign) <- 3 (disable),
1883 * 0--15 (FrameId) <- sp->tx_current,
1884 * 24--27 (FragCount) <- 1
1887 /* Request TxComplete interrupts at an interval defined
1888 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1889 * Request TxComplete interrupt for every frame
1890 * if in 10Mbps mode to accommodate problem with 10Mbps
1893 if (sp
->tenmbpsmode
)
1894 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1895 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1896 /* Based on compilation option, determine if FCS is to be
1897 * appended to transmit frame by IPG.
1899 if (!(IPG_APPEND_FCS_ON_TX
))
1900 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1902 /* Based on compilation option, determine if IP, TCP and/or
1903 * UDP checksums are to be added to transmit frame by IPG.
1905 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1906 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1908 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1909 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1911 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1912 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1914 /* Based on compilation option, determine if VLAN tag info is to be
1915 * inserted into transmit frame by IPG.
1917 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1918 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1919 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1920 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1921 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1924 /* The fragment start location within system memory is defined
1925 * by the sk_buff structure's data field. The physical address
1926 * of this location within the system's virtual memory space
1927 * is determined using the IPG_HOST2BUS_MAP function.
1929 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1930 skb
->len
, PCI_DMA_TODEVICE
));
1932 /* The length of the fragment within system memory is defined by
1933 * the sk_buff structure's len field.
1935 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1936 ((u64
) (skb
->len
& 0xffff) << 48));
1938 /* Clear the TFDDone bit last to indicate the TFD is ready
1939 * for transfer to the IPG.
1941 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1943 spin_lock_irqsave(&sp
->lock
, flags
);
1949 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1951 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1952 netif_stop_queue(dev
);
1954 spin_unlock_irqrestore(&sp
->lock
, flags
);
1956 return NETDEV_TX_OK
;
1959 static void ipg_set_phy_default_param(unsigned char rev
,
1960 struct net_device
*dev
, int phy_address
)
1962 unsigned short length
;
1963 unsigned char revision
;
1964 unsigned short *phy_param
;
1965 unsigned short address
, value
;
1967 phy_param
= &DefaultPhyParam
[0];
1968 length
= *phy_param
& 0x00FF;
1969 revision
= (unsigned char)((*phy_param
) >> 8);
1971 while (length
!= 0) {
1972 if (rev
== revision
) {
1973 while (length
> 1) {
1974 address
= *phy_param
;
1975 value
= *(phy_param
+ 1);
1977 mdio_write(dev
, phy_address
, address
, value
);
1982 phy_param
+= length
/ 2;
1983 length
= *phy_param
& 0x00FF;
1984 revision
= (unsigned char)((*phy_param
) >> 8);
1990 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
1992 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
1997 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
1998 ipg_w16(value
, EEPROM_CTRL
);
2000 for (i
= 0; i
< 1000; i
++) {
2004 data
= ipg_r16(EEPROM_CTRL
);
2005 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
2006 ret
= ipg_r16(EEPROM_DATA
);
2013 static void ipg_init_mii(struct net_device
*dev
)
2015 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2016 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2020 mii_if
->mdio_read
= mdio_read
;
2021 mii_if
->mdio_write
= mdio_write
;
2022 mii_if
->phy_id_mask
= 0x1f;
2023 mii_if
->reg_num_mask
= 0x1f;
2025 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2027 if (phyaddr
!= 0x1f) {
2028 u16 mii_phyctrl
, mii_1000cr
;
2030 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2031 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2032 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2033 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2035 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2037 /* Set default phyparam */
2038 ipg_set_phy_default_param(sp
->pdev
->revision
, dev
, phyaddr
);
2041 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2042 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2047 static int ipg_hw_init(struct net_device
*dev
)
2049 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2050 void __iomem
*ioaddr
= sp
->ioaddr
;
2054 /* Read/Write and Reset EEPROM Value */
2055 /* Read LED Mode Configuration from EEPROM */
2056 sp
->led_mode
= read_eeprom(dev
, 6);
2058 /* Reset all functions within the IPG. Do not assert
2059 * RST_OUT as not compatible with some PHYs.
2061 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2067 /* Read MAC Address from EEPROM */
2068 for (i
= 0; i
< 3; i
++)
2069 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2071 for (i
= 0; i
< 3; i
++)
2072 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2074 /* Set station address in ethernet_device structure. */
2075 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2076 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2077 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2078 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2079 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2080 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2085 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2087 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2090 mutex_lock(&sp
->mii_mutex
);
2091 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2092 mutex_unlock(&sp
->mii_mutex
);
2097 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2099 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2102 /* Function to accommodate changes to Maximum Transfer Unit
2103 * (or MTU) of IPG NIC. Cannot use default function since
2104 * the default will not allow for MTU > 1500 bytes.
2107 IPG_DEBUG_MSG("_nic_change_mtu\n");
2110 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2111 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2113 if (new_mtu
< 68 || new_mtu
> 10240)
2116 err
= ipg_nic_stop(dev
);
2122 sp
->max_rxframe_size
= new_mtu
;
2124 sp
->rxfrag_size
= new_mtu
;
2125 if (sp
->rxfrag_size
> 4088)
2126 sp
->rxfrag_size
= 4088;
2128 sp
->rxsupport_size
= sp
->max_rxframe_size
;
2130 if (new_mtu
> 0x0600)
2131 sp
->is_jumbo
= true;
2133 sp
->is_jumbo
= false;
2135 return ipg_nic_open(dev
);
2138 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2140 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2143 mutex_lock(&sp
->mii_mutex
);
2144 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2145 mutex_unlock(&sp
->mii_mutex
);
2150 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2152 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2155 mutex_lock(&sp
->mii_mutex
);
2156 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2157 mutex_unlock(&sp
->mii_mutex
);
2162 static int ipg_nway_reset(struct net_device
*dev
)
2164 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2167 mutex_lock(&sp
->mii_mutex
);
2168 rc
= mii_nway_restart(&sp
->mii_if
);
2169 mutex_unlock(&sp
->mii_mutex
);
2174 static const struct ethtool_ops ipg_ethtool_ops
= {
2175 .get_settings
= ipg_get_settings
,
2176 .set_settings
= ipg_set_settings
,
2177 .nway_reset
= ipg_nway_reset
,
2180 static void __devexit
ipg_remove(struct pci_dev
*pdev
)
2182 struct net_device
*dev
= pci_get_drvdata(pdev
);
2183 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2185 IPG_DEBUG_MSG("_remove\n");
2187 /* Un-register Ethernet device. */
2188 unregister_netdev(dev
);
2190 pci_iounmap(pdev
, sp
->ioaddr
);
2192 pci_release_regions(pdev
);
2195 pci_disable_device(pdev
);
2196 pci_set_drvdata(pdev
, NULL
);
2199 static const struct net_device_ops ipg_netdev_ops
= {
2200 .ndo_open
= ipg_nic_open
,
2201 .ndo_stop
= ipg_nic_stop
,
2202 .ndo_start_xmit
= ipg_nic_hard_start_xmit
,
2203 .ndo_get_stats
= ipg_nic_get_stats
,
2204 .ndo_set_multicast_list
= ipg_nic_set_multicast_list
,
2205 .ndo_do_ioctl
= ipg_ioctl
,
2206 .ndo_tx_timeout
= ipg_tx_timeout
,
2207 .ndo_change_mtu
= ipg_nic_change_mtu
,
2208 .ndo_set_mac_address
= eth_mac_addr
,
2209 .ndo_validate_addr
= eth_validate_addr
,
2212 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2213 const struct pci_device_id
*id
)
2215 unsigned int i
= id
->driver_data
;
2216 struct ipg_nic_private
*sp
;
2217 struct net_device
*dev
;
2218 void __iomem
*ioaddr
;
2221 rc
= pci_enable_device(pdev
);
2225 printk(KERN_INFO
"%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2227 pci_set_master(pdev
);
2229 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(40));
2231 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2233 printk(KERN_ERR
"%s: DMA config failed.\n",
2240 * Initialize net device.
2242 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2244 printk(KERN_ERR
"%s: alloc_etherdev failed\n", pci_name(pdev
));
2249 sp
= netdev_priv(dev
);
2250 spin_lock_init(&sp
->lock
);
2251 mutex_init(&sp
->mii_mutex
);
2253 sp
->is_jumbo
= IPG_IS_JUMBO
;
2254 sp
->rxfrag_size
= IPG_RXFRAG_SIZE
;
2255 sp
->rxsupport_size
= IPG_RXSUPPORT_SIZE
;
2256 sp
->max_rxframe_size
= IPG_MAX_RXFRAME_SIZE
;
2258 /* Declare IPG NIC functions for Ethernet device methods.
2260 dev
->netdev_ops
= &ipg_netdev_ops
;
2261 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2262 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2264 rc
= pci_request_regions(pdev
, DRV_NAME
);
2266 goto err_free_dev_1
;
2268 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2270 printk(KERN_ERR
"%s cannot map MMIO\n", pci_name(pdev
));
2272 goto err_release_regions_2
;
2275 /* Save the pointer to the PCI device information. */
2276 sp
->ioaddr
= ioaddr
;
2280 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2282 pci_set_drvdata(pdev
, dev
);
2284 rc
= ipg_hw_init(dev
);
2288 rc
= register_netdev(dev
);
2292 printk(KERN_INFO
"Ethernet device registered as: %s\n", dev
->name
);
2297 pci_iounmap(pdev
, ioaddr
);
2298 err_release_regions_2
:
2299 pci_release_regions(pdev
);
2303 pci_disable_device(pdev
);
2307 static struct pci_driver ipg_pci_driver
= {
2308 .name
= IPG_DRIVER_NAME
,
2309 .id_table
= ipg_pci_tbl
,
2311 .remove
= __devexit_p(ipg_remove
),
2314 static int __init
ipg_init_module(void)
2316 return pci_register_driver(&ipg_pci_driver
);
2319 static void __exit
ipg_exit_module(void)
2321 pci_unregister_driver(&ipg_pci_driver
);
2324 module_init(ipg_init_module
);
2325 module_exit(ipg_exit_module
);