2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
35 #include <asm/irq_regs.h>
37 atomic_t perf_task_events __read_mostly
;
38 static atomic_t nr_mmap_events __read_mostly
;
39 static atomic_t nr_comm_events __read_mostly
;
40 static atomic_t nr_task_events __read_mostly
;
42 static LIST_HEAD(pmus
);
43 static DEFINE_MUTEX(pmus_lock
);
44 static struct srcu_struct pmus_srcu
;
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
53 int sysctl_perf_event_paranoid __read_mostly
= 1;
55 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
58 * max perf event sample rate
60 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
62 static atomic64_t perf_event_id
;
64 void __weak
perf_event_print_debug(void) { }
66 extern __weak
const char *perf_pmu_name(void)
71 void perf_pmu_disable(struct pmu
*pmu
)
73 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
75 pmu
->pmu_disable(pmu
);
78 void perf_pmu_enable(struct pmu
*pmu
)
80 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
85 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
92 static void perf_pmu_rotate_start(struct pmu
*pmu
)
94 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
95 struct list_head
*head
= &__get_cpu_var(rotation_list
);
97 WARN_ON(!irqs_disabled());
99 if (list_empty(&cpuctx
->rotation_list
))
100 list_add(&cpuctx
->rotation_list
, head
);
103 static void get_ctx(struct perf_event_context
*ctx
)
105 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
108 static void free_ctx(struct rcu_head
*head
)
110 struct perf_event_context
*ctx
;
112 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
116 static void put_ctx(struct perf_event_context
*ctx
)
118 if (atomic_dec_and_test(&ctx
->refcount
)) {
120 put_ctx(ctx
->parent_ctx
);
122 put_task_struct(ctx
->task
);
123 call_rcu(&ctx
->rcu_head
, free_ctx
);
127 static void unclone_ctx(struct perf_event_context
*ctx
)
129 if (ctx
->parent_ctx
) {
130 put_ctx(ctx
->parent_ctx
);
131 ctx
->parent_ctx
= NULL
;
136 * If we inherit events we want to return the parent event id
139 static u64
primary_event_id(struct perf_event
*event
)
144 id
= event
->parent
->id
;
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_event_context
*
155 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
157 struct perf_event_context
*ctx
;
161 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
174 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
175 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
179 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
180 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_event_context
*
194 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
196 struct perf_event_context
*ctx
;
199 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
202 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
207 static void perf_unpin_context(struct perf_event_context
*ctx
)
211 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
213 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
217 static inline u64
perf_clock(void)
219 return local_clock();
223 * Update the record of the current time in a context.
225 static void update_context_time(struct perf_event_context
*ctx
)
227 u64 now
= perf_clock();
229 ctx
->time
+= now
- ctx
->timestamp
;
230 ctx
->timestamp
= now
;
234 * Update the total_time_enabled and total_time_running fields for a event.
236 static void update_event_times(struct perf_event
*event
)
238 struct perf_event_context
*ctx
= event
->ctx
;
241 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
242 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
248 run_end
= event
->tstamp_stopped
;
250 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
252 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
253 run_end
= event
->tstamp_stopped
;
257 event
->total_time_running
= run_end
- event
->tstamp_running
;
261 * Update total_time_enabled and total_time_running for all events in a group.
263 static void update_group_times(struct perf_event
*leader
)
265 struct perf_event
*event
;
267 update_event_times(leader
);
268 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
269 update_event_times(event
);
272 static struct list_head
*
273 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
275 if (event
->attr
.pinned
)
276 return &ctx
->pinned_groups
;
278 return &ctx
->flexible_groups
;
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
286 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
288 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
289 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
296 if (event
->group_leader
== event
) {
297 struct list_head
*list
;
299 if (is_software_event(event
))
300 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
302 list
= ctx_group_list(event
, ctx
);
303 list_add_tail(&event
->group_entry
, list
);
306 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
308 perf_pmu_rotate_start(ctx
->pmu
);
310 if (event
->attr
.inherit_stat
)
314 static void perf_group_attach(struct perf_event
*event
)
316 struct perf_event
*group_leader
= event
->group_leader
;
319 * We can have double attach due to group movement in perf_event_open.
321 if (event
->attach_state
& PERF_ATTACH_GROUP
)
324 event
->attach_state
|= PERF_ATTACH_GROUP
;
326 if (group_leader
== event
)
329 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
330 !is_software_event(event
))
331 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
333 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
334 group_leader
->nr_siblings
++;
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
342 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
345 * We can have double detach due to exit/hot-unplug + close.
347 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
350 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
353 if (event
->attr
.inherit_stat
)
356 list_del_rcu(&event
->event_entry
);
358 if (event
->group_leader
== event
)
359 list_del_init(&event
->group_entry
);
361 update_group_times(event
);
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
370 if (event
->state
> PERF_EVENT_STATE_OFF
)
371 event
->state
= PERF_EVENT_STATE_OFF
;
374 static void perf_group_detach(struct perf_event
*event
)
376 struct perf_event
*sibling
, *tmp
;
377 struct list_head
*list
= NULL
;
380 * We can have double detach due to exit/hot-unplug + close.
382 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
385 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
388 * If this is a sibling, remove it from its group.
390 if (event
->group_leader
!= event
) {
391 list_del_init(&event
->group_entry
);
392 event
->group_leader
->nr_siblings
--;
396 if (!list_empty(&event
->group_entry
))
397 list
= &event
->group_entry
;
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
404 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
406 list_move_tail(&sibling
->group_entry
, list
);
407 sibling
->group_leader
= sibling
;
409 /* Inherit group flags from the previous leader */
410 sibling
->group_flags
= event
->group_flags
;
415 event_filter_match(struct perf_event
*event
)
417 return event
->cpu
== -1 || event
->cpu
== smp_processor_id();
421 event_sched_out(struct perf_event
*event
,
422 struct perf_cpu_context
*cpuctx
,
423 struct perf_event_context
*ctx
)
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
432 if (event
->state
== PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event
)) {
434 delta
= ctx
->time
- event
->tstamp_stopped
;
435 event
->tstamp_running
+= delta
;
436 event
->tstamp_stopped
= ctx
->time
;
439 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
442 event
->state
= PERF_EVENT_STATE_INACTIVE
;
443 if (event
->pending_disable
) {
444 event
->pending_disable
= 0;
445 event
->state
= PERF_EVENT_STATE_OFF
;
447 event
->tstamp_stopped
= ctx
->time
;
448 event
->pmu
->del(event
, 0);
451 if (!is_software_event(event
))
452 cpuctx
->active_oncpu
--;
454 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
455 cpuctx
->exclusive
= 0;
459 group_sched_out(struct perf_event
*group_event
,
460 struct perf_cpu_context
*cpuctx
,
461 struct perf_event_context
*ctx
)
463 struct perf_event
*event
;
464 int state
= group_event
->state
;
466 event_sched_out(group_event
, cpuctx
, ctx
);
469 * Schedule out siblings (if any):
471 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
472 event_sched_out(event
, cpuctx
, ctx
);
474 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
475 cpuctx
->exclusive
= 0;
478 static inline struct perf_cpu_context
*
479 __get_cpu_context(struct perf_event_context
*ctx
)
481 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
485 * Cross CPU call to remove a performance event
487 * We disable the event on the hardware level first. After that we
488 * remove it from the context list.
490 static void __perf_event_remove_from_context(void *info
)
492 struct perf_event
*event
= info
;
493 struct perf_event_context
*ctx
= event
->ctx
;
494 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
501 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
504 raw_spin_lock(&ctx
->lock
);
506 event_sched_out(event
, cpuctx
, ctx
);
508 list_del_event(event
, ctx
);
510 raw_spin_unlock(&ctx
->lock
);
515 * Remove the event from a task's (or a CPU's) list of events.
517 * Must be called with ctx->mutex held.
519 * CPU events are removed with a smp call. For task events we only
520 * call when the task is on a CPU.
522 * If event->ctx is a cloned context, callers must make sure that
523 * every task struct that event->ctx->task could possibly point to
524 * remains valid. This is OK when called from perf_release since
525 * that only calls us on the top-level context, which can't be a clone.
526 * When called from perf_event_exit_task, it's OK because the
527 * context has been detached from its task.
529 static void perf_event_remove_from_context(struct perf_event
*event
)
531 struct perf_event_context
*ctx
= event
->ctx
;
532 struct task_struct
*task
= ctx
->task
;
536 * Per cpu events are removed via an smp call and
537 * the removal is always successful.
539 smp_call_function_single(event
->cpu
,
540 __perf_event_remove_from_context
,
546 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
549 raw_spin_lock_irq(&ctx
->lock
);
551 * If the context is active we need to retry the smp call.
553 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
554 raw_spin_unlock_irq(&ctx
->lock
);
559 * The lock prevents that this context is scheduled in so we
560 * can remove the event safely, if the call above did not
563 if (!list_empty(&event
->group_entry
))
564 list_del_event(event
, ctx
);
565 raw_spin_unlock_irq(&ctx
->lock
);
569 * Cross CPU call to disable a performance event
571 static void __perf_event_disable(void *info
)
573 struct perf_event
*event
= info
;
574 struct perf_event_context
*ctx
= event
->ctx
;
575 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
578 * If this is a per-task event, need to check whether this
579 * event's task is the current task on this cpu.
581 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
584 raw_spin_lock(&ctx
->lock
);
587 * If the event is on, turn it off.
588 * If it is in error state, leave it in error state.
590 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
591 update_context_time(ctx
);
592 update_group_times(event
);
593 if (event
== event
->group_leader
)
594 group_sched_out(event
, cpuctx
, ctx
);
596 event_sched_out(event
, cpuctx
, ctx
);
597 event
->state
= PERF_EVENT_STATE_OFF
;
600 raw_spin_unlock(&ctx
->lock
);
606 * If event->ctx is a cloned context, callers must make sure that
607 * every task struct that event->ctx->task could possibly point to
608 * remains valid. This condition is satisifed when called through
609 * perf_event_for_each_child or perf_event_for_each because they
610 * hold the top-level event's child_mutex, so any descendant that
611 * goes to exit will block in sync_child_event.
612 * When called from perf_pending_event it's OK because event->ctx
613 * is the current context on this CPU and preemption is disabled,
614 * hence we can't get into perf_event_task_sched_out for this context.
616 void perf_event_disable(struct perf_event
*event
)
618 struct perf_event_context
*ctx
= event
->ctx
;
619 struct task_struct
*task
= ctx
->task
;
623 * Disable the event on the cpu that it's on
625 smp_call_function_single(event
->cpu
, __perf_event_disable
,
631 task_oncpu_function_call(task
, __perf_event_disable
, event
);
633 raw_spin_lock_irq(&ctx
->lock
);
635 * If the event is still active, we need to retry the cross-call.
637 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
638 raw_spin_unlock_irq(&ctx
->lock
);
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
646 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
647 update_group_times(event
);
648 event
->state
= PERF_EVENT_STATE_OFF
;
651 raw_spin_unlock_irq(&ctx
->lock
);
655 event_sched_in(struct perf_event
*event
,
656 struct perf_cpu_context
*cpuctx
,
657 struct perf_event_context
*ctx
)
659 if (event
->state
<= PERF_EVENT_STATE_OFF
)
662 event
->state
= PERF_EVENT_STATE_ACTIVE
;
663 event
->oncpu
= smp_processor_id();
665 * The new state must be visible before we turn it on in the hardware:
669 if (event
->pmu
->add(event
, PERF_EF_START
)) {
670 event
->state
= PERF_EVENT_STATE_INACTIVE
;
675 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
677 event
->shadow_ctx_time
= ctx
->time
- ctx
->timestamp
;
679 if (!is_software_event(event
))
680 cpuctx
->active_oncpu
++;
683 if (event
->attr
.exclusive
)
684 cpuctx
->exclusive
= 1;
690 group_sched_in(struct perf_event
*group_event
,
691 struct perf_cpu_context
*cpuctx
,
692 struct perf_event_context
*ctx
)
694 struct perf_event
*event
, *partial_group
= NULL
;
695 struct pmu
*pmu
= group_event
->pmu
;
697 bool simulate
= false;
699 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
704 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
705 pmu
->cancel_txn(pmu
);
710 * Schedule in siblings as one group (if any):
712 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
713 if (event_sched_in(event
, cpuctx
, ctx
)) {
714 partial_group
= event
;
719 if (!pmu
->commit_txn(pmu
))
724 * Groups can be scheduled in as one unit only, so undo any
725 * partial group before returning:
726 * The events up to the failed event are scheduled out normally,
727 * tstamp_stopped will be updated.
729 * The failed events and the remaining siblings need to have
730 * their timings updated as if they had gone thru event_sched_in()
731 * and event_sched_out(). This is required to get consistent timings
732 * across the group. This also takes care of the case where the group
733 * could never be scheduled by ensuring tstamp_stopped is set to mark
734 * the time the event was actually stopped, such that time delta
735 * calculation in update_event_times() is correct.
737 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
738 if (event
== partial_group
)
742 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
743 event
->tstamp_stopped
= now
;
745 event_sched_out(event
, cpuctx
, ctx
);
748 event_sched_out(group_event
, cpuctx
, ctx
);
750 pmu
->cancel_txn(pmu
);
756 * Work out whether we can put this event group on the CPU now.
758 static int group_can_go_on(struct perf_event
*event
,
759 struct perf_cpu_context
*cpuctx
,
763 * Groups consisting entirely of software events can always go on.
765 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
768 * If an exclusive group is already on, no other hardware
771 if (cpuctx
->exclusive
)
774 * If this group is exclusive and there are already
775 * events on the CPU, it can't go on.
777 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
780 * Otherwise, try to add it if all previous groups were able
786 static void add_event_to_ctx(struct perf_event
*event
,
787 struct perf_event_context
*ctx
)
789 list_add_event(event
, ctx
);
790 perf_group_attach(event
);
791 event
->tstamp_enabled
= ctx
->time
;
792 event
->tstamp_running
= ctx
->time
;
793 event
->tstamp_stopped
= ctx
->time
;
797 * Cross CPU call to install and enable a performance event
799 * Must be called with ctx->mutex held
801 static void __perf_install_in_context(void *info
)
803 struct perf_event
*event
= info
;
804 struct perf_event_context
*ctx
= event
->ctx
;
805 struct perf_event
*leader
= event
->group_leader
;
806 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
810 * If this is a task context, we need to check whether it is
811 * the current task context of this cpu. If not it has been
812 * scheduled out before the smp call arrived.
813 * Or possibly this is the right context but it isn't
814 * on this cpu because it had no events.
816 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
817 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
819 cpuctx
->task_ctx
= ctx
;
822 raw_spin_lock(&ctx
->lock
);
824 update_context_time(ctx
);
826 add_event_to_ctx(event
, ctx
);
828 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
832 * Don't put the event on if it is disabled or if
833 * it is in a group and the group isn't on.
835 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
836 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
840 * An exclusive event can't go on if there are already active
841 * hardware events, and no hardware event can go on if there
842 * is already an exclusive event on.
844 if (!group_can_go_on(event
, cpuctx
, 1))
847 err
= event_sched_in(event
, cpuctx
, ctx
);
851 * This event couldn't go on. If it is in a group
852 * then we have to pull the whole group off.
853 * If the event group is pinned then put it in error state.
856 group_sched_out(leader
, cpuctx
, ctx
);
857 if (leader
->attr
.pinned
) {
858 update_group_times(leader
);
859 leader
->state
= PERF_EVENT_STATE_ERROR
;
864 raw_spin_unlock(&ctx
->lock
);
868 * Attach a performance event to a context
870 * First we add the event to the list with the hardware enable bit
871 * in event->hw_config cleared.
873 * If the event is attached to a task which is on a CPU we use a smp
874 * call to enable it in the task context. The task might have been
875 * scheduled away, but we check this in the smp call again.
877 * Must be called with ctx->mutex held.
880 perf_install_in_context(struct perf_event_context
*ctx
,
881 struct perf_event
*event
,
884 struct task_struct
*task
= ctx
->task
;
890 * Per cpu events are installed via an smp call and
891 * the install is always successful.
893 smp_call_function_single(cpu
, __perf_install_in_context
,
899 task_oncpu_function_call(task
, __perf_install_in_context
,
902 raw_spin_lock_irq(&ctx
->lock
);
904 * we need to retry the smp call.
906 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
907 raw_spin_unlock_irq(&ctx
->lock
);
912 * The lock prevents that this context is scheduled in so we
913 * can add the event safely, if it the call above did not
916 if (list_empty(&event
->group_entry
))
917 add_event_to_ctx(event
, ctx
);
918 raw_spin_unlock_irq(&ctx
->lock
);
922 * Put a event into inactive state and update time fields.
923 * Enabling the leader of a group effectively enables all
924 * the group members that aren't explicitly disabled, so we
925 * have to update their ->tstamp_enabled also.
926 * Note: this works for group members as well as group leaders
927 * since the non-leader members' sibling_lists will be empty.
929 static void __perf_event_mark_enabled(struct perf_event
*event
,
930 struct perf_event_context
*ctx
)
932 struct perf_event
*sub
;
934 event
->state
= PERF_EVENT_STATE_INACTIVE
;
935 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
936 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
937 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
938 sub
->tstamp_enabled
=
939 ctx
->time
- sub
->total_time_enabled
;
945 * Cross CPU call to enable a performance event
947 static void __perf_event_enable(void *info
)
949 struct perf_event
*event
= info
;
950 struct perf_event_context
*ctx
= event
->ctx
;
951 struct perf_event
*leader
= event
->group_leader
;
952 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
956 * If this is a per-task event, need to check whether this
957 * event's task is the current task on this cpu.
959 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
960 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
962 cpuctx
->task_ctx
= ctx
;
965 raw_spin_lock(&ctx
->lock
);
967 update_context_time(ctx
);
969 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
971 __perf_event_mark_enabled(event
, ctx
);
973 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
977 * If the event is in a group and isn't the group leader,
978 * then don't put it on unless the group is on.
980 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
983 if (!group_can_go_on(event
, cpuctx
, 1)) {
987 err
= group_sched_in(event
, cpuctx
, ctx
);
989 err
= event_sched_in(event
, cpuctx
, ctx
);
994 * If this event can't go on and it's part of a
995 * group, then the whole group has to come off.
998 group_sched_out(leader
, cpuctx
, ctx
);
999 if (leader
->attr
.pinned
) {
1000 update_group_times(leader
);
1001 leader
->state
= PERF_EVENT_STATE_ERROR
;
1006 raw_spin_unlock(&ctx
->lock
);
1012 * If event->ctx is a cloned context, callers must make sure that
1013 * every task struct that event->ctx->task could possibly point to
1014 * remains valid. This condition is satisfied when called through
1015 * perf_event_for_each_child or perf_event_for_each as described
1016 * for perf_event_disable.
1018 void perf_event_enable(struct perf_event
*event
)
1020 struct perf_event_context
*ctx
= event
->ctx
;
1021 struct task_struct
*task
= ctx
->task
;
1025 * Enable the event on the cpu that it's on
1027 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1032 raw_spin_lock_irq(&ctx
->lock
);
1033 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1037 * If the event is in error state, clear that first.
1038 * That way, if we see the event in error state below, we
1039 * know that it has gone back into error state, as distinct
1040 * from the task having been scheduled away before the
1041 * cross-call arrived.
1043 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1044 event
->state
= PERF_EVENT_STATE_OFF
;
1047 raw_spin_unlock_irq(&ctx
->lock
);
1048 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1050 raw_spin_lock_irq(&ctx
->lock
);
1053 * If the context is active and the event is still off,
1054 * we need to retry the cross-call.
1056 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1060 * Since we have the lock this context can't be scheduled
1061 * in, so we can change the state safely.
1063 if (event
->state
== PERF_EVENT_STATE_OFF
)
1064 __perf_event_mark_enabled(event
, ctx
);
1067 raw_spin_unlock_irq(&ctx
->lock
);
1070 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1073 * not supported on inherited events
1075 if (event
->attr
.inherit
)
1078 atomic_add(refresh
, &event
->event_limit
);
1079 perf_event_enable(event
);
1085 EVENT_FLEXIBLE
= 0x1,
1087 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1090 static void ctx_sched_out(struct perf_event_context
*ctx
,
1091 struct perf_cpu_context
*cpuctx
,
1092 enum event_type_t event_type
)
1094 struct perf_event
*event
;
1096 raw_spin_lock(&ctx
->lock
);
1097 perf_pmu_disable(ctx
->pmu
);
1099 if (likely(!ctx
->nr_events
))
1101 update_context_time(ctx
);
1103 if (!ctx
->nr_active
)
1106 if (event_type
& EVENT_PINNED
) {
1107 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1108 group_sched_out(event
, cpuctx
, ctx
);
1111 if (event_type
& EVENT_FLEXIBLE
) {
1112 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1113 group_sched_out(event
, cpuctx
, ctx
);
1116 perf_pmu_enable(ctx
->pmu
);
1117 raw_spin_unlock(&ctx
->lock
);
1121 * Test whether two contexts are equivalent, i.e. whether they
1122 * have both been cloned from the same version of the same context
1123 * and they both have the same number of enabled events.
1124 * If the number of enabled events is the same, then the set
1125 * of enabled events should be the same, because these are both
1126 * inherited contexts, therefore we can't access individual events
1127 * in them directly with an fd; we can only enable/disable all
1128 * events via prctl, or enable/disable all events in a family
1129 * via ioctl, which will have the same effect on both contexts.
1131 static int context_equiv(struct perf_event_context
*ctx1
,
1132 struct perf_event_context
*ctx2
)
1134 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1135 && ctx1
->parent_gen
== ctx2
->parent_gen
1136 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1139 static void __perf_event_sync_stat(struct perf_event
*event
,
1140 struct perf_event
*next_event
)
1144 if (!event
->attr
.inherit_stat
)
1148 * Update the event value, we cannot use perf_event_read()
1149 * because we're in the middle of a context switch and have IRQs
1150 * disabled, which upsets smp_call_function_single(), however
1151 * we know the event must be on the current CPU, therefore we
1152 * don't need to use it.
1154 switch (event
->state
) {
1155 case PERF_EVENT_STATE_ACTIVE
:
1156 event
->pmu
->read(event
);
1159 case PERF_EVENT_STATE_INACTIVE
:
1160 update_event_times(event
);
1168 * In order to keep per-task stats reliable we need to flip the event
1169 * values when we flip the contexts.
1171 value
= local64_read(&next_event
->count
);
1172 value
= local64_xchg(&event
->count
, value
);
1173 local64_set(&next_event
->count
, value
);
1175 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1176 swap(event
->total_time_running
, next_event
->total_time_running
);
1179 * Since we swizzled the values, update the user visible data too.
1181 perf_event_update_userpage(event
);
1182 perf_event_update_userpage(next_event
);
1185 #define list_next_entry(pos, member) \
1186 list_entry(pos->member.next, typeof(*pos), member)
1188 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1189 struct perf_event_context
*next_ctx
)
1191 struct perf_event
*event
, *next_event
;
1196 update_context_time(ctx
);
1198 event
= list_first_entry(&ctx
->event_list
,
1199 struct perf_event
, event_entry
);
1201 next_event
= list_first_entry(&next_ctx
->event_list
,
1202 struct perf_event
, event_entry
);
1204 while (&event
->event_entry
!= &ctx
->event_list
&&
1205 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1207 __perf_event_sync_stat(event
, next_event
);
1209 event
= list_next_entry(event
, event_entry
);
1210 next_event
= list_next_entry(next_event
, event_entry
);
1214 void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1215 struct task_struct
*next
)
1217 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1218 struct perf_event_context
*next_ctx
;
1219 struct perf_event_context
*parent
;
1220 struct perf_cpu_context
*cpuctx
;
1226 cpuctx
= __get_cpu_context(ctx
);
1227 if (!cpuctx
->task_ctx
)
1231 parent
= rcu_dereference(ctx
->parent_ctx
);
1232 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1233 if (parent
&& next_ctx
&&
1234 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1236 * Looks like the two contexts are clones, so we might be
1237 * able to optimize the context switch. We lock both
1238 * contexts and check that they are clones under the
1239 * lock (including re-checking that neither has been
1240 * uncloned in the meantime). It doesn't matter which
1241 * order we take the locks because no other cpu could
1242 * be trying to lock both of these tasks.
1244 raw_spin_lock(&ctx
->lock
);
1245 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1246 if (context_equiv(ctx
, next_ctx
)) {
1248 * XXX do we need a memory barrier of sorts
1249 * wrt to rcu_dereference() of perf_event_ctxp
1251 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1252 next
->perf_event_ctxp
[ctxn
] = ctx
;
1254 next_ctx
->task
= task
;
1257 perf_event_sync_stat(ctx
, next_ctx
);
1259 raw_spin_unlock(&next_ctx
->lock
);
1260 raw_spin_unlock(&ctx
->lock
);
1265 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1266 cpuctx
->task_ctx
= NULL
;
1270 #define for_each_task_context_nr(ctxn) \
1271 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1274 * Called from scheduler to remove the events of the current task,
1275 * with interrupts disabled.
1277 * We stop each event and update the event value in event->count.
1279 * This does not protect us against NMI, but disable()
1280 * sets the disabled bit in the control field of event _before_
1281 * accessing the event control register. If a NMI hits, then it will
1282 * not restart the event.
1284 void __perf_event_task_sched_out(struct task_struct
*task
,
1285 struct task_struct
*next
)
1289 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, NULL
, 0);
1291 for_each_task_context_nr(ctxn
)
1292 perf_event_context_sched_out(task
, ctxn
, next
);
1295 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1296 enum event_type_t event_type
)
1298 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1300 if (!cpuctx
->task_ctx
)
1303 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1306 ctx_sched_out(ctx
, cpuctx
, event_type
);
1307 cpuctx
->task_ctx
= NULL
;
1311 * Called with IRQs disabled
1313 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1314 enum event_type_t event_type
)
1316 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1320 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1321 struct perf_cpu_context
*cpuctx
)
1323 struct perf_event
*event
;
1325 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1326 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1328 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1331 if (group_can_go_on(event
, cpuctx
, 1))
1332 group_sched_in(event
, cpuctx
, ctx
);
1335 * If this pinned group hasn't been scheduled,
1336 * put it in error state.
1338 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1339 update_group_times(event
);
1340 event
->state
= PERF_EVENT_STATE_ERROR
;
1346 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1347 struct perf_cpu_context
*cpuctx
)
1349 struct perf_event
*event
;
1352 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1353 /* Ignore events in OFF or ERROR state */
1354 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1357 * Listen to the 'cpu' scheduling filter constraint
1360 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1363 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1364 if (group_sched_in(event
, cpuctx
, ctx
))
1371 ctx_sched_in(struct perf_event_context
*ctx
,
1372 struct perf_cpu_context
*cpuctx
,
1373 enum event_type_t event_type
)
1375 raw_spin_lock(&ctx
->lock
);
1377 if (likely(!ctx
->nr_events
))
1380 ctx
->timestamp
= perf_clock();
1383 * First go through the list and put on any pinned groups
1384 * in order to give them the best chance of going on.
1386 if (event_type
& EVENT_PINNED
)
1387 ctx_pinned_sched_in(ctx
, cpuctx
);
1389 /* Then walk through the lower prio flexible groups */
1390 if (event_type
& EVENT_FLEXIBLE
)
1391 ctx_flexible_sched_in(ctx
, cpuctx
);
1394 raw_spin_unlock(&ctx
->lock
);
1397 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1398 enum event_type_t event_type
)
1400 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1402 ctx_sched_in(ctx
, cpuctx
, event_type
);
1405 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
1406 enum event_type_t event_type
)
1408 struct perf_cpu_context
*cpuctx
;
1410 cpuctx
= __get_cpu_context(ctx
);
1411 if (cpuctx
->task_ctx
== ctx
)
1414 ctx_sched_in(ctx
, cpuctx
, event_type
);
1415 cpuctx
->task_ctx
= ctx
;
1418 void perf_event_context_sched_in(struct perf_event_context
*ctx
)
1420 struct perf_cpu_context
*cpuctx
;
1422 cpuctx
= __get_cpu_context(ctx
);
1423 if (cpuctx
->task_ctx
== ctx
)
1426 perf_pmu_disable(ctx
->pmu
);
1428 * We want to keep the following priority order:
1429 * cpu pinned (that don't need to move), task pinned,
1430 * cpu flexible, task flexible.
1432 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1434 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1435 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1436 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1438 cpuctx
->task_ctx
= ctx
;
1441 * Since these rotations are per-cpu, we need to ensure the
1442 * cpu-context we got scheduled on is actually rotating.
1444 perf_pmu_rotate_start(ctx
->pmu
);
1445 perf_pmu_enable(ctx
->pmu
);
1449 * Called from scheduler to add the events of the current task
1450 * with interrupts disabled.
1452 * We restore the event value and then enable it.
1454 * This does not protect us against NMI, but enable()
1455 * sets the enabled bit in the control field of event _before_
1456 * accessing the event control register. If a NMI hits, then it will
1457 * keep the event running.
1459 void __perf_event_task_sched_in(struct task_struct
*task
)
1461 struct perf_event_context
*ctx
;
1464 for_each_task_context_nr(ctxn
) {
1465 ctx
= task
->perf_event_ctxp
[ctxn
];
1469 perf_event_context_sched_in(ctx
);
1473 #define MAX_INTERRUPTS (~0ULL)
1475 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1477 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1479 u64 frequency
= event
->attr
.sample_freq
;
1480 u64 sec
= NSEC_PER_SEC
;
1481 u64 divisor
, dividend
;
1483 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1485 count_fls
= fls64(count
);
1486 nsec_fls
= fls64(nsec
);
1487 frequency_fls
= fls64(frequency
);
1491 * We got @count in @nsec, with a target of sample_freq HZ
1492 * the target period becomes:
1495 * period = -------------------
1496 * @nsec * sample_freq
1501 * Reduce accuracy by one bit such that @a and @b converge
1502 * to a similar magnitude.
1504 #define REDUCE_FLS(a, b) \
1506 if (a##_fls > b##_fls) { \
1516 * Reduce accuracy until either term fits in a u64, then proceed with
1517 * the other, so that finally we can do a u64/u64 division.
1519 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1520 REDUCE_FLS(nsec
, frequency
);
1521 REDUCE_FLS(sec
, count
);
1524 if (count_fls
+ sec_fls
> 64) {
1525 divisor
= nsec
* frequency
;
1527 while (count_fls
+ sec_fls
> 64) {
1528 REDUCE_FLS(count
, sec
);
1532 dividend
= count
* sec
;
1534 dividend
= count
* sec
;
1536 while (nsec_fls
+ frequency_fls
> 64) {
1537 REDUCE_FLS(nsec
, frequency
);
1541 divisor
= nsec
* frequency
;
1547 return div64_u64(dividend
, divisor
);
1550 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1552 struct hw_perf_event
*hwc
= &event
->hw
;
1553 s64 period
, sample_period
;
1556 period
= perf_calculate_period(event
, nsec
, count
);
1558 delta
= (s64
)(period
- hwc
->sample_period
);
1559 delta
= (delta
+ 7) / 8; /* low pass filter */
1561 sample_period
= hwc
->sample_period
+ delta
;
1566 hwc
->sample_period
= sample_period
;
1568 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
1569 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
1570 local64_set(&hwc
->period_left
, 0);
1571 event
->pmu
->start(event
, PERF_EF_RELOAD
);
1575 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
1577 struct perf_event
*event
;
1578 struct hw_perf_event
*hwc
;
1579 u64 interrupts
, now
;
1582 raw_spin_lock(&ctx
->lock
);
1583 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1584 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1587 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1592 interrupts
= hwc
->interrupts
;
1593 hwc
->interrupts
= 0;
1596 * unthrottle events on the tick
1598 if (interrupts
== MAX_INTERRUPTS
) {
1599 perf_log_throttle(event
, 1);
1600 event
->pmu
->start(event
, 0);
1603 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1606 event
->pmu
->read(event
);
1607 now
= local64_read(&event
->count
);
1608 delta
= now
- hwc
->freq_count_stamp
;
1609 hwc
->freq_count_stamp
= now
;
1612 perf_adjust_period(event
, period
, delta
);
1614 raw_spin_unlock(&ctx
->lock
);
1618 * Round-robin a context's events:
1620 static void rotate_ctx(struct perf_event_context
*ctx
)
1622 raw_spin_lock(&ctx
->lock
);
1624 /* Rotate the first entry last of non-pinned groups */
1625 list_rotate_left(&ctx
->flexible_groups
);
1627 raw_spin_unlock(&ctx
->lock
);
1631 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1632 * because they're strictly cpu affine and rotate_start is called with IRQs
1633 * disabled, while rotate_context is called from IRQ context.
1635 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
1637 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
1638 struct perf_event_context
*ctx
= NULL
;
1639 int rotate
= 0, remove
= 1;
1641 if (cpuctx
->ctx
.nr_events
) {
1643 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1647 ctx
= cpuctx
->task_ctx
;
1648 if (ctx
&& ctx
->nr_events
) {
1650 if (ctx
->nr_events
!= ctx
->nr_active
)
1654 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1655 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
1657 perf_ctx_adjust_freq(ctx
, interval
);
1662 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1664 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1666 rotate_ctx(&cpuctx
->ctx
);
1670 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1672 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
1676 list_del_init(&cpuctx
->rotation_list
);
1678 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1681 void perf_event_task_tick(void)
1683 struct list_head
*head
= &__get_cpu_var(rotation_list
);
1684 struct perf_cpu_context
*cpuctx
, *tmp
;
1686 WARN_ON(!irqs_disabled());
1688 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
1689 if (cpuctx
->jiffies_interval
== 1 ||
1690 !(jiffies
% cpuctx
->jiffies_interval
))
1691 perf_rotate_context(cpuctx
);
1695 static int event_enable_on_exec(struct perf_event
*event
,
1696 struct perf_event_context
*ctx
)
1698 if (!event
->attr
.enable_on_exec
)
1701 event
->attr
.enable_on_exec
= 0;
1702 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1705 __perf_event_mark_enabled(event
, ctx
);
1711 * Enable all of a task's events that have been marked enable-on-exec.
1712 * This expects task == current.
1714 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
1716 struct perf_event
*event
;
1717 unsigned long flags
;
1721 local_irq_save(flags
);
1722 if (!ctx
|| !ctx
->nr_events
)
1725 task_ctx_sched_out(ctx
, EVENT_ALL
);
1727 raw_spin_lock(&ctx
->lock
);
1729 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1730 ret
= event_enable_on_exec(event
, ctx
);
1735 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1736 ret
= event_enable_on_exec(event
, ctx
);
1742 * Unclone this context if we enabled any event.
1747 raw_spin_unlock(&ctx
->lock
);
1749 perf_event_context_sched_in(ctx
);
1751 local_irq_restore(flags
);
1755 * Cross CPU call to read the hardware event
1757 static void __perf_event_read(void *info
)
1759 struct perf_event
*event
= info
;
1760 struct perf_event_context
*ctx
= event
->ctx
;
1761 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1764 * If this is a task context, we need to check whether it is
1765 * the current task context of this cpu. If not it has been
1766 * scheduled out before the smp call arrived. In that case
1767 * event->count would have been updated to a recent sample
1768 * when the event was scheduled out.
1770 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1773 raw_spin_lock(&ctx
->lock
);
1774 update_context_time(ctx
);
1775 update_event_times(event
);
1776 raw_spin_unlock(&ctx
->lock
);
1778 event
->pmu
->read(event
);
1781 static inline u64
perf_event_count(struct perf_event
*event
)
1783 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
1786 static u64
perf_event_read(struct perf_event
*event
)
1789 * If event is enabled and currently active on a CPU, update the
1790 * value in the event structure:
1792 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1793 smp_call_function_single(event
->oncpu
,
1794 __perf_event_read
, event
, 1);
1795 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1796 struct perf_event_context
*ctx
= event
->ctx
;
1797 unsigned long flags
;
1799 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1801 * may read while context is not active
1802 * (e.g., thread is blocked), in that case
1803 * we cannot update context time
1806 update_context_time(ctx
);
1807 update_event_times(event
);
1808 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1811 return perf_event_count(event
);
1818 struct callchain_cpus_entries
{
1819 struct rcu_head rcu_head
;
1820 struct perf_callchain_entry
*cpu_entries
[0];
1823 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
1824 static atomic_t nr_callchain_events
;
1825 static DEFINE_MUTEX(callchain_mutex
);
1826 struct callchain_cpus_entries
*callchain_cpus_entries
;
1829 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1830 struct pt_regs
*regs
)
1834 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
1835 struct pt_regs
*regs
)
1839 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
1841 struct callchain_cpus_entries
*entries
;
1844 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
1846 for_each_possible_cpu(cpu
)
1847 kfree(entries
->cpu_entries
[cpu
]);
1852 static void release_callchain_buffers(void)
1854 struct callchain_cpus_entries
*entries
;
1856 entries
= callchain_cpus_entries
;
1857 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
1858 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
1861 static int alloc_callchain_buffers(void)
1865 struct callchain_cpus_entries
*entries
;
1868 * We can't use the percpu allocation API for data that can be
1869 * accessed from NMI. Use a temporary manual per cpu allocation
1870 * until that gets sorted out.
1872 size
= sizeof(*entries
) + sizeof(struct perf_callchain_entry
*) *
1873 num_possible_cpus();
1875 entries
= kzalloc(size
, GFP_KERNEL
);
1879 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
1881 for_each_possible_cpu(cpu
) {
1882 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
1884 if (!entries
->cpu_entries
[cpu
])
1888 rcu_assign_pointer(callchain_cpus_entries
, entries
);
1893 for_each_possible_cpu(cpu
)
1894 kfree(entries
->cpu_entries
[cpu
]);
1900 static int get_callchain_buffers(void)
1905 mutex_lock(&callchain_mutex
);
1907 count
= atomic_inc_return(&nr_callchain_events
);
1908 if (WARN_ON_ONCE(count
< 1)) {
1914 /* If the allocation failed, give up */
1915 if (!callchain_cpus_entries
)
1920 err
= alloc_callchain_buffers();
1922 release_callchain_buffers();
1924 mutex_unlock(&callchain_mutex
);
1929 static void put_callchain_buffers(void)
1931 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
1932 release_callchain_buffers();
1933 mutex_unlock(&callchain_mutex
);
1937 static int get_recursion_context(int *recursion
)
1945 else if (in_softirq())
1950 if (recursion
[rctx
])
1959 static inline void put_recursion_context(int *recursion
, int rctx
)
1965 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
1968 struct callchain_cpus_entries
*entries
;
1970 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
1974 entries
= rcu_dereference(callchain_cpus_entries
);
1978 cpu
= smp_processor_id();
1980 return &entries
->cpu_entries
[cpu
][*rctx
];
1984 put_callchain_entry(int rctx
)
1986 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
1989 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
1992 struct perf_callchain_entry
*entry
;
1995 entry
= get_callchain_entry(&rctx
);
2004 if (!user_mode(regs
)) {
2005 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2006 perf_callchain_kernel(entry
, regs
);
2008 regs
= task_pt_regs(current
);
2014 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2015 perf_callchain_user(entry
, regs
);
2019 put_callchain_entry(rctx
);
2025 * Initialize the perf_event context in a task_struct:
2027 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2029 raw_spin_lock_init(&ctx
->lock
);
2030 mutex_init(&ctx
->mutex
);
2031 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2032 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2033 INIT_LIST_HEAD(&ctx
->event_list
);
2034 atomic_set(&ctx
->refcount
, 1);
2037 static struct perf_event_context
*
2038 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2040 struct perf_event_context
*ctx
;
2042 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2046 __perf_event_init_context(ctx
);
2049 get_task_struct(task
);
2056 static struct task_struct
*
2057 find_lively_task_by_vpid(pid_t vpid
)
2059 struct task_struct
*task
;
2066 task
= find_task_by_vpid(vpid
);
2068 get_task_struct(task
);
2072 return ERR_PTR(-ESRCH
);
2075 * Can't attach events to a dying task.
2078 if (task
->flags
& PF_EXITING
)
2081 /* Reuse ptrace permission checks for now. */
2083 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2088 put_task_struct(task
);
2089 return ERR_PTR(err
);
2093 static struct perf_event_context
*
2094 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2096 struct perf_event_context
*ctx
;
2097 struct perf_cpu_context
*cpuctx
;
2098 unsigned long flags
;
2101 if (!task
&& cpu
!= -1) {
2102 /* Must be root to operate on a CPU event: */
2103 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2104 return ERR_PTR(-EACCES
);
2106 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
2107 return ERR_PTR(-EINVAL
);
2110 * We could be clever and allow to attach a event to an
2111 * offline CPU and activate it when the CPU comes up, but
2114 if (!cpu_online(cpu
))
2115 return ERR_PTR(-ENODEV
);
2117 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2125 ctxn
= pmu
->task_ctx_nr
;
2130 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2133 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2137 ctx
= alloc_perf_context(pmu
, task
);
2144 if (cmpxchg(&task
->perf_event_ctxp
[ctxn
], NULL
, ctx
)) {
2146 * We raced with some other task; use
2147 * the context they set.
2149 put_task_struct(task
);
2158 return ERR_PTR(err
);
2161 static void perf_event_free_filter(struct perf_event
*event
);
2163 static void free_event_rcu(struct rcu_head
*head
)
2165 struct perf_event
*event
;
2167 event
= container_of(head
, struct perf_event
, rcu_head
);
2169 put_pid_ns(event
->ns
);
2170 perf_event_free_filter(event
);
2174 static void perf_buffer_put(struct perf_buffer
*buffer
);
2176 static void free_event(struct perf_event
*event
)
2178 irq_work_sync(&event
->pending
);
2180 if (!event
->parent
) {
2181 if (event
->attach_state
& PERF_ATTACH_TASK
)
2182 jump_label_dec(&perf_task_events
);
2183 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2184 atomic_dec(&nr_mmap_events
);
2185 if (event
->attr
.comm
)
2186 atomic_dec(&nr_comm_events
);
2187 if (event
->attr
.task
)
2188 atomic_dec(&nr_task_events
);
2189 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2190 put_callchain_buffers();
2193 if (event
->buffer
) {
2194 perf_buffer_put(event
->buffer
);
2195 event
->buffer
= NULL
;
2199 event
->destroy(event
);
2202 put_ctx(event
->ctx
);
2204 call_rcu(&event
->rcu_head
, free_event_rcu
);
2207 int perf_event_release_kernel(struct perf_event
*event
)
2209 struct perf_event_context
*ctx
= event
->ctx
;
2212 * Remove from the PMU, can't get re-enabled since we got
2213 * here because the last ref went.
2215 perf_event_disable(event
);
2217 WARN_ON_ONCE(ctx
->parent_ctx
);
2219 * There are two ways this annotation is useful:
2221 * 1) there is a lock recursion from perf_event_exit_task
2222 * see the comment there.
2224 * 2) there is a lock-inversion with mmap_sem through
2225 * perf_event_read_group(), which takes faults while
2226 * holding ctx->mutex, however this is called after
2227 * the last filedesc died, so there is no possibility
2228 * to trigger the AB-BA case.
2230 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2231 raw_spin_lock_irq(&ctx
->lock
);
2232 perf_group_detach(event
);
2233 list_del_event(event
, ctx
);
2234 raw_spin_unlock_irq(&ctx
->lock
);
2235 mutex_unlock(&ctx
->mutex
);
2237 mutex_lock(&event
->owner
->perf_event_mutex
);
2238 list_del_init(&event
->owner_entry
);
2239 mutex_unlock(&event
->owner
->perf_event_mutex
);
2240 put_task_struct(event
->owner
);
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2249 * Called when the last reference to the file is gone.
2251 static int perf_release(struct inode
*inode
, struct file
*file
)
2253 struct perf_event
*event
= file
->private_data
;
2255 file
->private_data
= NULL
;
2257 return perf_event_release_kernel(event
);
2260 static int perf_event_read_size(struct perf_event
*event
)
2262 int entry
= sizeof(u64
); /* value */
2266 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2267 size
+= sizeof(u64
);
2269 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2270 size
+= sizeof(u64
);
2272 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
2273 entry
+= sizeof(u64
);
2275 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
2276 nr
+= event
->group_leader
->nr_siblings
;
2277 size
+= sizeof(u64
);
2285 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2287 struct perf_event
*child
;
2293 mutex_lock(&event
->child_mutex
);
2294 total
+= perf_event_read(event
);
2295 *enabled
+= event
->total_time_enabled
+
2296 atomic64_read(&event
->child_total_time_enabled
);
2297 *running
+= event
->total_time_running
+
2298 atomic64_read(&event
->child_total_time_running
);
2300 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2301 total
+= perf_event_read(child
);
2302 *enabled
+= child
->total_time_enabled
;
2303 *running
+= child
->total_time_running
;
2305 mutex_unlock(&event
->child_mutex
);
2309 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2311 static int perf_event_read_group(struct perf_event
*event
,
2312 u64 read_format
, char __user
*buf
)
2314 struct perf_event
*leader
= event
->group_leader
, *sub
;
2315 int n
= 0, size
= 0, ret
= -EFAULT
;
2316 struct perf_event_context
*ctx
= leader
->ctx
;
2318 u64 count
, enabled
, running
;
2320 mutex_lock(&ctx
->mutex
);
2321 count
= perf_event_read_value(leader
, &enabled
, &running
);
2323 values
[n
++] = 1 + leader
->nr_siblings
;
2324 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2325 values
[n
++] = enabled
;
2326 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2327 values
[n
++] = running
;
2328 values
[n
++] = count
;
2329 if (read_format
& PERF_FORMAT_ID
)
2330 values
[n
++] = primary_event_id(leader
);
2332 size
= n
* sizeof(u64
);
2334 if (copy_to_user(buf
, values
, size
))
2339 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2342 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2343 if (read_format
& PERF_FORMAT_ID
)
2344 values
[n
++] = primary_event_id(sub
);
2346 size
= n
* sizeof(u64
);
2348 if (copy_to_user(buf
+ ret
, values
, size
)) {
2356 mutex_unlock(&ctx
->mutex
);
2361 static int perf_event_read_one(struct perf_event
*event
,
2362 u64 read_format
, char __user
*buf
)
2364 u64 enabled
, running
;
2368 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2369 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2370 values
[n
++] = enabled
;
2371 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2372 values
[n
++] = running
;
2373 if (read_format
& PERF_FORMAT_ID
)
2374 values
[n
++] = primary_event_id(event
);
2376 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2379 return n
* sizeof(u64
);
2383 * Read the performance event - simple non blocking version for now
2386 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2388 u64 read_format
= event
->attr
.read_format
;
2392 * Return end-of-file for a read on a event that is in
2393 * error state (i.e. because it was pinned but it couldn't be
2394 * scheduled on to the CPU at some point).
2396 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2399 if (count
< perf_event_read_size(event
))
2402 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2403 if (read_format
& PERF_FORMAT_GROUP
)
2404 ret
= perf_event_read_group(event
, read_format
, buf
);
2406 ret
= perf_event_read_one(event
, read_format
, buf
);
2412 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2414 struct perf_event
*event
= file
->private_data
;
2416 return perf_read_hw(event
, buf
, count
);
2419 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2421 struct perf_event
*event
= file
->private_data
;
2422 struct perf_buffer
*buffer
;
2423 unsigned int events
= POLL_HUP
;
2426 buffer
= rcu_dereference(event
->buffer
);
2428 events
= atomic_xchg(&buffer
->poll
, 0);
2431 poll_wait(file
, &event
->waitq
, wait
);
2436 static void perf_event_reset(struct perf_event
*event
)
2438 (void)perf_event_read(event
);
2439 local64_set(&event
->count
, 0);
2440 perf_event_update_userpage(event
);
2444 * Holding the top-level event's child_mutex means that any
2445 * descendant process that has inherited this event will block
2446 * in sync_child_event if it goes to exit, thus satisfying the
2447 * task existence requirements of perf_event_enable/disable.
2449 static void perf_event_for_each_child(struct perf_event
*event
,
2450 void (*func
)(struct perf_event
*))
2452 struct perf_event
*child
;
2454 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2455 mutex_lock(&event
->child_mutex
);
2457 list_for_each_entry(child
, &event
->child_list
, child_list
)
2459 mutex_unlock(&event
->child_mutex
);
2462 static void perf_event_for_each(struct perf_event
*event
,
2463 void (*func
)(struct perf_event
*))
2465 struct perf_event_context
*ctx
= event
->ctx
;
2466 struct perf_event
*sibling
;
2468 WARN_ON_ONCE(ctx
->parent_ctx
);
2469 mutex_lock(&ctx
->mutex
);
2470 event
= event
->group_leader
;
2472 perf_event_for_each_child(event
, func
);
2474 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2475 perf_event_for_each_child(event
, func
);
2476 mutex_unlock(&ctx
->mutex
);
2479 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2481 struct perf_event_context
*ctx
= event
->ctx
;
2485 if (!event
->attr
.sample_period
)
2488 if (copy_from_user(&value
, arg
, sizeof(value
)))
2494 raw_spin_lock_irq(&ctx
->lock
);
2495 if (event
->attr
.freq
) {
2496 if (value
> sysctl_perf_event_sample_rate
) {
2501 event
->attr
.sample_freq
= value
;
2503 event
->attr
.sample_period
= value
;
2504 event
->hw
.sample_period
= value
;
2507 raw_spin_unlock_irq(&ctx
->lock
);
2512 static const struct file_operations perf_fops
;
2514 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2518 file
= fget_light(fd
, fput_needed
);
2520 return ERR_PTR(-EBADF
);
2522 if (file
->f_op
!= &perf_fops
) {
2523 fput_light(file
, *fput_needed
);
2525 return ERR_PTR(-EBADF
);
2528 return file
->private_data
;
2531 static int perf_event_set_output(struct perf_event
*event
,
2532 struct perf_event
*output_event
);
2533 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2535 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2537 struct perf_event
*event
= file
->private_data
;
2538 void (*func
)(struct perf_event
*);
2542 case PERF_EVENT_IOC_ENABLE
:
2543 func
= perf_event_enable
;
2545 case PERF_EVENT_IOC_DISABLE
:
2546 func
= perf_event_disable
;
2548 case PERF_EVENT_IOC_RESET
:
2549 func
= perf_event_reset
;
2552 case PERF_EVENT_IOC_REFRESH
:
2553 return perf_event_refresh(event
, arg
);
2555 case PERF_EVENT_IOC_PERIOD
:
2556 return perf_event_period(event
, (u64 __user
*)arg
);
2558 case PERF_EVENT_IOC_SET_OUTPUT
:
2560 struct perf_event
*output_event
= NULL
;
2561 int fput_needed
= 0;
2565 output_event
= perf_fget_light(arg
, &fput_needed
);
2566 if (IS_ERR(output_event
))
2567 return PTR_ERR(output_event
);
2570 ret
= perf_event_set_output(event
, output_event
);
2572 fput_light(output_event
->filp
, fput_needed
);
2577 case PERF_EVENT_IOC_SET_FILTER
:
2578 return perf_event_set_filter(event
, (void __user
*)arg
);
2584 if (flags
& PERF_IOC_FLAG_GROUP
)
2585 perf_event_for_each(event
, func
);
2587 perf_event_for_each_child(event
, func
);
2592 int perf_event_task_enable(void)
2594 struct perf_event
*event
;
2596 mutex_lock(¤t
->perf_event_mutex
);
2597 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2598 perf_event_for_each_child(event
, perf_event_enable
);
2599 mutex_unlock(¤t
->perf_event_mutex
);
2604 int perf_event_task_disable(void)
2606 struct perf_event
*event
;
2608 mutex_lock(¤t
->perf_event_mutex
);
2609 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2610 perf_event_for_each_child(event
, perf_event_disable
);
2611 mutex_unlock(¤t
->perf_event_mutex
);
2616 #ifndef PERF_EVENT_INDEX_OFFSET
2617 # define PERF_EVENT_INDEX_OFFSET 0
2620 static int perf_event_index(struct perf_event
*event
)
2622 if (event
->hw
.state
& PERF_HES_STOPPED
)
2625 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2628 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2632 * Callers need to ensure there can be no nesting of this function, otherwise
2633 * the seqlock logic goes bad. We can not serialize this because the arch
2634 * code calls this from NMI context.
2636 void perf_event_update_userpage(struct perf_event
*event
)
2638 struct perf_event_mmap_page
*userpg
;
2639 struct perf_buffer
*buffer
;
2642 buffer
= rcu_dereference(event
->buffer
);
2646 userpg
= buffer
->user_page
;
2649 * Disable preemption so as to not let the corresponding user-space
2650 * spin too long if we get preempted.
2655 userpg
->index
= perf_event_index(event
);
2656 userpg
->offset
= perf_event_count(event
);
2657 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2658 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
2660 userpg
->time_enabled
= event
->total_time_enabled
+
2661 atomic64_read(&event
->child_total_time_enabled
);
2663 userpg
->time_running
= event
->total_time_running
+
2664 atomic64_read(&event
->child_total_time_running
);
2673 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
2676 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
2678 long max_size
= perf_data_size(buffer
);
2681 buffer
->watermark
= min(max_size
, watermark
);
2683 if (!buffer
->watermark
)
2684 buffer
->watermark
= max_size
/ 2;
2686 if (flags
& PERF_BUFFER_WRITABLE
)
2687 buffer
->writable
= 1;
2689 atomic_set(&buffer
->refcount
, 1);
2692 #ifndef CONFIG_PERF_USE_VMALLOC
2695 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2698 static struct page
*
2699 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2701 if (pgoff
> buffer
->nr_pages
)
2705 return virt_to_page(buffer
->user_page
);
2707 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
2710 static void *perf_mmap_alloc_page(int cpu
)
2715 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2716 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2720 return page_address(page
);
2723 static struct perf_buffer
*
2724 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2726 struct perf_buffer
*buffer
;
2730 size
= sizeof(struct perf_buffer
);
2731 size
+= nr_pages
* sizeof(void *);
2733 buffer
= kzalloc(size
, GFP_KERNEL
);
2737 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
2738 if (!buffer
->user_page
)
2739 goto fail_user_page
;
2741 for (i
= 0; i
< nr_pages
; i
++) {
2742 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
2743 if (!buffer
->data_pages
[i
])
2744 goto fail_data_pages
;
2747 buffer
->nr_pages
= nr_pages
;
2749 perf_buffer_init(buffer
, watermark
, flags
);
2754 for (i
--; i
>= 0; i
--)
2755 free_page((unsigned long)buffer
->data_pages
[i
]);
2757 free_page((unsigned long)buffer
->user_page
);
2766 static void perf_mmap_free_page(unsigned long addr
)
2768 struct page
*page
= virt_to_page((void *)addr
);
2770 page
->mapping
= NULL
;
2774 static void perf_buffer_free(struct perf_buffer
*buffer
)
2778 perf_mmap_free_page((unsigned long)buffer
->user_page
);
2779 for (i
= 0; i
< buffer
->nr_pages
; i
++)
2780 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
2784 static inline int page_order(struct perf_buffer
*buffer
)
2792 * Back perf_mmap() with vmalloc memory.
2794 * Required for architectures that have d-cache aliasing issues.
2797 static inline int page_order(struct perf_buffer
*buffer
)
2799 return buffer
->page_order
;
2802 static struct page
*
2803 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2805 if (pgoff
> (1UL << page_order(buffer
)))
2808 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
2811 static void perf_mmap_unmark_page(void *addr
)
2813 struct page
*page
= vmalloc_to_page(addr
);
2815 page
->mapping
= NULL
;
2818 static void perf_buffer_free_work(struct work_struct
*work
)
2820 struct perf_buffer
*buffer
;
2824 buffer
= container_of(work
, struct perf_buffer
, work
);
2825 nr
= 1 << page_order(buffer
);
2827 base
= buffer
->user_page
;
2828 for (i
= 0; i
< nr
+ 1; i
++)
2829 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2835 static void perf_buffer_free(struct perf_buffer
*buffer
)
2837 schedule_work(&buffer
->work
);
2840 static struct perf_buffer
*
2841 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2843 struct perf_buffer
*buffer
;
2847 size
= sizeof(struct perf_buffer
);
2848 size
+= sizeof(void *);
2850 buffer
= kzalloc(size
, GFP_KERNEL
);
2854 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
2856 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2860 buffer
->user_page
= all_buf
;
2861 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2862 buffer
->page_order
= ilog2(nr_pages
);
2863 buffer
->nr_pages
= 1;
2865 perf_buffer_init(buffer
, watermark
, flags
);
2878 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
2880 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
2883 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2885 struct perf_event
*event
= vma
->vm_file
->private_data
;
2886 struct perf_buffer
*buffer
;
2887 int ret
= VM_FAULT_SIGBUS
;
2889 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2890 if (vmf
->pgoff
== 0)
2896 buffer
= rcu_dereference(event
->buffer
);
2900 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2903 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
2907 get_page(vmf
->page
);
2908 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2909 vmf
->page
->index
= vmf
->pgoff
;
2918 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
2920 struct perf_buffer
*buffer
;
2922 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
2923 perf_buffer_free(buffer
);
2926 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
2928 struct perf_buffer
*buffer
;
2931 buffer
= rcu_dereference(event
->buffer
);
2933 if (!atomic_inc_not_zero(&buffer
->refcount
))
2941 static void perf_buffer_put(struct perf_buffer
*buffer
)
2943 if (!atomic_dec_and_test(&buffer
->refcount
))
2946 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
2949 static void perf_mmap_open(struct vm_area_struct
*vma
)
2951 struct perf_event
*event
= vma
->vm_file
->private_data
;
2953 atomic_inc(&event
->mmap_count
);
2956 static void perf_mmap_close(struct vm_area_struct
*vma
)
2958 struct perf_event
*event
= vma
->vm_file
->private_data
;
2960 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2961 unsigned long size
= perf_data_size(event
->buffer
);
2962 struct user_struct
*user
= event
->mmap_user
;
2963 struct perf_buffer
*buffer
= event
->buffer
;
2965 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2966 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
2967 rcu_assign_pointer(event
->buffer
, NULL
);
2968 mutex_unlock(&event
->mmap_mutex
);
2970 perf_buffer_put(buffer
);
2975 static const struct vm_operations_struct perf_mmap_vmops
= {
2976 .open
= perf_mmap_open
,
2977 .close
= perf_mmap_close
,
2978 .fault
= perf_mmap_fault
,
2979 .page_mkwrite
= perf_mmap_fault
,
2982 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2984 struct perf_event
*event
= file
->private_data
;
2985 unsigned long user_locked
, user_lock_limit
;
2986 struct user_struct
*user
= current_user();
2987 unsigned long locked
, lock_limit
;
2988 struct perf_buffer
*buffer
;
2989 unsigned long vma_size
;
2990 unsigned long nr_pages
;
2991 long user_extra
, extra
;
2992 int ret
= 0, flags
= 0;
2995 * Don't allow mmap() of inherited per-task counters. This would
2996 * create a performance issue due to all children writing to the
2999 if (event
->cpu
== -1 && event
->attr
.inherit
)
3002 if (!(vma
->vm_flags
& VM_SHARED
))
3005 vma_size
= vma
->vm_end
- vma
->vm_start
;
3006 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3009 * If we have buffer pages ensure they're a power-of-two number, so we
3010 * can do bitmasks instead of modulo.
3012 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3015 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3018 if (vma
->vm_pgoff
!= 0)
3021 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3022 mutex_lock(&event
->mmap_mutex
);
3023 if (event
->buffer
) {
3024 if (event
->buffer
->nr_pages
== nr_pages
)
3025 atomic_inc(&event
->buffer
->refcount
);
3031 user_extra
= nr_pages
+ 1;
3032 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3035 * Increase the limit linearly with more CPUs:
3037 user_lock_limit
*= num_online_cpus();
3039 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3042 if (user_locked
> user_lock_limit
)
3043 extra
= user_locked
- user_lock_limit
;
3045 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3046 lock_limit
>>= PAGE_SHIFT
;
3047 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3049 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3050 !capable(CAP_IPC_LOCK
)) {
3055 WARN_ON(event
->buffer
);
3057 if (vma
->vm_flags
& VM_WRITE
)
3058 flags
|= PERF_BUFFER_WRITABLE
;
3060 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3066 rcu_assign_pointer(event
->buffer
, buffer
);
3068 atomic_long_add(user_extra
, &user
->locked_vm
);
3069 event
->mmap_locked
= extra
;
3070 event
->mmap_user
= get_current_user();
3071 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3075 atomic_inc(&event
->mmap_count
);
3076 mutex_unlock(&event
->mmap_mutex
);
3078 vma
->vm_flags
|= VM_RESERVED
;
3079 vma
->vm_ops
= &perf_mmap_vmops
;
3084 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3086 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3087 struct perf_event
*event
= filp
->private_data
;
3090 mutex_lock(&inode
->i_mutex
);
3091 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3092 mutex_unlock(&inode
->i_mutex
);
3100 static const struct file_operations perf_fops
= {
3101 .llseek
= no_llseek
,
3102 .release
= perf_release
,
3105 .unlocked_ioctl
= perf_ioctl
,
3106 .compat_ioctl
= perf_ioctl
,
3108 .fasync
= perf_fasync
,
3114 * If there's data, ensure we set the poll() state and publish everything
3115 * to user-space before waking everybody up.
3118 void perf_event_wakeup(struct perf_event
*event
)
3120 wake_up_all(&event
->waitq
);
3122 if (event
->pending_kill
) {
3123 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3124 event
->pending_kill
= 0;
3128 static void perf_pending_event(struct irq_work
*entry
)
3130 struct perf_event
*event
= container_of(entry
,
3131 struct perf_event
, pending
);
3133 if (event
->pending_disable
) {
3134 event
->pending_disable
= 0;
3135 __perf_event_disable(event
);
3138 if (event
->pending_wakeup
) {
3139 event
->pending_wakeup
= 0;
3140 perf_event_wakeup(event
);
3145 * We assume there is only KVM supporting the callbacks.
3146 * Later on, we might change it to a list if there is
3147 * another virtualization implementation supporting the callbacks.
3149 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3151 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3153 perf_guest_cbs
= cbs
;
3156 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3158 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3160 perf_guest_cbs
= NULL
;
3163 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3168 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3169 unsigned long offset
, unsigned long head
)
3173 if (!buffer
->writable
)
3176 mask
= perf_data_size(buffer
) - 1;
3178 offset
= (offset
- tail
) & mask
;
3179 head
= (head
- tail
) & mask
;
3181 if ((int)(head
- offset
) < 0)
3187 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3189 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3192 handle
->event
->pending_wakeup
= 1;
3193 irq_work_queue(&handle
->event
->pending
);
3195 perf_event_wakeup(handle
->event
);
3199 * We need to ensure a later event_id doesn't publish a head when a former
3200 * event isn't done writing. However since we need to deal with NMIs we
3201 * cannot fully serialize things.
3203 * We only publish the head (and generate a wakeup) when the outer-most
3206 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3208 struct perf_buffer
*buffer
= handle
->buffer
;
3211 local_inc(&buffer
->nest
);
3212 handle
->wakeup
= local_read(&buffer
->wakeup
);
3215 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3217 struct perf_buffer
*buffer
= handle
->buffer
;
3221 head
= local_read(&buffer
->head
);
3224 * IRQ/NMI can happen here, which means we can miss a head update.
3227 if (!local_dec_and_test(&buffer
->nest
))
3231 * Publish the known good head. Rely on the full barrier implied
3232 * by atomic_dec_and_test() order the buffer->head read and this
3235 buffer
->user_page
->data_head
= head
;
3238 * Now check if we missed an update, rely on the (compiler)
3239 * barrier in atomic_dec_and_test() to re-read buffer->head.
3241 if (unlikely(head
!= local_read(&buffer
->head
))) {
3242 local_inc(&buffer
->nest
);
3246 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3247 perf_output_wakeup(handle
);
3253 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3254 const void *buf
, unsigned int len
)
3257 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3259 memcpy(handle
->addr
, buf
, size
);
3262 handle
->addr
+= size
;
3264 handle
->size
-= size
;
3265 if (!handle
->size
) {
3266 struct perf_buffer
*buffer
= handle
->buffer
;
3269 handle
->page
&= buffer
->nr_pages
- 1;
3270 handle
->addr
= buffer
->data_pages
[handle
->page
];
3271 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
3276 int perf_output_begin(struct perf_output_handle
*handle
,
3277 struct perf_event
*event
, unsigned int size
,
3278 int nmi
, int sample
)
3280 struct perf_buffer
*buffer
;
3281 unsigned long tail
, offset
, head
;
3284 struct perf_event_header header
;
3291 * For inherited events we send all the output towards the parent.
3294 event
= event
->parent
;
3296 buffer
= rcu_dereference(event
->buffer
);
3300 handle
->buffer
= buffer
;
3301 handle
->event
= event
;
3303 handle
->sample
= sample
;
3305 if (!buffer
->nr_pages
)
3308 have_lost
= local_read(&buffer
->lost
);
3310 size
+= sizeof(lost_event
);
3312 perf_output_get_handle(handle
);
3316 * Userspace could choose to issue a mb() before updating the
3317 * tail pointer. So that all reads will be completed before the
3320 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
3322 offset
= head
= local_read(&buffer
->head
);
3324 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
3326 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
3328 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
3329 local_add(buffer
->watermark
, &buffer
->wakeup
);
3331 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
3332 handle
->page
&= buffer
->nr_pages
- 1;
3333 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
3334 handle
->addr
= buffer
->data_pages
[handle
->page
];
3335 handle
->addr
+= handle
->size
;
3336 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
3339 lost_event
.header
.type
= PERF_RECORD_LOST
;
3340 lost_event
.header
.misc
= 0;
3341 lost_event
.header
.size
= sizeof(lost_event
);
3342 lost_event
.id
= event
->id
;
3343 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
3345 perf_output_put(handle
, lost_event
);
3351 local_inc(&buffer
->lost
);
3352 perf_output_put_handle(handle
);
3359 void perf_output_end(struct perf_output_handle
*handle
)
3361 struct perf_event
*event
= handle
->event
;
3362 struct perf_buffer
*buffer
= handle
->buffer
;
3364 int wakeup_events
= event
->attr
.wakeup_events
;
3366 if (handle
->sample
&& wakeup_events
) {
3367 int events
= local_inc_return(&buffer
->events
);
3368 if (events
>= wakeup_events
) {
3369 local_sub(wakeup_events
, &buffer
->events
);
3370 local_inc(&buffer
->wakeup
);
3374 perf_output_put_handle(handle
);
3378 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3381 * only top level events have the pid namespace they were created in
3384 event
= event
->parent
;
3386 return task_tgid_nr_ns(p
, event
->ns
);
3389 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3392 * only top level events have the pid namespace they were created in
3395 event
= event
->parent
;
3397 return task_pid_nr_ns(p
, event
->ns
);
3400 static void perf_output_read_one(struct perf_output_handle
*handle
,
3401 struct perf_event
*event
,
3402 u64 enabled
, u64 running
)
3404 u64 read_format
= event
->attr
.read_format
;
3408 values
[n
++] = perf_event_count(event
);
3409 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3410 values
[n
++] = enabled
+
3411 atomic64_read(&event
->child_total_time_enabled
);
3413 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3414 values
[n
++] = running
+
3415 atomic64_read(&event
->child_total_time_running
);
3417 if (read_format
& PERF_FORMAT_ID
)
3418 values
[n
++] = primary_event_id(event
);
3420 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3424 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3426 static void perf_output_read_group(struct perf_output_handle
*handle
,
3427 struct perf_event
*event
,
3428 u64 enabled
, u64 running
)
3430 struct perf_event
*leader
= event
->group_leader
, *sub
;
3431 u64 read_format
= event
->attr
.read_format
;
3435 values
[n
++] = 1 + leader
->nr_siblings
;
3437 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3438 values
[n
++] = enabled
;
3440 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3441 values
[n
++] = running
;
3443 if (leader
!= event
)
3444 leader
->pmu
->read(leader
);
3446 values
[n
++] = perf_event_count(leader
);
3447 if (read_format
& PERF_FORMAT_ID
)
3448 values
[n
++] = primary_event_id(leader
);
3450 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3452 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3456 sub
->pmu
->read(sub
);
3458 values
[n
++] = perf_event_count(sub
);
3459 if (read_format
& PERF_FORMAT_ID
)
3460 values
[n
++] = primary_event_id(sub
);
3462 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3466 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3467 PERF_FORMAT_TOTAL_TIME_RUNNING)
3469 static void perf_output_read(struct perf_output_handle
*handle
,
3470 struct perf_event
*event
)
3472 u64 enabled
= 0, running
= 0, now
, ctx_time
;
3473 u64 read_format
= event
->attr
.read_format
;
3476 * compute total_time_enabled, total_time_running
3477 * based on snapshot values taken when the event
3478 * was last scheduled in.
3480 * we cannot simply called update_context_time()
3481 * because of locking issue as we are called in
3484 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
3486 ctx_time
= event
->shadow_ctx_time
+ now
;
3487 enabled
= ctx_time
- event
->tstamp_enabled
;
3488 running
= ctx_time
- event
->tstamp_running
;
3491 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3492 perf_output_read_group(handle
, event
, enabled
, running
);
3494 perf_output_read_one(handle
, event
, enabled
, running
);
3497 void perf_output_sample(struct perf_output_handle
*handle
,
3498 struct perf_event_header
*header
,
3499 struct perf_sample_data
*data
,
3500 struct perf_event
*event
)
3502 u64 sample_type
= data
->type
;
3504 perf_output_put(handle
, *header
);
3506 if (sample_type
& PERF_SAMPLE_IP
)
3507 perf_output_put(handle
, data
->ip
);
3509 if (sample_type
& PERF_SAMPLE_TID
)
3510 perf_output_put(handle
, data
->tid_entry
);
3512 if (sample_type
& PERF_SAMPLE_TIME
)
3513 perf_output_put(handle
, data
->time
);
3515 if (sample_type
& PERF_SAMPLE_ADDR
)
3516 perf_output_put(handle
, data
->addr
);
3518 if (sample_type
& PERF_SAMPLE_ID
)
3519 perf_output_put(handle
, data
->id
);
3521 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3522 perf_output_put(handle
, data
->stream_id
);
3524 if (sample_type
& PERF_SAMPLE_CPU
)
3525 perf_output_put(handle
, data
->cpu_entry
);
3527 if (sample_type
& PERF_SAMPLE_PERIOD
)
3528 perf_output_put(handle
, data
->period
);
3530 if (sample_type
& PERF_SAMPLE_READ
)
3531 perf_output_read(handle
, event
);
3533 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3534 if (data
->callchain
) {
3537 if (data
->callchain
)
3538 size
+= data
->callchain
->nr
;
3540 size
*= sizeof(u64
);
3542 perf_output_copy(handle
, data
->callchain
, size
);
3545 perf_output_put(handle
, nr
);
3549 if (sample_type
& PERF_SAMPLE_RAW
) {
3551 perf_output_put(handle
, data
->raw
->size
);
3552 perf_output_copy(handle
, data
->raw
->data
,
3559 .size
= sizeof(u32
),
3562 perf_output_put(handle
, raw
);
3567 void perf_prepare_sample(struct perf_event_header
*header
,
3568 struct perf_sample_data
*data
,
3569 struct perf_event
*event
,
3570 struct pt_regs
*regs
)
3572 u64 sample_type
= event
->attr
.sample_type
;
3574 data
->type
= sample_type
;
3576 header
->type
= PERF_RECORD_SAMPLE
;
3577 header
->size
= sizeof(*header
);
3580 header
->misc
|= perf_misc_flags(regs
);
3582 if (sample_type
& PERF_SAMPLE_IP
) {
3583 data
->ip
= perf_instruction_pointer(regs
);
3585 header
->size
+= sizeof(data
->ip
);
3588 if (sample_type
& PERF_SAMPLE_TID
) {
3589 /* namespace issues */
3590 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3591 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3593 header
->size
+= sizeof(data
->tid_entry
);
3596 if (sample_type
& PERF_SAMPLE_TIME
) {
3597 data
->time
= perf_clock();
3599 header
->size
+= sizeof(data
->time
);
3602 if (sample_type
& PERF_SAMPLE_ADDR
)
3603 header
->size
+= sizeof(data
->addr
);
3605 if (sample_type
& PERF_SAMPLE_ID
) {
3606 data
->id
= primary_event_id(event
);
3608 header
->size
+= sizeof(data
->id
);
3611 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3612 data
->stream_id
= event
->id
;
3614 header
->size
+= sizeof(data
->stream_id
);
3617 if (sample_type
& PERF_SAMPLE_CPU
) {
3618 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3619 data
->cpu_entry
.reserved
= 0;
3621 header
->size
+= sizeof(data
->cpu_entry
);
3624 if (sample_type
& PERF_SAMPLE_PERIOD
)
3625 header
->size
+= sizeof(data
->period
);
3627 if (sample_type
& PERF_SAMPLE_READ
)
3628 header
->size
+= perf_event_read_size(event
);
3630 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3633 data
->callchain
= perf_callchain(regs
);
3635 if (data
->callchain
)
3636 size
+= data
->callchain
->nr
;
3638 header
->size
+= size
* sizeof(u64
);
3641 if (sample_type
& PERF_SAMPLE_RAW
) {
3642 int size
= sizeof(u32
);
3645 size
+= data
->raw
->size
;
3647 size
+= sizeof(u32
);
3649 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3650 header
->size
+= size
;
3654 static void perf_event_output(struct perf_event
*event
, int nmi
,
3655 struct perf_sample_data
*data
,
3656 struct pt_regs
*regs
)
3658 struct perf_output_handle handle
;
3659 struct perf_event_header header
;
3661 /* protect the callchain buffers */
3664 perf_prepare_sample(&header
, data
, event
, regs
);
3666 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3669 perf_output_sample(&handle
, &header
, data
, event
);
3671 perf_output_end(&handle
);
3681 struct perf_read_event
{
3682 struct perf_event_header header
;
3689 perf_event_read_event(struct perf_event
*event
,
3690 struct task_struct
*task
)
3692 struct perf_output_handle handle
;
3693 struct perf_read_event read_event
= {
3695 .type
= PERF_RECORD_READ
,
3697 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3699 .pid
= perf_event_pid(event
, task
),
3700 .tid
= perf_event_tid(event
, task
),
3704 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3708 perf_output_put(&handle
, read_event
);
3709 perf_output_read(&handle
, event
);
3711 perf_output_end(&handle
);
3715 * task tracking -- fork/exit
3717 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3720 struct perf_task_event
{
3721 struct task_struct
*task
;
3722 struct perf_event_context
*task_ctx
;
3725 struct perf_event_header header
;
3735 static void perf_event_task_output(struct perf_event
*event
,
3736 struct perf_task_event
*task_event
)
3738 struct perf_output_handle handle
;
3739 struct task_struct
*task
= task_event
->task
;
3742 size
= task_event
->event_id
.header
.size
;
3743 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3748 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3749 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3751 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3752 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3754 perf_output_put(&handle
, task_event
->event_id
);
3756 perf_output_end(&handle
);
3759 static int perf_event_task_match(struct perf_event
*event
)
3761 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3764 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3767 if (event
->attr
.comm
|| event
->attr
.mmap
||
3768 event
->attr
.mmap_data
|| event
->attr
.task
)
3774 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3775 struct perf_task_event
*task_event
)
3777 struct perf_event
*event
;
3779 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3780 if (perf_event_task_match(event
))
3781 perf_event_task_output(event
, task_event
);
3785 static void perf_event_task_event(struct perf_task_event
*task_event
)
3787 struct perf_cpu_context
*cpuctx
;
3788 struct perf_event_context
*ctx
;
3793 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3794 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3795 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3797 ctx
= task_event
->task_ctx
;
3799 ctxn
= pmu
->task_ctx_nr
;
3802 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3805 perf_event_task_ctx(ctx
, task_event
);
3807 put_cpu_ptr(pmu
->pmu_cpu_context
);
3812 static void perf_event_task(struct task_struct
*task
,
3813 struct perf_event_context
*task_ctx
,
3816 struct perf_task_event task_event
;
3818 if (!atomic_read(&nr_comm_events
) &&
3819 !atomic_read(&nr_mmap_events
) &&
3820 !atomic_read(&nr_task_events
))
3823 task_event
= (struct perf_task_event
){
3825 .task_ctx
= task_ctx
,
3828 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3830 .size
= sizeof(task_event
.event_id
),
3836 .time
= perf_clock(),
3840 perf_event_task_event(&task_event
);
3843 void perf_event_fork(struct task_struct
*task
)
3845 perf_event_task(task
, NULL
, 1);
3852 struct perf_comm_event
{
3853 struct task_struct
*task
;
3858 struct perf_event_header header
;
3865 static void perf_event_comm_output(struct perf_event
*event
,
3866 struct perf_comm_event
*comm_event
)
3868 struct perf_output_handle handle
;
3869 int size
= comm_event
->event_id
.header
.size
;
3870 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3875 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3876 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3878 perf_output_put(&handle
, comm_event
->event_id
);
3879 perf_output_copy(&handle
, comm_event
->comm
,
3880 comm_event
->comm_size
);
3881 perf_output_end(&handle
);
3884 static int perf_event_comm_match(struct perf_event
*event
)
3886 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3889 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3892 if (event
->attr
.comm
)
3898 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3899 struct perf_comm_event
*comm_event
)
3901 struct perf_event
*event
;
3903 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3904 if (perf_event_comm_match(event
))
3905 perf_event_comm_output(event
, comm_event
);
3909 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3911 struct perf_cpu_context
*cpuctx
;
3912 struct perf_event_context
*ctx
;
3913 char comm
[TASK_COMM_LEN
];
3918 memset(comm
, 0, sizeof(comm
));
3919 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3920 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3922 comm_event
->comm
= comm
;
3923 comm_event
->comm_size
= size
;
3925 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3928 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3929 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3930 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3932 ctxn
= pmu
->task_ctx_nr
;
3936 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3938 perf_event_comm_ctx(ctx
, comm_event
);
3940 put_cpu_ptr(pmu
->pmu_cpu_context
);
3945 void perf_event_comm(struct task_struct
*task
)
3947 struct perf_comm_event comm_event
;
3948 struct perf_event_context
*ctx
;
3951 for_each_task_context_nr(ctxn
) {
3952 ctx
= task
->perf_event_ctxp
[ctxn
];
3956 perf_event_enable_on_exec(ctx
);
3959 if (!atomic_read(&nr_comm_events
))
3962 comm_event
= (struct perf_comm_event
){
3968 .type
= PERF_RECORD_COMM
,
3977 perf_event_comm_event(&comm_event
);
3984 struct perf_mmap_event
{
3985 struct vm_area_struct
*vma
;
3987 const char *file_name
;
3991 struct perf_event_header header
;
4001 static void perf_event_mmap_output(struct perf_event
*event
,
4002 struct perf_mmap_event
*mmap_event
)
4004 struct perf_output_handle handle
;
4005 int size
= mmap_event
->event_id
.header
.size
;
4006 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
4011 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4012 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4014 perf_output_put(&handle
, mmap_event
->event_id
);
4015 perf_output_copy(&handle
, mmap_event
->file_name
,
4016 mmap_event
->file_size
);
4017 perf_output_end(&handle
);
4020 static int perf_event_mmap_match(struct perf_event
*event
,
4021 struct perf_mmap_event
*mmap_event
,
4024 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4027 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
4030 if ((!executable
&& event
->attr
.mmap_data
) ||
4031 (executable
&& event
->attr
.mmap
))
4037 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4038 struct perf_mmap_event
*mmap_event
,
4041 struct perf_event
*event
;
4043 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4044 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4045 perf_event_mmap_output(event
, mmap_event
);
4049 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4051 struct perf_cpu_context
*cpuctx
;
4052 struct perf_event_context
*ctx
;
4053 struct vm_area_struct
*vma
= mmap_event
->vma
;
4054 struct file
*file
= vma
->vm_file
;
4062 memset(tmp
, 0, sizeof(tmp
));
4066 * d_path works from the end of the buffer backwards, so we
4067 * need to add enough zero bytes after the string to handle
4068 * the 64bit alignment we do later.
4070 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4072 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4075 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4077 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4081 if (arch_vma_name(mmap_event
->vma
)) {
4082 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4088 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4090 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4091 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4092 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4094 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4095 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4096 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4100 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4105 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4107 mmap_event
->file_name
= name
;
4108 mmap_event
->file_size
= size
;
4110 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4113 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4114 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4115 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4116 vma
->vm_flags
& VM_EXEC
);
4118 ctxn
= pmu
->task_ctx_nr
;
4122 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4124 perf_event_mmap_ctx(ctx
, mmap_event
,
4125 vma
->vm_flags
& VM_EXEC
);
4128 put_cpu_ptr(pmu
->pmu_cpu_context
);
4135 void perf_event_mmap(struct vm_area_struct
*vma
)
4137 struct perf_mmap_event mmap_event
;
4139 if (!atomic_read(&nr_mmap_events
))
4142 mmap_event
= (struct perf_mmap_event
){
4148 .type
= PERF_RECORD_MMAP
,
4149 .misc
= PERF_RECORD_MISC_USER
,
4154 .start
= vma
->vm_start
,
4155 .len
= vma
->vm_end
- vma
->vm_start
,
4156 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4160 perf_event_mmap_event(&mmap_event
);
4164 * IRQ throttle logging
4167 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4169 struct perf_output_handle handle
;
4173 struct perf_event_header header
;
4177 } throttle_event
= {
4179 .type
= PERF_RECORD_THROTTLE
,
4181 .size
= sizeof(throttle_event
),
4183 .time
= perf_clock(),
4184 .id
= primary_event_id(event
),
4185 .stream_id
= event
->id
,
4189 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4191 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
4195 perf_output_put(&handle
, throttle_event
);
4196 perf_output_end(&handle
);
4200 * Generic event overflow handling, sampling.
4203 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4204 int throttle
, struct perf_sample_data
*data
,
4205 struct pt_regs
*regs
)
4207 int events
= atomic_read(&event
->event_limit
);
4208 struct hw_perf_event
*hwc
= &event
->hw
;
4214 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
4216 if (HZ
* hwc
->interrupts
>
4217 (u64
)sysctl_perf_event_sample_rate
) {
4218 hwc
->interrupts
= MAX_INTERRUPTS
;
4219 perf_log_throttle(event
, 0);
4224 * Keep re-disabling events even though on the previous
4225 * pass we disabled it - just in case we raced with a
4226 * sched-in and the event got enabled again:
4232 if (event
->attr
.freq
) {
4233 u64 now
= perf_clock();
4234 s64 delta
= now
- hwc
->freq_time_stamp
;
4236 hwc
->freq_time_stamp
= now
;
4238 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4239 perf_adjust_period(event
, delta
, hwc
->last_period
);
4243 * XXX event_limit might not quite work as expected on inherited
4247 event
->pending_kill
= POLL_IN
;
4248 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4250 event
->pending_kill
= POLL_HUP
;
4252 event
->pending_disable
= 1;
4253 irq_work_queue(&event
->pending
);
4255 perf_event_disable(event
);
4258 if (event
->overflow_handler
)
4259 event
->overflow_handler(event
, nmi
, data
, regs
);
4261 perf_event_output(event
, nmi
, data
, regs
);
4266 int perf_event_overflow(struct perf_event
*event
, int nmi
,
4267 struct perf_sample_data
*data
,
4268 struct pt_regs
*regs
)
4270 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4274 * Generic software event infrastructure
4277 struct swevent_htable
{
4278 struct swevent_hlist
*swevent_hlist
;
4279 struct mutex hlist_mutex
;
4282 /* Recursion avoidance in each contexts */
4283 int recursion
[PERF_NR_CONTEXTS
];
4286 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4289 * We directly increment event->count and keep a second value in
4290 * event->hw.period_left to count intervals. This period event
4291 * is kept in the range [-sample_period, 0] so that we can use the
4295 static u64
perf_swevent_set_period(struct perf_event
*event
)
4297 struct hw_perf_event
*hwc
= &event
->hw
;
4298 u64 period
= hwc
->last_period
;
4302 hwc
->last_period
= hwc
->sample_period
;
4305 old
= val
= local64_read(&hwc
->period_left
);
4309 nr
= div64_u64(period
+ val
, period
);
4310 offset
= nr
* period
;
4312 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4318 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4319 int nmi
, struct perf_sample_data
*data
,
4320 struct pt_regs
*regs
)
4322 struct hw_perf_event
*hwc
= &event
->hw
;
4325 data
->period
= event
->hw
.last_period
;
4327 overflow
= perf_swevent_set_period(event
);
4329 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4332 for (; overflow
; overflow
--) {
4333 if (__perf_event_overflow(event
, nmi
, throttle
,
4336 * We inhibit the overflow from happening when
4337 * hwc->interrupts == MAX_INTERRUPTS.
4345 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4346 int nmi
, struct perf_sample_data
*data
,
4347 struct pt_regs
*regs
)
4349 struct hw_perf_event
*hwc
= &event
->hw
;
4351 local64_add(nr
, &event
->count
);
4356 if (!hwc
->sample_period
)
4359 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4360 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4362 if (local64_add_negative(nr
, &hwc
->period_left
))
4365 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4368 static int perf_exclude_event(struct perf_event
*event
,
4369 struct pt_regs
*regs
)
4371 if (event
->hw
.state
& PERF_HES_STOPPED
)
4375 if (event
->attr
.exclude_user
&& user_mode(regs
))
4378 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4385 static int perf_swevent_match(struct perf_event
*event
,
4386 enum perf_type_id type
,
4388 struct perf_sample_data
*data
,
4389 struct pt_regs
*regs
)
4391 if (event
->attr
.type
!= type
)
4394 if (event
->attr
.config
!= event_id
)
4397 if (perf_exclude_event(event
, regs
))
4403 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4405 u64 val
= event_id
| (type
<< 32);
4407 return hash_64(val
, SWEVENT_HLIST_BITS
);
4410 static inline struct hlist_head
*
4411 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4413 u64 hash
= swevent_hash(type
, event_id
);
4415 return &hlist
->heads
[hash
];
4418 /* For the read side: events when they trigger */
4419 static inline struct hlist_head
*
4420 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4422 struct swevent_hlist
*hlist
;
4424 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4428 return __find_swevent_head(hlist
, type
, event_id
);
4431 /* For the event head insertion and removal in the hlist */
4432 static inline struct hlist_head
*
4433 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4435 struct swevent_hlist
*hlist
;
4436 u32 event_id
= event
->attr
.config
;
4437 u64 type
= event
->attr
.type
;
4440 * Event scheduling is always serialized against hlist allocation
4441 * and release. Which makes the protected version suitable here.
4442 * The context lock guarantees that.
4444 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4445 lockdep_is_held(&event
->ctx
->lock
));
4449 return __find_swevent_head(hlist
, type
, event_id
);
4452 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4454 struct perf_sample_data
*data
,
4455 struct pt_regs
*regs
)
4457 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4458 struct perf_event
*event
;
4459 struct hlist_node
*node
;
4460 struct hlist_head
*head
;
4463 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4467 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4468 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4469 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
4475 int perf_swevent_get_recursion_context(void)
4477 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4479 return get_recursion_context(swhash
->recursion
);
4481 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4483 void inline perf_swevent_put_recursion_context(int rctx
)
4485 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4487 put_recursion_context(swhash
->recursion
, rctx
);
4490 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4491 struct pt_regs
*regs
, u64 addr
)
4493 struct perf_sample_data data
;
4496 preempt_disable_notrace();
4497 rctx
= perf_swevent_get_recursion_context();
4501 perf_sample_data_init(&data
, addr
);
4503 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4505 perf_swevent_put_recursion_context(rctx
);
4506 preempt_enable_notrace();
4509 static void perf_swevent_read(struct perf_event
*event
)
4513 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4515 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4516 struct hw_perf_event
*hwc
= &event
->hw
;
4517 struct hlist_head
*head
;
4519 if (hwc
->sample_period
) {
4520 hwc
->last_period
= hwc
->sample_period
;
4521 perf_swevent_set_period(event
);
4524 hwc
->state
= !(flags
& PERF_EF_START
);
4526 head
= find_swevent_head(swhash
, event
);
4527 if (WARN_ON_ONCE(!head
))
4530 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4535 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4537 hlist_del_rcu(&event
->hlist_entry
);
4540 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4542 event
->hw
.state
= 0;
4545 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4547 event
->hw
.state
= PERF_HES_STOPPED
;
4550 /* Deref the hlist from the update side */
4551 static inline struct swevent_hlist
*
4552 swevent_hlist_deref(struct swevent_htable
*swhash
)
4554 return rcu_dereference_protected(swhash
->swevent_hlist
,
4555 lockdep_is_held(&swhash
->hlist_mutex
));
4558 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4560 struct swevent_hlist
*hlist
;
4562 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4566 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4568 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4573 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4574 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4577 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4579 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4581 mutex_lock(&swhash
->hlist_mutex
);
4583 if (!--swhash
->hlist_refcount
)
4584 swevent_hlist_release(swhash
);
4586 mutex_unlock(&swhash
->hlist_mutex
);
4589 static void swevent_hlist_put(struct perf_event
*event
)
4593 if (event
->cpu
!= -1) {
4594 swevent_hlist_put_cpu(event
, event
->cpu
);
4598 for_each_possible_cpu(cpu
)
4599 swevent_hlist_put_cpu(event
, cpu
);
4602 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4604 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4607 mutex_lock(&swhash
->hlist_mutex
);
4609 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4610 struct swevent_hlist
*hlist
;
4612 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4617 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4619 swhash
->hlist_refcount
++;
4621 mutex_unlock(&swhash
->hlist_mutex
);
4626 static int swevent_hlist_get(struct perf_event
*event
)
4629 int cpu
, failed_cpu
;
4631 if (event
->cpu
!= -1)
4632 return swevent_hlist_get_cpu(event
, event
->cpu
);
4635 for_each_possible_cpu(cpu
) {
4636 err
= swevent_hlist_get_cpu(event
, cpu
);
4646 for_each_possible_cpu(cpu
) {
4647 if (cpu
== failed_cpu
)
4649 swevent_hlist_put_cpu(event
, cpu
);
4656 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4658 static void sw_perf_event_destroy(struct perf_event
*event
)
4660 u64 event_id
= event
->attr
.config
;
4662 WARN_ON(event
->parent
);
4664 jump_label_dec(&perf_swevent_enabled
[event_id
]);
4665 swevent_hlist_put(event
);
4668 static int perf_swevent_init(struct perf_event
*event
)
4670 int event_id
= event
->attr
.config
;
4672 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4676 case PERF_COUNT_SW_CPU_CLOCK
:
4677 case PERF_COUNT_SW_TASK_CLOCK
:
4684 if (event_id
> PERF_COUNT_SW_MAX
)
4687 if (!event
->parent
) {
4690 err
= swevent_hlist_get(event
);
4694 jump_label_inc(&perf_swevent_enabled
[event_id
]);
4695 event
->destroy
= sw_perf_event_destroy
;
4701 static struct pmu perf_swevent
= {
4702 .task_ctx_nr
= perf_sw_context
,
4704 .event_init
= perf_swevent_init
,
4705 .add
= perf_swevent_add
,
4706 .del
= perf_swevent_del
,
4707 .start
= perf_swevent_start
,
4708 .stop
= perf_swevent_stop
,
4709 .read
= perf_swevent_read
,
4712 #ifdef CONFIG_EVENT_TRACING
4714 static int perf_tp_filter_match(struct perf_event
*event
,
4715 struct perf_sample_data
*data
)
4717 void *record
= data
->raw
->data
;
4719 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4724 static int perf_tp_event_match(struct perf_event
*event
,
4725 struct perf_sample_data
*data
,
4726 struct pt_regs
*regs
)
4729 * All tracepoints are from kernel-space.
4731 if (event
->attr
.exclude_kernel
)
4734 if (!perf_tp_filter_match(event
, data
))
4740 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4741 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
4743 struct perf_sample_data data
;
4744 struct perf_event
*event
;
4745 struct hlist_node
*node
;
4747 struct perf_raw_record raw
= {
4752 perf_sample_data_init(&data
, addr
);
4755 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4756 if (perf_tp_event_match(event
, &data
, regs
))
4757 perf_swevent_event(event
, count
, 1, &data
, regs
);
4760 perf_swevent_put_recursion_context(rctx
);
4762 EXPORT_SYMBOL_GPL(perf_tp_event
);
4764 static void tp_perf_event_destroy(struct perf_event
*event
)
4766 perf_trace_destroy(event
);
4769 static int perf_tp_event_init(struct perf_event
*event
)
4773 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4777 * Raw tracepoint data is a severe data leak, only allow root to
4780 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4781 perf_paranoid_tracepoint_raw() &&
4782 !capable(CAP_SYS_ADMIN
))
4785 err
= perf_trace_init(event
);
4789 event
->destroy
= tp_perf_event_destroy
;
4794 static struct pmu perf_tracepoint
= {
4795 .task_ctx_nr
= perf_sw_context
,
4797 .event_init
= perf_tp_event_init
,
4798 .add
= perf_trace_add
,
4799 .del
= perf_trace_del
,
4800 .start
= perf_swevent_start
,
4801 .stop
= perf_swevent_stop
,
4802 .read
= perf_swevent_read
,
4805 static inline void perf_tp_register(void)
4807 perf_pmu_register(&perf_tracepoint
);
4810 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4815 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4818 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4819 if (IS_ERR(filter_str
))
4820 return PTR_ERR(filter_str
);
4822 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4828 static void perf_event_free_filter(struct perf_event
*event
)
4830 ftrace_profile_free_filter(event
);
4835 static inline void perf_tp_register(void)
4839 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4844 static void perf_event_free_filter(struct perf_event
*event
)
4848 #endif /* CONFIG_EVENT_TRACING */
4850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4851 void perf_bp_event(struct perf_event
*bp
, void *data
)
4853 struct perf_sample_data sample
;
4854 struct pt_regs
*regs
= data
;
4856 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4858 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
4859 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
4864 * hrtimer based swevent callback
4867 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4869 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4870 struct perf_sample_data data
;
4871 struct pt_regs
*regs
;
4872 struct perf_event
*event
;
4875 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4876 event
->pmu
->read(event
);
4878 perf_sample_data_init(&data
, 0);
4879 data
.period
= event
->hw
.last_period
;
4880 regs
= get_irq_regs();
4882 if (regs
&& !perf_exclude_event(event
, regs
)) {
4883 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4884 if (perf_event_overflow(event
, 0, &data
, regs
))
4885 ret
= HRTIMER_NORESTART
;
4888 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4889 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4894 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4896 struct hw_perf_event
*hwc
= &event
->hw
;
4898 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4899 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4900 if (hwc
->sample_period
) {
4901 s64 period
= local64_read(&hwc
->period_left
);
4907 local64_set(&hwc
->period_left
, 0);
4909 period
= max_t(u64
, 10000, hwc
->sample_period
);
4911 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4912 ns_to_ktime(period
), 0,
4913 HRTIMER_MODE_REL_PINNED
, 0);
4917 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4919 struct hw_perf_event
*hwc
= &event
->hw
;
4921 if (hwc
->sample_period
) {
4922 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4923 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
4925 hrtimer_cancel(&hwc
->hrtimer
);
4930 * Software event: cpu wall time clock
4933 static void cpu_clock_event_update(struct perf_event
*event
)
4938 now
= local_clock();
4939 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
4940 local64_add(now
- prev
, &event
->count
);
4943 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
4945 local64_set(&event
->hw
.prev_count
, local_clock());
4946 perf_swevent_start_hrtimer(event
);
4949 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
4951 perf_swevent_cancel_hrtimer(event
);
4952 cpu_clock_event_update(event
);
4955 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
4957 if (flags
& PERF_EF_START
)
4958 cpu_clock_event_start(event
, flags
);
4963 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
4965 cpu_clock_event_stop(event
, flags
);
4968 static void cpu_clock_event_read(struct perf_event
*event
)
4970 cpu_clock_event_update(event
);
4973 static int cpu_clock_event_init(struct perf_event
*event
)
4975 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4978 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
4984 static struct pmu perf_cpu_clock
= {
4985 .task_ctx_nr
= perf_sw_context
,
4987 .event_init
= cpu_clock_event_init
,
4988 .add
= cpu_clock_event_add
,
4989 .del
= cpu_clock_event_del
,
4990 .start
= cpu_clock_event_start
,
4991 .stop
= cpu_clock_event_stop
,
4992 .read
= cpu_clock_event_read
,
4996 * Software event: task time clock
4999 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5004 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5006 local64_add(delta
, &event
->count
);
5009 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5011 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5012 perf_swevent_start_hrtimer(event
);
5015 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5017 perf_swevent_cancel_hrtimer(event
);
5018 task_clock_event_update(event
, event
->ctx
->time
);
5021 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5023 if (flags
& PERF_EF_START
)
5024 task_clock_event_start(event
, flags
);
5029 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5031 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5034 static void task_clock_event_read(struct perf_event
*event
)
5039 update_context_time(event
->ctx
);
5040 time
= event
->ctx
->time
;
5042 u64 now
= perf_clock();
5043 u64 delta
= now
- event
->ctx
->timestamp
;
5044 time
= event
->ctx
->time
+ delta
;
5047 task_clock_event_update(event
, time
);
5050 static int task_clock_event_init(struct perf_event
*event
)
5052 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5055 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5061 static struct pmu perf_task_clock
= {
5062 .task_ctx_nr
= perf_sw_context
,
5064 .event_init
= task_clock_event_init
,
5065 .add
= task_clock_event_add
,
5066 .del
= task_clock_event_del
,
5067 .start
= task_clock_event_start
,
5068 .stop
= task_clock_event_stop
,
5069 .read
= task_clock_event_read
,
5072 static void perf_pmu_nop_void(struct pmu
*pmu
)
5076 static int perf_pmu_nop_int(struct pmu
*pmu
)
5081 static void perf_pmu_start_txn(struct pmu
*pmu
)
5083 perf_pmu_disable(pmu
);
5086 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5088 perf_pmu_enable(pmu
);
5092 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5094 perf_pmu_enable(pmu
);
5098 * Ensures all contexts with the same task_ctx_nr have the same
5099 * pmu_cpu_context too.
5101 static void *find_pmu_context(int ctxn
)
5108 list_for_each_entry(pmu
, &pmus
, entry
) {
5109 if (pmu
->task_ctx_nr
== ctxn
)
5110 return pmu
->pmu_cpu_context
;
5116 static void free_pmu_context(void * __percpu cpu_context
)
5120 mutex_lock(&pmus_lock
);
5122 * Like a real lame refcount.
5124 list_for_each_entry(pmu
, &pmus
, entry
) {
5125 if (pmu
->pmu_cpu_context
== cpu_context
)
5129 free_percpu(cpu_context
);
5131 mutex_unlock(&pmus_lock
);
5134 int perf_pmu_register(struct pmu
*pmu
)
5138 mutex_lock(&pmus_lock
);
5140 pmu
->pmu_disable_count
= alloc_percpu(int);
5141 if (!pmu
->pmu_disable_count
)
5144 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5145 if (pmu
->pmu_cpu_context
)
5146 goto got_cpu_context
;
5148 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5149 if (!pmu
->pmu_cpu_context
)
5152 for_each_possible_cpu(cpu
) {
5153 struct perf_cpu_context
*cpuctx
;
5155 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5156 __perf_event_init_context(&cpuctx
->ctx
);
5157 cpuctx
->ctx
.type
= cpu_context
;
5158 cpuctx
->ctx
.pmu
= pmu
;
5159 cpuctx
->jiffies_interval
= 1;
5160 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5164 if (!pmu
->start_txn
) {
5165 if (pmu
->pmu_enable
) {
5167 * If we have pmu_enable/pmu_disable calls, install
5168 * transaction stubs that use that to try and batch
5169 * hardware accesses.
5171 pmu
->start_txn
= perf_pmu_start_txn
;
5172 pmu
->commit_txn
= perf_pmu_commit_txn
;
5173 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5175 pmu
->start_txn
= perf_pmu_nop_void
;
5176 pmu
->commit_txn
= perf_pmu_nop_int
;
5177 pmu
->cancel_txn
= perf_pmu_nop_void
;
5181 if (!pmu
->pmu_enable
) {
5182 pmu
->pmu_enable
= perf_pmu_nop_void
;
5183 pmu
->pmu_disable
= perf_pmu_nop_void
;
5186 list_add_rcu(&pmu
->entry
, &pmus
);
5189 mutex_unlock(&pmus_lock
);
5194 free_percpu(pmu
->pmu_disable_count
);
5198 void perf_pmu_unregister(struct pmu
*pmu
)
5200 mutex_lock(&pmus_lock
);
5201 list_del_rcu(&pmu
->entry
);
5202 mutex_unlock(&pmus_lock
);
5205 * We dereference the pmu list under both SRCU and regular RCU, so
5206 * synchronize against both of those.
5208 synchronize_srcu(&pmus_srcu
);
5211 free_percpu(pmu
->pmu_disable_count
);
5212 free_pmu_context(pmu
->pmu_cpu_context
);
5215 struct pmu
*perf_init_event(struct perf_event
*event
)
5217 struct pmu
*pmu
= NULL
;
5220 idx
= srcu_read_lock(&pmus_srcu
);
5221 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5222 int ret
= pmu
->event_init(event
);
5226 if (ret
!= -ENOENT
) {
5231 pmu
= ERR_PTR(-ENOENT
);
5233 srcu_read_unlock(&pmus_srcu
, idx
);
5239 * Allocate and initialize a event structure
5241 static struct perf_event
*
5242 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5243 struct task_struct
*task
,
5244 struct perf_event
*group_leader
,
5245 struct perf_event
*parent_event
,
5246 perf_overflow_handler_t overflow_handler
)
5249 struct perf_event
*event
;
5250 struct hw_perf_event
*hwc
;
5253 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5255 return ERR_PTR(-ENOMEM
);
5258 * Single events are their own group leaders, with an
5259 * empty sibling list:
5262 group_leader
= event
;
5264 mutex_init(&event
->child_mutex
);
5265 INIT_LIST_HEAD(&event
->child_list
);
5267 INIT_LIST_HEAD(&event
->group_entry
);
5268 INIT_LIST_HEAD(&event
->event_entry
);
5269 INIT_LIST_HEAD(&event
->sibling_list
);
5270 init_waitqueue_head(&event
->waitq
);
5271 init_irq_work(&event
->pending
, perf_pending_event
);
5273 mutex_init(&event
->mmap_mutex
);
5276 event
->attr
= *attr
;
5277 event
->group_leader
= group_leader
;
5281 event
->parent
= parent_event
;
5283 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5284 event
->id
= atomic64_inc_return(&perf_event_id
);
5286 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5289 event
->attach_state
= PERF_ATTACH_TASK
;
5290 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5292 * hw_breakpoint is a bit difficult here..
5294 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5295 event
->hw
.bp_target
= task
;
5299 if (!overflow_handler
&& parent_event
)
5300 overflow_handler
= parent_event
->overflow_handler
;
5302 event
->overflow_handler
= overflow_handler
;
5305 event
->state
= PERF_EVENT_STATE_OFF
;
5310 hwc
->sample_period
= attr
->sample_period
;
5311 if (attr
->freq
&& attr
->sample_freq
)
5312 hwc
->sample_period
= 1;
5313 hwc
->last_period
= hwc
->sample_period
;
5315 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5318 * we currently do not support PERF_FORMAT_GROUP on inherited events
5320 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5323 pmu
= perf_init_event(event
);
5329 else if (IS_ERR(pmu
))
5334 put_pid_ns(event
->ns
);
5336 return ERR_PTR(err
);
5341 if (!event
->parent
) {
5342 if (event
->attach_state
& PERF_ATTACH_TASK
)
5343 jump_label_inc(&perf_task_events
);
5344 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5345 atomic_inc(&nr_mmap_events
);
5346 if (event
->attr
.comm
)
5347 atomic_inc(&nr_comm_events
);
5348 if (event
->attr
.task
)
5349 atomic_inc(&nr_task_events
);
5350 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5351 err
= get_callchain_buffers();
5354 return ERR_PTR(err
);
5362 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5363 struct perf_event_attr
*attr
)
5368 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5372 * zero the full structure, so that a short copy will be nice.
5374 memset(attr
, 0, sizeof(*attr
));
5376 ret
= get_user(size
, &uattr
->size
);
5380 if (size
> PAGE_SIZE
) /* silly large */
5383 if (!size
) /* abi compat */
5384 size
= PERF_ATTR_SIZE_VER0
;
5386 if (size
< PERF_ATTR_SIZE_VER0
)
5390 * If we're handed a bigger struct than we know of,
5391 * ensure all the unknown bits are 0 - i.e. new
5392 * user-space does not rely on any kernel feature
5393 * extensions we dont know about yet.
5395 if (size
> sizeof(*attr
)) {
5396 unsigned char __user
*addr
;
5397 unsigned char __user
*end
;
5400 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5401 end
= (void __user
*)uattr
+ size
;
5403 for (; addr
< end
; addr
++) {
5404 ret
= get_user(val
, addr
);
5410 size
= sizeof(*attr
);
5413 ret
= copy_from_user(attr
, uattr
, size
);
5418 * If the type exists, the corresponding creation will verify
5421 if (attr
->type
>= PERF_TYPE_MAX
)
5424 if (attr
->__reserved_1
)
5427 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5430 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5437 put_user(sizeof(*attr
), &uattr
->size
);
5443 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5445 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
5451 /* don't allow circular references */
5452 if (event
== output_event
)
5456 * Don't allow cross-cpu buffers
5458 if (output_event
->cpu
!= event
->cpu
)
5462 * If its not a per-cpu buffer, it must be the same task.
5464 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5468 mutex_lock(&event
->mmap_mutex
);
5469 /* Can't redirect output if we've got an active mmap() */
5470 if (atomic_read(&event
->mmap_count
))
5474 /* get the buffer we want to redirect to */
5475 buffer
= perf_buffer_get(output_event
);
5480 old_buffer
= event
->buffer
;
5481 rcu_assign_pointer(event
->buffer
, buffer
);
5484 mutex_unlock(&event
->mmap_mutex
);
5487 perf_buffer_put(old_buffer
);
5493 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5495 * @attr_uptr: event_id type attributes for monitoring/sampling
5498 * @group_fd: group leader event fd
5500 SYSCALL_DEFINE5(perf_event_open
,
5501 struct perf_event_attr __user
*, attr_uptr
,
5502 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5504 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
5505 struct perf_event
*event
, *sibling
;
5506 struct perf_event_attr attr
;
5507 struct perf_event_context
*ctx
;
5508 struct file
*event_file
= NULL
;
5509 struct file
*group_file
= NULL
;
5510 struct task_struct
*task
= NULL
;
5514 int fput_needed
= 0;
5517 /* for future expandability... */
5518 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5521 err
= perf_copy_attr(attr_uptr
, &attr
);
5525 if (!attr
.exclude_kernel
) {
5526 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5531 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5535 event_fd
= get_unused_fd_flags(O_RDWR
);
5539 if (group_fd
!= -1) {
5540 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5541 if (IS_ERR(group_leader
)) {
5542 err
= PTR_ERR(group_leader
);
5545 group_file
= group_leader
->filp
;
5546 if (flags
& PERF_FLAG_FD_OUTPUT
)
5547 output_event
= group_leader
;
5548 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5549 group_leader
= NULL
;
5553 task
= find_lively_task_by_vpid(pid
);
5555 err
= PTR_ERR(task
);
5560 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
5561 if (IS_ERR(event
)) {
5562 err
= PTR_ERR(event
);
5567 * Special case software events and allow them to be part of
5568 * any hardware group.
5573 (is_software_event(event
) != is_software_event(group_leader
))) {
5574 if (is_software_event(event
)) {
5576 * If event and group_leader are not both a software
5577 * event, and event is, then group leader is not.
5579 * Allow the addition of software events to !software
5580 * groups, this is safe because software events never
5583 pmu
= group_leader
->pmu
;
5584 } else if (is_software_event(group_leader
) &&
5585 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
5587 * In case the group is a pure software group, and we
5588 * try to add a hardware event, move the whole group to
5589 * the hardware context.
5596 * Get the target context (task or percpu):
5598 ctx
= find_get_context(pmu
, task
, cpu
);
5605 * Look up the group leader (we will attach this event to it):
5611 * Do not allow a recursive hierarchy (this new sibling
5612 * becoming part of another group-sibling):
5614 if (group_leader
->group_leader
!= group_leader
)
5617 * Do not allow to attach to a group in a different
5618 * task or CPU context:
5621 if (group_leader
->ctx
->type
!= ctx
->type
)
5624 if (group_leader
->ctx
!= ctx
)
5629 * Only a group leader can be exclusive or pinned
5631 if (attr
.exclusive
|| attr
.pinned
)
5636 err
= perf_event_set_output(event
, output_event
);
5641 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5642 if (IS_ERR(event_file
)) {
5643 err
= PTR_ERR(event_file
);
5648 struct perf_event_context
*gctx
= group_leader
->ctx
;
5650 mutex_lock(&gctx
->mutex
);
5651 perf_event_remove_from_context(group_leader
);
5652 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5654 perf_event_remove_from_context(sibling
);
5657 mutex_unlock(&gctx
->mutex
);
5661 event
->filp
= event_file
;
5662 WARN_ON_ONCE(ctx
->parent_ctx
);
5663 mutex_lock(&ctx
->mutex
);
5666 perf_install_in_context(ctx
, group_leader
, cpu
);
5668 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5670 perf_install_in_context(ctx
, sibling
, cpu
);
5675 perf_install_in_context(ctx
, event
, cpu
);
5677 mutex_unlock(&ctx
->mutex
);
5679 event
->owner
= current
;
5680 get_task_struct(current
);
5681 mutex_lock(¤t
->perf_event_mutex
);
5682 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5683 mutex_unlock(¤t
->perf_event_mutex
);
5686 * Drop the reference on the group_event after placing the
5687 * new event on the sibling_list. This ensures destruction
5688 * of the group leader will find the pointer to itself in
5689 * perf_group_detach().
5691 fput_light(group_file
, fput_needed
);
5692 fd_install(event_fd
, event_file
);
5701 put_task_struct(task
);
5703 fput_light(group_file
, fput_needed
);
5705 put_unused_fd(event_fd
);
5710 * perf_event_create_kernel_counter
5712 * @attr: attributes of the counter to create
5713 * @cpu: cpu in which the counter is bound
5714 * @task: task to profile (NULL for percpu)
5717 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
5718 struct task_struct
*task
,
5719 perf_overflow_handler_t overflow_handler
)
5721 struct perf_event_context
*ctx
;
5722 struct perf_event
*event
;
5726 * Get the target context (task or percpu):
5729 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
5730 if (IS_ERR(event
)) {
5731 err
= PTR_ERR(event
);
5735 ctx
= find_get_context(event
->pmu
, task
, cpu
);
5742 WARN_ON_ONCE(ctx
->parent_ctx
);
5743 mutex_lock(&ctx
->mutex
);
5744 perf_install_in_context(ctx
, event
, cpu
);
5746 mutex_unlock(&ctx
->mutex
);
5748 event
->owner
= current
;
5749 get_task_struct(current
);
5750 mutex_lock(¤t
->perf_event_mutex
);
5751 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5752 mutex_unlock(¤t
->perf_event_mutex
);
5759 return ERR_PTR(err
);
5761 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
5763 static void sync_child_event(struct perf_event
*child_event
,
5764 struct task_struct
*child
)
5766 struct perf_event
*parent_event
= child_event
->parent
;
5769 if (child_event
->attr
.inherit_stat
)
5770 perf_event_read_event(child_event
, child
);
5772 child_val
= perf_event_count(child_event
);
5775 * Add back the child's count to the parent's count:
5777 atomic64_add(child_val
, &parent_event
->child_count
);
5778 atomic64_add(child_event
->total_time_enabled
,
5779 &parent_event
->child_total_time_enabled
);
5780 atomic64_add(child_event
->total_time_running
,
5781 &parent_event
->child_total_time_running
);
5784 * Remove this event from the parent's list
5786 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5787 mutex_lock(&parent_event
->child_mutex
);
5788 list_del_init(&child_event
->child_list
);
5789 mutex_unlock(&parent_event
->child_mutex
);
5792 * Release the parent event, if this was the last
5795 fput(parent_event
->filp
);
5799 __perf_event_exit_task(struct perf_event
*child_event
,
5800 struct perf_event_context
*child_ctx
,
5801 struct task_struct
*child
)
5803 struct perf_event
*parent_event
;
5805 perf_event_remove_from_context(child_event
);
5807 parent_event
= child_event
->parent
;
5809 * It can happen that parent exits first, and has events
5810 * that are still around due to the child reference. These
5811 * events need to be zapped - but otherwise linger.
5814 sync_child_event(child_event
, child
);
5815 free_event(child_event
);
5819 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
5821 struct perf_event
*child_event
, *tmp
;
5822 struct perf_event_context
*child_ctx
;
5823 unsigned long flags
;
5825 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
5826 perf_event_task(child
, NULL
, 0);
5830 local_irq_save(flags
);
5832 * We can't reschedule here because interrupts are disabled,
5833 * and either child is current or it is a task that can't be
5834 * scheduled, so we are now safe from rescheduling changing
5837 child_ctx
= child
->perf_event_ctxp
[ctxn
];
5838 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
5841 * Take the context lock here so that if find_get_context is
5842 * reading child->perf_event_ctxp, we wait until it has
5843 * incremented the context's refcount before we do put_ctx below.
5845 raw_spin_lock(&child_ctx
->lock
);
5846 child
->perf_event_ctxp
[ctxn
] = NULL
;
5848 * If this context is a clone; unclone it so it can't get
5849 * swapped to another process while we're removing all
5850 * the events from it.
5852 unclone_ctx(child_ctx
);
5853 update_context_time(child_ctx
);
5854 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5857 * Report the task dead after unscheduling the events so that we
5858 * won't get any samples after PERF_RECORD_EXIT. We can however still
5859 * get a few PERF_RECORD_READ events.
5861 perf_event_task(child
, child_ctx
, 0);
5864 * We can recurse on the same lock type through:
5866 * __perf_event_exit_task()
5867 * sync_child_event()
5868 * fput(parent_event->filp)
5870 * mutex_lock(&ctx->mutex)
5872 * But since its the parent context it won't be the same instance.
5874 mutex_lock(&child_ctx
->mutex
);
5877 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5879 __perf_event_exit_task(child_event
, child_ctx
, child
);
5881 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5883 __perf_event_exit_task(child_event
, child_ctx
, child
);
5886 * If the last event was a group event, it will have appended all
5887 * its siblings to the list, but we obtained 'tmp' before that which
5888 * will still point to the list head terminating the iteration.
5890 if (!list_empty(&child_ctx
->pinned_groups
) ||
5891 !list_empty(&child_ctx
->flexible_groups
))
5894 mutex_unlock(&child_ctx
->mutex
);
5900 * When a child task exits, feed back event values to parent events.
5902 void perf_event_exit_task(struct task_struct
*child
)
5906 for_each_task_context_nr(ctxn
)
5907 perf_event_exit_task_context(child
, ctxn
);
5910 static void perf_free_event(struct perf_event
*event
,
5911 struct perf_event_context
*ctx
)
5913 struct perf_event
*parent
= event
->parent
;
5915 if (WARN_ON_ONCE(!parent
))
5918 mutex_lock(&parent
->child_mutex
);
5919 list_del_init(&event
->child_list
);
5920 mutex_unlock(&parent
->child_mutex
);
5924 perf_group_detach(event
);
5925 list_del_event(event
, ctx
);
5930 * free an unexposed, unused context as created by inheritance by
5931 * perf_event_init_task below, used by fork() in case of fail.
5933 void perf_event_free_task(struct task_struct
*task
)
5935 struct perf_event_context
*ctx
;
5936 struct perf_event
*event
, *tmp
;
5939 for_each_task_context_nr(ctxn
) {
5940 ctx
= task
->perf_event_ctxp
[ctxn
];
5944 mutex_lock(&ctx
->mutex
);
5946 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
5948 perf_free_event(event
, ctx
);
5950 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5952 perf_free_event(event
, ctx
);
5954 if (!list_empty(&ctx
->pinned_groups
) ||
5955 !list_empty(&ctx
->flexible_groups
))
5958 mutex_unlock(&ctx
->mutex
);
5964 void perf_event_delayed_put(struct task_struct
*task
)
5968 for_each_task_context_nr(ctxn
)
5969 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
5973 * inherit a event from parent task to child task:
5975 static struct perf_event
*
5976 inherit_event(struct perf_event
*parent_event
,
5977 struct task_struct
*parent
,
5978 struct perf_event_context
*parent_ctx
,
5979 struct task_struct
*child
,
5980 struct perf_event
*group_leader
,
5981 struct perf_event_context
*child_ctx
)
5983 struct perf_event
*child_event
;
5984 unsigned long flags
;
5987 * Instead of creating recursive hierarchies of events,
5988 * we link inherited events back to the original parent,
5989 * which has a filp for sure, which we use as the reference
5992 if (parent_event
->parent
)
5993 parent_event
= parent_event
->parent
;
5995 child_event
= perf_event_alloc(&parent_event
->attr
,
5998 group_leader
, parent_event
,
6000 if (IS_ERR(child_event
))
6005 * Make the child state follow the state of the parent event,
6006 * not its attr.disabled bit. We hold the parent's mutex,
6007 * so we won't race with perf_event_{en, dis}able_family.
6009 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6010 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6012 child_event
->state
= PERF_EVENT_STATE_OFF
;
6014 if (parent_event
->attr
.freq
) {
6015 u64 sample_period
= parent_event
->hw
.sample_period
;
6016 struct hw_perf_event
*hwc
= &child_event
->hw
;
6018 hwc
->sample_period
= sample_period
;
6019 hwc
->last_period
= sample_period
;
6021 local64_set(&hwc
->period_left
, sample_period
);
6024 child_event
->ctx
= child_ctx
;
6025 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6028 * Link it up in the child's context:
6030 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6031 add_event_to_ctx(child_event
, child_ctx
);
6032 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6035 * Get a reference to the parent filp - we will fput it
6036 * when the child event exits. This is safe to do because
6037 * we are in the parent and we know that the filp still
6038 * exists and has a nonzero count:
6040 atomic_long_inc(&parent_event
->filp
->f_count
);
6043 * Link this into the parent event's child list
6045 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6046 mutex_lock(&parent_event
->child_mutex
);
6047 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6048 mutex_unlock(&parent_event
->child_mutex
);
6053 static int inherit_group(struct perf_event
*parent_event
,
6054 struct task_struct
*parent
,
6055 struct perf_event_context
*parent_ctx
,
6056 struct task_struct
*child
,
6057 struct perf_event_context
*child_ctx
)
6059 struct perf_event
*leader
;
6060 struct perf_event
*sub
;
6061 struct perf_event
*child_ctr
;
6063 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6064 child
, NULL
, child_ctx
);
6066 return PTR_ERR(leader
);
6067 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6068 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6069 child
, leader
, child_ctx
);
6070 if (IS_ERR(child_ctr
))
6071 return PTR_ERR(child_ctr
);
6077 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6078 struct perf_event_context
*parent_ctx
,
6079 struct task_struct
*child
, int ctxn
,
6083 struct perf_event_context
*child_ctx
;
6085 if (!event
->attr
.inherit
) {
6090 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6093 * This is executed from the parent task context, so
6094 * inherit events that have been marked for cloning.
6095 * First allocate and initialize a context for the
6099 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6103 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6106 ret
= inherit_group(event
, parent
, parent_ctx
,
6116 * Initialize the perf_event context in task_struct
6118 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6120 struct perf_event_context
*child_ctx
, *parent_ctx
;
6121 struct perf_event_context
*cloned_ctx
;
6122 struct perf_event
*event
;
6123 struct task_struct
*parent
= current
;
6124 int inherited_all
= 1;
6127 child
->perf_event_ctxp
[ctxn
] = NULL
;
6129 mutex_init(&child
->perf_event_mutex
);
6130 INIT_LIST_HEAD(&child
->perf_event_list
);
6132 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6136 * If the parent's context is a clone, pin it so it won't get
6139 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6142 * No need to check if parent_ctx != NULL here; since we saw
6143 * it non-NULL earlier, the only reason for it to become NULL
6144 * is if we exit, and since we're currently in the middle of
6145 * a fork we can't be exiting at the same time.
6149 * Lock the parent list. No need to lock the child - not PID
6150 * hashed yet and not running, so nobody can access it.
6152 mutex_lock(&parent_ctx
->mutex
);
6155 * We dont have to disable NMIs - we are only looking at
6156 * the list, not manipulating it:
6158 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6159 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6160 child
, ctxn
, &inherited_all
);
6165 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6166 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6167 child
, ctxn
, &inherited_all
);
6172 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6174 if (child_ctx
&& inherited_all
) {
6176 * Mark the child context as a clone of the parent
6177 * context, or of whatever the parent is a clone of.
6178 * Note that if the parent is a clone, it could get
6179 * uncloned at any point, but that doesn't matter
6180 * because the list of events and the generation
6181 * count can't have changed since we took the mutex.
6183 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
6185 child_ctx
->parent_ctx
= cloned_ctx
;
6186 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6188 child_ctx
->parent_ctx
= parent_ctx
;
6189 child_ctx
->parent_gen
= parent_ctx
->generation
;
6191 get_ctx(child_ctx
->parent_ctx
);
6194 mutex_unlock(&parent_ctx
->mutex
);
6196 perf_unpin_context(parent_ctx
);
6202 * Initialize the perf_event context in task_struct
6204 int perf_event_init_task(struct task_struct
*child
)
6208 for_each_task_context_nr(ctxn
) {
6209 ret
= perf_event_init_context(child
, ctxn
);
6217 static void __init
perf_event_init_all_cpus(void)
6219 struct swevent_htable
*swhash
;
6222 for_each_possible_cpu(cpu
) {
6223 swhash
= &per_cpu(swevent_htable
, cpu
);
6224 mutex_init(&swhash
->hlist_mutex
);
6225 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6229 static void __cpuinit
perf_event_init_cpu(int cpu
)
6231 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6233 mutex_lock(&swhash
->hlist_mutex
);
6234 if (swhash
->hlist_refcount
> 0) {
6235 struct swevent_hlist
*hlist
;
6237 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6239 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6241 mutex_unlock(&swhash
->hlist_mutex
);
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6247 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6249 WARN_ON(!irqs_disabled());
6251 list_del_init(&cpuctx
->rotation_list
);
6254 static void __perf_event_exit_context(void *__info
)
6256 struct perf_event_context
*ctx
= __info
;
6257 struct perf_event
*event
, *tmp
;
6259 perf_pmu_rotate_stop(ctx
->pmu
);
6261 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6262 __perf_event_remove_from_context(event
);
6263 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6264 __perf_event_remove_from_context(event
);
6267 static void perf_event_exit_cpu_context(int cpu
)
6269 struct perf_event_context
*ctx
;
6273 idx
= srcu_read_lock(&pmus_srcu
);
6274 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6275 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6277 mutex_lock(&ctx
->mutex
);
6278 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6279 mutex_unlock(&ctx
->mutex
);
6281 srcu_read_unlock(&pmus_srcu
, idx
);
6284 static void perf_event_exit_cpu(int cpu
)
6286 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6288 mutex_lock(&swhash
->hlist_mutex
);
6289 swevent_hlist_release(swhash
);
6290 mutex_unlock(&swhash
->hlist_mutex
);
6292 perf_event_exit_cpu_context(cpu
);
6295 static inline void perf_event_exit_cpu(int cpu
) { }
6298 static int __cpuinit
6299 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6301 unsigned int cpu
= (long)hcpu
;
6303 switch (action
& ~CPU_TASKS_FROZEN
) {
6305 case CPU_UP_PREPARE
:
6306 case CPU_DOWN_FAILED
:
6307 perf_event_init_cpu(cpu
);
6310 case CPU_UP_CANCELED
:
6311 case CPU_DOWN_PREPARE
:
6312 perf_event_exit_cpu(cpu
);
6322 void __init
perf_event_init(void)
6324 perf_event_init_all_cpus();
6325 init_srcu_struct(&pmus_srcu
);
6326 perf_pmu_register(&perf_swevent
);
6327 perf_pmu_register(&perf_cpu_clock
);
6328 perf_pmu_register(&perf_task_clock
);
6330 perf_cpu_notifier(perf_cpu_notify
);