USB: xhci: unsigned char never equals -1
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-mem.c
blobab7fc2b71a8c40156461ac65045ae0821c18c2b7
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
59 return seg;
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
86 u32 val;
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
147 * Create a new ring with zero or more segments.
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
159 ring = kzalloc(sizeof *(ring), flags);
160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161 if (!ring)
162 return NULL;
164 INIT_LIST_HEAD(&ring->td_list);
165 if (num_segs == 0)
166 return ring;
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
182 prev = next;
183 num_segs--;
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
194 xhci_initialize_ring_info(ring);
195 return ring;
197 fail:
198 xhci_ring_free(xhci, ring);
199 return NULL;
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
206 int rings_cached;
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
224 virt_dev->eps[ep_index].ring = NULL;
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
245 INIT_LIST_HEAD(&ring->td_list);
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 int type, gfp_t flags)
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 struct xhci_container_ctx *ctx)
271 if (!ctx)
272 return;
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
308 /***************** Streams structures manipulation *************************/
310 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311 unsigned int num_stream_ctxs,
312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317 pci_free_consistent(pdev,
318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319 stream_ctx, dma);
320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321 return dma_pool_free(xhci->small_streams_pool,
322 stream_ctx, dma);
323 else
324 return dma_pool_free(xhci->medium_streams_pool,
325 stream_ctx, dma);
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 * - how many streams the endpoint supports,
332 * - the maximum primary stream array size the host controller supports,
333 * - and how many streams the device driver asks for.
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
338 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339 unsigned int num_stream_ctxs, dma_addr_t *dma,
340 gfp_t mem_flags)
342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345 return pci_alloc_consistent(pdev,
346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347 dma);
348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349 return dma_pool_alloc(xhci->small_streams_pool,
350 mem_flags, dma);
351 else
352 return dma_pool_alloc(xhci->medium_streams_pool,
353 mem_flags, dma);
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357 struct xhci_virt_ep *ep,
358 u64 address)
360 if (ep->ep_state & EP_HAS_STREAMS)
361 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
363 return ep->ring;
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369 struct xhci_stream_info *stream_info,
370 u64 address)
372 return radix_tree_lookup(&stream_info->trb_address_map,
373 address >> SEGMENT_SHIFT);
375 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377 struct xhci_ring *xhci_stream_id_to_ring(
378 struct xhci_virt_device *dev,
379 unsigned int ep_index,
380 unsigned int stream_id)
382 struct xhci_virt_ep *ep = &dev->eps[ep_index];
384 if (stream_id == 0)
385 return ep->ring;
386 if (!ep->stream_info)
387 return NULL;
389 if (stream_id > ep->stream_info->num_streams)
390 return NULL;
391 return ep->stream_info->stream_rings[stream_id];
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396 unsigned int num_streams,
397 struct xhci_stream_info *stream_info)
399 u32 cur_stream;
400 struct xhci_ring *cur_ring;
401 u64 addr;
403 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404 struct xhci_ring *mapped_ring;
405 int trb_size = sizeof(union xhci_trb);
407 cur_ring = stream_info->stream_rings[cur_stream];
408 for (addr = cur_ring->first_seg->dma;
409 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410 addr += trb_size) {
411 mapped_ring = dma_to_stream_ring(stream_info, addr);
412 if (cur_ring != mapped_ring) {
413 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414 "didn't map to stream ID %u; "
415 "mapped to ring %p\n",
416 (unsigned long long) addr,
417 cur_stream,
418 mapped_ring);
419 return -EINVAL;
422 /* One TRB after the end of the ring segment shouldn't return a
423 * pointer to the current ring (although it may be a part of a
424 * different ring).
426 mapped_ring = dma_to_stream_ring(stream_info, addr);
427 if (mapped_ring != cur_ring) {
428 /* One TRB before should also fail */
429 addr = cur_ring->first_seg->dma - trb_size;
430 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 if (mapped_ring == cur_ring) {
433 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434 "mapped to valid stream ID %u; "
435 "mapped ring = %p\n",
436 (unsigned long long) addr,
437 cur_stream,
438 mapped_ring);
439 return -EINVAL;
442 return 0;
444 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
447 * Change an endpoint's internal structure so it supports stream IDs. The
448 * number of requested streams includes stream 0, which cannot be used by device
449 * drivers.
451 * The number of stream contexts in the stream context array may be bigger than
452 * the number of streams the driver wants to use. This is because the number of
453 * stream context array entries must be a power of two.
455 * We need a radix tree for mapping physical addresses of TRBs to which stream
456 * ID they belong to. We need to do this because the host controller won't tell
457 * us which stream ring the TRB came from. We could store the stream ID in an
458 * event data TRB, but that doesn't help us for the cancellation case, since the
459 * endpoint may stop before it reaches that event data TRB.
461 * The radix tree maps the upper portion of the TRB DMA address to a ring
462 * segment that has the same upper portion of DMA addresses. For example, say I
463 * have segments of size 1KB, that are always 64-byte aligned. A segment may
464 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
465 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
466 * pass the radix tree a key to get the right stream ID:
468 * 0x10c90fff >> 10 = 0x43243
469 * 0x10c912c0 >> 10 = 0x43244
470 * 0x10c91400 >> 10 = 0x43245
472 * Obviously, only those TRBs with DMA addresses that are within the segment
473 * will make the radix tree return the stream ID for that ring.
475 * Caveats for the radix tree:
477 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
482 * extended systems (where the DMA address can be bigger than 32-bits),
483 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486 unsigned int num_stream_ctxs,
487 unsigned int num_streams, gfp_t mem_flags)
489 struct xhci_stream_info *stream_info;
490 u32 cur_stream;
491 struct xhci_ring *cur_ring;
492 unsigned long key;
493 u64 addr;
494 int ret;
496 xhci_dbg(xhci, "Allocating %u streams and %u "
497 "stream context array entries.\n",
498 num_streams, num_stream_ctxs);
499 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501 return NULL;
503 xhci->cmd_ring_reserved_trbs++;
505 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506 if (!stream_info)
507 goto cleanup_trbs;
509 stream_info->num_streams = num_streams;
510 stream_info->num_stream_ctxs = num_stream_ctxs;
512 /* Initialize the array of virtual pointers to stream rings. */
513 stream_info->stream_rings = kzalloc(
514 sizeof(struct xhci_ring *)*num_streams,
515 mem_flags);
516 if (!stream_info->stream_rings)
517 goto cleanup_info;
519 /* Initialize the array of DMA addresses for stream rings for the HW. */
520 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521 num_stream_ctxs, &stream_info->ctx_array_dma,
522 mem_flags);
523 if (!stream_info->stream_ctx_array)
524 goto cleanup_ctx;
525 memset(stream_info->stream_ctx_array, 0,
526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528 /* Allocate everything needed to free the stream rings later */
529 stream_info->free_streams_command =
530 xhci_alloc_command(xhci, true, true, mem_flags);
531 if (!stream_info->free_streams_command)
532 goto cleanup_ctx;
534 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536 /* Allocate rings for all the streams that the driver will use,
537 * and add their segment DMA addresses to the radix tree.
538 * Stream 0 is reserved.
540 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541 stream_info->stream_rings[cur_stream] =
542 xhci_ring_alloc(xhci, 1, true, mem_flags);
543 cur_ring = stream_info->stream_rings[cur_stream];
544 if (!cur_ring)
545 goto cleanup_rings;
546 cur_ring->stream_id = cur_stream;
547 /* Set deq ptr, cycle bit, and stream context type */
548 addr = cur_ring->first_seg->dma |
549 SCT_FOR_CTX(SCT_PRI_TR) |
550 cur_ring->cycle_state;
551 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553 cur_stream, (unsigned long long) addr);
555 key = (unsigned long)
556 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557 ret = radix_tree_insert(&stream_info->trb_address_map,
558 key, cur_ring);
559 if (ret) {
560 xhci_ring_free(xhci, cur_ring);
561 stream_info->stream_rings[cur_stream] = NULL;
562 goto cleanup_rings;
565 /* Leave the other unused stream ring pointers in the stream context
566 * array initialized to zero. This will cause the xHC to give us an
567 * error if the device asks for a stream ID we don't have setup (if it
568 * was any other way, the host controller would assume the ring is
569 * "empty" and wait forever for data to be queued to that stream ID).
571 #if XHCI_DEBUG
572 /* Do a little test on the radix tree to make sure it returns the
573 * correct values.
575 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576 goto cleanup_rings;
577 #endif
579 return stream_info;
581 cleanup_rings:
582 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583 cur_ring = stream_info->stream_rings[cur_stream];
584 if (cur_ring) {
585 addr = cur_ring->first_seg->dma;
586 radix_tree_delete(&stream_info->trb_address_map,
587 addr >> SEGMENT_SHIFT);
588 xhci_ring_free(xhci, cur_ring);
589 stream_info->stream_rings[cur_stream] = NULL;
592 xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594 kfree(stream_info->stream_rings);
595 cleanup_info:
596 kfree(stream_info);
597 cleanup_trbs:
598 xhci->cmd_ring_reserved_trbs--;
599 return NULL;
602 * Sets the MaxPStreams field and the Linear Stream Array field.
603 * Sets the dequeue pointer to the stream context array.
605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606 struct xhci_ep_ctx *ep_ctx,
607 struct xhci_stream_info *stream_info)
609 u32 max_primary_streams;
610 /* MaxPStreams is the number of stream context array entries, not the
611 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
612 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
614 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616 1 << (max_primary_streams + 1));
617 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619 ep_ctx->ep_info |= EP_HAS_LSA;
620 ep_ctx->deq = stream_info->ctx_array_dma;
624 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626 * not at the beginning of the ring).
628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629 struct xhci_ep_ctx *ep_ctx,
630 struct xhci_virt_ep *ep)
632 dma_addr_t addr;
633 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634 ep_ctx->ep_info &= ~EP_HAS_LSA;
635 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636 ep_ctx->deq = addr | ep->ring->cycle_state;
639 /* Frees all stream contexts associated with the endpoint,
641 * Caller should fix the endpoint context streams fields.
643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644 struct xhci_stream_info *stream_info)
646 int cur_stream;
647 struct xhci_ring *cur_ring;
648 dma_addr_t addr;
650 if (!stream_info)
651 return;
653 for (cur_stream = 1; cur_stream < stream_info->num_streams;
654 cur_stream++) {
655 cur_ring = stream_info->stream_rings[cur_stream];
656 if (cur_ring) {
657 addr = cur_ring->first_seg->dma;
658 radix_tree_delete(&stream_info->trb_address_map,
659 addr >> SEGMENT_SHIFT);
660 xhci_ring_free(xhci, cur_ring);
661 stream_info->stream_rings[cur_stream] = NULL;
664 xhci_free_command(xhci, stream_info->free_streams_command);
665 xhci->cmd_ring_reserved_trbs--;
666 if (stream_info->stream_ctx_array)
667 xhci_free_stream_ctx(xhci,
668 stream_info->num_stream_ctxs,
669 stream_info->stream_ctx_array,
670 stream_info->ctx_array_dma);
672 if (stream_info)
673 kfree(stream_info->stream_rings);
674 kfree(stream_info);
678 /***************** Device context manipulation *************************/
680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681 struct xhci_virt_ep *ep)
683 init_timer(&ep->stop_cmd_timer);
684 ep->stop_cmd_timer.data = (unsigned long) ep;
685 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686 ep->xhci = xhci;
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692 struct xhci_virt_device *dev;
693 int i;
695 /* Slot ID 0 is reserved */
696 if (slot_id == 0 || !xhci->devs[slot_id])
697 return;
699 dev = xhci->devs[slot_id];
700 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701 if (!dev)
702 return;
704 for (i = 0; i < 31; ++i) {
705 if (dev->eps[i].ring)
706 xhci_ring_free(xhci, dev->eps[i].ring);
707 if (dev->eps[i].stream_info)
708 xhci_free_stream_info(xhci,
709 dev->eps[i].stream_info);
712 if (dev->ring_cache) {
713 for (i = 0; i < dev->num_rings_cached; i++)
714 xhci_ring_free(xhci, dev->ring_cache[i]);
715 kfree(dev->ring_cache);
718 if (dev->in_ctx)
719 xhci_free_container_ctx(xhci, dev->in_ctx);
720 if (dev->out_ctx)
721 xhci_free_container_ctx(xhci, dev->out_ctx);
723 kfree(xhci->devs[slot_id]);
724 xhci->devs[slot_id] = NULL;
727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728 struct usb_device *udev, gfp_t flags)
730 struct xhci_virt_device *dev;
731 int i;
733 /* Slot ID 0 is reserved */
734 if (slot_id == 0 || xhci->devs[slot_id]) {
735 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736 return 0;
739 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740 if (!xhci->devs[slot_id])
741 return 0;
742 dev = xhci->devs[slot_id];
744 /* Allocate the (output) device context that will be used in the HC. */
745 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746 if (!dev->out_ctx)
747 goto fail;
749 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750 (unsigned long long)dev->out_ctx->dma);
752 /* Allocate the (input) device context for address device command */
753 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754 if (!dev->in_ctx)
755 goto fail;
757 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758 (unsigned long long)dev->in_ctx->dma);
760 /* Initialize the cancellation list and watchdog timers for each ep */
761 for (i = 0; i < 31; i++) {
762 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
766 /* Allocate endpoint 0 ring */
767 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768 if (!dev->eps[0].ring)
769 goto fail;
771 /* Allocate pointers to the ring cache */
772 dev->ring_cache = kzalloc(
773 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774 flags);
775 if (!dev->ring_cache)
776 goto fail;
777 dev->num_rings_cached = 0;
779 init_completion(&dev->cmd_completion);
780 INIT_LIST_HEAD(&dev->cmd_list);
781 dev->udev = udev;
783 /* Point to output device context in dcbaa. */
784 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786 slot_id,
787 &xhci->dcbaa->dev_context_ptrs[slot_id],
788 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
790 return 1;
791 fail:
792 xhci_free_virt_device(xhci, slot_id);
793 return 0;
796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797 struct usb_device *udev)
799 struct xhci_virt_device *virt_dev;
800 struct xhci_ep_ctx *ep0_ctx;
801 struct xhci_ring *ep_ring;
803 virt_dev = xhci->devs[udev->slot_id];
804 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805 ep_ring = virt_dev->eps[0].ring;
807 * FIXME we don't keep track of the dequeue pointer very well after a
808 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809 * host to our enqueue pointer. This should only be called after a
810 * configured device has reset, so all control transfers should have
811 * been completed or cancelled before the reset.
813 ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814 ep0_ctx->deq |= ep_ring->cycle_state;
818 * The xHCI roothub may have ports of differing speeds in any order in the port
819 * status registers. xhci->port_array provides an array of the port speed for
820 * each offset into the port status registers.
822 * The xHCI hardware wants to know the roothub port number that the USB device
823 * is attached to (or the roothub port its ancestor hub is attached to). All we
824 * know is the index of that port under either the USB 2.0 or the USB 3.0
825 * roothub, but that doesn't give us the real index into the HW port status
826 * registers. Scan through the xHCI roothub port array, looking for the Nth
827 * entry of the correct port speed. Return the port number of that entry.
829 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
830 struct usb_device *udev)
832 struct usb_device *top_dev;
833 unsigned int num_similar_speed_ports;
834 unsigned int faked_port_num;
835 int i;
837 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
838 top_dev = top_dev->parent)
839 /* Found device below root hub */;
840 faked_port_num = top_dev->portnum;
841 for (i = 0, num_similar_speed_ports = 0;
842 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
843 u8 port_speed = xhci->port_array[i];
846 * Skip ports that don't have known speeds, or have duplicate
847 * Extended Capabilities port speed entries.
849 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
850 continue;
853 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
854 * 1.1 ports are under the USB 2.0 hub. If the port speed
855 * matches the device speed, it's a similar speed port.
857 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
858 num_similar_speed_ports++;
859 if (num_similar_speed_ports == faked_port_num)
860 /* Roothub ports are numbered from 1 to N */
861 return i+1;
863 return 0;
866 /* Setup an xHCI virtual device for a Set Address command */
867 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
869 struct xhci_virt_device *dev;
870 struct xhci_ep_ctx *ep0_ctx;
871 struct xhci_slot_ctx *slot_ctx;
872 struct xhci_input_control_ctx *ctrl_ctx;
873 u32 port_num;
874 struct usb_device *top_dev;
876 dev = xhci->devs[udev->slot_id];
877 /* Slot ID 0 is reserved */
878 if (udev->slot_id == 0 || !dev) {
879 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
880 udev->slot_id);
881 return -EINVAL;
883 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
884 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
885 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
887 /* 2) New slot context and endpoint 0 context are valid*/
888 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
890 /* 3) Only the control endpoint is valid - one endpoint context */
891 slot_ctx->dev_info |= LAST_CTX(1);
893 slot_ctx->dev_info |= (u32) udev->route;
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
896 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
897 break;
898 case USB_SPEED_HIGH:
899 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
900 break;
901 case USB_SPEED_FULL:
902 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
903 break;
904 case USB_SPEED_LOW:
905 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
906 break;
907 case USB_SPEED_WIRELESS:
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
915 /* Find the root hub port this device is under */
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
919 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(port_num);
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
924 dev->port = top_dev->portnum;
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
930 slot_ctx->tt_info = udev->tt->hub->slot_id;
931 slot_ctx->tt_info |= udev->ttport << 8;
932 if (udev->tt->multi)
933 slot_ctx->dev_info |= DEV_MTT;
935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
940 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
942 * XXX: Not sure about wireless USB devices.
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
946 ep0_ctx->ep_info2 |= MAX_PACKET(512);
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
951 ep0_ctx->ep_info2 |= MAX_PACKET(64);
952 break;
953 case USB_SPEED_LOW:
954 ep0_ctx->ep_info2 |= MAX_PACKET(8);
955 break;
956 case USB_SPEED_WIRELESS:
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx->ep_info2 |= MAX_BURST(0);
966 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
968 ep0_ctx->deq =
969 dev->eps[0].ring->first_seg->dma;
970 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
972 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
974 return 0;
977 /* Return the polling or NAK interval.
979 * The polling interval is expressed in "microframes". If xHCI's Interval field
980 * is set to N, it will service the endpoint every 2^(Interval)*125us.
982 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
983 * is set to 0.
985 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
986 struct usb_host_endpoint *ep)
988 unsigned int interval = 0;
990 switch (udev->speed) {
991 case USB_SPEED_HIGH:
992 /* Max NAK rate */
993 if (usb_endpoint_xfer_control(&ep->desc) ||
994 usb_endpoint_xfer_bulk(&ep->desc))
995 interval = ep->desc.bInterval;
996 /* Fall through - SS and HS isoc/int have same decoding */
997 case USB_SPEED_SUPER:
998 if (usb_endpoint_xfer_int(&ep->desc) ||
999 usb_endpoint_xfer_isoc(&ep->desc)) {
1000 if (ep->desc.bInterval == 0)
1001 interval = 0;
1002 else
1003 interval = ep->desc.bInterval - 1;
1004 if (interval > 15)
1005 interval = 15;
1006 if (interval != ep->desc.bInterval + 1)
1007 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
1008 ep->desc.bEndpointAddress, 1 << interval);
1010 break;
1011 /* Convert bInterval (in 1-255 frames) to microframes and round down to
1012 * nearest power of 2.
1014 case USB_SPEED_FULL:
1015 case USB_SPEED_LOW:
1016 if (usb_endpoint_xfer_int(&ep->desc) ||
1017 usb_endpoint_xfer_isoc(&ep->desc)) {
1018 interval = fls(8*ep->desc.bInterval) - 1;
1019 if (interval > 10)
1020 interval = 10;
1021 if (interval < 3)
1022 interval = 3;
1023 if ((1 << interval) != 8*ep->desc.bInterval)
1024 dev_warn(&udev->dev,
1025 "ep %#x - rounding interval"
1026 " to %d microframes, "
1027 "ep desc says %d microframes\n",
1028 ep->desc.bEndpointAddress,
1029 1 << interval,
1030 8*ep->desc.bInterval);
1032 break;
1033 default:
1034 BUG();
1036 return EP_INTERVAL(interval);
1039 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1040 * High speed endpoint descriptors can define "the number of additional
1041 * transaction opportunities per microframe", but that goes in the Max Burst
1042 * endpoint context field.
1044 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
1045 struct usb_host_endpoint *ep)
1047 if (udev->speed != USB_SPEED_SUPER ||
1048 !usb_endpoint_xfer_isoc(&ep->desc))
1049 return 0;
1050 return ep->ss_ep_comp.bmAttributes;
1053 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1054 struct usb_host_endpoint *ep)
1056 int in;
1057 u32 type;
1059 in = usb_endpoint_dir_in(&ep->desc);
1060 if (usb_endpoint_xfer_control(&ep->desc)) {
1061 type = EP_TYPE(CTRL_EP);
1062 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1063 if (in)
1064 type = EP_TYPE(BULK_IN_EP);
1065 else
1066 type = EP_TYPE(BULK_OUT_EP);
1067 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1068 if (in)
1069 type = EP_TYPE(ISOC_IN_EP);
1070 else
1071 type = EP_TYPE(ISOC_OUT_EP);
1072 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1073 if (in)
1074 type = EP_TYPE(INT_IN_EP);
1075 else
1076 type = EP_TYPE(INT_OUT_EP);
1077 } else {
1078 BUG();
1080 return type;
1083 /* Return the maximum endpoint service interval time (ESIT) payload.
1084 * Basically, this is the maxpacket size, multiplied by the burst size
1085 * and mult size.
1087 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1088 struct usb_device *udev,
1089 struct usb_host_endpoint *ep)
1091 int max_burst;
1092 int max_packet;
1094 /* Only applies for interrupt or isochronous endpoints */
1095 if (usb_endpoint_xfer_control(&ep->desc) ||
1096 usb_endpoint_xfer_bulk(&ep->desc))
1097 return 0;
1099 if (udev->speed == USB_SPEED_SUPER)
1100 return ep->ss_ep_comp.wBytesPerInterval;
1102 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1103 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1104 /* A 0 in max burst means 1 transfer per ESIT */
1105 return max_packet * (max_burst + 1);
1108 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1109 * Drivers will have to call usb_alloc_streams() to do that.
1111 int xhci_endpoint_init(struct xhci_hcd *xhci,
1112 struct xhci_virt_device *virt_dev,
1113 struct usb_device *udev,
1114 struct usb_host_endpoint *ep,
1115 gfp_t mem_flags)
1117 unsigned int ep_index;
1118 struct xhci_ep_ctx *ep_ctx;
1119 struct xhci_ring *ep_ring;
1120 unsigned int max_packet;
1121 unsigned int max_burst;
1122 u32 max_esit_payload;
1124 ep_index = xhci_get_endpoint_index(&ep->desc);
1125 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1127 /* Set up the endpoint ring */
1129 * Isochronous endpoint ring needs bigger size because one isoc URB
1130 * carries multiple packets and it will insert multiple tds to the
1131 * ring.
1132 * This should be replaced with dynamic ring resizing in the future.
1134 if (usb_endpoint_xfer_isoc(&ep->desc))
1135 virt_dev->eps[ep_index].new_ring =
1136 xhci_ring_alloc(xhci, 8, true, mem_flags);
1137 else
1138 virt_dev->eps[ep_index].new_ring =
1139 xhci_ring_alloc(xhci, 1, true, mem_flags);
1140 if (!virt_dev->eps[ep_index].new_ring) {
1141 /* Attempt to use the ring cache */
1142 if (virt_dev->num_rings_cached == 0)
1143 return -ENOMEM;
1144 virt_dev->eps[ep_index].new_ring =
1145 virt_dev->ring_cache[virt_dev->num_rings_cached];
1146 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1147 virt_dev->num_rings_cached--;
1148 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1150 virt_dev->eps[ep_index].skip = false;
1151 ep_ring = virt_dev->eps[ep_index].new_ring;
1152 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1154 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1155 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1157 /* FIXME dig Mult and streams info out of ep companion desc */
1159 /* Allow 3 retries for everything but isoc;
1160 * error count = 0 means infinite retries.
1162 if (!usb_endpoint_xfer_isoc(&ep->desc))
1163 ep_ctx->ep_info2 = ERROR_COUNT(3);
1164 else
1165 ep_ctx->ep_info2 = ERROR_COUNT(1);
1167 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1169 /* Set the max packet size and max burst */
1170 switch (udev->speed) {
1171 case USB_SPEED_SUPER:
1172 max_packet = ep->desc.wMaxPacketSize;
1173 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1174 /* dig out max burst from ep companion desc */
1175 max_packet = ep->ss_ep_comp.bMaxBurst;
1176 if (!max_packet)
1177 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1178 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1179 break;
1180 case USB_SPEED_HIGH:
1181 /* bits 11:12 specify the number of additional transaction
1182 * opportunities per microframe (USB 2.0, section 9.6.6)
1184 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1185 usb_endpoint_xfer_int(&ep->desc)) {
1186 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1187 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1189 /* Fall through */
1190 case USB_SPEED_FULL:
1191 case USB_SPEED_LOW:
1192 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1193 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1194 break;
1195 default:
1196 BUG();
1198 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1199 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1202 * XXX no idea how to calculate the average TRB buffer length for bulk
1203 * endpoints, as the driver gives us no clue how big each scatter gather
1204 * list entry (or buffer) is going to be.
1206 * For isochronous and interrupt endpoints, we set it to the max
1207 * available, until we have new API in the USB core to allow drivers to
1208 * declare how much bandwidth they actually need.
1210 * Normally, it would be calculated by taking the total of the buffer
1211 * lengths in the TD and then dividing by the number of TRBs in a TD,
1212 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1213 * use Event Data TRBs, and we don't chain in a link TRB on short
1214 * transfers, we're basically dividing by 1.
1216 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1218 /* FIXME Debug endpoint context */
1219 return 0;
1222 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1223 struct xhci_virt_device *virt_dev,
1224 struct usb_host_endpoint *ep)
1226 unsigned int ep_index;
1227 struct xhci_ep_ctx *ep_ctx;
1229 ep_index = xhci_get_endpoint_index(&ep->desc);
1230 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1232 ep_ctx->ep_info = 0;
1233 ep_ctx->ep_info2 = 0;
1234 ep_ctx->deq = 0;
1235 ep_ctx->tx_info = 0;
1236 /* Don't free the endpoint ring until the set interface or configuration
1237 * request succeeds.
1241 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1242 * Useful when you want to change one particular aspect of the endpoint and then
1243 * issue a configure endpoint command.
1245 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1246 struct xhci_container_ctx *in_ctx,
1247 struct xhci_container_ctx *out_ctx,
1248 unsigned int ep_index)
1250 struct xhci_ep_ctx *out_ep_ctx;
1251 struct xhci_ep_ctx *in_ep_ctx;
1253 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1254 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1256 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1257 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1258 in_ep_ctx->deq = out_ep_ctx->deq;
1259 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1262 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1263 * Useful when you want to change one particular aspect of the endpoint and then
1264 * issue a configure endpoint command. Only the context entries field matters,
1265 * but we'll copy the whole thing anyway.
1267 void xhci_slot_copy(struct xhci_hcd *xhci,
1268 struct xhci_container_ctx *in_ctx,
1269 struct xhci_container_ctx *out_ctx)
1271 struct xhci_slot_ctx *in_slot_ctx;
1272 struct xhci_slot_ctx *out_slot_ctx;
1274 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1275 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1277 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1278 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1279 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1280 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1283 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1284 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1286 int i;
1287 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1288 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1290 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1292 if (!num_sp)
1293 return 0;
1295 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1296 if (!xhci->scratchpad)
1297 goto fail_sp;
1299 xhci->scratchpad->sp_array =
1300 pci_alloc_consistent(to_pci_dev(dev),
1301 num_sp * sizeof(u64),
1302 &xhci->scratchpad->sp_dma);
1303 if (!xhci->scratchpad->sp_array)
1304 goto fail_sp2;
1306 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1307 if (!xhci->scratchpad->sp_buffers)
1308 goto fail_sp3;
1310 xhci->scratchpad->sp_dma_buffers =
1311 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1313 if (!xhci->scratchpad->sp_dma_buffers)
1314 goto fail_sp4;
1316 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1317 for (i = 0; i < num_sp; i++) {
1318 dma_addr_t dma;
1319 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1320 xhci->page_size, &dma);
1321 if (!buf)
1322 goto fail_sp5;
1324 xhci->scratchpad->sp_array[i] = dma;
1325 xhci->scratchpad->sp_buffers[i] = buf;
1326 xhci->scratchpad->sp_dma_buffers[i] = dma;
1329 return 0;
1331 fail_sp5:
1332 for (i = i - 1; i >= 0; i--) {
1333 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1334 xhci->scratchpad->sp_buffers[i],
1335 xhci->scratchpad->sp_dma_buffers[i]);
1337 kfree(xhci->scratchpad->sp_dma_buffers);
1339 fail_sp4:
1340 kfree(xhci->scratchpad->sp_buffers);
1342 fail_sp3:
1343 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1344 xhci->scratchpad->sp_array,
1345 xhci->scratchpad->sp_dma);
1347 fail_sp2:
1348 kfree(xhci->scratchpad);
1349 xhci->scratchpad = NULL;
1351 fail_sp:
1352 return -ENOMEM;
1355 static void scratchpad_free(struct xhci_hcd *xhci)
1357 int num_sp;
1358 int i;
1359 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1361 if (!xhci->scratchpad)
1362 return;
1364 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1366 for (i = 0; i < num_sp; i++) {
1367 pci_free_consistent(pdev, xhci->page_size,
1368 xhci->scratchpad->sp_buffers[i],
1369 xhci->scratchpad->sp_dma_buffers[i]);
1371 kfree(xhci->scratchpad->sp_dma_buffers);
1372 kfree(xhci->scratchpad->sp_buffers);
1373 pci_free_consistent(pdev, num_sp * sizeof(u64),
1374 xhci->scratchpad->sp_array,
1375 xhci->scratchpad->sp_dma);
1376 kfree(xhci->scratchpad);
1377 xhci->scratchpad = NULL;
1380 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1381 bool allocate_in_ctx, bool allocate_completion,
1382 gfp_t mem_flags)
1384 struct xhci_command *command;
1386 command = kzalloc(sizeof(*command), mem_flags);
1387 if (!command)
1388 return NULL;
1390 if (allocate_in_ctx) {
1391 command->in_ctx =
1392 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1393 mem_flags);
1394 if (!command->in_ctx) {
1395 kfree(command);
1396 return NULL;
1400 if (allocate_completion) {
1401 command->completion =
1402 kzalloc(sizeof(struct completion), mem_flags);
1403 if (!command->completion) {
1404 xhci_free_container_ctx(xhci, command->in_ctx);
1405 kfree(command);
1406 return NULL;
1408 init_completion(command->completion);
1411 command->status = 0;
1412 INIT_LIST_HEAD(&command->cmd_list);
1413 return command;
1416 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1418 int last;
1420 if (!urb_priv)
1421 return;
1423 last = urb_priv->length - 1;
1424 if (last >= 0) {
1425 int i;
1426 for (i = 0; i <= last; i++)
1427 kfree(urb_priv->td[i]);
1429 kfree(urb_priv);
1432 void xhci_free_command(struct xhci_hcd *xhci,
1433 struct xhci_command *command)
1435 xhci_free_container_ctx(xhci,
1436 command->in_ctx);
1437 kfree(command->completion);
1438 kfree(command);
1441 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1443 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1444 int size;
1445 int i;
1447 /* Free the Event Ring Segment Table and the actual Event Ring */
1448 if (xhci->ir_set) {
1449 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1450 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1451 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1453 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1454 if (xhci->erst.entries)
1455 pci_free_consistent(pdev, size,
1456 xhci->erst.entries, xhci->erst.erst_dma_addr);
1457 xhci->erst.entries = NULL;
1458 xhci_dbg(xhci, "Freed ERST\n");
1459 if (xhci->event_ring)
1460 xhci_ring_free(xhci, xhci->event_ring);
1461 xhci->event_ring = NULL;
1462 xhci_dbg(xhci, "Freed event ring\n");
1464 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1465 if (xhci->cmd_ring)
1466 xhci_ring_free(xhci, xhci->cmd_ring);
1467 xhci->cmd_ring = NULL;
1468 xhci_dbg(xhci, "Freed command ring\n");
1470 for (i = 1; i < MAX_HC_SLOTS; ++i)
1471 xhci_free_virt_device(xhci, i);
1473 if (xhci->segment_pool)
1474 dma_pool_destroy(xhci->segment_pool);
1475 xhci->segment_pool = NULL;
1476 xhci_dbg(xhci, "Freed segment pool\n");
1478 if (xhci->device_pool)
1479 dma_pool_destroy(xhci->device_pool);
1480 xhci->device_pool = NULL;
1481 xhci_dbg(xhci, "Freed device context pool\n");
1483 if (xhci->small_streams_pool)
1484 dma_pool_destroy(xhci->small_streams_pool);
1485 xhci->small_streams_pool = NULL;
1486 xhci_dbg(xhci, "Freed small stream array pool\n");
1488 if (xhci->medium_streams_pool)
1489 dma_pool_destroy(xhci->medium_streams_pool);
1490 xhci->medium_streams_pool = NULL;
1491 xhci_dbg(xhci, "Freed medium stream array pool\n");
1493 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1494 if (xhci->dcbaa)
1495 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1496 xhci->dcbaa, xhci->dcbaa->dma);
1497 xhci->dcbaa = NULL;
1499 scratchpad_free(xhci);
1501 xhci->num_usb2_ports = 0;
1502 xhci->num_usb3_ports = 0;
1503 kfree(xhci->usb2_ports);
1504 kfree(xhci->usb3_ports);
1505 kfree(xhci->port_array);
1507 xhci->page_size = 0;
1508 xhci->page_shift = 0;
1509 xhci->bus_state[0].bus_suspended = 0;
1510 xhci->bus_state[1].bus_suspended = 0;
1513 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1514 struct xhci_segment *input_seg,
1515 union xhci_trb *start_trb,
1516 union xhci_trb *end_trb,
1517 dma_addr_t input_dma,
1518 struct xhci_segment *result_seg,
1519 char *test_name, int test_number)
1521 unsigned long long start_dma;
1522 unsigned long long end_dma;
1523 struct xhci_segment *seg;
1525 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1526 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1528 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1529 if (seg != result_seg) {
1530 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1531 test_name, test_number);
1532 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1533 "input DMA 0x%llx\n",
1534 input_seg,
1535 (unsigned long long) input_dma);
1536 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1537 "ending TRB %p (0x%llx DMA)\n",
1538 start_trb, start_dma,
1539 end_trb, end_dma);
1540 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1541 result_seg, seg);
1542 return -1;
1544 return 0;
1547 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1548 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1550 struct {
1551 dma_addr_t input_dma;
1552 struct xhci_segment *result_seg;
1553 } simple_test_vector [] = {
1554 /* A zeroed DMA field should fail */
1555 { 0, NULL },
1556 /* One TRB before the ring start should fail */
1557 { xhci->event_ring->first_seg->dma - 16, NULL },
1558 /* One byte before the ring start should fail */
1559 { xhci->event_ring->first_seg->dma - 1, NULL },
1560 /* Starting TRB should succeed */
1561 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1562 /* Ending TRB should succeed */
1563 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1564 xhci->event_ring->first_seg },
1565 /* One byte after the ring end should fail */
1566 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1567 /* One TRB after the ring end should fail */
1568 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1569 /* An address of all ones should fail */
1570 { (dma_addr_t) (~0), NULL },
1572 struct {
1573 struct xhci_segment *input_seg;
1574 union xhci_trb *start_trb;
1575 union xhci_trb *end_trb;
1576 dma_addr_t input_dma;
1577 struct xhci_segment *result_seg;
1578 } complex_test_vector [] = {
1579 /* Test feeding a valid DMA address from a different ring */
1580 { .input_seg = xhci->event_ring->first_seg,
1581 .start_trb = xhci->event_ring->first_seg->trbs,
1582 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1583 .input_dma = xhci->cmd_ring->first_seg->dma,
1584 .result_seg = NULL,
1586 /* Test feeding a valid end TRB from a different ring */
1587 { .input_seg = xhci->event_ring->first_seg,
1588 .start_trb = xhci->event_ring->first_seg->trbs,
1589 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1590 .input_dma = xhci->cmd_ring->first_seg->dma,
1591 .result_seg = NULL,
1593 /* Test feeding a valid start and end TRB from a different ring */
1594 { .input_seg = xhci->event_ring->first_seg,
1595 .start_trb = xhci->cmd_ring->first_seg->trbs,
1596 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1597 .input_dma = xhci->cmd_ring->first_seg->dma,
1598 .result_seg = NULL,
1600 /* TRB in this ring, but after this TD */
1601 { .input_seg = xhci->event_ring->first_seg,
1602 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1603 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1604 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1605 .result_seg = NULL,
1607 /* TRB in this ring, but before this TD */
1608 { .input_seg = xhci->event_ring->first_seg,
1609 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1610 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1611 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1612 .result_seg = NULL,
1614 /* TRB in this ring, but after this wrapped TD */
1615 { .input_seg = xhci->event_ring->first_seg,
1616 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1617 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1618 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1619 .result_seg = NULL,
1621 /* TRB in this ring, but before this wrapped TD */
1622 { .input_seg = xhci->event_ring->first_seg,
1623 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1624 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1625 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1626 .result_seg = NULL,
1628 /* TRB not in this ring, and we have a wrapped TD */
1629 { .input_seg = xhci->event_ring->first_seg,
1630 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1631 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1632 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1633 .result_seg = NULL,
1637 unsigned int num_tests;
1638 int i, ret;
1640 num_tests = ARRAY_SIZE(simple_test_vector);
1641 for (i = 0; i < num_tests; i++) {
1642 ret = xhci_test_trb_in_td(xhci,
1643 xhci->event_ring->first_seg,
1644 xhci->event_ring->first_seg->trbs,
1645 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1646 simple_test_vector[i].input_dma,
1647 simple_test_vector[i].result_seg,
1648 "Simple", i);
1649 if (ret < 0)
1650 return ret;
1653 num_tests = ARRAY_SIZE(complex_test_vector);
1654 for (i = 0; i < num_tests; i++) {
1655 ret = xhci_test_trb_in_td(xhci,
1656 complex_test_vector[i].input_seg,
1657 complex_test_vector[i].start_trb,
1658 complex_test_vector[i].end_trb,
1659 complex_test_vector[i].input_dma,
1660 complex_test_vector[i].result_seg,
1661 "Complex", i);
1662 if (ret < 0)
1663 return ret;
1665 xhci_dbg(xhci, "TRB math tests passed.\n");
1666 return 0;
1669 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1671 u64 temp;
1672 dma_addr_t deq;
1674 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1675 xhci->event_ring->dequeue);
1676 if (deq == 0 && !in_interrupt())
1677 xhci_warn(xhci, "WARN something wrong with SW event ring "
1678 "dequeue ptr.\n");
1679 /* Update HC event ring dequeue pointer */
1680 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1681 temp &= ERST_PTR_MASK;
1682 /* Don't clear the EHB bit (which is RW1C) because
1683 * there might be more events to service.
1685 temp &= ~ERST_EHB;
1686 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1687 "preserving EHB bit\n");
1688 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1689 &xhci->ir_set->erst_dequeue);
1692 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1693 u32 __iomem *addr, u8 major_revision)
1695 u32 temp, port_offset, port_count;
1696 int i;
1698 if (major_revision > 0x03) {
1699 xhci_warn(xhci, "Ignoring unknown port speed, "
1700 "Ext Cap %p, revision = 0x%x\n",
1701 addr, major_revision);
1702 /* Ignoring port protocol we can't understand. FIXME */
1703 return;
1706 /* Port offset and count in the third dword, see section 7.2 */
1707 temp = xhci_readl(xhci, addr + 2);
1708 port_offset = XHCI_EXT_PORT_OFF(temp);
1709 port_count = XHCI_EXT_PORT_COUNT(temp);
1710 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1711 "count = %u, revision = 0x%x\n",
1712 addr, port_offset, port_count, major_revision);
1713 /* Port count includes the current port offset */
1714 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1715 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1716 return;
1717 port_offset--;
1718 for (i = port_offset; i < (port_offset + port_count); i++) {
1719 /* Duplicate entry. Ignore the port if the revisions differ. */
1720 if (xhci->port_array[i] != 0) {
1721 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1722 " port %u\n", addr, i);
1723 xhci_warn(xhci, "Port was marked as USB %u, "
1724 "duplicated as USB %u\n",
1725 xhci->port_array[i], major_revision);
1726 /* Only adjust the roothub port counts if we haven't
1727 * found a similar duplicate.
1729 if (xhci->port_array[i] != major_revision &&
1730 xhci->port_array[i] != DUPLICATE_ENTRY) {
1731 if (xhci->port_array[i] == 0x03)
1732 xhci->num_usb3_ports--;
1733 else
1734 xhci->num_usb2_ports--;
1735 xhci->port_array[i] = DUPLICATE_ENTRY;
1737 /* FIXME: Should we disable the port? */
1738 continue;
1740 xhci->port_array[i] = major_revision;
1741 if (major_revision == 0x03)
1742 xhci->num_usb3_ports++;
1743 else
1744 xhci->num_usb2_ports++;
1746 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1750 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1751 * specify what speeds each port is supposed to be. We can't count on the port
1752 * speed bits in the PORTSC register being correct until a device is connected,
1753 * but we need to set up the two fake roothubs with the correct number of USB
1754 * 3.0 and USB 2.0 ports at host controller initialization time.
1756 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1758 u32 __iomem *addr;
1759 u32 offset;
1760 unsigned int num_ports;
1761 int i, port_index;
1763 addr = &xhci->cap_regs->hcc_params;
1764 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1765 if (offset == 0) {
1766 xhci_err(xhci, "No Extended Capability registers, "
1767 "unable to set up roothub.\n");
1768 return -ENODEV;
1771 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1772 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1773 if (!xhci->port_array)
1774 return -ENOMEM;
1777 * For whatever reason, the first capability offset is from the
1778 * capability register base, not from the HCCPARAMS register.
1779 * See section 5.3.6 for offset calculation.
1781 addr = &xhci->cap_regs->hc_capbase + offset;
1782 while (1) {
1783 u32 cap_id;
1785 cap_id = xhci_readl(xhci, addr);
1786 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1787 xhci_add_in_port(xhci, num_ports, addr,
1788 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1789 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1790 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1791 == num_ports)
1792 break;
1794 * Once you're into the Extended Capabilities, the offset is
1795 * always relative to the register holding the offset.
1797 addr += offset;
1800 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1801 xhci_warn(xhci, "No ports on the roothubs?\n");
1802 return -ENODEV;
1804 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1805 xhci->num_usb2_ports, xhci->num_usb3_ports);
1807 /* Place limits on the number of roothub ports so that the hub
1808 * descriptors aren't longer than the USB core will allocate.
1810 if (xhci->num_usb3_ports > 15) {
1811 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1812 xhci->num_usb3_ports = 15;
1814 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1815 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1816 USB_MAXCHILDREN);
1817 xhci->num_usb2_ports = USB_MAXCHILDREN;
1821 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1822 * Not sure how the USB core will handle a hub with no ports...
1824 if (xhci->num_usb2_ports) {
1825 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1826 xhci->num_usb2_ports, flags);
1827 if (!xhci->usb2_ports)
1828 return -ENOMEM;
1830 port_index = 0;
1831 for (i = 0; i < num_ports; i++) {
1832 if (xhci->port_array[i] == 0x03 ||
1833 xhci->port_array[i] == 0 ||
1834 xhci->port_array[i] == DUPLICATE_ENTRY)
1835 continue;
1837 xhci->usb2_ports[port_index] =
1838 &xhci->op_regs->port_status_base +
1839 NUM_PORT_REGS*i;
1840 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1841 "addr = %p\n", i,
1842 xhci->usb2_ports[port_index]);
1843 port_index++;
1844 if (port_index == xhci->num_usb2_ports)
1845 break;
1848 if (xhci->num_usb3_ports) {
1849 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1850 xhci->num_usb3_ports, flags);
1851 if (!xhci->usb3_ports)
1852 return -ENOMEM;
1854 port_index = 0;
1855 for (i = 0; i < num_ports; i++)
1856 if (xhci->port_array[i] == 0x03) {
1857 xhci->usb3_ports[port_index] =
1858 &xhci->op_regs->port_status_base +
1859 NUM_PORT_REGS*i;
1860 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1861 "addr = %p\n", i,
1862 xhci->usb3_ports[port_index]);
1863 port_index++;
1864 if (port_index == xhci->num_usb3_ports)
1865 break;
1868 return 0;
1871 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1873 dma_addr_t dma;
1874 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1875 unsigned int val, val2;
1876 u64 val_64;
1877 struct xhci_segment *seg;
1878 u32 page_size;
1879 int i;
1881 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1882 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1883 for (i = 0; i < 16; i++) {
1884 if ((0x1 & page_size) != 0)
1885 break;
1886 page_size = page_size >> 1;
1888 if (i < 16)
1889 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1890 else
1891 xhci_warn(xhci, "WARN: no supported page size\n");
1892 /* Use 4K pages, since that's common and the minimum the HC supports */
1893 xhci->page_shift = 12;
1894 xhci->page_size = 1 << xhci->page_shift;
1895 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1898 * Program the Number of Device Slots Enabled field in the CONFIG
1899 * register with the max value of slots the HC can handle.
1901 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1902 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1903 (unsigned int) val);
1904 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1905 val |= (val2 & ~HCS_SLOTS_MASK);
1906 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1907 (unsigned int) val);
1908 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1911 * Section 5.4.8 - doorbell array must be
1912 * "physically contiguous and 64-byte (cache line) aligned".
1914 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1915 sizeof(*xhci->dcbaa), &dma);
1916 if (!xhci->dcbaa)
1917 goto fail;
1918 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1919 xhci->dcbaa->dma = dma;
1920 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1921 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1922 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1925 * Initialize the ring segment pool. The ring must be a contiguous
1926 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1927 * however, the command ring segment needs 64-byte aligned segments,
1928 * so we pick the greater alignment need.
1930 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1931 SEGMENT_SIZE, 64, xhci->page_size);
1933 /* See Table 46 and Note on Figure 55 */
1934 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1935 2112, 64, xhci->page_size);
1936 if (!xhci->segment_pool || !xhci->device_pool)
1937 goto fail;
1939 /* Linear stream context arrays don't have any boundary restrictions,
1940 * and only need to be 16-byte aligned.
1942 xhci->small_streams_pool =
1943 dma_pool_create("xHCI 256 byte stream ctx arrays",
1944 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1945 xhci->medium_streams_pool =
1946 dma_pool_create("xHCI 1KB stream ctx arrays",
1947 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1948 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1949 * will be allocated with pci_alloc_consistent()
1952 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1953 goto fail;
1955 /* Set up the command ring to have one segments for now. */
1956 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1957 if (!xhci->cmd_ring)
1958 goto fail;
1959 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1960 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1961 (unsigned long long)xhci->cmd_ring->first_seg->dma);
1963 /* Set the address in the Command Ring Control register */
1964 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1965 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1966 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1967 xhci->cmd_ring->cycle_state;
1968 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1969 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1970 xhci_dbg_cmd_ptrs(xhci);
1972 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1973 val &= DBOFF_MASK;
1974 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1975 " from cap regs base addr\n", val);
1976 xhci->dba = (void __iomem *) xhci->cap_regs + val;
1977 xhci_dbg_regs(xhci);
1978 xhci_print_run_regs(xhci);
1979 /* Set ir_set to interrupt register set 0 */
1980 xhci->ir_set = &xhci->run_regs->ir_set[0];
1983 * Event ring setup: Allocate a normal ring, but also setup
1984 * the event ring segment table (ERST). Section 4.9.3.
1986 xhci_dbg(xhci, "// Allocating event ring\n");
1987 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1988 if (!xhci->event_ring)
1989 goto fail;
1990 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1991 goto fail;
1993 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1994 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1995 if (!xhci->erst.entries)
1996 goto fail;
1997 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1998 (unsigned long long)dma);
2000 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2001 xhci->erst.num_entries = ERST_NUM_SEGS;
2002 xhci->erst.erst_dma_addr = dma;
2003 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2004 xhci->erst.num_entries,
2005 xhci->erst.entries,
2006 (unsigned long long)xhci->erst.erst_dma_addr);
2008 /* set ring base address and size for each segment table entry */
2009 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2010 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2011 entry->seg_addr = seg->dma;
2012 entry->seg_size = TRBS_PER_SEGMENT;
2013 entry->rsvd = 0;
2014 seg = seg->next;
2017 /* set ERST count with the number of entries in the segment table */
2018 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2019 val &= ERST_SIZE_MASK;
2020 val |= ERST_NUM_SEGS;
2021 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2022 val);
2023 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2025 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2026 /* set the segment table base address */
2027 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2028 (unsigned long long)xhci->erst.erst_dma_addr);
2029 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2030 val_64 &= ERST_PTR_MASK;
2031 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2032 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2034 /* Set the event ring dequeue address */
2035 xhci_set_hc_event_deq(xhci);
2036 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2037 xhci_print_ir_set(xhci, 0);
2040 * XXX: Might need to set the Interrupter Moderation Register to
2041 * something other than the default (~1ms minimum between interrupts).
2042 * See section 5.5.1.2.
2044 init_completion(&xhci->addr_dev);
2045 for (i = 0; i < MAX_HC_SLOTS; ++i)
2046 xhci->devs[i] = NULL;
2047 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2048 xhci->bus_state[0].resume_done[i] = 0;
2049 xhci->bus_state[1].resume_done[i] = 0;
2052 if (scratchpad_alloc(xhci, flags))
2053 goto fail;
2054 if (xhci_setup_port_arrays(xhci, flags))
2055 goto fail;
2057 return 0;
2059 fail:
2060 xhci_warn(xhci, "Couldn't initialize memory\n");
2061 xhci_mem_cleanup(xhci);
2062 return -ENOMEM;