bridge: fix a possible use after free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / pktcdvd.c
blobe133f094ab08f40bea4174b83a1253be45a56e4b
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
68 #include <asm/uaccess.h>
70 #define DRIVER_NAME "pktcdvd"
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
84 #define MAX_SPEED 0xffff
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
108 * create and register a pktcdvd kernel object.
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
115 struct pktcdvd_kobj *p;
116 int error;
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
131 * remove a pktcdvd kernel object.
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
135 if (p)
136 kobject_put(&p->kobj);
139 * default release function for pktcdvd kernel objects.
141 static void pkt_kobj_release(struct kobject *kobj)
143 kfree(to_pktcdvdkobj(kobj));
147 /**********************************************************
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
152 **********************************************************/
154 #define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
157 /**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
237 return n;
240 static void init_write_congestion_marks(int* lo, int* hi)
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
251 } else {
252 *hi = -1;
253 *lo = -1;
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
287 return len;
290 static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
294 static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
332 /********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
339 static void class_pktcdvd_release(struct class *cls)
341 kfree(cls);
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
360 mutex_unlock(&ctl_mutex);
361 return n;
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
369 unsigned int major, minor;
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
376 pkt_setup_dev(MKDEV(major, minor), NULL);
378 module_put(THIS_MODULE);
380 return count;
383 return -EINVAL;
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
396 return -EINVAL;
399 static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
407 static int pkt_sysfs_init(void)
409 int ret = 0;
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
429 return 0;
432 static void pkt_sysfs_cleanup(void)
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
439 /********************************************************************
440 entries in debugfs
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
445 *******************************************************************/
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 return pkt_seq_show(m, p);
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
457 static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
504 static void pkt_debugfs_cleanup(void)
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
512 /* ----------------------------------------------------------*/
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
525 static void pkt_bio_destructor(struct bio *bio)
527 kfree(bio->bi_io_vec);
528 kfree(bio);
531 static struct bio *pkt_bio_alloc(int nr_iovecs)
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
549 return bio;
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
558 * Allocate a packet_data struct
560 static struct packet_data *pkt_alloc_packet_data(int frames)
562 int i;
563 struct packet_data *pkt;
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
590 return pkt;
592 no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
599 no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604 no_bio:
605 kfree(pkt);
606 no_pkt:
607 return NULL;
611 * Free a packet_data struct
613 static void pkt_free_packet_data(struct packet_data *pkt)
615 int i;
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
628 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
630 struct packet_data *pkt, *next;
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
640 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
642 struct packet_data *pkt;
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
657 return 1;
660 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
668 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
679 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
711 * Insert a node into the pd->bio_queue rb tree.
713 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
737 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762 out:
763 blk_put_request(rq);
764 return ret;
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
771 static void pkt_dump_sense(struct packet_command *cgc)
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
796 printk(" (%s)\n", info[sense->sense_key]);
800 * flush the drive cache to media
802 static int pkt_flush_cache(struct pktcdvd_device *pd)
804 struct packet_command cgc;
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
814 #if 0
815 cgc.cmd[1] = 1 << 1;
816 #endif
817 return pkt_generic_packet(pd, &cgc);
821 * speed is given as the normal factor, e.g. 4 for 4x
823 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
841 return ret;
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
848 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
877 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
893 if (!reads_queued && !writes_queued)
894 break;
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
917 pd->iosched.writing = 1;
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
928 if (!bio)
929 continue;
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
958 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
963 * The cdrom device can handle one segment/frame
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
984 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
986 unsigned int copy_size = CD_FRAMESIZE;
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1013 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1015 int f, p, offs;
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1039 static void pkt_end_io_read(struct bio *bio, int err)
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1054 pkt_bio_finished(pd);
1057 static void pkt_end_io_packet_write(struct bio *bio, int err)
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1065 pd->stats.pkt_ended++;
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1074 * Schedule reads for the holes in a packet
1076 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1089 * Figure out which frames we need to read before we can write.
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1102 spin_unlock(&pkt->lock);
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1111 * Schedule reads for missing parts of the packet.
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1143 out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1154 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1156 struct packet_data *pkt;
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1166 BUG();
1167 return NULL;
1170 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1180 * recover a failed write, query for relocation if possible
1182 * returns 1 if recovery is possible, or 0 if not
1185 static int pkt_start_recovery(struct packet_data *pkt)
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1191 return 0;
1192 #if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1206 if (!sb)
1207 return 0;
1209 if (!sb->s_op->relocate_blocks)
1210 goto out;
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1230 drop_super(sb);
1231 return 1;
1233 out:
1234 drop_super(sb);
1235 return 0;
1236 #endif
1239 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1241 #if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248 #endif
1249 pkt->state = state;
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1256 static int pkt_handle_queue(struct pktcdvd_device *pd)
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1265 VPRINTK("handle_queue\n");
1267 atomic_set(&pd->scan_queue, 0);
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1275 * Try to find a zone we are not already working on.
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1294 break;
1295 try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1302 if (node == first_node)
1303 node = NULL;
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1311 pkt = pkt_get_packet_data(pd, zone);
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1354 return 1;
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1361 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1374 * Fill-in bvec with data from orig_bios.
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1439 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1441 struct bio *bio;
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1451 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1453 int uptodate;
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1477 break;
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1488 break;
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1497 break;
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1504 default:
1505 BUG();
1506 break;
1511 static void pkt_handle_packets(struct pktcdvd_device *pd)
1513 struct packet_data *pkt, *next;
1515 VPRINTK("pkt_handle_packets\n");
1518 * Run state machine for active packets
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1528 * Move no longer active packets to the free list
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1539 spin_unlock(&pd->cdrw.active_list_lock);
1542 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1544 struct packet_data *pkt;
1545 int i;
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1554 spin_unlock(&pd->cdrw.active_list_lock);
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1561 static int kcdrwd(void *foobar)
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1567 set_user_nice(current, -20);
1568 set_freezable();
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1574 * Wait until there is something to do
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue = schedule_timeout(min_sleep_time);
1611 VPRINTK("kcdrwd: wake up\n");
1613 /* make swsusp happy with our thread */
1614 try_to_freeze();
1616 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617 if (!pkt->sleep_time)
1618 continue;
1619 pkt->sleep_time -= min_sleep_time - residue;
1620 if (pkt->sleep_time <= 0) {
1621 pkt->sleep_time = 0;
1622 atomic_inc(&pkt->run_sm);
1626 if (kthread_should_stop())
1627 break;
1629 work_to_do:
1630 set_current_state(TASK_RUNNING);
1631 remove_wait_queue(&pd->wqueue, &wait);
1633 if (kthread_should_stop())
1634 break;
1637 * if pkt_handle_queue returns true, we can queue
1638 * another request.
1640 while (pkt_handle_queue(pd))
1644 * Handle packet state machine
1646 pkt_handle_packets(pd);
1649 * Handle iosched queues
1651 pkt_iosched_process_queue(pd);
1654 return 0;
1657 static void pkt_print_settings(struct pktcdvd_device *pd)
1659 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd->settings.size >> 2);
1661 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1664 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1666 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1668 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669 cgc->cmd[2] = page_code | (page_control << 6);
1670 cgc->cmd[7] = cgc->buflen >> 8;
1671 cgc->cmd[8] = cgc->buflen & 0xff;
1672 cgc->data_direction = CGC_DATA_READ;
1673 return pkt_generic_packet(pd, cgc);
1676 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1678 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679 memset(cgc->buffer, 0, 2);
1680 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681 cgc->cmd[1] = 0x10; /* PF */
1682 cgc->cmd[7] = cgc->buflen >> 8;
1683 cgc->cmd[8] = cgc->buflen & 0xff;
1684 cgc->data_direction = CGC_DATA_WRITE;
1685 return pkt_generic_packet(pd, cgc);
1688 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1690 struct packet_command cgc;
1691 int ret;
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696 cgc.cmd[8] = cgc.buflen = 2;
1697 cgc.quiet = 1;
1699 if ((ret = pkt_generic_packet(pd, &cgc)))
1700 return ret;
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1705 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706 sizeof(di->disc_information_length);
1708 if (cgc.buflen > sizeof(disc_information))
1709 cgc.buflen = sizeof(disc_information);
1711 cgc.cmd[8] = cgc.buflen;
1712 return pkt_generic_packet(pd, &cgc);
1715 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1717 struct packet_command cgc;
1718 int ret;
1720 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722 cgc.cmd[1] = type & 3;
1723 cgc.cmd[4] = (track & 0xff00) >> 8;
1724 cgc.cmd[5] = track & 0xff;
1725 cgc.cmd[8] = 8;
1726 cgc.quiet = 1;
1728 if ((ret = pkt_generic_packet(pd, &cgc)))
1729 return ret;
1731 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732 sizeof(ti->track_information_length);
1734 if (cgc.buflen > sizeof(track_information))
1735 cgc.buflen = sizeof(track_information);
1737 cgc.cmd[8] = cgc.buflen;
1738 return pkt_generic_packet(pd, &cgc);
1741 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742 long *last_written)
1744 disc_information di;
1745 track_information ti;
1746 __u32 last_track;
1747 int ret = -1;
1749 if ((ret = pkt_get_disc_info(pd, &di)))
1750 return ret;
1752 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754 return ret;
1756 /* if this track is blank, try the previous. */
1757 if (ti.blank) {
1758 last_track--;
1759 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760 return ret;
1763 /* if last recorded field is valid, return it. */
1764 if (ti.lra_v) {
1765 *last_written = be32_to_cpu(ti.last_rec_address);
1766 } else {
1767 /* make it up instead */
1768 *last_written = be32_to_cpu(ti.track_start) +
1769 be32_to_cpu(ti.track_size);
1770 if (ti.free_blocks)
1771 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1773 return 0;
1777 * write mode select package based on pd->settings
1779 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1781 struct packet_command cgc;
1782 struct request_sense sense;
1783 write_param_page *wp;
1784 char buffer[128];
1785 int ret, size;
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789 return 0;
1791 memset(buffer, 0, sizeof(buffer));
1792 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795 pkt_dump_sense(&cgc);
1796 return ret;
1799 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801 if (size > sizeof(buffer))
1802 size = sizeof(buffer);
1805 * now get it all
1807 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1815 * write page is offset header + block descriptor length
1817 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1819 wp->fp = pd->settings.fp;
1820 wp->track_mode = pd->settings.track_mode;
1821 wp->write_type = pd->settings.write_type;
1822 wp->data_block_type = pd->settings.block_mode;
1824 wp->multi_session = 0;
1826 #ifdef PACKET_USE_LS
1827 wp->link_size = 7;
1828 wp->ls_v = 1;
1829 #endif
1831 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832 wp->session_format = 0;
1833 wp->subhdr2 = 0x20;
1834 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835 wp->session_format = 0x20;
1836 wp->subhdr2 = 8;
1837 #if 0
1838 wp->mcn[0] = 0x80;
1839 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840 #endif
1841 } else {
1843 * paranoia
1845 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846 return 1;
1848 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1850 cgc.buflen = cgc.cmd[8] = size;
1851 if ((ret = pkt_mode_select(pd, &cgc))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1856 pkt_print_settings(pd);
1857 return 0;
1861 * 1 -- we can write to this track, 0 -- we can't
1863 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1865 switch (pd->mmc3_profile) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1869 return 1;
1870 default:
1871 break;
1874 if (!ti->packet || !ti->fp)
1875 return 0;
1878 * "good" settings as per Mt Fuji.
1880 if (ti->rt == 0 && ti->blank == 0)
1881 return 1;
1883 if (ti->rt == 0 && ti->blank == 1)
1884 return 1;
1886 if (ti->rt == 1 && ti->blank == 0)
1887 return 1;
1889 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890 return 0;
1894 * 1 -- we can write to this disc, 0 -- we can't
1896 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1898 switch (pd->mmc3_profile) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1901 break;
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1905 return 1;
1906 default:
1907 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908 return 0;
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1915 if (di->disc_type == 0xff) {
1916 printk(DRIVER_NAME": Unknown disc. No track?\n");
1917 return 0;
1920 if (di->disc_type != 0x20 && di->disc_type != 0) {
1921 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922 return 0;
1925 if (di->erasable == 0) {
1926 printk(DRIVER_NAME": Disc not erasable\n");
1927 return 0;
1930 if (di->border_status == PACKET_SESSION_RESERVED) {
1931 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 return 0;
1935 return 1;
1938 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1940 struct packet_command cgc;
1941 unsigned char buf[12];
1942 disc_information di;
1943 track_information ti;
1944 int ret, track;
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948 cgc.cmd[8] = 8;
1949 ret = pkt_generic_packet(pd, &cgc);
1950 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1952 memset(&di, 0, sizeof(disc_information));
1953 memset(&ti, 0, sizeof(track_information));
1955 if ((ret = pkt_get_disc_info(pd, &di))) {
1956 printk("failed get_disc\n");
1957 return ret;
1960 if (!pkt_writable_disc(pd, &di))
1961 return -EROFS;
1963 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1965 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967 printk(DRIVER_NAME": failed get_track\n");
1968 return ret;
1971 if (!pkt_writable_track(pd, &ti)) {
1972 printk(DRIVER_NAME": can't write to this track\n");
1973 return -EROFS;
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1980 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981 if (pd->settings.size == 0) {
1982 printk(DRIVER_NAME": detected zero packet size!\n");
1983 return -ENXIO;
1985 if (pd->settings.size > PACKET_MAX_SECTORS) {
1986 printk(DRIVER_NAME": packet size is too big\n");
1987 return -EROFS;
1989 pd->settings.fp = ti.fp;
1990 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1992 if (ti.nwa_v) {
1993 pd->nwa = be32_to_cpu(ti.next_writable);
1994 set_bit(PACKET_NWA_VALID, &pd->flags);
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2002 if (ti.lra_v) {
2003 pd->lra = be32_to_cpu(ti.last_rec_address);
2004 set_bit(PACKET_LRA_VALID, &pd->flags);
2005 } else {
2006 pd->lra = 0xffffffff;
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2011 * fine for now
2013 pd->settings.link_loss = 7;
2014 pd->settings.write_type = 0; /* packet */
2015 pd->settings.track_mode = ti.track_mode;
2018 * mode1 or mode2 disc
2020 switch (ti.data_mode) {
2021 case PACKET_MODE1:
2022 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023 break;
2024 case PACKET_MODE2:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026 break;
2027 default:
2028 printk(DRIVER_NAME": unknown data mode\n");
2029 return -EROFS;
2031 return 0;
2035 * enable/disable write caching on drive
2037 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038 int set)
2040 struct packet_command cgc;
2041 struct request_sense sense;
2042 unsigned char buf[64];
2043 int ret;
2045 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046 cgc.sense = &sense;
2047 cgc.buflen = pd->mode_offset + 12;
2050 * caching mode page might not be there, so quiet this command
2052 cgc.quiet = 1;
2054 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055 return ret;
2057 buf[pd->mode_offset + 10] |= (!!set << 2);
2059 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060 ret = pkt_mode_select(pd, &cgc);
2061 if (ret) {
2062 printk(DRIVER_NAME": write caching control failed\n");
2063 pkt_dump_sense(&cgc);
2064 } else if (!ret && set)
2065 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066 return ret;
2069 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2071 struct packet_command cgc;
2073 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075 cgc.cmd[4] = lockflag ? 1 : 0;
2076 return pkt_generic_packet(pd, &cgc);
2080 * Returns drive maximum write speed
2082 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083 unsigned *write_speed)
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 unsigned char buf[256+18];
2088 unsigned char *cap_buf;
2089 int ret, offset;
2091 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093 cgc.sense = &sense;
2095 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096 if (ret) {
2097 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098 sizeof(struct mode_page_header);
2099 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100 if (ret) {
2101 pkt_dump_sense(&cgc);
2102 return ret;
2106 offset = 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf[1] >= 28)
2108 offset = 28; /* Current write speed selected */
2109 if (cap_buf[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2114 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115 if (num_spdb > 0)
2116 offset = 34;
2119 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120 return 0;
2123 /* These tables from cdrecord - I don't have orange book */
2124 /* standard speed CD-RW (1-4x) */
2125 static char clv_to_speed[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2129 /* high speed CD-RW (-10x) */
2130 static char hs_clv_to_speed[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2134 /* ultra high speed CD-RW */
2135 static char us_clv_to_speed[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2141 * reads the maximum media speed from ATIP
2143 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144 unsigned *speed)
2146 struct packet_command cgc;
2147 struct request_sense sense;
2148 unsigned char buf[64];
2149 unsigned int size, st, sp;
2150 int ret;
2152 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153 cgc.sense = &sense;
2154 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155 cgc.cmd[1] = 2;
2156 cgc.cmd[2] = 4; /* READ ATIP */
2157 cgc.cmd[8] = 2;
2158 ret = pkt_generic_packet(pd, &cgc);
2159 if (ret) {
2160 pkt_dump_sense(&cgc);
2161 return ret;
2163 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164 if (size > sizeof(buf))
2165 size = sizeof(buf);
2167 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168 cgc.sense = &sense;
2169 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170 cgc.cmd[1] = 2;
2171 cgc.cmd[2] = 4;
2172 cgc.cmd[8] = size;
2173 ret = pkt_generic_packet(pd, &cgc);
2174 if (ret) {
2175 pkt_dump_sense(&cgc);
2176 return ret;
2179 if (!(buf[6] & 0x40)) {
2180 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181 return 1;
2183 if (!(buf[6] & 0x4)) {
2184 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185 return 1;
2188 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2190 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2192 /* Info from cdrecord */
2193 switch (st) {
2194 case 0: /* standard speed */
2195 *speed = clv_to_speed[sp];
2196 break;
2197 case 1: /* high speed */
2198 *speed = hs_clv_to_speed[sp];
2199 break;
2200 case 2: /* ultra high speed */
2201 *speed = us_clv_to_speed[sp];
2202 break;
2203 default:
2204 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205 return 1;
2207 if (*speed) {
2208 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209 return 0;
2210 } else {
2211 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212 return 1;
2216 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2218 struct packet_command cgc;
2219 struct request_sense sense;
2220 int ret;
2222 VPRINTK(DRIVER_NAME": Performing OPC\n");
2224 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225 cgc.sense = &sense;
2226 cgc.timeout = 60*HZ;
2227 cgc.cmd[0] = GPCMD_SEND_OPC;
2228 cgc.cmd[1] = 1;
2229 if ((ret = pkt_generic_packet(pd, &cgc)))
2230 pkt_dump_sense(&cgc);
2231 return ret;
2234 static int pkt_open_write(struct pktcdvd_device *pd)
2236 int ret;
2237 unsigned int write_speed, media_write_speed, read_speed;
2239 if ((ret = pkt_probe_settings(pd))) {
2240 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241 return ret;
2244 if ((ret = pkt_set_write_settings(pd))) {
2245 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246 return -EIO;
2249 pkt_write_caching(pd, USE_WCACHING);
2251 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252 write_speed = 16 * 177;
2253 switch (pd->mmc3_profile) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258 break;
2259 default:
2260 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261 media_write_speed = 16;
2262 write_speed = min(write_speed, media_write_speed * 177);
2263 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264 break;
2266 read_speed = write_speed;
2268 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270 return -EIO;
2272 pd->write_speed = write_speed;
2273 pd->read_speed = read_speed;
2275 if ((ret = pkt_perform_opc(pd))) {
2276 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2279 return 0;
2283 * called at open time.
2285 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2287 int ret;
2288 long lba;
2289 struct request_queue *q;
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2296 bdget(pd->bdev->bd_dev);
2297 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298 goto out;
2300 if ((ret = pkt_get_last_written(pd, &lba))) {
2301 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 goto out_putdev;
2305 set_capacity(pd->disk, lba << 2);
2306 set_capacity(pd->bdev->bd_disk, lba << 2);
2307 bd_set_size(pd->bdev, (loff_t)lba << 11);
2309 q = bdev_get_queue(pd->bdev);
2310 if (write) {
2311 if ((ret = pkt_open_write(pd)))
2312 goto out_putdev;
2314 * Some CDRW drives can not handle writes larger than one packet,
2315 * even if the size is a multiple of the packet size.
2317 spin_lock_irq(q->queue_lock);
2318 blk_queue_max_hw_sectors(q, pd->settings.size);
2319 spin_unlock_irq(q->queue_lock);
2320 set_bit(PACKET_WRITABLE, &pd->flags);
2321 } else {
2322 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323 clear_bit(PACKET_WRITABLE, &pd->flags);
2326 if ((ret = pkt_set_segment_merging(pd, q)))
2327 goto out_putdev;
2329 if (write) {
2330 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 ret = -ENOMEM;
2333 goto out_putdev;
2335 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2338 return 0;
2340 out_putdev:
2341 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342 out:
2343 return ret;
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2350 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2352 if (flush && pkt_flush_cache(pd))
2353 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2355 pkt_lock_door(pd, 0);
2357 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2360 pkt_shrink_pktlist(pd);
2363 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2365 if (dev_minor >= MAX_WRITERS)
2366 return NULL;
2367 return pkt_devs[dev_minor];
2370 static int pkt_open(struct block_device *bdev, fmode_t mode)
2372 struct pktcdvd_device *pd = NULL;
2373 int ret;
2375 VPRINTK(DRIVER_NAME": entering open\n");
2377 mutex_lock(&pktcdvd_mutex);
2378 mutex_lock(&ctl_mutex);
2379 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380 if (!pd) {
2381 ret = -ENODEV;
2382 goto out;
2384 BUG_ON(pd->refcnt < 0);
2386 pd->refcnt++;
2387 if (pd->refcnt > 1) {
2388 if ((mode & FMODE_WRITE) &&
2389 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390 ret = -EBUSY;
2391 goto out_dec;
2393 } else {
2394 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395 if (ret)
2396 goto out_dec;
2398 * needed here as well, since ext2 (among others) may change
2399 * the blocksize at mount time
2401 set_blocksize(bdev, CD_FRAMESIZE);
2404 mutex_unlock(&ctl_mutex);
2405 mutex_unlock(&pktcdvd_mutex);
2406 return 0;
2408 out_dec:
2409 pd->refcnt--;
2410 out:
2411 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return ret;
2417 static int pkt_close(struct gendisk *disk, fmode_t mode)
2419 struct pktcdvd_device *pd = disk->private_data;
2420 int ret = 0;
2422 mutex_lock(&pktcdvd_mutex);
2423 mutex_lock(&ctl_mutex);
2424 pd->refcnt--;
2425 BUG_ON(pd->refcnt < 0);
2426 if (pd->refcnt == 0) {
2427 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428 pkt_release_dev(pd, flush);
2430 mutex_unlock(&ctl_mutex);
2431 mutex_unlock(&pktcdvd_mutex);
2432 return ret;
2436 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2438 struct packet_stacked_data *psd = bio->bi_private;
2439 struct pktcdvd_device *pd = psd->pd;
2441 bio_put(bio);
2442 bio_endio(psd->bio, err);
2443 mempool_free(psd, psd_pool);
2444 pkt_bio_finished(pd);
2447 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2449 struct pktcdvd_device *pd;
2450 char b[BDEVNAME_SIZE];
2451 sector_t zone;
2452 struct packet_data *pkt;
2453 int was_empty, blocked_bio;
2454 struct pkt_rb_node *node;
2456 pd = q->queuedata;
2457 if (!pd) {
2458 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459 goto end_io;
2463 * Clone READ bios so we can have our own bi_end_io callback.
2465 if (bio_data_dir(bio) == READ) {
2466 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2469 psd->pd = pd;
2470 psd->bio = bio;
2471 cloned_bio->bi_bdev = pd->bdev;
2472 cloned_bio->bi_private = psd;
2473 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474 pd->stats.secs_r += bio->bi_size >> 9;
2475 pkt_queue_bio(pd, cloned_bio);
2476 return 0;
2479 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481 pd->name, (unsigned long long)bio->bi_sector);
2482 goto end_io;
2485 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486 printk(DRIVER_NAME": wrong bio size\n");
2487 goto end_io;
2490 blk_queue_bounce(q, &bio);
2492 zone = ZONE(bio->bi_sector, pd);
2493 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494 (unsigned long long)bio->bi_sector,
2495 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2497 /* Check if we have to split the bio */
2499 struct bio_pair *bp;
2500 sector_t last_zone;
2501 int first_sectors;
2503 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504 if (last_zone != zone) {
2505 BUG_ON(last_zone != zone + pd->settings.size);
2506 first_sectors = last_zone - bio->bi_sector;
2507 bp = bio_split(bio, first_sectors);
2508 BUG_ON(!bp);
2509 pkt_make_request(q, &bp->bio1);
2510 pkt_make_request(q, &bp->bio2);
2511 bio_pair_release(bp);
2512 return 0;
2517 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518 * just append this bio to that packet.
2520 spin_lock(&pd->cdrw.active_list_lock);
2521 blocked_bio = 0;
2522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523 if (pkt->sector == zone) {
2524 spin_lock(&pkt->lock);
2525 if ((pkt->state == PACKET_WAITING_STATE) ||
2526 (pkt->state == PACKET_READ_WAIT_STATE)) {
2527 bio_list_add(&pkt->orig_bios, bio);
2528 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529 if ((pkt->write_size >= pkt->frames) &&
2530 (pkt->state == PACKET_WAITING_STATE)) {
2531 atomic_inc(&pkt->run_sm);
2532 wake_up(&pd->wqueue);
2534 spin_unlock(&pkt->lock);
2535 spin_unlock(&pd->cdrw.active_list_lock);
2536 return 0;
2537 } else {
2538 blocked_bio = 1;
2540 spin_unlock(&pkt->lock);
2543 spin_unlock(&pd->cdrw.active_list_lock);
2546 * Test if there is enough room left in the bio work queue
2547 * (queue size >= congestion on mark).
2548 * If not, wait till the work queue size is below the congestion off mark.
2550 spin_lock(&pd->lock);
2551 if (pd->write_congestion_on > 0
2552 && pd->bio_queue_size >= pd->write_congestion_on) {
2553 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554 do {
2555 spin_unlock(&pd->lock);
2556 congestion_wait(BLK_RW_ASYNC, HZ);
2557 spin_lock(&pd->lock);
2558 } while(pd->bio_queue_size > pd->write_congestion_off);
2560 spin_unlock(&pd->lock);
2563 * No matching packet found. Store the bio in the work queue.
2565 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566 node->bio = bio;
2567 spin_lock(&pd->lock);
2568 BUG_ON(pd->bio_queue_size < 0);
2569 was_empty = (pd->bio_queue_size == 0);
2570 pkt_rbtree_insert(pd, node);
2571 spin_unlock(&pd->lock);
2574 * Wake up the worker thread.
2576 atomic_set(&pd->scan_queue, 1);
2577 if (was_empty) {
2578 /* This wake_up is required for correct operation */
2579 wake_up(&pd->wqueue);
2580 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2582 * This wake up is not required for correct operation,
2583 * but improves performance in some cases.
2585 wake_up(&pd->wqueue);
2587 return 0;
2588 end_io:
2589 bio_io_error(bio);
2590 return 0;
2595 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596 struct bio_vec *bvec)
2598 struct pktcdvd_device *pd = q->queuedata;
2599 sector_t zone = ZONE(bmd->bi_sector, pd);
2600 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601 int remaining = (pd->settings.size << 9) - used;
2602 int remaining2;
2605 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606 * boundary, pkt_make_request() will split the bio.
2608 remaining2 = PAGE_SIZE - bmd->bi_size;
2609 remaining = max(remaining, remaining2);
2611 BUG_ON(remaining < 0);
2612 return remaining;
2615 static void pkt_init_queue(struct pktcdvd_device *pd)
2617 struct request_queue *q = pd->disk->queue;
2619 blk_queue_make_request(q, pkt_make_request);
2620 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622 blk_queue_merge_bvec(q, pkt_merge_bvec);
2623 q->queuedata = pd;
2626 static int pkt_seq_show(struct seq_file *m, void *p)
2628 struct pktcdvd_device *pd = m->private;
2629 char *msg;
2630 char bdev_buf[BDEVNAME_SIZE];
2631 int states[PACKET_NUM_STATES];
2633 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634 bdevname(pd->bdev, bdev_buf));
2636 seq_printf(m, "\nSettings:\n");
2637 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2639 if (pd->settings.write_type == 0)
2640 msg = "Packet";
2641 else
2642 msg = "Unknown";
2643 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2645 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2648 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2650 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651 msg = "Mode 1";
2652 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653 msg = "Mode 2";
2654 else
2655 msg = "Unknown";
2656 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2658 seq_printf(m, "\nStatistics:\n");
2659 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2665 seq_printf(m, "\nMisc:\n");
2666 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2673 seq_printf(m, "\nQueue state:\n");
2674 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2678 pkt_count_states(pd, states);
2679 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680 states[0], states[1], states[2], states[3], states[4], states[5]);
2682 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683 pd->write_congestion_off,
2684 pd->write_congestion_on);
2685 return 0;
2688 static int pkt_seq_open(struct inode *inode, struct file *file)
2690 return single_open(file, pkt_seq_show, PDE(inode)->data);
2693 static const struct file_operations pkt_proc_fops = {
2694 .open = pkt_seq_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = single_release
2700 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2702 int i;
2703 int ret = 0;
2704 char b[BDEVNAME_SIZE];
2705 struct block_device *bdev;
2707 if (pd->pkt_dev == dev) {
2708 printk(DRIVER_NAME": Recursive setup not allowed\n");
2709 return -EBUSY;
2711 for (i = 0; i < MAX_WRITERS; i++) {
2712 struct pktcdvd_device *pd2 = pkt_devs[i];
2713 if (!pd2)
2714 continue;
2715 if (pd2->bdev->bd_dev == dev) {
2716 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717 return -EBUSY;
2719 if (pd2->pkt_dev == dev) {
2720 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721 return -EBUSY;
2725 bdev = bdget(dev);
2726 if (!bdev)
2727 return -ENOMEM;
2728 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729 if (ret)
2730 return ret;
2732 /* This is safe, since we have a reference from open(). */
2733 __module_get(THIS_MODULE);
2735 pd->bdev = bdev;
2736 set_blocksize(bdev, CD_FRAMESIZE);
2738 pkt_init_queue(pd);
2740 atomic_set(&pd->cdrw.pending_bios, 0);
2741 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742 if (IS_ERR(pd->cdrw.thread)) {
2743 printk(DRIVER_NAME": can't start kernel thread\n");
2744 ret = -ENOMEM;
2745 goto out_mem;
2748 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750 return 0;
2752 out_mem:
2753 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754 /* This is safe: open() is still holding a reference. */
2755 module_put(THIS_MODULE);
2756 return ret;
2759 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2761 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762 int ret;
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2767 mutex_lock(&pktcdvd_mutex);
2768 switch (cmd) {
2769 case CDROMEJECT:
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786 break;
2788 default:
2789 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 ret = -ENOTTY;
2792 mutex_unlock(&pktcdvd_mutex);
2794 return ret;
2797 static unsigned int pkt_check_events(struct gendisk *disk,
2798 unsigned int clearing)
2800 struct pktcdvd_device *pd = disk->private_data;
2801 struct gendisk *attached_disk;
2803 if (!pd)
2804 return 0;
2805 if (!pd->bdev)
2806 return 0;
2807 attached_disk = pd->bdev->bd_disk;
2808 if (!attached_disk || !attached_disk->fops->check_events)
2809 return 0;
2810 return attached_disk->fops->check_events(attached_disk, clearing);
2813 static const struct block_device_operations pktcdvd_ops = {
2814 .owner = THIS_MODULE,
2815 .open = pkt_open,
2816 .release = pkt_close,
2817 .ioctl = pkt_ioctl,
2818 .check_events = pkt_check_events,
2821 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2823 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2829 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2831 int idx;
2832 int ret = -ENOMEM;
2833 struct pktcdvd_device *pd;
2834 struct gendisk *disk;
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2838 for (idx = 0; idx < MAX_WRITERS; idx++)
2839 if (!pkt_devs[idx])
2840 break;
2841 if (idx == MAX_WRITERS) {
2842 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843 ret = -EBUSY;
2844 goto out_mutex;
2847 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848 if (!pd)
2849 goto out_mutex;
2851 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852 sizeof(struct pkt_rb_node));
2853 if (!pd->rb_pool)
2854 goto out_mem;
2856 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858 spin_lock_init(&pd->cdrw.active_list_lock);
2860 spin_lock_init(&pd->lock);
2861 spin_lock_init(&pd->iosched.lock);
2862 bio_list_init(&pd->iosched.read_queue);
2863 bio_list_init(&pd->iosched.write_queue);
2864 sprintf(pd->name, DRIVER_NAME"%d", idx);
2865 init_waitqueue_head(&pd->wqueue);
2866 pd->bio_queue = RB_ROOT;
2868 pd->write_congestion_on = write_congestion_on;
2869 pd->write_congestion_off = write_congestion_off;
2871 disk = alloc_disk(1);
2872 if (!disk)
2873 goto out_mem;
2874 pd->disk = disk;
2875 disk->major = pktdev_major;
2876 disk->first_minor = idx;
2877 disk->fops = &pktcdvd_ops;
2878 disk->flags = GENHD_FL_REMOVABLE;
2879 strcpy(disk->disk_name, pd->name);
2880 disk->devnode = pktcdvd_devnode;
2881 disk->private_data = pd;
2882 disk->queue = blk_alloc_queue(GFP_KERNEL);
2883 if (!disk->queue)
2884 goto out_mem2;
2886 pd->pkt_dev = MKDEV(pktdev_major, idx);
2887 ret = pkt_new_dev(pd, dev);
2888 if (ret)
2889 goto out_new_dev;
2891 /* inherit events of the host device */
2892 disk->events = pd->bdev->bd_disk->events;
2893 disk->async_events = pd->bdev->bd_disk->async_events;
2895 add_disk(disk);
2897 pkt_sysfs_dev_new(pd);
2898 pkt_debugfs_dev_new(pd);
2900 pkt_devs[idx] = pd;
2901 if (pkt_dev)
2902 *pkt_dev = pd->pkt_dev;
2904 mutex_unlock(&ctl_mutex);
2905 return 0;
2907 out_new_dev:
2908 blk_cleanup_queue(disk->queue);
2909 out_mem2:
2910 put_disk(disk);
2911 out_mem:
2912 if (pd->rb_pool)
2913 mempool_destroy(pd->rb_pool);
2914 kfree(pd);
2915 out_mutex:
2916 mutex_unlock(&ctl_mutex);
2917 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918 return ret;
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2924 static int pkt_remove_dev(dev_t pkt_dev)
2926 struct pktcdvd_device *pd;
2927 int idx;
2928 int ret = 0;
2930 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2932 for (idx = 0; idx < MAX_WRITERS; idx++) {
2933 pd = pkt_devs[idx];
2934 if (pd && (pd->pkt_dev == pkt_dev))
2935 break;
2937 if (idx == MAX_WRITERS) {
2938 DPRINTK(DRIVER_NAME": dev not setup\n");
2939 ret = -ENXIO;
2940 goto out;
2943 if (pd->refcnt > 0) {
2944 ret = -EBUSY;
2945 goto out;
2947 if (!IS_ERR(pd->cdrw.thread))
2948 kthread_stop(pd->cdrw.thread);
2950 pkt_devs[idx] = NULL;
2952 pkt_debugfs_dev_remove(pd);
2953 pkt_sysfs_dev_remove(pd);
2955 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2957 remove_proc_entry(pd->name, pkt_proc);
2958 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2960 del_gendisk(pd->disk);
2961 blk_cleanup_queue(pd->disk->queue);
2962 put_disk(pd->disk);
2964 mempool_destroy(pd->rb_pool);
2965 kfree(pd);
2967 /* This is safe: open() is still holding a reference. */
2968 module_put(THIS_MODULE);
2970 out:
2971 mutex_unlock(&ctl_mutex);
2972 return ret;
2975 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2977 struct pktcdvd_device *pd;
2979 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2981 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982 if (pd) {
2983 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985 } else {
2986 ctrl_cmd->dev = 0;
2987 ctrl_cmd->pkt_dev = 0;
2989 ctrl_cmd->num_devices = MAX_WRITERS;
2991 mutex_unlock(&ctl_mutex);
2994 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2996 void __user *argp = (void __user *)arg;
2997 struct pkt_ctrl_command ctrl_cmd;
2998 int ret = 0;
2999 dev_t pkt_dev = 0;
3001 if (cmd != PACKET_CTRL_CMD)
3002 return -ENOTTY;
3004 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005 return -EFAULT;
3007 switch (ctrl_cmd.command) {
3008 case PKT_CTRL_CMD_SETUP:
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013 break;
3014 case PKT_CTRL_CMD_TEARDOWN:
3015 if (!capable(CAP_SYS_ADMIN))
3016 return -EPERM;
3017 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018 break;
3019 case PKT_CTRL_CMD_STATUS:
3020 pkt_get_status(&ctrl_cmd);
3021 break;
3022 default:
3023 return -ENOTTY;
3026 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027 return -EFAULT;
3028 return ret;
3031 #ifdef CONFIG_COMPAT
3032 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3034 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3036 #endif
3038 static const struct file_operations pkt_ctl_fops = {
3039 .open = nonseekable_open,
3040 .unlocked_ioctl = pkt_ctl_ioctl,
3041 #ifdef CONFIG_COMPAT
3042 .compat_ioctl = pkt_ctl_compat_ioctl,
3043 #endif
3044 .owner = THIS_MODULE,
3045 .llseek = no_llseek,
3048 static struct miscdevice pkt_misc = {
3049 .minor = MISC_DYNAMIC_MINOR,
3050 .name = DRIVER_NAME,
3051 .nodename = "pktcdvd/control",
3052 .fops = &pkt_ctl_fops
3055 static int __init pkt_init(void)
3057 int ret;
3059 mutex_init(&ctl_mutex);
3061 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062 sizeof(struct packet_stacked_data));
3063 if (!psd_pool)
3064 return -ENOMEM;
3066 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067 if (ret < 0) {
3068 printk(DRIVER_NAME": Unable to register block device\n");
3069 goto out2;
3071 if (!pktdev_major)
3072 pktdev_major = ret;
3074 ret = pkt_sysfs_init();
3075 if (ret)
3076 goto out;
3078 pkt_debugfs_init();
3080 ret = misc_register(&pkt_misc);
3081 if (ret) {
3082 printk(DRIVER_NAME": Unable to register misc device\n");
3083 goto out_misc;
3086 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3088 return 0;
3090 out_misc:
3091 pkt_debugfs_cleanup();
3092 pkt_sysfs_cleanup();
3093 out:
3094 unregister_blkdev(pktdev_major, DRIVER_NAME);
3095 out2:
3096 mempool_destroy(psd_pool);
3097 return ret;
3100 static void __exit pkt_exit(void)
3102 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103 misc_deregister(&pkt_misc);
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 mempool_destroy(psd_pool);
3112 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114 MODULE_LICENSE("GPL");
3116 module_init(pkt_init);
3117 module_exit(pkt_exit);