1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
12 #include "mds_client.h"
13 #include <linux/ceph/decode.h>
14 #include <linux/ceph/messenger.h>
17 * Capability management
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
44 * Generate readable cap strings for debugging output.
46 #define MAX_CAP_STR 20
47 static char cap_str
[MAX_CAP_STR
][40];
48 static DEFINE_SPINLOCK(cap_str_lock
);
49 static int last_cap_str
;
51 static char *gcap_string(char *s
, int c
)
53 if (c
& CEPH_CAP_GSHARED
)
55 if (c
& CEPH_CAP_GEXCL
)
57 if (c
& CEPH_CAP_GCACHE
)
63 if (c
& CEPH_CAP_GBUFFER
)
65 if (c
& CEPH_CAP_GLAZYIO
)
70 const char *ceph_cap_string(int caps
)
76 spin_lock(&cap_str_lock
);
78 if (last_cap_str
== MAX_CAP_STR
)
80 spin_unlock(&cap_str_lock
);
84 if (caps
& CEPH_CAP_PIN
)
87 c
= (caps
>> CEPH_CAP_SAUTH
) & 3;
90 s
= gcap_string(s
, c
);
93 c
= (caps
>> CEPH_CAP_SLINK
) & 3;
96 s
= gcap_string(s
, c
);
99 c
= (caps
>> CEPH_CAP_SXATTR
) & 3;
102 s
= gcap_string(s
, c
);
105 c
= caps
>> CEPH_CAP_SFILE
;
108 s
= gcap_string(s
, c
);
117 void ceph_caps_init(struct ceph_mds_client
*mdsc
)
119 INIT_LIST_HEAD(&mdsc
->caps_list
);
120 spin_lock_init(&mdsc
->caps_list_lock
);
123 void ceph_caps_finalize(struct ceph_mds_client
*mdsc
)
125 struct ceph_cap
*cap
;
127 spin_lock(&mdsc
->caps_list_lock
);
128 while (!list_empty(&mdsc
->caps_list
)) {
129 cap
= list_first_entry(&mdsc
->caps_list
,
130 struct ceph_cap
, caps_item
);
131 list_del(&cap
->caps_item
);
132 kmem_cache_free(ceph_cap_cachep
, cap
);
134 mdsc
->caps_total_count
= 0;
135 mdsc
->caps_avail_count
= 0;
136 mdsc
->caps_use_count
= 0;
137 mdsc
->caps_reserve_count
= 0;
138 mdsc
->caps_min_count
= 0;
139 spin_unlock(&mdsc
->caps_list_lock
);
142 void ceph_adjust_min_caps(struct ceph_mds_client
*mdsc
, int delta
)
144 spin_lock(&mdsc
->caps_list_lock
);
145 mdsc
->caps_min_count
+= delta
;
146 BUG_ON(mdsc
->caps_min_count
< 0);
147 spin_unlock(&mdsc
->caps_list_lock
);
150 int ceph_reserve_caps(struct ceph_mds_client
*mdsc
,
151 struct ceph_cap_reservation
*ctx
, int need
)
154 struct ceph_cap
*cap
;
160 dout("reserve caps ctx=%p need=%d\n", ctx
, need
);
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc
->caps_list_lock
);
164 if (mdsc
->caps_avail_count
>= need
)
167 have
= mdsc
->caps_avail_count
;
168 mdsc
->caps_avail_count
-= have
;
169 mdsc
->caps_reserve_count
+= have
;
170 BUG_ON(mdsc
->caps_total_count
!= mdsc
->caps_use_count
+
171 mdsc
->caps_reserve_count
+
172 mdsc
->caps_avail_count
);
173 spin_unlock(&mdsc
->caps_list_lock
);
175 for (i
= have
; i
< need
; i
++) {
176 cap
= kmem_cache_alloc(ceph_cap_cachep
, GFP_NOFS
);
179 goto out_alloc_count
;
181 list_add(&cap
->caps_item
, &newcaps
);
184 BUG_ON(have
+ alloc
!= need
);
186 spin_lock(&mdsc
->caps_list_lock
);
187 mdsc
->caps_total_count
+= alloc
;
188 mdsc
->caps_reserve_count
+= alloc
;
189 list_splice(&newcaps
, &mdsc
->caps_list
);
191 BUG_ON(mdsc
->caps_total_count
!= mdsc
->caps_use_count
+
192 mdsc
->caps_reserve_count
+
193 mdsc
->caps_avail_count
);
194 spin_unlock(&mdsc
->caps_list_lock
);
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx
, mdsc
->caps_total_count
, mdsc
->caps_use_count
,
199 mdsc
->caps_reserve_count
, mdsc
->caps_avail_count
);
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
209 int ceph_unreserve_caps(struct ceph_mds_client
*mdsc
,
210 struct ceph_cap_reservation
*ctx
)
212 dout("unreserve caps ctx=%p count=%d\n", ctx
, ctx
->count
);
214 spin_lock(&mdsc
->caps_list_lock
);
215 BUG_ON(mdsc
->caps_reserve_count
< ctx
->count
);
216 mdsc
->caps_reserve_count
-= ctx
->count
;
217 mdsc
->caps_avail_count
+= ctx
->count
;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc
->caps_total_count
, mdsc
->caps_use_count
,
221 mdsc
->caps_reserve_count
, mdsc
->caps_avail_count
);
222 BUG_ON(mdsc
->caps_total_count
!= mdsc
->caps_use_count
+
223 mdsc
->caps_reserve_count
+
224 mdsc
->caps_avail_count
);
225 spin_unlock(&mdsc
->caps_list_lock
);
230 static struct ceph_cap
*get_cap(struct ceph_mds_client
*mdsc
,
231 struct ceph_cap_reservation
*ctx
)
233 struct ceph_cap
*cap
= NULL
;
235 /* temporary, until we do something about cap import/export */
237 cap
= kmem_cache_alloc(ceph_cap_cachep
, GFP_NOFS
);
239 mdsc
->caps_use_count
++;
240 mdsc
->caps_total_count
++;
245 spin_lock(&mdsc
->caps_list_lock
);
246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
247 ctx
, ctx
->count
, mdsc
->caps_total_count
, mdsc
->caps_use_count
,
248 mdsc
->caps_reserve_count
, mdsc
->caps_avail_count
);
250 BUG_ON(ctx
->count
> mdsc
->caps_reserve_count
);
251 BUG_ON(list_empty(&mdsc
->caps_list
));
254 mdsc
->caps_reserve_count
--;
255 mdsc
->caps_use_count
++;
257 cap
= list_first_entry(&mdsc
->caps_list
, struct ceph_cap
, caps_item
);
258 list_del(&cap
->caps_item
);
260 BUG_ON(mdsc
->caps_total_count
!= mdsc
->caps_use_count
+
261 mdsc
->caps_reserve_count
+ mdsc
->caps_avail_count
);
262 spin_unlock(&mdsc
->caps_list_lock
);
266 void ceph_put_cap(struct ceph_mds_client
*mdsc
, struct ceph_cap
*cap
)
268 spin_lock(&mdsc
->caps_list_lock
);
269 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
270 cap
, mdsc
->caps_total_count
, mdsc
->caps_use_count
,
271 mdsc
->caps_reserve_count
, mdsc
->caps_avail_count
);
272 mdsc
->caps_use_count
--;
274 * Keep some preallocated caps around (ceph_min_count), to
275 * avoid lots of free/alloc churn.
277 if (mdsc
->caps_avail_count
>= mdsc
->caps_reserve_count
+
278 mdsc
->caps_min_count
) {
279 mdsc
->caps_total_count
--;
280 kmem_cache_free(ceph_cap_cachep
, cap
);
282 mdsc
->caps_avail_count
++;
283 list_add(&cap
->caps_item
, &mdsc
->caps_list
);
286 BUG_ON(mdsc
->caps_total_count
!= mdsc
->caps_use_count
+
287 mdsc
->caps_reserve_count
+ mdsc
->caps_avail_count
);
288 spin_unlock(&mdsc
->caps_list_lock
);
291 void ceph_reservation_status(struct ceph_fs_client
*fsc
,
292 int *total
, int *avail
, int *used
, int *reserved
,
295 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
298 *total
= mdsc
->caps_total_count
;
300 *avail
= mdsc
->caps_avail_count
;
302 *used
= mdsc
->caps_use_count
;
304 *reserved
= mdsc
->caps_reserve_count
;
306 *min
= mdsc
->caps_min_count
;
310 * Find ceph_cap for given mds, if any.
312 * Called with i_lock held.
314 static struct ceph_cap
*__get_cap_for_mds(struct ceph_inode_info
*ci
, int mds
)
316 struct ceph_cap
*cap
;
317 struct rb_node
*n
= ci
->i_caps
.rb_node
;
320 cap
= rb_entry(n
, struct ceph_cap
, ci_node
);
323 else if (mds
> cap
->mds
)
331 struct ceph_cap
*ceph_get_cap_for_mds(struct ceph_inode_info
*ci
, int mds
)
333 struct ceph_cap
*cap
;
335 spin_lock(&ci
->vfs_inode
.i_lock
);
336 cap
= __get_cap_for_mds(ci
, mds
);
337 spin_unlock(&ci
->vfs_inode
.i_lock
);
342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
344 static int __ceph_get_cap_mds(struct ceph_inode_info
*ci
)
346 struct ceph_cap
*cap
;
350 /* prefer mds with WR|BUFFER|EXCL caps */
351 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
352 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
354 if (cap
->issued
& (CEPH_CAP_FILE_WR
|
355 CEPH_CAP_FILE_BUFFER
|
362 int ceph_get_cap_mds(struct inode
*inode
)
365 spin_lock(&inode
->i_lock
);
366 mds
= __ceph_get_cap_mds(ceph_inode(inode
));
367 spin_unlock(&inode
->i_lock
);
372 * Called under i_lock.
374 static void __insert_cap_node(struct ceph_inode_info
*ci
,
375 struct ceph_cap
*new)
377 struct rb_node
**p
= &ci
->i_caps
.rb_node
;
378 struct rb_node
*parent
= NULL
;
379 struct ceph_cap
*cap
= NULL
;
383 cap
= rb_entry(parent
, struct ceph_cap
, ci_node
);
384 if (new->mds
< cap
->mds
)
386 else if (new->mds
> cap
->mds
)
392 rb_link_node(&new->ci_node
, parent
, p
);
393 rb_insert_color(&new->ci_node
, &ci
->i_caps
);
397 * (re)set cap hold timeouts, which control the delayed release
398 * of unused caps back to the MDS. Should be called on cap use.
400 static void __cap_set_timeouts(struct ceph_mds_client
*mdsc
,
401 struct ceph_inode_info
*ci
)
403 struct ceph_mount_options
*ma
= mdsc
->fsc
->mount_options
;
405 ci
->i_hold_caps_min
= round_jiffies(jiffies
+
406 ma
->caps_wanted_delay_min
* HZ
);
407 ci
->i_hold_caps_max
= round_jiffies(jiffies
+
408 ma
->caps_wanted_delay_max
* HZ
);
409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci
->vfs_inode
,
410 ci
->i_hold_caps_min
- jiffies
, ci
->i_hold_caps_max
- jiffies
);
414 * (Re)queue cap at the end of the delayed cap release list.
416 * If I_FLUSH is set, leave the inode at the front of the list.
418 * Caller holds i_lock
419 * -> we take mdsc->cap_delay_lock
421 static void __cap_delay_requeue(struct ceph_mds_client
*mdsc
,
422 struct ceph_inode_info
*ci
)
424 __cap_set_timeouts(mdsc
, ci
);
425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci
->vfs_inode
,
426 ci
->i_ceph_flags
, ci
->i_hold_caps_max
);
427 if (!mdsc
->stopping
) {
428 spin_lock(&mdsc
->cap_delay_lock
);
429 if (!list_empty(&ci
->i_cap_delay_list
)) {
430 if (ci
->i_ceph_flags
& CEPH_I_FLUSH
)
432 list_del_init(&ci
->i_cap_delay_list
);
434 list_add_tail(&ci
->i_cap_delay_list
, &mdsc
->cap_delay_list
);
436 spin_unlock(&mdsc
->cap_delay_lock
);
441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
442 * indicating we should send a cap message to flush dirty metadata
443 * asap, and move to the front of the delayed cap list.
445 static void __cap_delay_requeue_front(struct ceph_mds_client
*mdsc
,
446 struct ceph_inode_info
*ci
)
448 dout("__cap_delay_requeue_front %p\n", &ci
->vfs_inode
);
449 spin_lock(&mdsc
->cap_delay_lock
);
450 ci
->i_ceph_flags
|= CEPH_I_FLUSH
;
451 if (!list_empty(&ci
->i_cap_delay_list
))
452 list_del_init(&ci
->i_cap_delay_list
);
453 list_add(&ci
->i_cap_delay_list
, &mdsc
->cap_delay_list
);
454 spin_unlock(&mdsc
->cap_delay_lock
);
458 * Cancel delayed work on cap.
460 * Caller must hold i_lock.
462 static void __cap_delay_cancel(struct ceph_mds_client
*mdsc
,
463 struct ceph_inode_info
*ci
)
465 dout("__cap_delay_cancel %p\n", &ci
->vfs_inode
);
466 if (list_empty(&ci
->i_cap_delay_list
))
468 spin_lock(&mdsc
->cap_delay_lock
);
469 list_del_init(&ci
->i_cap_delay_list
);
470 spin_unlock(&mdsc
->cap_delay_lock
);
474 * Common issue checks for add_cap, handle_cap_grant.
476 static void __check_cap_issue(struct ceph_inode_info
*ci
, struct ceph_cap
*cap
,
479 unsigned had
= __ceph_caps_issued(ci
, NULL
);
482 * Each time we receive FILE_CACHE anew, we increment
485 if ((issued
& (CEPH_CAP_FILE_CACHE
|CEPH_CAP_FILE_LAZYIO
)) &&
486 (had
& (CEPH_CAP_FILE_CACHE
|CEPH_CAP_FILE_LAZYIO
)) == 0)
490 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
491 * don't know what happened to this directory while we didn't
494 if ((issued
& CEPH_CAP_FILE_SHARED
) &&
495 (had
& CEPH_CAP_FILE_SHARED
) == 0) {
497 if (S_ISDIR(ci
->vfs_inode
.i_mode
)) {
498 dout(" marking %p NOT complete\n", &ci
->vfs_inode
);
499 ci
->i_ceph_flags
&= ~CEPH_I_COMPLETE
;
505 * Add a capability under the given MDS session.
507 * Caller should hold session snap_rwsem (read) and s_mutex.
509 * @fmode is the open file mode, if we are opening a file, otherwise
510 * it is < 0. (This is so we can atomically add the cap and add an
511 * open file reference to it.)
513 int ceph_add_cap(struct inode
*inode
,
514 struct ceph_mds_session
*session
, u64 cap_id
,
515 int fmode
, unsigned issued
, unsigned wanted
,
516 unsigned seq
, unsigned mseq
, u64 realmino
, int flags
,
517 struct ceph_cap_reservation
*caps_reservation
)
519 struct ceph_mds_client
*mdsc
= ceph_inode_to_client(inode
)->mdsc
;
520 struct ceph_inode_info
*ci
= ceph_inode(inode
);
521 struct ceph_cap
*new_cap
= NULL
;
522 struct ceph_cap
*cap
;
523 int mds
= session
->s_mds
;
526 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode
,
527 session
->s_mds
, cap_id
, ceph_cap_string(issued
), seq
);
530 * If we are opening the file, include file mode wanted bits
534 wanted
|= ceph_caps_for_mode(fmode
);
537 spin_lock(&inode
->i_lock
);
538 cap
= __get_cap_for_mds(ci
, mds
);
544 spin_unlock(&inode
->i_lock
);
545 new_cap
= get_cap(mdsc
, caps_reservation
);
552 cap
->implemented
= 0;
557 __insert_cap_node(ci
, cap
);
559 /* clear out old exporting info? (i.e. on cap import) */
560 if (ci
->i_cap_exporting_mds
== mds
) {
561 ci
->i_cap_exporting_issued
= 0;
562 ci
->i_cap_exporting_mseq
= 0;
563 ci
->i_cap_exporting_mds
= -1;
566 /* add to session cap list */
567 cap
->session
= session
;
568 spin_lock(&session
->s_cap_lock
);
569 list_add_tail(&cap
->session_caps
, &session
->s_caps
);
570 session
->s_nr_caps
++;
571 spin_unlock(&session
->s_cap_lock
);
574 if (!ci
->i_snap_realm
) {
576 * add this inode to the appropriate snap realm
578 struct ceph_snap_realm
*realm
= ceph_lookup_snap_realm(mdsc
,
581 ceph_get_snap_realm(mdsc
, realm
);
582 spin_lock(&realm
->inodes_with_caps_lock
);
583 ci
->i_snap_realm
= realm
;
584 list_add(&ci
->i_snap_realm_item
,
585 &realm
->inodes_with_caps
);
586 spin_unlock(&realm
->inodes_with_caps_lock
);
588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
594 __check_cap_issue(ci
, cap
, issued
);
597 * If we are issued caps we don't want, or the mds' wanted
598 * value appears to be off, queue a check so we'll release
599 * later and/or update the mds wanted value.
601 actual_wanted
= __ceph_caps_wanted(ci
);
602 if ((wanted
& ~actual_wanted
) ||
603 (issued
& ~actual_wanted
& CEPH_CAP_ANY_WR
)) {
604 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 ceph_cap_string(issued
), ceph_cap_string(wanted
),
606 ceph_cap_string(actual_wanted
));
607 __cap_delay_requeue(mdsc
, ci
);
610 if (flags
& CEPH_CAP_FLAG_AUTH
)
611 ci
->i_auth_cap
= cap
;
612 else if (ci
->i_auth_cap
== cap
)
613 ci
->i_auth_cap
= NULL
;
615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616 inode
, ceph_vinop(inode
), cap
, ceph_cap_string(issued
),
617 ceph_cap_string(issued
|cap
->issued
), seq
, mds
);
618 cap
->cap_id
= cap_id
;
619 cap
->issued
= issued
;
620 cap
->implemented
|= issued
;
621 cap
->mds_wanted
|= wanted
;
623 cap
->issue_seq
= seq
;
625 cap
->cap_gen
= session
->s_cap_gen
;
628 __ceph_get_fmode(ci
, fmode
);
629 spin_unlock(&inode
->i_lock
);
630 wake_up_all(&ci
->i_cap_wq
);
635 * Return true if cap has not timed out and belongs to the current
636 * generation of the MDS session (i.e. has not gone 'stale' due to
637 * us losing touch with the mds).
639 static int __cap_is_valid(struct ceph_cap
*cap
)
644 spin_lock(&cap
->session
->s_cap_lock
);
645 gen
= cap
->session
->s_cap_gen
;
646 ttl
= cap
->session
->s_cap_ttl
;
647 spin_unlock(&cap
->session
->s_cap_lock
);
649 if (cap
->cap_gen
< gen
|| time_after_eq(jiffies
, ttl
)) {
650 dout("__cap_is_valid %p cap %p issued %s "
651 "but STALE (gen %u vs %u)\n", &cap
->ci
->vfs_inode
,
652 cap
, ceph_cap_string(cap
->issued
), cap
->cap_gen
, gen
);
660 * Return set of valid cap bits issued to us. Note that caps time
661 * out, and may be invalidated in bulk if the client session times out
662 * and session->s_cap_gen is bumped.
664 int __ceph_caps_issued(struct ceph_inode_info
*ci
, int *implemented
)
666 int have
= ci
->i_snap_caps
| ci
->i_cap_exporting_issued
;
667 struct ceph_cap
*cap
;
672 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
673 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
674 if (!__cap_is_valid(cap
))
676 dout("__ceph_caps_issued %p cap %p issued %s\n",
677 &ci
->vfs_inode
, cap
, ceph_cap_string(cap
->issued
));
680 *implemented
|= cap
->implemented
;
686 * Get cap bits issued by caps other than @ocap
688 int __ceph_caps_issued_other(struct ceph_inode_info
*ci
, struct ceph_cap
*ocap
)
690 int have
= ci
->i_snap_caps
;
691 struct ceph_cap
*cap
;
694 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
695 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
698 if (!__cap_is_valid(cap
))
706 * Move a cap to the end of the LRU (oldest caps at list head, newest
709 static void __touch_cap(struct ceph_cap
*cap
)
711 struct ceph_mds_session
*s
= cap
->session
;
713 spin_lock(&s
->s_cap_lock
);
714 if (s
->s_cap_iterator
== NULL
) {
715 dout("__touch_cap %p cap %p mds%d\n", &cap
->ci
->vfs_inode
, cap
,
717 list_move_tail(&cap
->session_caps
, &s
->s_caps
);
719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720 &cap
->ci
->vfs_inode
, cap
, s
->s_mds
);
722 spin_unlock(&s
->s_cap_lock
);
726 * Check if we hold the given mask. If so, move the cap(s) to the
727 * front of their respective LRUs. (This is the preferred way for
728 * callers to check for caps they want.)
730 int __ceph_caps_issued_mask(struct ceph_inode_info
*ci
, int mask
, int touch
)
732 struct ceph_cap
*cap
;
734 int have
= ci
->i_snap_caps
;
736 if ((have
& mask
) == mask
) {
737 dout("__ceph_caps_issued_mask %p snap issued %s"
738 " (mask %s)\n", &ci
->vfs_inode
,
739 ceph_cap_string(have
),
740 ceph_cap_string(mask
));
744 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
745 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
746 if (!__cap_is_valid(cap
))
748 if ((cap
->issued
& mask
) == mask
) {
749 dout("__ceph_caps_issued_mask %p cap %p issued %s"
750 " (mask %s)\n", &ci
->vfs_inode
, cap
,
751 ceph_cap_string(cap
->issued
),
752 ceph_cap_string(mask
));
758 /* does a combination of caps satisfy mask? */
760 if ((have
& mask
) == mask
) {
761 dout("__ceph_caps_issued_mask %p combo issued %s"
762 " (mask %s)\n", &ci
->vfs_inode
,
763 ceph_cap_string(cap
->issued
),
764 ceph_cap_string(mask
));
768 /* touch this + preceeding caps */
770 for (q
= rb_first(&ci
->i_caps
); q
!= p
;
772 cap
= rb_entry(q
, struct ceph_cap
,
774 if (!__cap_is_valid(cap
))
787 * Return true if mask caps are currently being revoked by an MDS.
789 int ceph_caps_revoking(struct ceph_inode_info
*ci
, int mask
)
791 struct inode
*inode
= &ci
->vfs_inode
;
792 struct ceph_cap
*cap
;
796 spin_lock(&inode
->i_lock
);
797 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
798 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
799 if (__cap_is_valid(cap
) &&
800 (cap
->implemented
& ~cap
->issued
& mask
)) {
805 spin_unlock(&inode
->i_lock
);
806 dout("ceph_caps_revoking %p %s = %d\n", inode
,
807 ceph_cap_string(mask
), ret
);
811 int __ceph_caps_used(struct ceph_inode_info
*ci
)
815 used
|= CEPH_CAP_PIN
;
817 used
|= CEPH_CAP_FILE_RD
;
818 if (ci
->i_rdcache_ref
|| ci
->vfs_inode
.i_data
.nrpages
)
819 used
|= CEPH_CAP_FILE_CACHE
;
821 used
|= CEPH_CAP_FILE_WR
;
822 if (ci
->i_wrbuffer_ref
)
823 used
|= CEPH_CAP_FILE_BUFFER
;
828 * wanted, by virtue of open file modes
830 int __ceph_caps_file_wanted(struct ceph_inode_info
*ci
)
834 for (mode
= 0; mode
< CEPH_FILE_MODE_NUM
; mode
++)
835 if (ci
->i_nr_by_mode
[mode
])
836 want
|= ceph_caps_for_mode(mode
);
841 * Return caps we have registered with the MDS(s) as 'wanted'.
843 int __ceph_caps_mds_wanted(struct ceph_inode_info
*ci
)
845 struct ceph_cap
*cap
;
849 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
850 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
851 if (!__cap_is_valid(cap
))
853 mds_wanted
|= cap
->mds_wanted
;
859 * called under i_lock
861 static int __ceph_is_any_caps(struct ceph_inode_info
*ci
)
863 return !RB_EMPTY_ROOT(&ci
->i_caps
) || ci
->i_cap_exporting_mds
>= 0;
867 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
869 * caller should hold i_lock.
870 * caller will not hold session s_mutex if called from destroy_inode.
872 void __ceph_remove_cap(struct ceph_cap
*cap
)
874 struct ceph_mds_session
*session
= cap
->session
;
875 struct ceph_inode_info
*ci
= cap
->ci
;
876 struct ceph_mds_client
*mdsc
=
877 ceph_sb_to_client(ci
->vfs_inode
.i_sb
)->mdsc
;
880 dout("__ceph_remove_cap %p from %p\n", cap
, &ci
->vfs_inode
);
882 /* remove from session list */
883 spin_lock(&session
->s_cap_lock
);
884 if (session
->s_cap_iterator
== cap
) {
885 /* not yet, we are iterating over this very cap */
886 dout("__ceph_remove_cap delaying %p removal from session %p\n",
889 list_del_init(&cap
->session_caps
);
890 session
->s_nr_caps
--;
894 /* protect backpointer with s_cap_lock: see iterate_session_caps */
896 spin_unlock(&session
->s_cap_lock
);
898 /* remove from inode list */
899 rb_erase(&cap
->ci_node
, &ci
->i_caps
);
900 if (ci
->i_auth_cap
== cap
)
901 ci
->i_auth_cap
= NULL
;
904 ceph_put_cap(mdsc
, cap
);
906 if (!__ceph_is_any_caps(ci
) && ci
->i_snap_realm
) {
907 struct ceph_snap_realm
*realm
= ci
->i_snap_realm
;
908 spin_lock(&realm
->inodes_with_caps_lock
);
909 list_del_init(&ci
->i_snap_realm_item
);
910 ci
->i_snap_realm_counter
++;
911 ci
->i_snap_realm
= NULL
;
912 spin_unlock(&realm
->inodes_with_caps_lock
);
913 ceph_put_snap_realm(mdsc
, realm
);
915 if (!__ceph_is_any_real_caps(ci
))
916 __cap_delay_cancel(mdsc
, ci
);
920 * Build and send a cap message to the given MDS.
922 * Caller should be holding s_mutex.
924 static int send_cap_msg(struct ceph_mds_session
*session
,
925 u64 ino
, u64 cid
, int op
,
926 int caps
, int wanted
, int dirty
,
927 u32 seq
, u64 flush_tid
, u32 issue_seq
, u32 mseq
,
928 u64 size
, u64 max_size
,
929 struct timespec
*mtime
, struct timespec
*atime
,
931 uid_t uid
, gid_t gid
, mode_t mode
,
933 struct ceph_buffer
*xattrs_buf
,
936 struct ceph_mds_caps
*fc
;
937 struct ceph_msg
*msg
;
939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940 " seq %u/%u mseq %u follows %lld size %llu/%llu"
941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op
),
942 cid
, ino
, ceph_cap_string(caps
), ceph_cap_string(wanted
),
943 ceph_cap_string(dirty
),
944 seq
, issue_seq
, mseq
, follows
, size
, max_size
,
945 xattr_version
, xattrs_buf
? (int)xattrs_buf
->vec
.iov_len
: 0);
947 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPS
, sizeof(*fc
), GFP_NOFS
);
951 msg
->hdr
.tid
= cpu_to_le64(flush_tid
);
953 fc
= msg
->front
.iov_base
;
954 memset(fc
, 0, sizeof(*fc
));
956 fc
->cap_id
= cpu_to_le64(cid
);
957 fc
->op
= cpu_to_le32(op
);
958 fc
->seq
= cpu_to_le32(seq
);
959 fc
->issue_seq
= cpu_to_le32(issue_seq
);
960 fc
->migrate_seq
= cpu_to_le32(mseq
);
961 fc
->caps
= cpu_to_le32(caps
);
962 fc
->wanted
= cpu_to_le32(wanted
);
963 fc
->dirty
= cpu_to_le32(dirty
);
964 fc
->ino
= cpu_to_le64(ino
);
965 fc
->snap_follows
= cpu_to_le64(follows
);
967 fc
->size
= cpu_to_le64(size
);
968 fc
->max_size
= cpu_to_le64(max_size
);
970 ceph_encode_timespec(&fc
->mtime
, mtime
);
972 ceph_encode_timespec(&fc
->atime
, atime
);
973 fc
->time_warp_seq
= cpu_to_le32(time_warp_seq
);
975 fc
->uid
= cpu_to_le32(uid
);
976 fc
->gid
= cpu_to_le32(gid
);
977 fc
->mode
= cpu_to_le32(mode
);
979 fc
->xattr_version
= cpu_to_le64(xattr_version
);
981 msg
->middle
= ceph_buffer_get(xattrs_buf
);
982 fc
->xattr_len
= cpu_to_le32(xattrs_buf
->vec
.iov_len
);
983 msg
->hdr
.middle_len
= cpu_to_le32(xattrs_buf
->vec
.iov_len
);
986 ceph_con_send(&session
->s_con
, msg
);
990 static void __queue_cap_release(struct ceph_mds_session
*session
,
991 u64 ino
, u64 cap_id
, u32 migrate_seq
,
994 struct ceph_msg
*msg
;
995 struct ceph_mds_cap_release
*head
;
996 struct ceph_mds_cap_item
*item
;
998 spin_lock(&session
->s_cap_lock
);
999 BUG_ON(!session
->s_num_cap_releases
);
1000 msg
= list_first_entry(&session
->s_cap_releases
,
1001 struct ceph_msg
, list_head
);
1003 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004 ino
, session
->s_mds
, msg
, session
->s_num_cap_releases
);
1006 BUG_ON(msg
->front
.iov_len
+ sizeof(*item
) > PAGE_CACHE_SIZE
);
1007 head
= msg
->front
.iov_base
;
1008 head
->num
= cpu_to_le32(le32_to_cpu(head
->num
) + 1);
1009 item
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1010 item
->ino
= cpu_to_le64(ino
);
1011 item
->cap_id
= cpu_to_le64(cap_id
);
1012 item
->migrate_seq
= cpu_to_le32(migrate_seq
);
1013 item
->seq
= cpu_to_le32(issue_seq
);
1015 session
->s_num_cap_releases
--;
1017 msg
->front
.iov_len
+= sizeof(*item
);
1018 if (le32_to_cpu(head
->num
) == CEPH_CAPS_PER_RELEASE
) {
1019 dout(" release msg %p full\n", msg
);
1020 list_move_tail(&msg
->list_head
, &session
->s_cap_releases_done
);
1022 dout(" release msg %p at %d/%d (%d)\n", msg
,
1023 (int)le32_to_cpu(head
->num
),
1024 (int)CEPH_CAPS_PER_RELEASE
,
1025 (int)msg
->front
.iov_len
);
1027 spin_unlock(&session
->s_cap_lock
);
1031 * Queue cap releases when an inode is dropped from our cache. Since
1032 * inode is about to be destroyed, there is no need for i_lock.
1034 void ceph_queue_caps_release(struct inode
*inode
)
1036 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1039 p
= rb_first(&ci
->i_caps
);
1041 struct ceph_cap
*cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
1042 struct ceph_mds_session
*session
= cap
->session
;
1044 __queue_cap_release(session
, ceph_ino(inode
), cap
->cap_id
,
1045 cap
->mseq
, cap
->issue_seq
);
1047 __ceph_remove_cap(cap
);
1052 * Send a cap msg on the given inode. Update our caps state, then
1053 * drop i_lock and send the message.
1055 * Make note of max_size reported/requested from mds, revoked caps
1056 * that have now been implemented.
1058 * Make half-hearted attempt ot to invalidate page cache if we are
1059 * dropping RDCACHE. Note that this will leave behind locked pages
1060 * that we'll then need to deal with elsewhere.
1062 * Return non-zero if delayed release, or we experienced an error
1063 * such that the caller should requeue + retry later.
1065 * called with i_lock, then drops it.
1066 * caller should hold snap_rwsem (read), s_mutex.
1068 static int __send_cap(struct ceph_mds_client
*mdsc
, struct ceph_cap
*cap
,
1069 int op
, int used
, int want
, int retain
, int flushing
,
1070 unsigned *pflush_tid
)
1071 __releases(cap
->ci
->vfs_inode
->i_lock
)
1073 struct ceph_inode_info
*ci
= cap
->ci
;
1074 struct inode
*inode
= &ci
->vfs_inode
;
1075 u64 cap_id
= cap
->cap_id
;
1076 int held
, revoking
, dropping
, keep
;
1077 u64 seq
, issue_seq
, mseq
, time_warp_seq
, follows
;
1079 struct timespec mtime
, atime
;
1084 struct ceph_mds_session
*session
;
1085 u64 xattr_version
= 0;
1086 struct ceph_buffer
*xattr_blob
= NULL
;
1092 held
= cap
->issued
| cap
->implemented
;
1093 revoking
= cap
->implemented
& ~cap
->issued
;
1094 retain
&= ~revoking
;
1095 dropping
= cap
->issued
& ~retain
;
1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1098 inode
, cap
, cap
->session
,
1099 ceph_cap_string(held
), ceph_cap_string(held
& retain
),
1100 ceph_cap_string(revoking
));
1101 BUG_ON((retain
& CEPH_CAP_PIN
) == 0);
1103 session
= cap
->session
;
1105 /* don't release wanted unless we've waited a bit. */
1106 if ((ci
->i_ceph_flags
& CEPH_I_NODELAY
) == 0 &&
1107 time_before(jiffies
, ci
->i_hold_caps_min
)) {
1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1109 ceph_cap_string(cap
->issued
),
1110 ceph_cap_string(cap
->issued
& retain
),
1111 ceph_cap_string(cap
->mds_wanted
),
1112 ceph_cap_string(want
));
1113 want
|= cap
->mds_wanted
;
1114 retain
|= cap
->issued
;
1117 ci
->i_ceph_flags
&= ~(CEPH_I_NODELAY
| CEPH_I_FLUSH
);
1119 cap
->issued
&= retain
; /* drop bits we don't want */
1120 if (cap
->implemented
& ~cap
->issued
) {
1122 * Wake up any waiters on wanted -> needed transition.
1123 * This is due to the weird transition from buffered
1124 * to sync IO... we need to flush dirty pages _before_
1125 * allowing sync writes to avoid reordering.
1129 cap
->implemented
&= cap
->issued
| used
;
1130 cap
->mds_wanted
= want
;
1134 * assign a tid for flush operations so we can avoid
1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1136 * clean type races. track latest tid for every bit
1137 * so we can handle flush AxFw, flush Fw, and have the
1138 * first ack clean Ax.
1140 flush_tid
= ++ci
->i_cap_flush_last_tid
;
1142 *pflush_tid
= flush_tid
;
1143 dout(" cap_flush_tid %d\n", (int)flush_tid
);
1144 for (i
= 0; i
< CEPH_CAP_BITS
; i
++)
1145 if (flushing
& (1 << i
))
1146 ci
->i_cap_flush_tid
[i
] = flush_tid
;
1148 follows
= ci
->i_head_snapc
->seq
;
1153 keep
= cap
->implemented
;
1155 issue_seq
= cap
->issue_seq
;
1157 size
= inode
->i_size
;
1158 ci
->i_reported_size
= size
;
1159 max_size
= ci
->i_wanted_max_size
;
1160 ci
->i_requested_max_size
= max_size
;
1161 mtime
= inode
->i_mtime
;
1162 atime
= inode
->i_atime
;
1163 time_warp_seq
= ci
->i_time_warp_seq
;
1166 mode
= inode
->i_mode
;
1168 if (flushing
& CEPH_CAP_XATTR_EXCL
) {
1169 __ceph_build_xattrs_blob(ci
);
1170 xattr_blob
= ci
->i_xattrs
.blob
;
1171 xattr_version
= ci
->i_xattrs
.version
;
1174 spin_unlock(&inode
->i_lock
);
1176 ret
= send_cap_msg(session
, ceph_vino(inode
).ino
, cap_id
,
1177 op
, keep
, want
, flushing
, seq
, flush_tid
, issue_seq
, mseq
,
1178 size
, max_size
, &mtime
, &atime
, time_warp_seq
,
1179 uid
, gid
, mode
, xattr_version
, xattr_blob
,
1182 dout("error sending cap msg, must requeue %p\n", inode
);
1187 wake_up_all(&ci
->i_cap_wq
);
1193 * When a snapshot is taken, clients accumulate dirty metadata on
1194 * inodes with capabilities in ceph_cap_snaps to describe the file
1195 * state at the time the snapshot was taken. This must be flushed
1196 * asynchronously back to the MDS once sync writes complete and dirty
1197 * data is written out.
1199 * Unless @again is true, skip cap_snaps that were already sent to
1200 * the MDS (i.e., during this session).
1202 * Called under i_lock. Takes s_mutex as needed.
1204 void __ceph_flush_snaps(struct ceph_inode_info
*ci
,
1205 struct ceph_mds_session
**psession
,
1207 __releases(ci
->vfs_inode
->i_lock
)
1208 __acquires(ci
->vfs_inode
->i_lock
)
1210 struct inode
*inode
= &ci
->vfs_inode
;
1212 struct ceph_cap_snap
*capsnap
;
1214 struct ceph_mds_client
*mdsc
= ceph_inode_to_client(inode
)->mdsc
;
1215 struct ceph_mds_session
*session
= NULL
; /* if session != NULL, we hold
1217 u64 next_follows
= 0; /* keep track of how far we've gotten through the
1218 i_cap_snaps list, and skip these entries next time
1219 around to avoid an infinite loop */
1222 session
= *psession
;
1224 dout("__flush_snaps %p\n", inode
);
1226 list_for_each_entry(capsnap
, &ci
->i_cap_snaps
, ci_item
) {
1227 /* avoid an infiniute loop after retry */
1228 if (capsnap
->follows
< next_follows
)
1231 * we need to wait for sync writes to complete and for dirty
1232 * pages to be written out.
1234 if (capsnap
->dirty_pages
|| capsnap
->writing
)
1238 * if cap writeback already occurred, we should have dropped
1239 * the capsnap in ceph_put_wrbuffer_cap_refs.
1241 BUG_ON(capsnap
->dirty
== 0);
1243 /* pick mds, take s_mutex */
1244 if (ci
->i_auth_cap
== NULL
) {
1245 dout("no auth cap (migrating?), doing nothing\n");
1249 /* only flush each capsnap once */
1250 if (!again
&& !list_empty(&capsnap
->flushing_item
)) {
1251 dout("already flushed %p, skipping\n", capsnap
);
1255 mds
= ci
->i_auth_cap
->session
->s_mds
;
1256 mseq
= ci
->i_auth_cap
->mseq
;
1258 if (session
&& session
->s_mds
!= mds
) {
1259 dout("oops, wrong session %p mutex\n", session
);
1260 mutex_unlock(&session
->s_mutex
);
1261 ceph_put_mds_session(session
);
1265 spin_unlock(&inode
->i_lock
);
1266 mutex_lock(&mdsc
->mutex
);
1267 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1268 mutex_unlock(&mdsc
->mutex
);
1270 dout("inverting session/ino locks on %p\n",
1272 mutex_lock(&session
->s_mutex
);
1275 * if session == NULL, we raced against a cap
1276 * deletion or migration. retry, and we'll
1277 * get a better @mds value next time.
1279 spin_lock(&inode
->i_lock
);
1283 capsnap
->flush_tid
= ++ci
->i_cap_flush_last_tid
;
1284 atomic_inc(&capsnap
->nref
);
1285 if (!list_empty(&capsnap
->flushing_item
))
1286 list_del_init(&capsnap
->flushing_item
);
1287 list_add_tail(&capsnap
->flushing_item
,
1288 &session
->s_cap_snaps_flushing
);
1289 spin_unlock(&inode
->i_lock
);
1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1292 inode
, capsnap
, capsnap
->follows
, capsnap
->flush_tid
);
1293 send_cap_msg(session
, ceph_vino(inode
).ino
, 0,
1294 CEPH_CAP_OP_FLUSHSNAP
, capsnap
->issued
, 0,
1295 capsnap
->dirty
, 0, capsnap
->flush_tid
, 0, mseq
,
1297 &capsnap
->mtime
, &capsnap
->atime
,
1298 capsnap
->time_warp_seq
,
1299 capsnap
->uid
, capsnap
->gid
, capsnap
->mode
,
1300 capsnap
->xattr_version
, capsnap
->xattr_blob
,
1303 next_follows
= capsnap
->follows
+ 1;
1304 ceph_put_cap_snap(capsnap
);
1306 spin_lock(&inode
->i_lock
);
1310 /* we flushed them all; remove this inode from the queue */
1311 spin_lock(&mdsc
->snap_flush_lock
);
1312 list_del_init(&ci
->i_snap_flush_item
);
1313 spin_unlock(&mdsc
->snap_flush_lock
);
1317 *psession
= session
;
1319 mutex_unlock(&session
->s_mutex
);
1320 ceph_put_mds_session(session
);
1324 static void ceph_flush_snaps(struct ceph_inode_info
*ci
)
1326 struct inode
*inode
= &ci
->vfs_inode
;
1328 spin_lock(&inode
->i_lock
);
1329 __ceph_flush_snaps(ci
, NULL
, 0);
1330 spin_unlock(&inode
->i_lock
);
1334 * Mark caps dirty. If inode is newly dirty, add to the global dirty
1337 void __ceph_mark_dirty_caps(struct ceph_inode_info
*ci
, int mask
)
1339 struct ceph_mds_client
*mdsc
=
1340 ceph_sb_to_client(ci
->vfs_inode
.i_sb
)->mdsc
;
1341 struct inode
*inode
= &ci
->vfs_inode
;
1342 int was
= ci
->i_dirty_caps
;
1345 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci
->vfs_inode
,
1346 ceph_cap_string(mask
), ceph_cap_string(was
),
1347 ceph_cap_string(was
| mask
));
1348 ci
->i_dirty_caps
|= mask
;
1350 if (!ci
->i_head_snapc
)
1351 ci
->i_head_snapc
= ceph_get_snap_context(
1352 ci
->i_snap_realm
->cached_context
);
1353 dout(" inode %p now dirty snapc %p\n", &ci
->vfs_inode
,
1355 BUG_ON(!list_empty(&ci
->i_dirty_item
));
1356 spin_lock(&mdsc
->cap_dirty_lock
);
1357 list_add(&ci
->i_dirty_item
, &mdsc
->cap_dirty
);
1358 spin_unlock(&mdsc
->cap_dirty_lock
);
1359 if (ci
->i_flushing_caps
== 0) {
1361 dirty
|= I_DIRTY_SYNC
;
1364 BUG_ON(list_empty(&ci
->i_dirty_item
));
1365 if (((was
| ci
->i_flushing_caps
) & CEPH_CAP_FILE_BUFFER
) &&
1366 (mask
& CEPH_CAP_FILE_BUFFER
))
1367 dirty
|= I_DIRTY_DATASYNC
;
1369 __mark_inode_dirty(inode
, dirty
);
1370 __cap_delay_requeue(mdsc
, ci
);
1374 * Add dirty inode to the flushing list. Assigned a seq number so we
1375 * can wait for caps to flush without starving.
1377 * Called under i_lock.
1379 static int __mark_caps_flushing(struct inode
*inode
,
1380 struct ceph_mds_session
*session
)
1382 struct ceph_mds_client
*mdsc
= ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1383 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1386 BUG_ON(ci
->i_dirty_caps
== 0);
1387 BUG_ON(list_empty(&ci
->i_dirty_item
));
1389 flushing
= ci
->i_dirty_caps
;
1390 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1391 ceph_cap_string(flushing
),
1392 ceph_cap_string(ci
->i_flushing_caps
),
1393 ceph_cap_string(ci
->i_flushing_caps
| flushing
));
1394 ci
->i_flushing_caps
|= flushing
;
1395 ci
->i_dirty_caps
= 0;
1396 dout(" inode %p now !dirty\n", inode
);
1398 spin_lock(&mdsc
->cap_dirty_lock
);
1399 list_del_init(&ci
->i_dirty_item
);
1401 ci
->i_cap_flush_seq
= ++mdsc
->cap_flush_seq
;
1402 if (list_empty(&ci
->i_flushing_item
)) {
1403 list_add_tail(&ci
->i_flushing_item
, &session
->s_cap_flushing
);
1404 mdsc
->num_cap_flushing
++;
1405 dout(" inode %p now flushing seq %lld\n", inode
,
1406 ci
->i_cap_flush_seq
);
1408 list_move_tail(&ci
->i_flushing_item
, &session
->s_cap_flushing
);
1409 dout(" inode %p now flushing (more) seq %lld\n", inode
,
1410 ci
->i_cap_flush_seq
);
1412 spin_unlock(&mdsc
->cap_dirty_lock
);
1418 * try to invalidate mapping pages without blocking.
1420 static int try_nonblocking_invalidate(struct inode
*inode
)
1422 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1423 u32 invalidating_gen
= ci
->i_rdcache_gen
;
1425 spin_unlock(&inode
->i_lock
);
1426 invalidate_mapping_pages(&inode
->i_data
, 0, -1);
1427 spin_lock(&inode
->i_lock
);
1429 if (inode
->i_data
.nrpages
== 0 &&
1430 invalidating_gen
== ci
->i_rdcache_gen
) {
1432 dout("try_nonblocking_invalidate %p success\n", inode
);
1433 /* save any racing async invalidate some trouble */
1434 ci
->i_rdcache_revoking
= ci
->i_rdcache_gen
- 1;
1437 dout("try_nonblocking_invalidate %p failed\n", inode
);
1442 * Swiss army knife function to examine currently used and wanted
1443 * versus held caps. Release, flush, ack revoked caps to mds as
1446 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1447 * cap release further.
1448 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1449 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1452 void ceph_check_caps(struct ceph_inode_info
*ci
, int flags
,
1453 struct ceph_mds_session
*session
)
1455 struct ceph_fs_client
*fsc
= ceph_inode_to_client(&ci
->vfs_inode
);
1456 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
1457 struct inode
*inode
= &ci
->vfs_inode
;
1458 struct ceph_cap
*cap
;
1459 int file_wanted
, used
;
1460 int took_snap_rwsem
= 0; /* true if mdsc->snap_rwsem held */
1461 int issued
, implemented
, want
, retain
, revoking
, flushing
= 0;
1462 int mds
= -1; /* keep track of how far we've gone through i_caps list
1463 to avoid an infinite loop on retry */
1465 int tried_invalidate
= 0;
1466 int delayed
= 0, sent
= 0, force_requeue
= 0, num
;
1467 int queue_invalidate
= 0;
1468 int is_delayed
= flags
& CHECK_CAPS_NODELAY
;
1470 /* if we are unmounting, flush any unused caps immediately. */
1474 spin_lock(&inode
->i_lock
);
1476 if (ci
->i_ceph_flags
& CEPH_I_FLUSH
)
1477 flags
|= CHECK_CAPS_FLUSH
;
1479 /* flush snaps first time around only */
1480 if (!list_empty(&ci
->i_cap_snaps
))
1481 __ceph_flush_snaps(ci
, &session
, 0);
1484 spin_lock(&inode
->i_lock
);
1486 file_wanted
= __ceph_caps_file_wanted(ci
);
1487 used
= __ceph_caps_used(ci
);
1488 want
= file_wanted
| used
;
1489 issued
= __ceph_caps_issued(ci
, &implemented
);
1490 revoking
= implemented
& ~issued
;
1492 retain
= want
| CEPH_CAP_PIN
;
1493 if (!mdsc
->stopping
&& inode
->i_nlink
> 0) {
1495 retain
|= CEPH_CAP_ANY
; /* be greedy */
1497 retain
|= CEPH_CAP_ANY_SHARED
;
1499 * keep RD only if we didn't have the file open RW,
1500 * because then the mds would revoke it anyway to
1501 * journal max_size=0.
1503 if (ci
->i_max_size
== 0)
1504 retain
|= CEPH_CAP_ANY_RD
;
1508 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1509 " issued %s revoking %s retain %s %s%s%s\n", inode
,
1510 ceph_cap_string(file_wanted
),
1511 ceph_cap_string(used
), ceph_cap_string(ci
->i_dirty_caps
),
1512 ceph_cap_string(ci
->i_flushing_caps
),
1513 ceph_cap_string(issued
), ceph_cap_string(revoking
),
1514 ceph_cap_string(retain
),
1515 (flags
& CHECK_CAPS_AUTHONLY
) ? " AUTHONLY" : "",
1516 (flags
& CHECK_CAPS_NODELAY
) ? " NODELAY" : "",
1517 (flags
& CHECK_CAPS_FLUSH
) ? " FLUSH" : "");
1520 * If we no longer need to hold onto old our caps, and we may
1521 * have cached pages, but don't want them, then try to invalidate.
1522 * If we fail, it's because pages are locked.... try again later.
1524 if ((!is_delayed
|| mdsc
->stopping
) &&
1525 ci
->i_wrbuffer_ref
== 0 && /* no dirty pages... */
1526 inode
->i_data
.nrpages
&& /* have cached pages */
1527 (file_wanted
== 0 || /* no open files */
1528 (revoking
& (CEPH_CAP_FILE_CACHE
|
1529 CEPH_CAP_FILE_LAZYIO
))) && /* or revoking cache */
1530 !tried_invalidate
) {
1531 dout("check_caps trying to invalidate on %p\n", inode
);
1532 if (try_nonblocking_invalidate(inode
) < 0) {
1533 if (revoking
& (CEPH_CAP_FILE_CACHE
|
1534 CEPH_CAP_FILE_LAZYIO
)) {
1535 dout("check_caps queuing invalidate\n");
1536 queue_invalidate
= 1;
1537 ci
->i_rdcache_revoking
= ci
->i_rdcache_gen
;
1539 dout("check_caps failed to invalidate pages\n");
1540 /* we failed to invalidate pages. check these
1541 caps again later. */
1543 __cap_set_timeouts(mdsc
, ci
);
1546 tried_invalidate
= 1;
1551 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
1552 cap
= rb_entry(p
, struct ceph_cap
, ci_node
);
1555 /* avoid looping forever */
1556 if (mds
>= cap
->mds
||
1557 ((flags
& CHECK_CAPS_AUTHONLY
) && cap
!= ci
->i_auth_cap
))
1560 /* NOTE: no side-effects allowed, until we take s_mutex */
1562 revoking
= cap
->implemented
& ~cap
->issued
;
1564 dout(" mds%d revoking %s\n", cap
->mds
,
1565 ceph_cap_string(revoking
));
1567 if (cap
== ci
->i_auth_cap
&&
1568 (cap
->issued
& CEPH_CAP_FILE_WR
)) {
1569 /* request larger max_size from MDS? */
1570 if (ci
->i_wanted_max_size
> ci
->i_max_size
&&
1571 ci
->i_wanted_max_size
> ci
->i_requested_max_size
) {
1572 dout("requesting new max_size\n");
1576 /* approaching file_max? */
1577 if ((inode
->i_size
<< 1) >= ci
->i_max_size
&&
1578 (ci
->i_reported_size
<< 1) < ci
->i_max_size
) {
1579 dout("i_size approaching max_size\n");
1583 /* flush anything dirty? */
1584 if (cap
== ci
->i_auth_cap
&& (flags
& CHECK_CAPS_FLUSH
) &&
1586 dout("flushing dirty caps\n");
1590 /* completed revocation? going down and there are no caps? */
1591 if (revoking
&& (revoking
& used
) == 0) {
1592 dout("completed revocation of %s\n",
1593 ceph_cap_string(cap
->implemented
& ~cap
->issued
));
1597 /* want more caps from mds? */
1598 if (want
& ~(cap
->mds_wanted
| cap
->issued
))
1601 /* things we might delay */
1602 if ((cap
->issued
& ~retain
) == 0 &&
1603 cap
->mds_wanted
== want
)
1604 continue; /* nope, all good */
1610 if ((ci
->i_ceph_flags
& CEPH_I_NODELAY
) == 0 &&
1611 time_before(jiffies
, ci
->i_hold_caps_max
)) {
1612 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1613 ceph_cap_string(cap
->issued
),
1614 ceph_cap_string(cap
->issued
& retain
),
1615 ceph_cap_string(cap
->mds_wanted
),
1616 ceph_cap_string(want
));
1622 if (ci
->i_ceph_flags
& CEPH_I_NOFLUSH
) {
1623 dout(" skipping %p I_NOFLUSH set\n", inode
);
1627 if (session
&& session
!= cap
->session
) {
1628 dout("oops, wrong session %p mutex\n", session
);
1629 mutex_unlock(&session
->s_mutex
);
1633 session
= cap
->session
;
1634 if (mutex_trylock(&session
->s_mutex
) == 0) {
1635 dout("inverting session/ino locks on %p\n",
1637 spin_unlock(&inode
->i_lock
);
1638 if (took_snap_rwsem
) {
1639 up_read(&mdsc
->snap_rwsem
);
1640 took_snap_rwsem
= 0;
1642 mutex_lock(&session
->s_mutex
);
1646 /* take snap_rwsem after session mutex */
1647 if (!took_snap_rwsem
) {
1648 if (down_read_trylock(&mdsc
->snap_rwsem
) == 0) {
1649 dout("inverting snap/in locks on %p\n",
1651 spin_unlock(&inode
->i_lock
);
1652 down_read(&mdsc
->snap_rwsem
);
1653 took_snap_rwsem
= 1;
1656 took_snap_rwsem
= 1;
1659 if (cap
== ci
->i_auth_cap
&& ci
->i_dirty_caps
)
1660 flushing
= __mark_caps_flushing(inode
, session
);
1662 mds
= cap
->mds
; /* remember mds, so we don't repeat */
1665 /* __send_cap drops i_lock */
1666 delayed
+= __send_cap(mdsc
, cap
, CEPH_CAP_OP_UPDATE
, used
, want
,
1667 retain
, flushing
, NULL
);
1668 goto retry
; /* retake i_lock and restart our cap scan. */
1672 * Reschedule delayed caps release if we delayed anything,
1675 if (delayed
&& is_delayed
)
1676 force_requeue
= 1; /* __send_cap delayed release; requeue */
1677 if (!delayed
&& !is_delayed
)
1678 __cap_delay_cancel(mdsc
, ci
);
1679 else if (!is_delayed
|| force_requeue
)
1680 __cap_delay_requeue(mdsc
, ci
);
1682 spin_unlock(&inode
->i_lock
);
1684 if (queue_invalidate
)
1685 ceph_queue_invalidate(inode
);
1688 mutex_unlock(&session
->s_mutex
);
1689 if (took_snap_rwsem
)
1690 up_read(&mdsc
->snap_rwsem
);
1694 * Try to flush dirty caps back to the auth mds.
1696 static int try_flush_caps(struct inode
*inode
, struct ceph_mds_session
*session
,
1697 unsigned *flush_tid
)
1699 struct ceph_mds_client
*mdsc
= ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1700 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1701 int unlock_session
= session
? 0 : 1;
1705 spin_lock(&inode
->i_lock
);
1706 if (ci
->i_ceph_flags
& CEPH_I_NOFLUSH
) {
1707 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode
);
1710 if (ci
->i_dirty_caps
&& ci
->i_auth_cap
) {
1711 struct ceph_cap
*cap
= ci
->i_auth_cap
;
1712 int used
= __ceph_caps_used(ci
);
1713 int want
= __ceph_caps_wanted(ci
);
1717 spin_unlock(&inode
->i_lock
);
1718 session
= cap
->session
;
1719 mutex_lock(&session
->s_mutex
);
1722 BUG_ON(session
!= cap
->session
);
1723 if (cap
->session
->s_state
< CEPH_MDS_SESSION_OPEN
)
1726 flushing
= __mark_caps_flushing(inode
, session
);
1728 /* __send_cap drops i_lock */
1729 delayed
= __send_cap(mdsc
, cap
, CEPH_CAP_OP_FLUSH
, used
, want
,
1730 cap
->issued
| cap
->implemented
, flushing
,
1735 spin_lock(&inode
->i_lock
);
1736 __cap_delay_requeue(mdsc
, ci
);
1739 spin_unlock(&inode
->i_lock
);
1741 if (session
&& unlock_session
)
1742 mutex_unlock(&session
->s_mutex
);
1747 * Return true if we've flushed caps through the given flush_tid.
1749 static int caps_are_flushed(struct inode
*inode
, unsigned tid
)
1751 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1754 spin_lock(&inode
->i_lock
);
1755 for (i
= 0; i
< CEPH_CAP_BITS
; i
++)
1756 if ((ci
->i_flushing_caps
& (1 << i
)) &&
1757 ci
->i_cap_flush_tid
[i
] <= tid
) {
1758 /* still flushing this bit */
1762 spin_unlock(&inode
->i_lock
);
1767 * Wait on any unsafe replies for the given inode. First wait on the
1768 * newest request, and make that the upper bound. Then, if there are
1769 * more requests, keep waiting on the oldest as long as it is still older
1770 * than the original request.
1772 static void sync_write_wait(struct inode
*inode
)
1774 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1775 struct list_head
*head
= &ci
->i_unsafe_writes
;
1776 struct ceph_osd_request
*req
;
1779 spin_lock(&ci
->i_unsafe_lock
);
1780 if (list_empty(head
))
1783 /* set upper bound as _last_ entry in chain */
1784 req
= list_entry(head
->prev
, struct ceph_osd_request
,
1786 last_tid
= req
->r_tid
;
1789 ceph_osdc_get_request(req
);
1790 spin_unlock(&ci
->i_unsafe_lock
);
1791 dout("sync_write_wait on tid %llu (until %llu)\n",
1792 req
->r_tid
, last_tid
);
1793 wait_for_completion(&req
->r_safe_completion
);
1794 spin_lock(&ci
->i_unsafe_lock
);
1795 ceph_osdc_put_request(req
);
1798 * from here on look at first entry in chain, since we
1799 * only want to wait for anything older than last_tid
1801 if (list_empty(head
))
1803 req
= list_entry(head
->next
, struct ceph_osd_request
,
1805 } while (req
->r_tid
< last_tid
);
1807 spin_unlock(&ci
->i_unsafe_lock
);
1810 int ceph_fsync(struct file
*file
, int datasync
)
1812 struct inode
*inode
= file
->f_mapping
->host
;
1813 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1818 dout("fsync %p%s\n", inode
, datasync
? " datasync" : "");
1819 sync_write_wait(inode
);
1821 ret
= filemap_write_and_wait(inode
->i_mapping
);
1825 dirty
= try_flush_caps(inode
, NULL
, &flush_tid
);
1826 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty
));
1829 * only wait on non-file metadata writeback (the mds
1830 * can recover size and mtime, so we don't need to
1833 if (!datasync
&& (dirty
& ~CEPH_CAP_ANY_FILE_WR
)) {
1834 dout("fsync waiting for flush_tid %u\n", flush_tid
);
1835 ret
= wait_event_interruptible(ci
->i_cap_wq
,
1836 caps_are_flushed(inode
, flush_tid
));
1839 dout("fsync %p%s done\n", inode
, datasync
? " datasync" : "");
1844 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1845 * queue inode for flush but don't do so immediately, because we can
1846 * get by with fewer MDS messages if we wait for data writeback to
1849 int ceph_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1851 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1855 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
1857 dout("write_inode %p wait=%d\n", inode
, wait
);
1859 dirty
= try_flush_caps(inode
, NULL
, &flush_tid
);
1861 err
= wait_event_interruptible(ci
->i_cap_wq
,
1862 caps_are_flushed(inode
, flush_tid
));
1864 struct ceph_mds_client
*mdsc
=
1865 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1867 spin_lock(&inode
->i_lock
);
1868 if (__ceph_caps_dirty(ci
))
1869 __cap_delay_requeue_front(mdsc
, ci
);
1870 spin_unlock(&inode
->i_lock
);
1876 * After a recovering MDS goes active, we need to resend any caps
1879 * Caller holds session->s_mutex.
1881 static void kick_flushing_capsnaps(struct ceph_mds_client
*mdsc
,
1882 struct ceph_mds_session
*session
)
1884 struct ceph_cap_snap
*capsnap
;
1886 dout("kick_flushing_capsnaps mds%d\n", session
->s_mds
);
1887 list_for_each_entry(capsnap
, &session
->s_cap_snaps_flushing
,
1889 struct ceph_inode_info
*ci
= capsnap
->ci
;
1890 struct inode
*inode
= &ci
->vfs_inode
;
1891 struct ceph_cap
*cap
;
1893 spin_lock(&inode
->i_lock
);
1894 cap
= ci
->i_auth_cap
;
1895 if (cap
&& cap
->session
== session
) {
1896 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode
,
1898 __ceph_flush_snaps(ci
, &session
, 1);
1900 pr_err("%p auth cap %p not mds%d ???\n", inode
,
1901 cap
, session
->s_mds
);
1903 spin_unlock(&inode
->i_lock
);
1907 void ceph_kick_flushing_caps(struct ceph_mds_client
*mdsc
,
1908 struct ceph_mds_session
*session
)
1910 struct ceph_inode_info
*ci
;
1912 kick_flushing_capsnaps(mdsc
, session
);
1914 dout("kick_flushing_caps mds%d\n", session
->s_mds
);
1915 list_for_each_entry(ci
, &session
->s_cap_flushing
, i_flushing_item
) {
1916 struct inode
*inode
= &ci
->vfs_inode
;
1917 struct ceph_cap
*cap
;
1920 spin_lock(&inode
->i_lock
);
1921 cap
= ci
->i_auth_cap
;
1922 if (cap
&& cap
->session
== session
) {
1923 dout("kick_flushing_caps %p cap %p %s\n", inode
,
1924 cap
, ceph_cap_string(ci
->i_flushing_caps
));
1925 delayed
= __send_cap(mdsc
, cap
, CEPH_CAP_OP_FLUSH
,
1926 __ceph_caps_used(ci
),
1927 __ceph_caps_wanted(ci
),
1928 cap
->issued
| cap
->implemented
,
1929 ci
->i_flushing_caps
, NULL
);
1931 spin_lock(&inode
->i_lock
);
1932 __cap_delay_requeue(mdsc
, ci
);
1933 spin_unlock(&inode
->i_lock
);
1936 pr_err("%p auth cap %p not mds%d ???\n", inode
,
1937 cap
, session
->s_mds
);
1938 spin_unlock(&inode
->i_lock
);
1945 * Take references to capabilities we hold, so that we don't release
1946 * them to the MDS prematurely.
1948 * Protected by i_lock.
1950 static void __take_cap_refs(struct ceph_inode_info
*ci
, int got
)
1952 if (got
& CEPH_CAP_PIN
)
1954 if (got
& CEPH_CAP_FILE_RD
)
1956 if (got
& CEPH_CAP_FILE_CACHE
)
1957 ci
->i_rdcache_ref
++;
1958 if (got
& CEPH_CAP_FILE_WR
)
1960 if (got
& CEPH_CAP_FILE_BUFFER
) {
1961 if (ci
->i_wrbuffer_ref
== 0)
1962 igrab(&ci
->vfs_inode
);
1963 ci
->i_wrbuffer_ref
++;
1964 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1965 &ci
->vfs_inode
, ci
->i_wrbuffer_ref
-1, ci
->i_wrbuffer_ref
);
1970 * Try to grab cap references. Specify those refs we @want, and the
1971 * minimal set we @need. Also include the larger offset we are writing
1972 * to (when applicable), and check against max_size here as well.
1973 * Note that caller is responsible for ensuring max_size increases are
1974 * requested from the MDS.
1976 static int try_get_cap_refs(struct ceph_inode_info
*ci
, int need
, int want
,
1977 int *got
, loff_t endoff
, int *check_max
, int *err
)
1979 struct inode
*inode
= &ci
->vfs_inode
;
1981 int have
, implemented
;
1984 dout("get_cap_refs %p need %s want %s\n", inode
,
1985 ceph_cap_string(need
), ceph_cap_string(want
));
1986 spin_lock(&inode
->i_lock
);
1988 /* make sure file is actually open */
1989 file_wanted
= __ceph_caps_file_wanted(ci
);
1990 if ((file_wanted
& need
) == 0) {
1991 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1992 ceph_cap_string(need
), ceph_cap_string(file_wanted
));
1998 if (need
& CEPH_CAP_FILE_WR
) {
1999 if (endoff
>= 0 && endoff
> (loff_t
)ci
->i_max_size
) {
2000 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2001 inode
, endoff
, ci
->i_max_size
);
2002 if (endoff
> ci
->i_wanted_max_size
) {
2009 * If a sync write is in progress, we must wait, so that we
2010 * can get a final snapshot value for size+mtime.
2012 if (__ceph_have_pending_cap_snap(ci
)) {
2013 dout("get_cap_refs %p cap_snap_pending\n", inode
);
2017 have
= __ceph_caps_issued(ci
, &implemented
);
2020 * disallow writes while a truncate is pending
2022 if (ci
->i_truncate_pending
)
2023 have
&= ~CEPH_CAP_FILE_WR
;
2025 if ((have
& need
) == need
) {
2027 * Look at (implemented & ~have & not) so that we keep waiting
2028 * on transition from wanted -> needed caps. This is needed
2029 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2030 * going before a prior buffered writeback happens.
2032 int not = want
& ~(have
& need
);
2033 int revoking
= implemented
& ~have
;
2034 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2035 inode
, ceph_cap_string(have
), ceph_cap_string(not),
2036 ceph_cap_string(revoking
));
2037 if ((revoking
& not) == 0) {
2038 *got
= need
| (have
& want
);
2039 __take_cap_refs(ci
, *got
);
2043 dout("get_cap_refs %p have %s needed %s\n", inode
,
2044 ceph_cap_string(have
), ceph_cap_string(need
));
2047 spin_unlock(&inode
->i_lock
);
2048 dout("get_cap_refs %p ret %d got %s\n", inode
,
2049 ret
, ceph_cap_string(*got
));
2054 * Check the offset we are writing up to against our current
2055 * max_size. If necessary, tell the MDS we want to write to
2058 static void check_max_size(struct inode
*inode
, loff_t endoff
)
2060 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2063 /* do we need to explicitly request a larger max_size? */
2064 spin_lock(&inode
->i_lock
);
2065 if ((endoff
>= ci
->i_max_size
||
2066 endoff
> (inode
->i_size
<< 1)) &&
2067 endoff
> ci
->i_wanted_max_size
) {
2068 dout("write %p at large endoff %llu, req max_size\n",
2070 ci
->i_wanted_max_size
= endoff
;
2073 spin_unlock(&inode
->i_lock
);
2075 ceph_check_caps(ci
, CHECK_CAPS_AUTHONLY
, NULL
);
2079 * Wait for caps, and take cap references. If we can't get a WR cap
2080 * due to a small max_size, make sure we check_max_size (and possibly
2081 * ask the mds) so we don't get hung up indefinitely.
2083 int ceph_get_caps(struct ceph_inode_info
*ci
, int need
, int want
, int *got
,
2086 int check_max
, ret
, err
;
2090 check_max_size(&ci
->vfs_inode
, endoff
);
2093 ret
= wait_event_interruptible(ci
->i_cap_wq
,
2094 try_get_cap_refs(ci
, need
, want
,
2105 * Take cap refs. Caller must already know we hold at least one ref
2106 * on the caps in question or we don't know this is safe.
2108 void ceph_get_cap_refs(struct ceph_inode_info
*ci
, int caps
)
2110 spin_lock(&ci
->vfs_inode
.i_lock
);
2111 __take_cap_refs(ci
, caps
);
2112 spin_unlock(&ci
->vfs_inode
.i_lock
);
2118 * If we released the last ref on any given cap, call ceph_check_caps
2119 * to release (or schedule a release).
2121 * If we are releasing a WR cap (from a sync write), finalize any affected
2122 * cap_snap, and wake up any waiters.
2124 void ceph_put_cap_refs(struct ceph_inode_info
*ci
, int had
)
2126 struct inode
*inode
= &ci
->vfs_inode
;
2127 int last
= 0, put
= 0, flushsnaps
= 0, wake
= 0;
2128 struct ceph_cap_snap
*capsnap
;
2130 spin_lock(&inode
->i_lock
);
2131 if (had
& CEPH_CAP_PIN
)
2133 if (had
& CEPH_CAP_FILE_RD
)
2134 if (--ci
->i_rd_ref
== 0)
2136 if (had
& CEPH_CAP_FILE_CACHE
)
2137 if (--ci
->i_rdcache_ref
== 0)
2139 if (had
& CEPH_CAP_FILE_BUFFER
) {
2140 if (--ci
->i_wrbuffer_ref
== 0) {
2144 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2145 inode
, ci
->i_wrbuffer_ref
+1, ci
->i_wrbuffer_ref
);
2147 if (had
& CEPH_CAP_FILE_WR
)
2148 if (--ci
->i_wr_ref
== 0) {
2150 if (!list_empty(&ci
->i_cap_snaps
)) {
2151 capsnap
= list_first_entry(&ci
->i_cap_snaps
,
2152 struct ceph_cap_snap
,
2154 if (capsnap
->writing
) {
2155 capsnap
->writing
= 0;
2157 __ceph_finish_cap_snap(ci
,
2163 spin_unlock(&inode
->i_lock
);
2165 dout("put_cap_refs %p had %s%s%s\n", inode
, ceph_cap_string(had
),
2166 last
? " last" : "", put
? " put" : "");
2168 if (last
&& !flushsnaps
)
2169 ceph_check_caps(ci
, 0, NULL
);
2170 else if (flushsnaps
)
2171 ceph_flush_snaps(ci
);
2173 wake_up_all(&ci
->i_cap_wq
);
2179 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2180 * context. Adjust per-snap dirty page accounting as appropriate.
2181 * Once all dirty data for a cap_snap is flushed, flush snapped file
2182 * metadata back to the MDS. If we dropped the last ref, call
2185 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info
*ci
, int nr
,
2186 struct ceph_snap_context
*snapc
)
2188 struct inode
*inode
= &ci
->vfs_inode
;
2190 int complete_capsnap
= 0;
2191 int drop_capsnap
= 0;
2193 struct ceph_cap_snap
*capsnap
= NULL
;
2195 spin_lock(&inode
->i_lock
);
2196 ci
->i_wrbuffer_ref
-= nr
;
2197 last
= !ci
->i_wrbuffer_ref
;
2199 if (ci
->i_head_snapc
== snapc
) {
2200 ci
->i_wrbuffer_ref_head
-= nr
;
2201 if (ci
->i_wrbuffer_ref_head
== 0 &&
2202 ci
->i_dirty_caps
== 0 && ci
->i_flushing_caps
== 0) {
2203 BUG_ON(!ci
->i_head_snapc
);
2204 ceph_put_snap_context(ci
->i_head_snapc
);
2205 ci
->i_head_snapc
= NULL
;
2207 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2209 ci
->i_wrbuffer_ref
+nr
, ci
->i_wrbuffer_ref_head
+nr
,
2210 ci
->i_wrbuffer_ref
, ci
->i_wrbuffer_ref_head
,
2211 last
? " LAST" : "");
2213 list_for_each_entry(capsnap
, &ci
->i_cap_snaps
, ci_item
) {
2214 if (capsnap
->context
== snapc
) {
2220 capsnap
->dirty_pages
-= nr
;
2221 if (capsnap
->dirty_pages
== 0) {
2222 complete_capsnap
= 1;
2223 if (capsnap
->dirty
== 0)
2224 /* cap writeback completed before we created
2225 * the cap_snap; no FLUSHSNAP is needed */
2228 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2229 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2230 inode
, capsnap
, capsnap
->context
->seq
,
2231 ci
->i_wrbuffer_ref
+nr
, capsnap
->dirty_pages
+ nr
,
2232 ci
->i_wrbuffer_ref
, capsnap
->dirty_pages
,
2233 last
? " (wrbuffer last)" : "",
2234 complete_capsnap
? " (complete capsnap)" : "",
2235 drop_capsnap
? " (drop capsnap)" : "");
2237 ceph_put_snap_context(capsnap
->context
);
2238 list_del(&capsnap
->ci_item
);
2239 list_del(&capsnap
->flushing_item
);
2240 ceph_put_cap_snap(capsnap
);
2244 spin_unlock(&inode
->i_lock
);
2247 ceph_check_caps(ci
, CHECK_CAPS_AUTHONLY
, NULL
);
2249 } else if (complete_capsnap
) {
2250 ceph_flush_snaps(ci
);
2251 wake_up_all(&ci
->i_cap_wq
);
2258 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2259 * actually be a revocation if it specifies a smaller cap set.)
2261 * caller holds s_mutex and i_lock, we drop both.
2265 * 1 - check_caps on auth cap only (writeback)
2266 * 2 - check_caps (ack revoke)
2268 static void handle_cap_grant(struct inode
*inode
, struct ceph_mds_caps
*grant
,
2269 struct ceph_mds_session
*session
,
2270 struct ceph_cap
*cap
,
2271 struct ceph_buffer
*xattr_buf
)
2272 __releases(inode
->i_lock
)
2274 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2275 int mds
= session
->s_mds
;
2276 int seq
= le32_to_cpu(grant
->seq
);
2277 int newcaps
= le32_to_cpu(grant
->caps
);
2278 int issued
, implemented
, used
, wanted
, dirty
;
2279 u64 size
= le64_to_cpu(grant
->size
);
2280 u64 max_size
= le64_to_cpu(grant
->max_size
);
2281 struct timespec mtime
, atime
, ctime
;
2285 int revoked_rdcache
= 0;
2286 int queue_invalidate
= 0;
2288 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2289 inode
, cap
, mds
, seq
, ceph_cap_string(newcaps
));
2290 dout(" size %llu max_size %llu, i_size %llu\n", size
, max_size
,
2294 * If CACHE is being revoked, and we have no dirty buffers,
2295 * try to invalidate (once). (If there are dirty buffers, we
2296 * will invalidate _after_ writeback.)
2298 if (((cap
->issued
& ~newcaps
) & CEPH_CAP_FILE_CACHE
) &&
2299 (newcaps
& CEPH_CAP_FILE_LAZYIO
) == 0 &&
2300 !ci
->i_wrbuffer_ref
) {
2301 if (try_nonblocking_invalidate(inode
) == 0) {
2302 revoked_rdcache
= 1;
2304 /* there were locked pages.. invalidate later
2305 in a separate thread. */
2306 if (ci
->i_rdcache_revoking
!= ci
->i_rdcache_gen
) {
2307 queue_invalidate
= 1;
2308 ci
->i_rdcache_revoking
= ci
->i_rdcache_gen
;
2313 /* side effects now are allowed */
2315 issued
= __ceph_caps_issued(ci
, &implemented
);
2316 issued
|= implemented
| __ceph_caps_dirty(ci
);
2318 cap
->cap_gen
= session
->s_cap_gen
;
2320 __check_cap_issue(ci
, cap
, newcaps
);
2322 if ((issued
& CEPH_CAP_AUTH_EXCL
) == 0) {
2323 inode
->i_mode
= le32_to_cpu(grant
->mode
);
2324 inode
->i_uid
= le32_to_cpu(grant
->uid
);
2325 inode
->i_gid
= le32_to_cpu(grant
->gid
);
2326 dout("%p mode 0%o uid.gid %d.%d\n", inode
, inode
->i_mode
,
2327 inode
->i_uid
, inode
->i_gid
);
2330 if ((issued
& CEPH_CAP_LINK_EXCL
) == 0)
2331 inode
->i_nlink
= le32_to_cpu(grant
->nlink
);
2333 if ((issued
& CEPH_CAP_XATTR_EXCL
) == 0 && grant
->xattr_len
) {
2334 int len
= le32_to_cpu(grant
->xattr_len
);
2335 u64 version
= le64_to_cpu(grant
->xattr_version
);
2337 if (version
> ci
->i_xattrs
.version
) {
2338 dout(" got new xattrs v%llu on %p len %d\n",
2339 version
, inode
, len
);
2340 if (ci
->i_xattrs
.blob
)
2341 ceph_buffer_put(ci
->i_xattrs
.blob
);
2342 ci
->i_xattrs
.blob
= ceph_buffer_get(xattr_buf
);
2343 ci
->i_xattrs
.version
= version
;
2347 /* size/ctime/mtime/atime? */
2348 ceph_fill_file_size(inode
, issued
,
2349 le32_to_cpu(grant
->truncate_seq
),
2350 le64_to_cpu(grant
->truncate_size
), size
);
2351 ceph_decode_timespec(&mtime
, &grant
->mtime
);
2352 ceph_decode_timespec(&atime
, &grant
->atime
);
2353 ceph_decode_timespec(&ctime
, &grant
->ctime
);
2354 ceph_fill_file_time(inode
, issued
,
2355 le32_to_cpu(grant
->time_warp_seq
), &ctime
, &mtime
,
2358 /* max size increase? */
2359 if (max_size
!= ci
->i_max_size
) {
2360 dout("max_size %lld -> %llu\n", ci
->i_max_size
, max_size
);
2361 ci
->i_max_size
= max_size
;
2362 if (max_size
>= ci
->i_wanted_max_size
) {
2363 ci
->i_wanted_max_size
= 0; /* reset */
2364 ci
->i_requested_max_size
= 0;
2369 /* check cap bits */
2370 wanted
= __ceph_caps_wanted(ci
);
2371 used
= __ceph_caps_used(ci
);
2372 dirty
= __ceph_caps_dirty(ci
);
2373 dout(" my wanted = %s, used = %s, dirty %s\n",
2374 ceph_cap_string(wanted
),
2375 ceph_cap_string(used
),
2376 ceph_cap_string(dirty
));
2377 if (wanted
!= le32_to_cpu(grant
->wanted
)) {
2378 dout("mds wanted %s -> %s\n",
2379 ceph_cap_string(le32_to_cpu(grant
->wanted
)),
2380 ceph_cap_string(wanted
));
2381 grant
->wanted
= cpu_to_le32(wanted
);
2386 /* file layout may have changed */
2387 ci
->i_layout
= grant
->layout
;
2389 /* revocation, grant, or no-op? */
2390 if (cap
->issued
& ~newcaps
) {
2391 int revoking
= cap
->issued
& ~newcaps
;
2393 dout("revocation: %s -> %s (revoking %s)\n",
2394 ceph_cap_string(cap
->issued
),
2395 ceph_cap_string(newcaps
),
2396 ceph_cap_string(revoking
));
2397 if (revoking
& used
& CEPH_CAP_FILE_BUFFER
)
2398 writeback
= 1; /* initiate writeback; will delay ack */
2399 else if (revoking
== CEPH_CAP_FILE_CACHE
&&
2400 (newcaps
& CEPH_CAP_FILE_LAZYIO
) == 0 &&
2402 ; /* do nothing yet, invalidation will be queued */
2403 else if (cap
== ci
->i_auth_cap
)
2404 check_caps
= 1; /* check auth cap only */
2406 check_caps
= 2; /* check all caps */
2407 cap
->issued
= newcaps
;
2408 cap
->implemented
|= newcaps
;
2409 } else if (cap
->issued
== newcaps
) {
2410 dout("caps unchanged: %s -> %s\n",
2411 ceph_cap_string(cap
->issued
), ceph_cap_string(newcaps
));
2413 dout("grant: %s -> %s\n", ceph_cap_string(cap
->issued
),
2414 ceph_cap_string(newcaps
));
2415 cap
->issued
= newcaps
;
2416 cap
->implemented
|= newcaps
; /* add bits only, to
2417 * avoid stepping on a
2418 * pending revocation */
2421 BUG_ON(cap
->issued
& ~cap
->implemented
);
2423 spin_unlock(&inode
->i_lock
);
2426 * queue inode for writeback: we can't actually call
2427 * filemap_write_and_wait, etc. from message handler
2430 ceph_queue_writeback(inode
);
2431 if (queue_invalidate
)
2432 ceph_queue_invalidate(inode
);
2434 wake_up_all(&ci
->i_cap_wq
);
2436 if (check_caps
== 1)
2437 ceph_check_caps(ci
, CHECK_CAPS_NODELAY
|CHECK_CAPS_AUTHONLY
,
2439 else if (check_caps
== 2)
2440 ceph_check_caps(ci
, CHECK_CAPS_NODELAY
, session
);
2442 mutex_unlock(&session
->s_mutex
);
2446 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2447 * MDS has been safely committed.
2449 static void handle_cap_flush_ack(struct inode
*inode
, u64 flush_tid
,
2450 struct ceph_mds_caps
*m
,
2451 struct ceph_mds_session
*session
,
2452 struct ceph_cap
*cap
)
2453 __releases(inode
->i_lock
)
2455 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2456 struct ceph_mds_client
*mdsc
= ceph_sb_to_client(inode
->i_sb
)->mdsc
;
2457 unsigned seq
= le32_to_cpu(m
->seq
);
2458 int dirty
= le32_to_cpu(m
->dirty
);
2463 for (i
= 0; i
< CEPH_CAP_BITS
; i
++)
2464 if ((dirty
& (1 << i
)) &&
2465 flush_tid
== ci
->i_cap_flush_tid
[i
])
2468 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2469 " flushing %s -> %s\n",
2470 inode
, session
->s_mds
, seq
, ceph_cap_string(dirty
),
2471 ceph_cap_string(cleaned
), ceph_cap_string(ci
->i_flushing_caps
),
2472 ceph_cap_string(ci
->i_flushing_caps
& ~cleaned
));
2474 if (ci
->i_flushing_caps
== (ci
->i_flushing_caps
& ~cleaned
))
2477 ci
->i_flushing_caps
&= ~cleaned
;
2479 spin_lock(&mdsc
->cap_dirty_lock
);
2480 if (ci
->i_flushing_caps
== 0) {
2481 list_del_init(&ci
->i_flushing_item
);
2482 if (!list_empty(&session
->s_cap_flushing
))
2483 dout(" mds%d still flushing cap on %p\n",
2485 &list_entry(session
->s_cap_flushing
.next
,
2486 struct ceph_inode_info
,
2487 i_flushing_item
)->vfs_inode
);
2488 mdsc
->num_cap_flushing
--;
2489 wake_up_all(&mdsc
->cap_flushing_wq
);
2490 dout(" inode %p now !flushing\n", inode
);
2492 if (ci
->i_dirty_caps
== 0) {
2493 dout(" inode %p now clean\n", inode
);
2494 BUG_ON(!list_empty(&ci
->i_dirty_item
));
2496 if (ci
->i_wrbuffer_ref_head
== 0) {
2497 BUG_ON(!ci
->i_head_snapc
);
2498 ceph_put_snap_context(ci
->i_head_snapc
);
2499 ci
->i_head_snapc
= NULL
;
2502 BUG_ON(list_empty(&ci
->i_dirty_item
));
2505 spin_unlock(&mdsc
->cap_dirty_lock
);
2506 wake_up_all(&ci
->i_cap_wq
);
2509 spin_unlock(&inode
->i_lock
);
2515 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2516 * throw away our cap_snap.
2518 * Caller hold s_mutex.
2520 static void handle_cap_flushsnap_ack(struct inode
*inode
, u64 flush_tid
,
2521 struct ceph_mds_caps
*m
,
2522 struct ceph_mds_session
*session
)
2524 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2525 u64 follows
= le64_to_cpu(m
->snap_follows
);
2526 struct ceph_cap_snap
*capsnap
;
2529 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2530 inode
, ci
, session
->s_mds
, follows
);
2532 spin_lock(&inode
->i_lock
);
2533 list_for_each_entry(capsnap
, &ci
->i_cap_snaps
, ci_item
) {
2534 if (capsnap
->follows
== follows
) {
2535 if (capsnap
->flush_tid
!= flush_tid
) {
2536 dout(" cap_snap %p follows %lld tid %lld !="
2537 " %lld\n", capsnap
, follows
,
2538 flush_tid
, capsnap
->flush_tid
);
2541 WARN_ON(capsnap
->dirty_pages
|| capsnap
->writing
);
2542 dout(" removing %p cap_snap %p follows %lld\n",
2543 inode
, capsnap
, follows
);
2544 ceph_put_snap_context(capsnap
->context
);
2545 list_del(&capsnap
->ci_item
);
2546 list_del(&capsnap
->flushing_item
);
2547 ceph_put_cap_snap(capsnap
);
2551 dout(" skipping cap_snap %p follows %lld\n",
2552 capsnap
, capsnap
->follows
);
2555 spin_unlock(&inode
->i_lock
);
2561 * Handle TRUNC from MDS, indicating file truncation.
2563 * caller hold s_mutex.
2565 static void handle_cap_trunc(struct inode
*inode
,
2566 struct ceph_mds_caps
*trunc
,
2567 struct ceph_mds_session
*session
)
2568 __releases(inode
->i_lock
)
2570 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2571 int mds
= session
->s_mds
;
2572 int seq
= le32_to_cpu(trunc
->seq
);
2573 u32 truncate_seq
= le32_to_cpu(trunc
->truncate_seq
);
2574 u64 truncate_size
= le64_to_cpu(trunc
->truncate_size
);
2575 u64 size
= le64_to_cpu(trunc
->size
);
2576 int implemented
= 0;
2577 int dirty
= __ceph_caps_dirty(ci
);
2578 int issued
= __ceph_caps_issued(ceph_inode(inode
), &implemented
);
2579 int queue_trunc
= 0;
2581 issued
|= implemented
| dirty
;
2583 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2584 inode
, mds
, seq
, truncate_size
, truncate_seq
);
2585 queue_trunc
= ceph_fill_file_size(inode
, issued
,
2586 truncate_seq
, truncate_size
, size
);
2587 spin_unlock(&inode
->i_lock
);
2590 ceph_queue_vmtruncate(inode
);
2594 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2595 * different one. If we are the most recent migration we've seen (as
2596 * indicated by mseq), make note of the migrating cap bits for the
2597 * duration (until we see the corresponding IMPORT).
2599 * caller holds s_mutex
2601 static void handle_cap_export(struct inode
*inode
, struct ceph_mds_caps
*ex
,
2602 struct ceph_mds_session
*session
,
2603 int *open_target_sessions
)
2605 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2606 int mds
= session
->s_mds
;
2607 unsigned mseq
= le32_to_cpu(ex
->migrate_seq
);
2608 struct ceph_cap
*cap
= NULL
, *t
;
2612 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2613 inode
, ci
, mds
, mseq
);
2615 spin_lock(&inode
->i_lock
);
2617 /* make sure we haven't seen a higher mseq */
2618 for (p
= rb_first(&ci
->i_caps
); p
; p
= rb_next(p
)) {
2619 t
= rb_entry(p
, struct ceph_cap
, ci_node
);
2620 if (ceph_seq_cmp(t
->mseq
, mseq
) > 0) {
2621 dout(" higher mseq on cap from mds%d\n",
2625 if (t
->session
->s_mds
== mds
)
2632 ci
->i_cap_exporting_mds
= mds
;
2633 ci
->i_cap_exporting_mseq
= mseq
;
2634 ci
->i_cap_exporting_issued
= cap
->issued
;
2637 * make sure we have open sessions with all possible
2638 * export targets, so that we get the matching IMPORT
2640 *open_target_sessions
= 1;
2642 __ceph_remove_cap(cap
);
2644 /* else, we already released it */
2646 spin_unlock(&inode
->i_lock
);
2650 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2653 * caller holds s_mutex.
2655 static void handle_cap_import(struct ceph_mds_client
*mdsc
,
2656 struct inode
*inode
, struct ceph_mds_caps
*im
,
2657 struct ceph_mds_session
*session
,
2658 void *snaptrace
, int snaptrace_len
)
2660 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2661 int mds
= session
->s_mds
;
2662 unsigned issued
= le32_to_cpu(im
->caps
);
2663 unsigned wanted
= le32_to_cpu(im
->wanted
);
2664 unsigned seq
= le32_to_cpu(im
->seq
);
2665 unsigned mseq
= le32_to_cpu(im
->migrate_seq
);
2666 u64 realmino
= le64_to_cpu(im
->realm
);
2667 u64 cap_id
= le64_to_cpu(im
->cap_id
);
2669 if (ci
->i_cap_exporting_mds
>= 0 &&
2670 ceph_seq_cmp(ci
->i_cap_exporting_mseq
, mseq
) < 0) {
2671 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2672 " - cleared exporting from mds%d\n",
2673 inode
, ci
, mds
, mseq
,
2674 ci
->i_cap_exporting_mds
);
2675 ci
->i_cap_exporting_issued
= 0;
2676 ci
->i_cap_exporting_mseq
= 0;
2677 ci
->i_cap_exporting_mds
= -1;
2679 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2680 inode
, ci
, mds
, mseq
);
2683 down_write(&mdsc
->snap_rwsem
);
2684 ceph_update_snap_trace(mdsc
, snaptrace
, snaptrace
+snaptrace_len
,
2686 downgrade_write(&mdsc
->snap_rwsem
);
2687 ceph_add_cap(inode
, session
, cap_id
, -1,
2688 issued
, wanted
, seq
, mseq
, realmino
, CEPH_CAP_FLAG_AUTH
,
2689 NULL
/* no caps context */);
2690 try_flush_caps(inode
, session
, NULL
);
2691 up_read(&mdsc
->snap_rwsem
);
2693 /* make sure we re-request max_size, if necessary */
2694 spin_lock(&inode
->i_lock
);
2695 ci
->i_requested_max_size
= 0;
2696 spin_unlock(&inode
->i_lock
);
2700 * Handle a caps message from the MDS.
2702 * Identify the appropriate session, inode, and call the right handler
2703 * based on the cap op.
2705 void ceph_handle_caps(struct ceph_mds_session
*session
,
2706 struct ceph_msg
*msg
)
2708 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2709 struct super_block
*sb
= mdsc
->fsc
->sb
;
2710 struct inode
*inode
;
2711 struct ceph_cap
*cap
;
2712 struct ceph_mds_caps
*h
;
2713 int mds
= session
->s_mds
;
2716 struct ceph_vino vino
;
2721 size_t snaptrace_len
;
2724 int open_target_sessions
= 0;
2726 dout("handle_caps from mds%d\n", mds
);
2729 tid
= le64_to_cpu(msg
->hdr
.tid
);
2730 if (msg
->front
.iov_len
< sizeof(*h
))
2732 h
= msg
->front
.iov_base
;
2733 op
= le32_to_cpu(h
->op
);
2734 vino
.ino
= le64_to_cpu(h
->ino
);
2735 vino
.snap
= CEPH_NOSNAP
;
2736 cap_id
= le64_to_cpu(h
->cap_id
);
2737 seq
= le32_to_cpu(h
->seq
);
2738 mseq
= le32_to_cpu(h
->migrate_seq
);
2739 size
= le64_to_cpu(h
->size
);
2740 max_size
= le64_to_cpu(h
->max_size
);
2743 snaptrace_len
= le32_to_cpu(h
->snap_trace_len
);
2745 if (le16_to_cpu(msg
->hdr
.version
) >= 2) {
2748 p
= snaptrace
+ snaptrace_len
;
2749 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
2750 ceph_decode_32_safe(&p
, end
, flock_len
, bad
);
2757 mutex_lock(&session
->s_mutex
);
2759 dout(" mds%d seq %lld cap seq %u\n", session
->s_mds
, session
->s_seq
,
2763 inode
= ceph_find_inode(sb
, vino
);
2764 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op
), vino
.ino
,
2767 dout(" i don't have ino %llx\n", vino
.ino
);
2769 if (op
== CEPH_CAP_OP_IMPORT
)
2770 __queue_cap_release(session
, vino
.ino
, cap_id
,
2772 goto flush_cap_releases
;
2775 /* these will work even if we don't have a cap yet */
2777 case CEPH_CAP_OP_FLUSHSNAP_ACK
:
2778 handle_cap_flushsnap_ack(inode
, tid
, h
, session
);
2781 case CEPH_CAP_OP_EXPORT
:
2782 handle_cap_export(inode
, h
, session
, &open_target_sessions
);
2785 case CEPH_CAP_OP_IMPORT
:
2786 handle_cap_import(mdsc
, inode
, h
, session
,
2787 snaptrace
, snaptrace_len
);
2788 ceph_check_caps(ceph_inode(inode
), CHECK_CAPS_NODELAY
,
2793 /* the rest require a cap */
2794 spin_lock(&inode
->i_lock
);
2795 cap
= __get_cap_for_mds(ceph_inode(inode
), mds
);
2797 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2798 inode
, ceph_ino(inode
), ceph_snap(inode
), mds
);
2799 spin_unlock(&inode
->i_lock
);
2800 goto flush_cap_releases
;
2803 /* note that each of these drops i_lock for us */
2805 case CEPH_CAP_OP_REVOKE
:
2806 case CEPH_CAP_OP_GRANT
:
2807 handle_cap_grant(inode
, h
, session
, cap
, msg
->middle
);
2810 case CEPH_CAP_OP_FLUSH_ACK
:
2811 handle_cap_flush_ack(inode
, tid
, h
, session
, cap
);
2814 case CEPH_CAP_OP_TRUNC
:
2815 handle_cap_trunc(inode
, h
, session
);
2819 spin_unlock(&inode
->i_lock
);
2820 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op
,
2821 ceph_cap_op_name(op
));
2828 * send any full release message to try to move things
2829 * along for the mds (who clearly thinks we still have this
2832 ceph_add_cap_releases(mdsc
, session
);
2833 ceph_send_cap_releases(mdsc
, session
);
2836 mutex_unlock(&session
->s_mutex
);
2840 if (open_target_sessions
)
2841 ceph_mdsc_open_export_target_sessions(mdsc
, session
);
2845 pr_err("ceph_handle_caps: corrupt message\n");
2851 * Delayed work handler to process end of delayed cap release LRU list.
2853 void ceph_check_delayed_caps(struct ceph_mds_client
*mdsc
)
2855 struct ceph_inode_info
*ci
;
2856 int flags
= CHECK_CAPS_NODELAY
;
2858 dout("check_delayed_caps\n");
2860 spin_lock(&mdsc
->cap_delay_lock
);
2861 if (list_empty(&mdsc
->cap_delay_list
))
2863 ci
= list_first_entry(&mdsc
->cap_delay_list
,
2864 struct ceph_inode_info
,
2866 if ((ci
->i_ceph_flags
& CEPH_I_FLUSH
) == 0 &&
2867 time_before(jiffies
, ci
->i_hold_caps_max
))
2869 list_del_init(&ci
->i_cap_delay_list
);
2870 spin_unlock(&mdsc
->cap_delay_lock
);
2871 dout("check_delayed_caps on %p\n", &ci
->vfs_inode
);
2872 ceph_check_caps(ci
, flags
, NULL
);
2874 spin_unlock(&mdsc
->cap_delay_lock
);
2878 * Flush all dirty caps to the mds
2880 void ceph_flush_dirty_caps(struct ceph_mds_client
*mdsc
)
2882 struct ceph_inode_info
*ci
, *nci
= NULL
;
2883 struct inode
*inode
, *ninode
= NULL
;
2884 struct list_head
*p
, *n
;
2886 dout("flush_dirty_caps\n");
2887 spin_lock(&mdsc
->cap_dirty_lock
);
2888 list_for_each_safe(p
, n
, &mdsc
->cap_dirty
) {
2892 ci
->i_ceph_flags
&= ~CEPH_I_NOFLUSH
;
2893 dout("flush_dirty_caps inode %p (was next inode)\n",
2896 ci
= list_entry(p
, struct ceph_inode_info
,
2898 inode
= igrab(&ci
->vfs_inode
);
2900 dout("flush_dirty_caps inode %p\n", inode
);
2902 if (n
!= &mdsc
->cap_dirty
) {
2903 nci
= list_entry(n
, struct ceph_inode_info
,
2905 ninode
= igrab(&nci
->vfs_inode
);
2907 nci
->i_ceph_flags
|= CEPH_I_NOFLUSH
;
2908 dout("flush_dirty_caps next inode %p, noflush\n",
2914 spin_unlock(&mdsc
->cap_dirty_lock
);
2916 ceph_check_caps(ci
, CHECK_CAPS_NODELAY
|CHECK_CAPS_FLUSH
,
2920 spin_lock(&mdsc
->cap_dirty_lock
);
2922 spin_unlock(&mdsc
->cap_dirty_lock
);
2926 * Drop open file reference. If we were the last open file,
2927 * we may need to release capabilities to the MDS (or schedule
2928 * their delayed release).
2930 void ceph_put_fmode(struct ceph_inode_info
*ci
, int fmode
)
2932 struct inode
*inode
= &ci
->vfs_inode
;
2935 spin_lock(&inode
->i_lock
);
2936 dout("put_fmode %p fmode %d %d -> %d\n", inode
, fmode
,
2937 ci
->i_nr_by_mode
[fmode
], ci
->i_nr_by_mode
[fmode
]-1);
2938 BUG_ON(ci
->i_nr_by_mode
[fmode
] == 0);
2939 if (--ci
->i_nr_by_mode
[fmode
] == 0)
2941 spin_unlock(&inode
->i_lock
);
2943 if (last
&& ci
->i_vino
.snap
== CEPH_NOSNAP
)
2944 ceph_check_caps(ci
, 0, NULL
);
2948 * Helpers for embedding cap and dentry lease releases into mds
2951 * @force is used by dentry_release (below) to force inclusion of a
2952 * record for the directory inode, even when there aren't any caps to
2955 int ceph_encode_inode_release(void **p
, struct inode
*inode
,
2956 int mds
, int drop
, int unless
, int force
)
2958 struct ceph_inode_info
*ci
= ceph_inode(inode
);
2959 struct ceph_cap
*cap
;
2960 struct ceph_mds_request_release
*rel
= *p
;
2964 spin_lock(&inode
->i_lock
);
2965 used
= __ceph_caps_used(ci
);
2966 dirty
= __ceph_caps_dirty(ci
);
2968 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
2969 inode
, mds
, ceph_cap_string(used
|dirty
), ceph_cap_string(drop
),
2970 ceph_cap_string(unless
));
2972 /* only drop unused, clean caps */
2973 drop
&= ~(used
| dirty
);
2975 cap
= __get_cap_for_mds(ci
, mds
);
2976 if (cap
&& __cap_is_valid(cap
)) {
2978 ((cap
->issued
& drop
) &&
2979 (cap
->issued
& unless
) == 0)) {
2980 if ((cap
->issued
& drop
) &&
2981 (cap
->issued
& unless
) == 0) {
2982 dout("encode_inode_release %p cap %p %s -> "
2984 ceph_cap_string(cap
->issued
),
2985 ceph_cap_string(cap
->issued
& ~drop
));
2986 cap
->issued
&= ~drop
;
2987 cap
->implemented
&= ~drop
;
2988 if (ci
->i_ceph_flags
& CEPH_I_NODELAY
) {
2989 int wanted
= __ceph_caps_wanted(ci
);
2990 dout(" wanted %s -> %s (act %s)\n",
2991 ceph_cap_string(cap
->mds_wanted
),
2992 ceph_cap_string(cap
->mds_wanted
&
2994 ceph_cap_string(wanted
));
2995 cap
->mds_wanted
&= wanted
;
2998 dout("encode_inode_release %p cap %p %s"
2999 " (force)\n", inode
, cap
,
3000 ceph_cap_string(cap
->issued
));
3003 rel
->ino
= cpu_to_le64(ceph_ino(inode
));
3004 rel
->cap_id
= cpu_to_le64(cap
->cap_id
);
3005 rel
->seq
= cpu_to_le32(cap
->seq
);
3006 rel
->issue_seq
= cpu_to_le32(cap
->issue_seq
),
3007 rel
->mseq
= cpu_to_le32(cap
->mseq
);
3008 rel
->caps
= cpu_to_le32(cap
->issued
);
3009 rel
->wanted
= cpu_to_le32(cap
->mds_wanted
);
3015 dout("encode_inode_release %p cap %p %s\n",
3016 inode
, cap
, ceph_cap_string(cap
->issued
));
3019 spin_unlock(&inode
->i_lock
);
3023 int ceph_encode_dentry_release(void **p
, struct dentry
*dentry
,
3024 int mds
, int drop
, int unless
)
3026 struct inode
*dir
= dentry
->d_parent
->d_inode
;
3027 struct ceph_mds_request_release
*rel
= *p
;
3028 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
3033 * force an record for the directory caps if we have a dentry lease.
3034 * this is racy (can't take i_lock and d_lock together), but it
3035 * doesn't have to be perfect; the mds will revoke anything we don't
3038 spin_lock(&dentry
->d_lock
);
3039 if (di
->lease_session
&& di
->lease_session
->s_mds
== mds
)
3041 spin_unlock(&dentry
->d_lock
);
3043 ret
= ceph_encode_inode_release(p
, dir
, mds
, drop
, unless
, force
);
3045 spin_lock(&dentry
->d_lock
);
3046 if (ret
&& di
->lease_session
&& di
->lease_session
->s_mds
== mds
) {
3047 dout("encode_dentry_release %p mds%d seq %d\n",
3048 dentry
, mds
, (int)di
->lease_seq
);
3049 rel
->dname_len
= cpu_to_le32(dentry
->d_name
.len
);
3050 memcpy(*p
, dentry
->d_name
.name
, dentry
->d_name
.len
);
3051 *p
+= dentry
->d_name
.len
;
3052 rel
->dname_seq
= cpu_to_le32(di
->lease_seq
);
3053 __ceph_mdsc_drop_dentry_lease(dentry
);
3055 spin_unlock(&dentry
->d_lock
);