ASoC: Ensure the WM8962 oscillator and PLLs start up disabled
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blob41abc6dd481b29ec82d87289471f409dffe2bf22
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name = DM_NAME;
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
40 static DEFINE_IDR(_minor_idr);
42 static DEFINE_SPINLOCK(_minor_lock);
44 * For bio-based dm.
45 * One of these is allocated per bio.
47 struct dm_io {
48 struct mapped_device *md;
49 int error;
50 atomic_t io_count;
51 struct bio *bio;
52 unsigned long start_time;
53 spinlock_t endio_lock;
57 * For bio-based dm.
58 * One of these is allocated per target within a bio. Hopefully
59 * this will be simplified out one day.
61 struct dm_target_io {
62 struct dm_io *io;
63 struct dm_target *ti;
64 union map_info info;
68 * For request-based dm.
69 * One of these is allocated per request.
71 struct dm_rq_target_io {
72 struct mapped_device *md;
73 struct dm_target *ti;
74 struct request *orig, clone;
75 int error;
76 union map_info info;
80 * For request-based dm.
81 * One of these is allocated per bio.
83 struct dm_rq_clone_bio_info {
84 struct bio *orig;
85 struct dm_rq_target_io *tio;
88 union map_info *dm_get_mapinfo(struct bio *bio)
90 if (bio && bio->bi_private)
91 return &((struct dm_target_io *)bio->bi_private)->info;
92 return NULL;
95 union map_info *dm_get_rq_mapinfo(struct request *rq)
97 if (rq && rq->end_io_data)
98 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 return NULL;
101 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
103 #define MINOR_ALLOCED ((void *)-1)
106 * Bits for the md->flags field.
108 #define DMF_BLOCK_IO_FOR_SUSPEND 0
109 #define DMF_SUSPENDED 1
110 #define DMF_FROZEN 2
111 #define DMF_FREEING 3
112 #define DMF_DELETING 4
113 #define DMF_NOFLUSH_SUSPENDING 5
116 * Work processed by per-device workqueue.
118 struct mapped_device {
119 struct rw_semaphore io_lock;
120 struct mutex suspend_lock;
121 rwlock_t map_lock;
122 atomic_t holders;
123 atomic_t open_count;
125 unsigned long flags;
127 struct request_queue *queue;
128 unsigned type;
129 /* Protect queue and type against concurrent access. */
130 struct mutex type_lock;
132 struct gendisk *disk;
133 char name[16];
135 void *interface_ptr;
138 * A list of ios that arrived while we were suspended.
140 atomic_t pending[2];
141 wait_queue_head_t wait;
142 struct work_struct work;
143 struct bio_list deferred;
144 spinlock_t deferred_lock;
147 * Processing queue (flush)
149 struct workqueue_struct *wq;
152 * The current mapping.
154 struct dm_table *map;
157 * io objects are allocated from here.
159 mempool_t *io_pool;
160 mempool_t *tio_pool;
162 struct bio_set *bs;
165 * Event handling.
167 atomic_t event_nr;
168 wait_queue_head_t eventq;
169 atomic_t uevent_seq;
170 struct list_head uevent_list;
171 spinlock_t uevent_lock; /* Protect access to uevent_list */
174 * freeze/thaw support require holding onto a super block
176 struct super_block *frozen_sb;
177 struct block_device *bdev;
179 /* forced geometry settings */
180 struct hd_geometry geometry;
182 /* For saving the address of __make_request for request based dm */
183 make_request_fn *saved_make_request_fn;
185 /* sysfs handle */
186 struct kobject kobj;
188 /* zero-length flush that will be cloned and submitted to targets */
189 struct bio flush_bio;
193 * For mempools pre-allocation at the table loading time.
195 struct dm_md_mempools {
196 mempool_t *io_pool;
197 mempool_t *tio_pool;
198 struct bio_set *bs;
201 #define MIN_IOS 256
202 static struct kmem_cache *_io_cache;
203 static struct kmem_cache *_tio_cache;
204 static struct kmem_cache *_rq_tio_cache;
205 static struct kmem_cache *_rq_bio_info_cache;
207 static int __init local_init(void)
209 int r = -ENOMEM;
211 /* allocate a slab for the dm_ios */
212 _io_cache = KMEM_CACHE(dm_io, 0);
213 if (!_io_cache)
214 return r;
216 /* allocate a slab for the target ios */
217 _tio_cache = KMEM_CACHE(dm_target_io, 0);
218 if (!_tio_cache)
219 goto out_free_io_cache;
221 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
222 if (!_rq_tio_cache)
223 goto out_free_tio_cache;
225 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
226 if (!_rq_bio_info_cache)
227 goto out_free_rq_tio_cache;
229 r = dm_uevent_init();
230 if (r)
231 goto out_free_rq_bio_info_cache;
233 _major = major;
234 r = register_blkdev(_major, _name);
235 if (r < 0)
236 goto out_uevent_exit;
238 if (!_major)
239 _major = r;
241 return 0;
243 out_uevent_exit:
244 dm_uevent_exit();
245 out_free_rq_bio_info_cache:
246 kmem_cache_destroy(_rq_bio_info_cache);
247 out_free_rq_tio_cache:
248 kmem_cache_destroy(_rq_tio_cache);
249 out_free_tio_cache:
250 kmem_cache_destroy(_tio_cache);
251 out_free_io_cache:
252 kmem_cache_destroy(_io_cache);
254 return r;
257 static void local_exit(void)
259 kmem_cache_destroy(_rq_bio_info_cache);
260 kmem_cache_destroy(_rq_tio_cache);
261 kmem_cache_destroy(_tio_cache);
262 kmem_cache_destroy(_io_cache);
263 unregister_blkdev(_major, _name);
264 dm_uevent_exit();
266 _major = 0;
268 DMINFO("cleaned up");
271 static int (*_inits[])(void) __initdata = {
272 local_init,
273 dm_target_init,
274 dm_linear_init,
275 dm_stripe_init,
276 dm_io_init,
277 dm_kcopyd_init,
278 dm_interface_init,
281 static void (*_exits[])(void) = {
282 local_exit,
283 dm_target_exit,
284 dm_linear_exit,
285 dm_stripe_exit,
286 dm_io_exit,
287 dm_kcopyd_exit,
288 dm_interface_exit,
291 static int __init dm_init(void)
293 const int count = ARRAY_SIZE(_inits);
295 int r, i;
297 for (i = 0; i < count; i++) {
298 r = _inits[i]();
299 if (r)
300 goto bad;
303 return 0;
305 bad:
306 while (i--)
307 _exits[i]();
309 return r;
312 static void __exit dm_exit(void)
314 int i = ARRAY_SIZE(_exits);
316 while (i--)
317 _exits[i]();
320 * Should be empty by this point.
322 idr_remove_all(&_minor_idr);
323 idr_destroy(&_minor_idr);
327 * Block device functions
329 int dm_deleting_md(struct mapped_device *md)
331 return test_bit(DMF_DELETING, &md->flags);
334 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
336 struct mapped_device *md;
338 spin_lock(&_minor_lock);
340 md = bdev->bd_disk->private_data;
341 if (!md)
342 goto out;
344 if (test_bit(DMF_FREEING, &md->flags) ||
345 dm_deleting_md(md)) {
346 md = NULL;
347 goto out;
350 dm_get(md);
351 atomic_inc(&md->open_count);
353 out:
354 spin_unlock(&_minor_lock);
356 return md ? 0 : -ENXIO;
359 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
361 struct mapped_device *md = disk->private_data;
363 spin_lock(&_minor_lock);
365 atomic_dec(&md->open_count);
366 dm_put(md);
368 spin_unlock(&_minor_lock);
370 return 0;
373 int dm_open_count(struct mapped_device *md)
375 return atomic_read(&md->open_count);
379 * Guarantees nothing is using the device before it's deleted.
381 int dm_lock_for_deletion(struct mapped_device *md)
383 int r = 0;
385 spin_lock(&_minor_lock);
387 if (dm_open_count(md))
388 r = -EBUSY;
389 else
390 set_bit(DMF_DELETING, &md->flags);
392 spin_unlock(&_minor_lock);
394 return r;
397 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
399 struct mapped_device *md = bdev->bd_disk->private_data;
401 return dm_get_geometry(md, geo);
404 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
405 unsigned int cmd, unsigned long arg)
407 struct mapped_device *md = bdev->bd_disk->private_data;
408 struct dm_table *map = dm_get_live_table(md);
409 struct dm_target *tgt;
410 int r = -ENOTTY;
412 if (!map || !dm_table_get_size(map))
413 goto out;
415 /* We only support devices that have a single target */
416 if (dm_table_get_num_targets(map) != 1)
417 goto out;
419 tgt = dm_table_get_target(map, 0);
421 if (dm_suspended_md(md)) {
422 r = -EAGAIN;
423 goto out;
426 if (tgt->type->ioctl)
427 r = tgt->type->ioctl(tgt, cmd, arg);
429 out:
430 dm_table_put(map);
432 return r;
435 static struct dm_io *alloc_io(struct mapped_device *md)
437 return mempool_alloc(md->io_pool, GFP_NOIO);
440 static void free_io(struct mapped_device *md, struct dm_io *io)
442 mempool_free(io, md->io_pool);
445 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
447 mempool_free(tio, md->tio_pool);
450 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
451 gfp_t gfp_mask)
453 return mempool_alloc(md->tio_pool, gfp_mask);
456 static void free_rq_tio(struct dm_rq_target_io *tio)
458 mempool_free(tio, tio->md->tio_pool);
461 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
463 return mempool_alloc(md->io_pool, GFP_ATOMIC);
466 static void free_bio_info(struct dm_rq_clone_bio_info *info)
468 mempool_free(info, info->tio->md->io_pool);
471 static int md_in_flight(struct mapped_device *md)
473 return atomic_read(&md->pending[READ]) +
474 atomic_read(&md->pending[WRITE]);
477 static void start_io_acct(struct dm_io *io)
479 struct mapped_device *md = io->md;
480 int cpu;
481 int rw = bio_data_dir(io->bio);
483 io->start_time = jiffies;
485 cpu = part_stat_lock();
486 part_round_stats(cpu, &dm_disk(md)->part0);
487 part_stat_unlock();
488 atomic_set(&dm_disk(md)->part0.in_flight[rw],
489 atomic_inc_return(&md->pending[rw]));
492 static void end_io_acct(struct dm_io *io)
494 struct mapped_device *md = io->md;
495 struct bio *bio = io->bio;
496 unsigned long duration = jiffies - io->start_time;
497 int pending, cpu;
498 int rw = bio_data_dir(bio);
500 cpu = part_stat_lock();
501 part_round_stats(cpu, &dm_disk(md)->part0);
502 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
503 part_stat_unlock();
506 * After this is decremented the bio must not be touched if it is
507 * a flush.
509 pending = atomic_dec_return(&md->pending[rw]);
510 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
511 pending += atomic_read(&md->pending[rw^0x1]);
513 /* nudge anyone waiting on suspend queue */
514 if (!pending)
515 wake_up(&md->wait);
519 * Add the bio to the list of deferred io.
521 static void queue_io(struct mapped_device *md, struct bio *bio)
523 unsigned long flags;
525 spin_lock_irqsave(&md->deferred_lock, flags);
526 bio_list_add(&md->deferred, bio);
527 spin_unlock_irqrestore(&md->deferred_lock, flags);
528 queue_work(md->wq, &md->work);
532 * Everyone (including functions in this file), should use this
533 * function to access the md->map field, and make sure they call
534 * dm_table_put() when finished.
536 struct dm_table *dm_get_live_table(struct mapped_device *md)
538 struct dm_table *t;
539 unsigned long flags;
541 read_lock_irqsave(&md->map_lock, flags);
542 t = md->map;
543 if (t)
544 dm_table_get(t);
545 read_unlock_irqrestore(&md->map_lock, flags);
547 return t;
551 * Get the geometry associated with a dm device
553 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 *geo = md->geometry;
557 return 0;
561 * Set the geometry of a device.
563 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567 if (geo->start > sz) {
568 DMWARN("Start sector is beyond the geometry limits.");
569 return -EINVAL;
572 md->geometry = *geo;
574 return 0;
577 /*-----------------------------------------------------------------
578 * CRUD START:
579 * A more elegant soln is in the works that uses the queue
580 * merge fn, unfortunately there are a couple of changes to
581 * the block layer that I want to make for this. So in the
582 * interests of getting something for people to use I give
583 * you this clearly demarcated crap.
584 *---------------------------------------------------------------*/
586 static int __noflush_suspending(struct mapped_device *md)
588 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
592 * Decrements the number of outstanding ios that a bio has been
593 * cloned into, completing the original io if necc.
595 static void dec_pending(struct dm_io *io, int error)
597 unsigned long flags;
598 int io_error;
599 struct bio *bio;
600 struct mapped_device *md = io->md;
602 /* Push-back supersedes any I/O errors */
603 if (unlikely(error)) {
604 spin_lock_irqsave(&io->endio_lock, flags);
605 if (!(io->error > 0 && __noflush_suspending(md)))
606 io->error = error;
607 spin_unlock_irqrestore(&io->endio_lock, flags);
610 if (atomic_dec_and_test(&io->io_count)) {
611 if (io->error == DM_ENDIO_REQUEUE) {
613 * Target requested pushing back the I/O.
615 spin_lock_irqsave(&md->deferred_lock, flags);
616 if (__noflush_suspending(md))
617 bio_list_add_head(&md->deferred, io->bio);
618 else
619 /* noflush suspend was interrupted. */
620 io->error = -EIO;
621 spin_unlock_irqrestore(&md->deferred_lock, flags);
624 io_error = io->error;
625 bio = io->bio;
626 end_io_acct(io);
627 free_io(md, io);
629 if (io_error == DM_ENDIO_REQUEUE)
630 return;
632 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634 * Preflush done for flush with data, reissue
635 * without REQ_FLUSH.
637 bio->bi_rw &= ~REQ_FLUSH;
638 queue_io(md, bio);
639 } else {
640 /* done with normal IO or empty flush */
641 trace_block_bio_complete(md->queue, bio, io_error);
642 bio_endio(bio, io_error);
647 static void clone_endio(struct bio *bio, int error)
649 int r = 0;
650 struct dm_target_io *tio = bio->bi_private;
651 struct dm_io *io = tio->io;
652 struct mapped_device *md = tio->io->md;
653 dm_endio_fn endio = tio->ti->type->end_io;
655 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
656 error = -EIO;
658 if (endio) {
659 r = endio(tio->ti, bio, error, &tio->info);
660 if (r < 0 || r == DM_ENDIO_REQUEUE)
662 * error and requeue request are handled
663 * in dec_pending().
665 error = r;
666 else if (r == DM_ENDIO_INCOMPLETE)
667 /* The target will handle the io */
668 return;
669 else if (r) {
670 DMWARN("unimplemented target endio return value: %d", r);
671 BUG();
676 * Store md for cleanup instead of tio which is about to get freed.
678 bio->bi_private = md->bs;
680 free_tio(md, tio);
681 bio_put(bio);
682 dec_pending(io, error);
686 * Partial completion handling for request-based dm
688 static void end_clone_bio(struct bio *clone, int error)
690 struct dm_rq_clone_bio_info *info = clone->bi_private;
691 struct dm_rq_target_io *tio = info->tio;
692 struct bio *bio = info->orig;
693 unsigned int nr_bytes = info->orig->bi_size;
695 bio_put(clone);
697 if (tio->error)
699 * An error has already been detected on the request.
700 * Once error occurred, just let clone->end_io() handle
701 * the remainder.
703 return;
704 else if (error) {
706 * Don't notice the error to the upper layer yet.
707 * The error handling decision is made by the target driver,
708 * when the request is completed.
710 tio->error = error;
711 return;
715 * I/O for the bio successfully completed.
716 * Notice the data completion to the upper layer.
720 * bios are processed from the head of the list.
721 * So the completing bio should always be rq->bio.
722 * If it's not, something wrong is happening.
724 if (tio->orig->bio != bio)
725 DMERR("bio completion is going in the middle of the request");
728 * Update the original request.
729 * Do not use blk_end_request() here, because it may complete
730 * the original request before the clone, and break the ordering.
732 blk_update_request(tio->orig, 0, nr_bytes);
736 * Don't touch any member of the md after calling this function because
737 * the md may be freed in dm_put() at the end of this function.
738 * Or do dm_get() before calling this function and dm_put() later.
740 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
742 atomic_dec(&md->pending[rw]);
744 /* nudge anyone waiting on suspend queue */
745 if (!md_in_flight(md))
746 wake_up(&md->wait);
748 if (run_queue)
749 blk_run_queue(md->queue);
752 * dm_put() must be at the end of this function. See the comment above
754 dm_put(md);
757 static void free_rq_clone(struct request *clone)
759 struct dm_rq_target_io *tio = clone->end_io_data;
761 blk_rq_unprep_clone(clone);
762 free_rq_tio(tio);
766 * Complete the clone and the original request.
767 * Must be called without queue lock.
769 static void dm_end_request(struct request *clone, int error)
771 int rw = rq_data_dir(clone);
772 struct dm_rq_target_io *tio = clone->end_io_data;
773 struct mapped_device *md = tio->md;
774 struct request *rq = tio->orig;
776 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
777 rq->errors = clone->errors;
778 rq->resid_len = clone->resid_len;
780 if (rq->sense)
782 * We are using the sense buffer of the original
783 * request.
784 * So setting the length of the sense data is enough.
786 rq->sense_len = clone->sense_len;
789 free_rq_clone(clone);
790 blk_end_request_all(rq, error);
791 rq_completed(md, rw, true);
794 static void dm_unprep_request(struct request *rq)
796 struct request *clone = rq->special;
798 rq->special = NULL;
799 rq->cmd_flags &= ~REQ_DONTPREP;
801 free_rq_clone(clone);
805 * Requeue the original request of a clone.
807 void dm_requeue_unmapped_request(struct request *clone)
809 int rw = rq_data_dir(clone);
810 struct dm_rq_target_io *tio = clone->end_io_data;
811 struct mapped_device *md = tio->md;
812 struct request *rq = tio->orig;
813 struct request_queue *q = rq->q;
814 unsigned long flags;
816 dm_unprep_request(rq);
818 spin_lock_irqsave(q->queue_lock, flags);
819 blk_requeue_request(q, rq);
820 spin_unlock_irqrestore(q->queue_lock, flags);
822 rq_completed(md, rw, 0);
824 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
826 static void __stop_queue(struct request_queue *q)
828 blk_stop_queue(q);
831 static void stop_queue(struct request_queue *q)
833 unsigned long flags;
835 spin_lock_irqsave(q->queue_lock, flags);
836 __stop_queue(q);
837 spin_unlock_irqrestore(q->queue_lock, flags);
840 static void __start_queue(struct request_queue *q)
842 if (blk_queue_stopped(q))
843 blk_start_queue(q);
846 static void start_queue(struct request_queue *q)
848 unsigned long flags;
850 spin_lock_irqsave(q->queue_lock, flags);
851 __start_queue(q);
852 spin_unlock_irqrestore(q->queue_lock, flags);
855 static void dm_done(struct request *clone, int error, bool mapped)
857 int r = error;
858 struct dm_rq_target_io *tio = clone->end_io_data;
859 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
861 if (mapped && rq_end_io)
862 r = rq_end_io(tio->ti, clone, error, &tio->info);
864 if (r <= 0)
865 /* The target wants to complete the I/O */
866 dm_end_request(clone, r);
867 else if (r == DM_ENDIO_INCOMPLETE)
868 /* The target will handle the I/O */
869 return;
870 else if (r == DM_ENDIO_REQUEUE)
871 /* The target wants to requeue the I/O */
872 dm_requeue_unmapped_request(clone);
873 else {
874 DMWARN("unimplemented target endio return value: %d", r);
875 BUG();
880 * Request completion handler for request-based dm
882 static void dm_softirq_done(struct request *rq)
884 bool mapped = true;
885 struct request *clone = rq->completion_data;
886 struct dm_rq_target_io *tio = clone->end_io_data;
888 if (rq->cmd_flags & REQ_FAILED)
889 mapped = false;
891 dm_done(clone, tio->error, mapped);
895 * Complete the clone and the original request with the error status
896 * through softirq context.
898 static void dm_complete_request(struct request *clone, int error)
900 struct dm_rq_target_io *tio = clone->end_io_data;
901 struct request *rq = tio->orig;
903 tio->error = error;
904 rq->completion_data = clone;
905 blk_complete_request(rq);
909 * Complete the not-mapped clone and the original request with the error status
910 * through softirq context.
911 * Target's rq_end_io() function isn't called.
912 * This may be used when the target's map_rq() function fails.
914 void dm_kill_unmapped_request(struct request *clone, int error)
916 struct dm_rq_target_io *tio = clone->end_io_data;
917 struct request *rq = tio->orig;
919 rq->cmd_flags |= REQ_FAILED;
920 dm_complete_request(clone, error);
922 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
925 * Called with the queue lock held
927 static void end_clone_request(struct request *clone, int error)
930 * For just cleaning up the information of the queue in which
931 * the clone was dispatched.
932 * The clone is *NOT* freed actually here because it is alloced from
933 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
935 __blk_put_request(clone->q, clone);
938 * Actual request completion is done in a softirq context which doesn't
939 * hold the queue lock. Otherwise, deadlock could occur because:
940 * - another request may be submitted by the upper level driver
941 * of the stacking during the completion
942 * - the submission which requires queue lock may be done
943 * against this queue
945 dm_complete_request(clone, error);
949 * Return maximum size of I/O possible at the supplied sector up to the current
950 * target boundary.
952 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
954 sector_t target_offset = dm_target_offset(ti, sector);
956 return ti->len - target_offset;
959 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
961 sector_t len = max_io_len_target_boundary(sector, ti);
964 * Does the target need to split even further ?
966 if (ti->split_io) {
967 sector_t boundary;
968 sector_t offset = dm_target_offset(ti, sector);
969 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
970 - offset;
971 if (len > boundary)
972 len = boundary;
975 return len;
978 static void __map_bio(struct dm_target *ti, struct bio *clone,
979 struct dm_target_io *tio)
981 int r;
982 sector_t sector;
983 struct mapped_device *md;
985 clone->bi_end_io = clone_endio;
986 clone->bi_private = tio;
989 * Map the clone. If r == 0 we don't need to do
990 * anything, the target has assumed ownership of
991 * this io.
993 atomic_inc(&tio->io->io_count);
994 sector = clone->bi_sector;
995 r = ti->type->map(ti, clone, &tio->info);
996 if (r == DM_MAPIO_REMAPPED) {
997 /* the bio has been remapped so dispatch it */
999 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1000 tio->io->bio->bi_bdev->bd_dev, sector);
1002 generic_make_request(clone);
1003 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1004 /* error the io and bail out, or requeue it if needed */
1005 md = tio->io->md;
1006 dec_pending(tio->io, r);
1008 * Store bio_set for cleanup.
1010 clone->bi_private = md->bs;
1011 bio_put(clone);
1012 free_tio(md, tio);
1013 } else if (r) {
1014 DMWARN("unimplemented target map return value: %d", r);
1015 BUG();
1019 struct clone_info {
1020 struct mapped_device *md;
1021 struct dm_table *map;
1022 struct bio *bio;
1023 struct dm_io *io;
1024 sector_t sector;
1025 sector_t sector_count;
1026 unsigned short idx;
1029 static void dm_bio_destructor(struct bio *bio)
1031 struct bio_set *bs = bio->bi_private;
1033 bio_free(bio, bs);
1037 * Creates a little bio that just does part of a bvec.
1039 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1040 unsigned short idx, unsigned int offset,
1041 unsigned int len, struct bio_set *bs)
1043 struct bio *clone;
1044 struct bio_vec *bv = bio->bi_io_vec + idx;
1046 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1047 clone->bi_destructor = dm_bio_destructor;
1048 *clone->bi_io_vec = *bv;
1050 clone->bi_sector = sector;
1051 clone->bi_bdev = bio->bi_bdev;
1052 clone->bi_rw = bio->bi_rw;
1053 clone->bi_vcnt = 1;
1054 clone->bi_size = to_bytes(len);
1055 clone->bi_io_vec->bv_offset = offset;
1056 clone->bi_io_vec->bv_len = clone->bi_size;
1057 clone->bi_flags |= 1 << BIO_CLONED;
1059 if (bio_integrity(bio)) {
1060 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1061 bio_integrity_trim(clone,
1062 bio_sector_offset(bio, idx, offset), len);
1065 return clone;
1069 * Creates a bio that consists of range of complete bvecs.
1071 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1072 unsigned short idx, unsigned short bv_count,
1073 unsigned int len, struct bio_set *bs)
1075 struct bio *clone;
1077 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1078 __bio_clone(clone, bio);
1079 clone->bi_destructor = dm_bio_destructor;
1080 clone->bi_sector = sector;
1081 clone->bi_idx = idx;
1082 clone->bi_vcnt = idx + bv_count;
1083 clone->bi_size = to_bytes(len);
1084 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1086 if (bio_integrity(bio)) {
1087 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1089 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1090 bio_integrity_trim(clone,
1091 bio_sector_offset(bio, idx, 0), len);
1094 return clone;
1097 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1098 struct dm_target *ti)
1100 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1102 tio->io = ci->io;
1103 tio->ti = ti;
1104 memset(&tio->info, 0, sizeof(tio->info));
1106 return tio;
1109 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1110 unsigned request_nr, sector_t len)
1112 struct dm_target_io *tio = alloc_tio(ci, ti);
1113 struct bio *clone;
1115 tio->info.target_request_nr = request_nr;
1118 * Discard requests require the bio's inline iovecs be initialized.
1119 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1120 * and discard, so no need for concern about wasted bvec allocations.
1122 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1123 __bio_clone(clone, ci->bio);
1124 clone->bi_destructor = dm_bio_destructor;
1125 if (len) {
1126 clone->bi_sector = ci->sector;
1127 clone->bi_size = to_bytes(len);
1130 __map_bio(ti, clone, tio);
1133 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1134 unsigned num_requests, sector_t len)
1136 unsigned request_nr;
1138 for (request_nr = 0; request_nr < num_requests; request_nr++)
1139 __issue_target_request(ci, ti, request_nr, len);
1142 static int __clone_and_map_empty_flush(struct clone_info *ci)
1144 unsigned target_nr = 0;
1145 struct dm_target *ti;
1147 BUG_ON(bio_has_data(ci->bio));
1148 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1149 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1151 return 0;
1155 * Perform all io with a single clone.
1157 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1159 struct bio *clone, *bio = ci->bio;
1160 struct dm_target_io *tio;
1162 tio = alloc_tio(ci, ti);
1163 clone = clone_bio(bio, ci->sector, ci->idx,
1164 bio->bi_vcnt - ci->idx, ci->sector_count,
1165 ci->md->bs);
1166 __map_bio(ti, clone, tio);
1167 ci->sector_count = 0;
1170 static int __clone_and_map_discard(struct clone_info *ci)
1172 struct dm_target *ti;
1173 sector_t len;
1175 do {
1176 ti = dm_table_find_target(ci->map, ci->sector);
1177 if (!dm_target_is_valid(ti))
1178 return -EIO;
1181 * Even though the device advertised discard support,
1182 * reconfiguration might have changed that since the
1183 * check was performed.
1185 if (!ti->num_discard_requests)
1186 return -EOPNOTSUPP;
1188 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1190 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1192 ci->sector += len;
1193 } while (ci->sector_count -= len);
1195 return 0;
1198 static int __clone_and_map(struct clone_info *ci)
1200 struct bio *clone, *bio = ci->bio;
1201 struct dm_target *ti;
1202 sector_t len = 0, max;
1203 struct dm_target_io *tio;
1205 if (unlikely(bio->bi_rw & REQ_DISCARD))
1206 return __clone_and_map_discard(ci);
1208 ti = dm_table_find_target(ci->map, ci->sector);
1209 if (!dm_target_is_valid(ti))
1210 return -EIO;
1212 max = max_io_len(ci->sector, ti);
1214 if (ci->sector_count <= max) {
1216 * Optimise for the simple case where we can do all of
1217 * the remaining io with a single clone.
1219 __clone_and_map_simple(ci, ti);
1221 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1223 * There are some bvecs that don't span targets.
1224 * Do as many of these as possible.
1226 int i;
1227 sector_t remaining = max;
1228 sector_t bv_len;
1230 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1231 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1233 if (bv_len > remaining)
1234 break;
1236 remaining -= bv_len;
1237 len += bv_len;
1240 tio = alloc_tio(ci, ti);
1241 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1242 ci->md->bs);
1243 __map_bio(ti, clone, tio);
1245 ci->sector += len;
1246 ci->sector_count -= len;
1247 ci->idx = i;
1249 } else {
1251 * Handle a bvec that must be split between two or more targets.
1253 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1254 sector_t remaining = to_sector(bv->bv_len);
1255 unsigned int offset = 0;
1257 do {
1258 if (offset) {
1259 ti = dm_table_find_target(ci->map, ci->sector);
1260 if (!dm_target_is_valid(ti))
1261 return -EIO;
1263 max = max_io_len(ci->sector, ti);
1266 len = min(remaining, max);
1268 tio = alloc_tio(ci, ti);
1269 clone = split_bvec(bio, ci->sector, ci->idx,
1270 bv->bv_offset + offset, len,
1271 ci->md->bs);
1273 __map_bio(ti, clone, tio);
1275 ci->sector += len;
1276 ci->sector_count -= len;
1277 offset += to_bytes(len);
1278 } while (remaining -= len);
1280 ci->idx++;
1283 return 0;
1287 * Split the bio into several clones and submit it to targets.
1289 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1291 struct clone_info ci;
1292 int error = 0;
1294 ci.map = dm_get_live_table(md);
1295 if (unlikely(!ci.map)) {
1296 bio_io_error(bio);
1297 return;
1300 ci.md = md;
1301 ci.io = alloc_io(md);
1302 ci.io->error = 0;
1303 atomic_set(&ci.io->io_count, 1);
1304 ci.io->bio = bio;
1305 ci.io->md = md;
1306 spin_lock_init(&ci.io->endio_lock);
1307 ci.sector = bio->bi_sector;
1308 ci.idx = bio->bi_idx;
1310 start_io_acct(ci.io);
1311 if (bio->bi_rw & REQ_FLUSH) {
1312 ci.bio = &ci.md->flush_bio;
1313 ci.sector_count = 0;
1314 error = __clone_and_map_empty_flush(&ci);
1315 /* dec_pending submits any data associated with flush */
1316 } else {
1317 ci.bio = bio;
1318 ci.sector_count = bio_sectors(bio);
1319 while (ci.sector_count && !error)
1320 error = __clone_and_map(&ci);
1323 /* drop the extra reference count */
1324 dec_pending(ci.io, error);
1325 dm_table_put(ci.map);
1327 /*-----------------------------------------------------------------
1328 * CRUD END
1329 *---------------------------------------------------------------*/
1331 static int dm_merge_bvec(struct request_queue *q,
1332 struct bvec_merge_data *bvm,
1333 struct bio_vec *biovec)
1335 struct mapped_device *md = q->queuedata;
1336 struct dm_table *map = dm_get_live_table(md);
1337 struct dm_target *ti;
1338 sector_t max_sectors;
1339 int max_size = 0;
1341 if (unlikely(!map))
1342 goto out;
1344 ti = dm_table_find_target(map, bvm->bi_sector);
1345 if (!dm_target_is_valid(ti))
1346 goto out_table;
1349 * Find maximum amount of I/O that won't need splitting
1351 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1352 (sector_t) BIO_MAX_SECTORS);
1353 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1354 if (max_size < 0)
1355 max_size = 0;
1358 * merge_bvec_fn() returns number of bytes
1359 * it can accept at this offset
1360 * max is precomputed maximal io size
1362 if (max_size && ti->type->merge)
1363 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1365 * If the target doesn't support merge method and some of the devices
1366 * provided their merge_bvec method (we know this by looking at
1367 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1368 * entries. So always set max_size to 0, and the code below allows
1369 * just one page.
1371 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1373 max_size = 0;
1375 out_table:
1376 dm_table_put(map);
1378 out:
1380 * Always allow an entire first page
1382 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1383 max_size = biovec->bv_len;
1385 return max_size;
1389 * The request function that just remaps the bio built up by
1390 * dm_merge_bvec.
1392 static int _dm_request(struct request_queue *q, struct bio *bio)
1394 int rw = bio_data_dir(bio);
1395 struct mapped_device *md = q->queuedata;
1396 int cpu;
1398 down_read(&md->io_lock);
1400 cpu = part_stat_lock();
1401 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1402 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1403 part_stat_unlock();
1405 /* if we're suspended, we have to queue this io for later */
1406 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1407 up_read(&md->io_lock);
1409 if (bio_rw(bio) != READA)
1410 queue_io(md, bio);
1411 else
1412 bio_io_error(bio);
1413 return 0;
1416 __split_and_process_bio(md, bio);
1417 up_read(&md->io_lock);
1418 return 0;
1421 static int dm_make_request(struct request_queue *q, struct bio *bio)
1423 struct mapped_device *md = q->queuedata;
1425 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1428 static int dm_request_based(struct mapped_device *md)
1430 return blk_queue_stackable(md->queue);
1433 static int dm_request(struct request_queue *q, struct bio *bio)
1435 struct mapped_device *md = q->queuedata;
1437 if (dm_request_based(md))
1438 return dm_make_request(q, bio);
1440 return _dm_request(q, bio);
1443 void dm_dispatch_request(struct request *rq)
1445 int r;
1447 if (blk_queue_io_stat(rq->q))
1448 rq->cmd_flags |= REQ_IO_STAT;
1450 rq->start_time = jiffies;
1451 r = blk_insert_cloned_request(rq->q, rq);
1452 if (r)
1453 dm_complete_request(rq, r);
1455 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1457 static void dm_rq_bio_destructor(struct bio *bio)
1459 struct dm_rq_clone_bio_info *info = bio->bi_private;
1460 struct mapped_device *md = info->tio->md;
1462 free_bio_info(info);
1463 bio_free(bio, md->bs);
1466 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1467 void *data)
1469 struct dm_rq_target_io *tio = data;
1470 struct mapped_device *md = tio->md;
1471 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1473 if (!info)
1474 return -ENOMEM;
1476 info->orig = bio_orig;
1477 info->tio = tio;
1478 bio->bi_end_io = end_clone_bio;
1479 bio->bi_private = info;
1480 bio->bi_destructor = dm_rq_bio_destructor;
1482 return 0;
1485 static int setup_clone(struct request *clone, struct request *rq,
1486 struct dm_rq_target_io *tio)
1488 int r;
1490 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1491 dm_rq_bio_constructor, tio);
1492 if (r)
1493 return r;
1495 clone->cmd = rq->cmd;
1496 clone->cmd_len = rq->cmd_len;
1497 clone->sense = rq->sense;
1498 clone->buffer = rq->buffer;
1499 clone->end_io = end_clone_request;
1500 clone->end_io_data = tio;
1502 return 0;
1505 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1506 gfp_t gfp_mask)
1508 struct request *clone;
1509 struct dm_rq_target_io *tio;
1511 tio = alloc_rq_tio(md, gfp_mask);
1512 if (!tio)
1513 return NULL;
1515 tio->md = md;
1516 tio->ti = NULL;
1517 tio->orig = rq;
1518 tio->error = 0;
1519 memset(&tio->info, 0, sizeof(tio->info));
1521 clone = &tio->clone;
1522 if (setup_clone(clone, rq, tio)) {
1523 /* -ENOMEM */
1524 free_rq_tio(tio);
1525 return NULL;
1528 return clone;
1532 * Called with the queue lock held.
1534 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1536 struct mapped_device *md = q->queuedata;
1537 struct request *clone;
1539 if (unlikely(rq->special)) {
1540 DMWARN("Already has something in rq->special.");
1541 return BLKPREP_KILL;
1544 clone = clone_rq(rq, md, GFP_ATOMIC);
1545 if (!clone)
1546 return BLKPREP_DEFER;
1548 rq->special = clone;
1549 rq->cmd_flags |= REQ_DONTPREP;
1551 return BLKPREP_OK;
1555 * Returns:
1556 * 0 : the request has been processed (not requeued)
1557 * !0 : the request has been requeued
1559 static int map_request(struct dm_target *ti, struct request *clone,
1560 struct mapped_device *md)
1562 int r, requeued = 0;
1563 struct dm_rq_target_io *tio = clone->end_io_data;
1566 * Hold the md reference here for the in-flight I/O.
1567 * We can't rely on the reference count by device opener,
1568 * because the device may be closed during the request completion
1569 * when all bios are completed.
1570 * See the comment in rq_completed() too.
1572 dm_get(md);
1574 tio->ti = ti;
1575 r = ti->type->map_rq(ti, clone, &tio->info);
1576 switch (r) {
1577 case DM_MAPIO_SUBMITTED:
1578 /* The target has taken the I/O to submit by itself later */
1579 break;
1580 case DM_MAPIO_REMAPPED:
1581 /* The target has remapped the I/O so dispatch it */
1582 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1583 blk_rq_pos(tio->orig));
1584 dm_dispatch_request(clone);
1585 break;
1586 case DM_MAPIO_REQUEUE:
1587 /* The target wants to requeue the I/O */
1588 dm_requeue_unmapped_request(clone);
1589 requeued = 1;
1590 break;
1591 default:
1592 if (r > 0) {
1593 DMWARN("unimplemented target map return value: %d", r);
1594 BUG();
1597 /* The target wants to complete the I/O */
1598 dm_kill_unmapped_request(clone, r);
1599 break;
1602 return requeued;
1606 * q->request_fn for request-based dm.
1607 * Called with the queue lock held.
1609 static void dm_request_fn(struct request_queue *q)
1611 struct mapped_device *md = q->queuedata;
1612 struct dm_table *map = dm_get_live_table(md);
1613 struct dm_target *ti;
1614 struct request *rq, *clone;
1615 sector_t pos;
1618 * For suspend, check blk_queue_stopped() and increment
1619 * ->pending within a single queue_lock not to increment the
1620 * number of in-flight I/Os after the queue is stopped in
1621 * dm_suspend().
1623 while (!blk_queue_stopped(q)) {
1624 rq = blk_peek_request(q);
1625 if (!rq)
1626 goto delay_and_out;
1628 /* always use block 0 to find the target for flushes for now */
1629 pos = 0;
1630 if (!(rq->cmd_flags & REQ_FLUSH))
1631 pos = blk_rq_pos(rq);
1633 ti = dm_table_find_target(map, pos);
1634 BUG_ON(!dm_target_is_valid(ti));
1636 if (ti->type->busy && ti->type->busy(ti))
1637 goto delay_and_out;
1639 blk_start_request(rq);
1640 clone = rq->special;
1641 atomic_inc(&md->pending[rq_data_dir(clone)]);
1643 spin_unlock(q->queue_lock);
1644 if (map_request(ti, clone, md))
1645 goto requeued;
1647 BUG_ON(!irqs_disabled());
1648 spin_lock(q->queue_lock);
1651 goto out;
1653 requeued:
1654 BUG_ON(!irqs_disabled());
1655 spin_lock(q->queue_lock);
1657 delay_and_out:
1658 blk_delay_queue(q, HZ / 10);
1659 out:
1660 dm_table_put(map);
1662 return;
1665 int dm_underlying_device_busy(struct request_queue *q)
1667 return blk_lld_busy(q);
1669 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1671 static int dm_lld_busy(struct request_queue *q)
1673 int r;
1674 struct mapped_device *md = q->queuedata;
1675 struct dm_table *map = dm_get_live_table(md);
1677 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1678 r = 1;
1679 else
1680 r = dm_table_any_busy_target(map);
1682 dm_table_put(map);
1684 return r;
1687 static int dm_any_congested(void *congested_data, int bdi_bits)
1689 int r = bdi_bits;
1690 struct mapped_device *md = congested_data;
1691 struct dm_table *map;
1693 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1694 map = dm_get_live_table(md);
1695 if (map) {
1697 * Request-based dm cares about only own queue for
1698 * the query about congestion status of request_queue
1700 if (dm_request_based(md))
1701 r = md->queue->backing_dev_info.state &
1702 bdi_bits;
1703 else
1704 r = dm_table_any_congested(map, bdi_bits);
1706 dm_table_put(map);
1710 return r;
1713 /*-----------------------------------------------------------------
1714 * An IDR is used to keep track of allocated minor numbers.
1715 *---------------------------------------------------------------*/
1716 static void free_minor(int minor)
1718 spin_lock(&_minor_lock);
1719 idr_remove(&_minor_idr, minor);
1720 spin_unlock(&_minor_lock);
1724 * See if the device with a specific minor # is free.
1726 static int specific_minor(int minor)
1728 int r, m;
1730 if (minor >= (1 << MINORBITS))
1731 return -EINVAL;
1733 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1734 if (!r)
1735 return -ENOMEM;
1737 spin_lock(&_minor_lock);
1739 if (idr_find(&_minor_idr, minor)) {
1740 r = -EBUSY;
1741 goto out;
1744 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1745 if (r)
1746 goto out;
1748 if (m != minor) {
1749 idr_remove(&_minor_idr, m);
1750 r = -EBUSY;
1751 goto out;
1754 out:
1755 spin_unlock(&_minor_lock);
1756 return r;
1759 static int next_free_minor(int *minor)
1761 int r, m;
1763 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1764 if (!r)
1765 return -ENOMEM;
1767 spin_lock(&_minor_lock);
1769 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1770 if (r)
1771 goto out;
1773 if (m >= (1 << MINORBITS)) {
1774 idr_remove(&_minor_idr, m);
1775 r = -ENOSPC;
1776 goto out;
1779 *minor = m;
1781 out:
1782 spin_unlock(&_minor_lock);
1783 return r;
1786 static const struct block_device_operations dm_blk_dops;
1788 static void dm_wq_work(struct work_struct *work);
1790 static void dm_init_md_queue(struct mapped_device *md)
1793 * Request-based dm devices cannot be stacked on top of bio-based dm
1794 * devices. The type of this dm device has not been decided yet.
1795 * The type is decided at the first table loading time.
1796 * To prevent problematic device stacking, clear the queue flag
1797 * for request stacking support until then.
1799 * This queue is new, so no concurrency on the queue_flags.
1801 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1803 md->queue->queuedata = md;
1804 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1805 md->queue->backing_dev_info.congested_data = md;
1806 blk_queue_make_request(md->queue, dm_request);
1807 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1808 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1809 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1813 * Allocate and initialise a blank device with a given minor.
1815 static struct mapped_device *alloc_dev(int minor)
1817 int r;
1818 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1819 void *old_md;
1821 if (!md) {
1822 DMWARN("unable to allocate device, out of memory.");
1823 return NULL;
1826 if (!try_module_get(THIS_MODULE))
1827 goto bad_module_get;
1829 /* get a minor number for the dev */
1830 if (minor == DM_ANY_MINOR)
1831 r = next_free_minor(&minor);
1832 else
1833 r = specific_minor(minor);
1834 if (r < 0)
1835 goto bad_minor;
1837 md->type = DM_TYPE_NONE;
1838 init_rwsem(&md->io_lock);
1839 mutex_init(&md->suspend_lock);
1840 mutex_init(&md->type_lock);
1841 spin_lock_init(&md->deferred_lock);
1842 rwlock_init(&md->map_lock);
1843 atomic_set(&md->holders, 1);
1844 atomic_set(&md->open_count, 0);
1845 atomic_set(&md->event_nr, 0);
1846 atomic_set(&md->uevent_seq, 0);
1847 INIT_LIST_HEAD(&md->uevent_list);
1848 spin_lock_init(&md->uevent_lock);
1850 md->queue = blk_alloc_queue(GFP_KERNEL);
1851 if (!md->queue)
1852 goto bad_queue;
1854 dm_init_md_queue(md);
1856 md->disk = alloc_disk(1);
1857 if (!md->disk)
1858 goto bad_disk;
1860 atomic_set(&md->pending[0], 0);
1861 atomic_set(&md->pending[1], 0);
1862 init_waitqueue_head(&md->wait);
1863 INIT_WORK(&md->work, dm_wq_work);
1864 init_waitqueue_head(&md->eventq);
1866 md->disk->major = _major;
1867 md->disk->first_minor = minor;
1868 md->disk->fops = &dm_blk_dops;
1869 md->disk->queue = md->queue;
1870 md->disk->private_data = md;
1871 sprintf(md->disk->disk_name, "dm-%d", minor);
1872 add_disk(md->disk);
1873 format_dev_t(md->name, MKDEV(_major, minor));
1875 md->wq = alloc_workqueue("kdmflush",
1876 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1877 if (!md->wq)
1878 goto bad_thread;
1880 md->bdev = bdget_disk(md->disk, 0);
1881 if (!md->bdev)
1882 goto bad_bdev;
1884 bio_init(&md->flush_bio);
1885 md->flush_bio.bi_bdev = md->bdev;
1886 md->flush_bio.bi_rw = WRITE_FLUSH;
1888 /* Populate the mapping, nobody knows we exist yet */
1889 spin_lock(&_minor_lock);
1890 old_md = idr_replace(&_minor_idr, md, minor);
1891 spin_unlock(&_minor_lock);
1893 BUG_ON(old_md != MINOR_ALLOCED);
1895 return md;
1897 bad_bdev:
1898 destroy_workqueue(md->wq);
1899 bad_thread:
1900 del_gendisk(md->disk);
1901 put_disk(md->disk);
1902 bad_disk:
1903 blk_cleanup_queue(md->queue);
1904 bad_queue:
1905 free_minor(minor);
1906 bad_minor:
1907 module_put(THIS_MODULE);
1908 bad_module_get:
1909 kfree(md);
1910 return NULL;
1913 static void unlock_fs(struct mapped_device *md);
1915 static void free_dev(struct mapped_device *md)
1917 int minor = MINOR(disk_devt(md->disk));
1919 unlock_fs(md);
1920 bdput(md->bdev);
1921 destroy_workqueue(md->wq);
1922 if (md->tio_pool)
1923 mempool_destroy(md->tio_pool);
1924 if (md->io_pool)
1925 mempool_destroy(md->io_pool);
1926 if (md->bs)
1927 bioset_free(md->bs);
1928 blk_integrity_unregister(md->disk);
1929 del_gendisk(md->disk);
1930 free_minor(minor);
1932 spin_lock(&_minor_lock);
1933 md->disk->private_data = NULL;
1934 spin_unlock(&_minor_lock);
1936 put_disk(md->disk);
1937 blk_cleanup_queue(md->queue);
1938 module_put(THIS_MODULE);
1939 kfree(md);
1942 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1944 struct dm_md_mempools *p;
1946 if (md->io_pool && md->tio_pool && md->bs)
1947 /* the md already has necessary mempools */
1948 goto out;
1950 p = dm_table_get_md_mempools(t);
1951 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1953 md->io_pool = p->io_pool;
1954 p->io_pool = NULL;
1955 md->tio_pool = p->tio_pool;
1956 p->tio_pool = NULL;
1957 md->bs = p->bs;
1958 p->bs = NULL;
1960 out:
1961 /* mempool bind completed, now no need any mempools in the table */
1962 dm_table_free_md_mempools(t);
1966 * Bind a table to the device.
1968 static void event_callback(void *context)
1970 unsigned long flags;
1971 LIST_HEAD(uevents);
1972 struct mapped_device *md = (struct mapped_device *) context;
1974 spin_lock_irqsave(&md->uevent_lock, flags);
1975 list_splice_init(&md->uevent_list, &uevents);
1976 spin_unlock_irqrestore(&md->uevent_lock, flags);
1978 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1980 atomic_inc(&md->event_nr);
1981 wake_up(&md->eventq);
1985 * Protected by md->suspend_lock obtained by dm_swap_table().
1987 static void __set_size(struct mapped_device *md, sector_t size)
1989 set_capacity(md->disk, size);
1991 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1995 * Returns old map, which caller must destroy.
1997 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1998 struct queue_limits *limits)
2000 struct dm_table *old_map;
2001 struct request_queue *q = md->queue;
2002 sector_t size;
2003 unsigned long flags;
2005 size = dm_table_get_size(t);
2008 * Wipe any geometry if the size of the table changed.
2010 if (size != get_capacity(md->disk))
2011 memset(&md->geometry, 0, sizeof(md->geometry));
2013 __set_size(md, size);
2015 dm_table_event_callback(t, event_callback, md);
2018 * The queue hasn't been stopped yet, if the old table type wasn't
2019 * for request-based during suspension. So stop it to prevent
2020 * I/O mapping before resume.
2021 * This must be done before setting the queue restrictions,
2022 * because request-based dm may be run just after the setting.
2024 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2025 stop_queue(q);
2027 __bind_mempools(md, t);
2029 write_lock_irqsave(&md->map_lock, flags);
2030 old_map = md->map;
2031 md->map = t;
2032 dm_table_set_restrictions(t, q, limits);
2033 write_unlock_irqrestore(&md->map_lock, flags);
2035 return old_map;
2039 * Returns unbound table for the caller to free.
2041 static struct dm_table *__unbind(struct mapped_device *md)
2043 struct dm_table *map = md->map;
2044 unsigned long flags;
2046 if (!map)
2047 return NULL;
2049 dm_table_event_callback(map, NULL, NULL);
2050 write_lock_irqsave(&md->map_lock, flags);
2051 md->map = NULL;
2052 write_unlock_irqrestore(&md->map_lock, flags);
2054 return map;
2058 * Constructor for a new device.
2060 int dm_create(int minor, struct mapped_device **result)
2062 struct mapped_device *md;
2064 md = alloc_dev(minor);
2065 if (!md)
2066 return -ENXIO;
2068 dm_sysfs_init(md);
2070 *result = md;
2071 return 0;
2075 * Functions to manage md->type.
2076 * All are required to hold md->type_lock.
2078 void dm_lock_md_type(struct mapped_device *md)
2080 mutex_lock(&md->type_lock);
2083 void dm_unlock_md_type(struct mapped_device *md)
2085 mutex_unlock(&md->type_lock);
2088 void dm_set_md_type(struct mapped_device *md, unsigned type)
2090 md->type = type;
2093 unsigned dm_get_md_type(struct mapped_device *md)
2095 return md->type;
2099 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2101 static int dm_init_request_based_queue(struct mapped_device *md)
2103 struct request_queue *q = NULL;
2105 if (md->queue->elevator)
2106 return 1;
2108 /* Fully initialize the queue */
2109 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2110 if (!q)
2111 return 0;
2113 md->queue = q;
2114 md->saved_make_request_fn = md->queue->make_request_fn;
2115 dm_init_md_queue(md);
2116 blk_queue_softirq_done(md->queue, dm_softirq_done);
2117 blk_queue_prep_rq(md->queue, dm_prep_fn);
2118 blk_queue_lld_busy(md->queue, dm_lld_busy);
2120 elv_register_queue(md->queue);
2122 return 1;
2126 * Setup the DM device's queue based on md's type
2128 int dm_setup_md_queue(struct mapped_device *md)
2130 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2131 !dm_init_request_based_queue(md)) {
2132 DMWARN("Cannot initialize queue for request-based mapped device");
2133 return -EINVAL;
2136 return 0;
2139 static struct mapped_device *dm_find_md(dev_t dev)
2141 struct mapped_device *md;
2142 unsigned minor = MINOR(dev);
2144 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2145 return NULL;
2147 spin_lock(&_minor_lock);
2149 md = idr_find(&_minor_idr, minor);
2150 if (md && (md == MINOR_ALLOCED ||
2151 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2152 dm_deleting_md(md) ||
2153 test_bit(DMF_FREEING, &md->flags))) {
2154 md = NULL;
2155 goto out;
2158 out:
2159 spin_unlock(&_minor_lock);
2161 return md;
2164 struct mapped_device *dm_get_md(dev_t dev)
2166 struct mapped_device *md = dm_find_md(dev);
2168 if (md)
2169 dm_get(md);
2171 return md;
2174 void *dm_get_mdptr(struct mapped_device *md)
2176 return md->interface_ptr;
2179 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2181 md->interface_ptr = ptr;
2184 void dm_get(struct mapped_device *md)
2186 atomic_inc(&md->holders);
2187 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2190 const char *dm_device_name(struct mapped_device *md)
2192 return md->name;
2194 EXPORT_SYMBOL_GPL(dm_device_name);
2196 static void __dm_destroy(struct mapped_device *md, bool wait)
2198 struct dm_table *map;
2200 might_sleep();
2202 spin_lock(&_minor_lock);
2203 map = dm_get_live_table(md);
2204 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2205 set_bit(DMF_FREEING, &md->flags);
2206 spin_unlock(&_minor_lock);
2208 if (!dm_suspended_md(md)) {
2209 dm_table_presuspend_targets(map);
2210 dm_table_postsuspend_targets(map);
2214 * Rare, but there may be I/O requests still going to complete,
2215 * for example. Wait for all references to disappear.
2216 * No one should increment the reference count of the mapped_device,
2217 * after the mapped_device state becomes DMF_FREEING.
2219 if (wait)
2220 while (atomic_read(&md->holders))
2221 msleep(1);
2222 else if (atomic_read(&md->holders))
2223 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2224 dm_device_name(md), atomic_read(&md->holders));
2226 dm_sysfs_exit(md);
2227 dm_table_put(map);
2228 dm_table_destroy(__unbind(md));
2229 free_dev(md);
2232 void dm_destroy(struct mapped_device *md)
2234 __dm_destroy(md, true);
2237 void dm_destroy_immediate(struct mapped_device *md)
2239 __dm_destroy(md, false);
2242 void dm_put(struct mapped_device *md)
2244 atomic_dec(&md->holders);
2246 EXPORT_SYMBOL_GPL(dm_put);
2248 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2250 int r = 0;
2251 DECLARE_WAITQUEUE(wait, current);
2253 add_wait_queue(&md->wait, &wait);
2255 while (1) {
2256 set_current_state(interruptible);
2258 smp_mb();
2259 if (!md_in_flight(md))
2260 break;
2262 if (interruptible == TASK_INTERRUPTIBLE &&
2263 signal_pending(current)) {
2264 r = -EINTR;
2265 break;
2268 io_schedule();
2270 set_current_state(TASK_RUNNING);
2272 remove_wait_queue(&md->wait, &wait);
2274 return r;
2278 * Process the deferred bios
2280 static void dm_wq_work(struct work_struct *work)
2282 struct mapped_device *md = container_of(work, struct mapped_device,
2283 work);
2284 struct bio *c;
2286 down_read(&md->io_lock);
2288 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2289 spin_lock_irq(&md->deferred_lock);
2290 c = bio_list_pop(&md->deferred);
2291 spin_unlock_irq(&md->deferred_lock);
2293 if (!c)
2294 break;
2296 up_read(&md->io_lock);
2298 if (dm_request_based(md))
2299 generic_make_request(c);
2300 else
2301 __split_and_process_bio(md, c);
2303 down_read(&md->io_lock);
2306 up_read(&md->io_lock);
2309 static void dm_queue_flush(struct mapped_device *md)
2311 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2312 smp_mb__after_clear_bit();
2313 queue_work(md->wq, &md->work);
2317 * Swap in a new table, returning the old one for the caller to destroy.
2319 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2321 struct dm_table *map = ERR_PTR(-EINVAL);
2322 struct queue_limits limits;
2323 int r;
2325 mutex_lock(&md->suspend_lock);
2327 /* device must be suspended */
2328 if (!dm_suspended_md(md))
2329 goto out;
2331 r = dm_calculate_queue_limits(table, &limits);
2332 if (r) {
2333 map = ERR_PTR(r);
2334 goto out;
2337 map = __bind(md, table, &limits);
2339 out:
2340 mutex_unlock(&md->suspend_lock);
2341 return map;
2345 * Functions to lock and unlock any filesystem running on the
2346 * device.
2348 static int lock_fs(struct mapped_device *md)
2350 int r;
2352 WARN_ON(md->frozen_sb);
2354 md->frozen_sb = freeze_bdev(md->bdev);
2355 if (IS_ERR(md->frozen_sb)) {
2356 r = PTR_ERR(md->frozen_sb);
2357 md->frozen_sb = NULL;
2358 return r;
2361 set_bit(DMF_FROZEN, &md->flags);
2363 return 0;
2366 static void unlock_fs(struct mapped_device *md)
2368 if (!test_bit(DMF_FROZEN, &md->flags))
2369 return;
2371 thaw_bdev(md->bdev, md->frozen_sb);
2372 md->frozen_sb = NULL;
2373 clear_bit(DMF_FROZEN, &md->flags);
2377 * We need to be able to change a mapping table under a mounted
2378 * filesystem. For example we might want to move some data in
2379 * the background. Before the table can be swapped with
2380 * dm_bind_table, dm_suspend must be called to flush any in
2381 * flight bios and ensure that any further io gets deferred.
2384 * Suspend mechanism in request-based dm.
2386 * 1. Flush all I/Os by lock_fs() if needed.
2387 * 2. Stop dispatching any I/O by stopping the request_queue.
2388 * 3. Wait for all in-flight I/Os to be completed or requeued.
2390 * To abort suspend, start the request_queue.
2392 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2394 struct dm_table *map = NULL;
2395 int r = 0;
2396 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2397 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2399 mutex_lock(&md->suspend_lock);
2401 if (dm_suspended_md(md)) {
2402 r = -EINVAL;
2403 goto out_unlock;
2406 map = dm_get_live_table(md);
2409 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2410 * This flag is cleared before dm_suspend returns.
2412 if (noflush)
2413 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2415 /* This does not get reverted if there's an error later. */
2416 dm_table_presuspend_targets(map);
2419 * Flush I/O to the device.
2420 * Any I/O submitted after lock_fs() may not be flushed.
2421 * noflush takes precedence over do_lockfs.
2422 * (lock_fs() flushes I/Os and waits for them to complete.)
2424 if (!noflush && do_lockfs) {
2425 r = lock_fs(md);
2426 if (r)
2427 goto out;
2431 * Here we must make sure that no processes are submitting requests
2432 * to target drivers i.e. no one may be executing
2433 * __split_and_process_bio. This is called from dm_request and
2434 * dm_wq_work.
2436 * To get all processes out of __split_and_process_bio in dm_request,
2437 * we take the write lock. To prevent any process from reentering
2438 * __split_and_process_bio from dm_request and quiesce the thread
2439 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2440 * flush_workqueue(md->wq).
2442 down_write(&md->io_lock);
2443 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2444 up_write(&md->io_lock);
2447 * Stop md->queue before flushing md->wq in case request-based
2448 * dm defers requests to md->wq from md->queue.
2450 if (dm_request_based(md))
2451 stop_queue(md->queue);
2453 flush_workqueue(md->wq);
2456 * At this point no more requests are entering target request routines.
2457 * We call dm_wait_for_completion to wait for all existing requests
2458 * to finish.
2460 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2462 down_write(&md->io_lock);
2463 if (noflush)
2464 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2465 up_write(&md->io_lock);
2467 /* were we interrupted ? */
2468 if (r < 0) {
2469 dm_queue_flush(md);
2471 if (dm_request_based(md))
2472 start_queue(md->queue);
2474 unlock_fs(md);
2475 goto out; /* pushback list is already flushed, so skip flush */
2479 * If dm_wait_for_completion returned 0, the device is completely
2480 * quiescent now. There is no request-processing activity. All new
2481 * requests are being added to md->deferred list.
2484 set_bit(DMF_SUSPENDED, &md->flags);
2486 dm_table_postsuspend_targets(map);
2488 out:
2489 dm_table_put(map);
2491 out_unlock:
2492 mutex_unlock(&md->suspend_lock);
2493 return r;
2496 int dm_resume(struct mapped_device *md)
2498 int r = -EINVAL;
2499 struct dm_table *map = NULL;
2501 mutex_lock(&md->suspend_lock);
2502 if (!dm_suspended_md(md))
2503 goto out;
2505 map = dm_get_live_table(md);
2506 if (!map || !dm_table_get_size(map))
2507 goto out;
2509 r = dm_table_resume_targets(map);
2510 if (r)
2511 goto out;
2513 dm_queue_flush(md);
2516 * Flushing deferred I/Os must be done after targets are resumed
2517 * so that mapping of targets can work correctly.
2518 * Request-based dm is queueing the deferred I/Os in its request_queue.
2520 if (dm_request_based(md))
2521 start_queue(md->queue);
2523 unlock_fs(md);
2525 clear_bit(DMF_SUSPENDED, &md->flags);
2527 r = 0;
2528 out:
2529 dm_table_put(map);
2530 mutex_unlock(&md->suspend_lock);
2532 return r;
2535 /*-----------------------------------------------------------------
2536 * Event notification.
2537 *---------------------------------------------------------------*/
2538 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2539 unsigned cookie)
2541 char udev_cookie[DM_COOKIE_LENGTH];
2542 char *envp[] = { udev_cookie, NULL };
2544 if (!cookie)
2545 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2546 else {
2547 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2548 DM_COOKIE_ENV_VAR_NAME, cookie);
2549 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2550 action, envp);
2554 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2556 return atomic_add_return(1, &md->uevent_seq);
2559 uint32_t dm_get_event_nr(struct mapped_device *md)
2561 return atomic_read(&md->event_nr);
2564 int dm_wait_event(struct mapped_device *md, int event_nr)
2566 return wait_event_interruptible(md->eventq,
2567 (event_nr != atomic_read(&md->event_nr)));
2570 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2572 unsigned long flags;
2574 spin_lock_irqsave(&md->uevent_lock, flags);
2575 list_add(elist, &md->uevent_list);
2576 spin_unlock_irqrestore(&md->uevent_lock, flags);
2580 * The gendisk is only valid as long as you have a reference
2581 * count on 'md'.
2583 struct gendisk *dm_disk(struct mapped_device *md)
2585 return md->disk;
2588 struct kobject *dm_kobject(struct mapped_device *md)
2590 return &md->kobj;
2594 * struct mapped_device should not be exported outside of dm.c
2595 * so use this check to verify that kobj is part of md structure
2597 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2599 struct mapped_device *md;
2601 md = container_of(kobj, struct mapped_device, kobj);
2602 if (&md->kobj != kobj)
2603 return NULL;
2605 if (test_bit(DMF_FREEING, &md->flags) ||
2606 dm_deleting_md(md))
2607 return NULL;
2609 dm_get(md);
2610 return md;
2613 int dm_suspended_md(struct mapped_device *md)
2615 return test_bit(DMF_SUSPENDED, &md->flags);
2618 int dm_suspended(struct dm_target *ti)
2620 return dm_suspended_md(dm_table_get_md(ti->table));
2622 EXPORT_SYMBOL_GPL(dm_suspended);
2624 int dm_noflush_suspending(struct dm_target *ti)
2626 return __noflush_suspending(dm_table_get_md(ti->table));
2628 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2630 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2632 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2633 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2635 if (!pools)
2636 return NULL;
2638 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2639 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2640 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2641 if (!pools->io_pool)
2642 goto free_pools_and_out;
2644 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2645 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2646 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2647 if (!pools->tio_pool)
2648 goto free_io_pool_and_out;
2650 pools->bs = bioset_create(pool_size, 0);
2651 if (!pools->bs)
2652 goto free_tio_pool_and_out;
2654 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2655 goto free_bioset_and_out;
2657 return pools;
2659 free_bioset_and_out:
2660 bioset_free(pools->bs);
2662 free_tio_pool_and_out:
2663 mempool_destroy(pools->tio_pool);
2665 free_io_pool_and_out:
2666 mempool_destroy(pools->io_pool);
2668 free_pools_and_out:
2669 kfree(pools);
2671 return NULL;
2674 void dm_free_md_mempools(struct dm_md_mempools *pools)
2676 if (!pools)
2677 return;
2679 if (pools->io_pool)
2680 mempool_destroy(pools->io_pool);
2682 if (pools->tio_pool)
2683 mempool_destroy(pools->tio_pool);
2685 if (pools->bs)
2686 bioset_free(pools->bs);
2688 kfree(pools);
2691 static const struct block_device_operations dm_blk_dops = {
2692 .open = dm_blk_open,
2693 .release = dm_blk_close,
2694 .ioctl = dm_blk_ioctl,
2695 .getgeo = dm_blk_getgeo,
2696 .owner = THIS_MODULE
2699 EXPORT_SYMBOL(dm_get_mapinfo);
2702 * module hooks
2704 module_init(dm_init);
2705 module_exit(dm_exit);
2707 module_param(major, uint, 0);
2708 MODULE_PARM_DESC(major, "The major number of the device mapper");
2709 MODULE_DESCRIPTION(DM_NAME " driver");
2710 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2711 MODULE_LICENSE("GPL");