ipv4: Pass ipv4 flow objects into fib_lookup() paths.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / fib_trie.c
blob3d28a35c2e1a6e7eef33c419c1e33809d51b2a07
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
84 #define MAX_STAT_DEPTH 32
86 #define KEYLENGTH (8*sizeof(t_key))
88 typedef unsigned int t_key;
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
129 struct rt_trie_node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
141 #endif
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
153 struct trie {
154 struct rt_trie_node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
175 static const int sync_pages = 128;
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180 static inline struct tnode *node_parent(struct rt_trie_node *node)
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
187 struct tnode *ret = node_parent(node);
189 return rcu_dereference_rtnl(ret);
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
203 BUG_ON(i >= 1U << tn->bits);
205 return tn->child[i];
208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
210 struct rt_trie_node *ret = tnode_get_child(tn, i);
212 return rcu_dereference_rtnl(ret);
215 static inline int tnode_child_length(const struct tnode *tn)
217 return 1 << tn->bits;
220 static inline t_key mask_pfx(t_key k, unsigned int l)
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
227 if (offset < KEYLENGTH)
228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 else
230 return 0;
233 static inline int tkey_equals(t_key a, t_key b)
235 return a == b;
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
248 t_key diff = a ^ b;
249 int i = offset;
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
254 i++;
255 return i;
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
263 Consider a node 'n' and its parent 'tp'.
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
270 correct key path.
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
282 Example:
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
296 n->bits = 4
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
321 static inline void check_tnode(const struct tnode *tn)
323 WARN_ON(tn && tn->pos+tn->bits > 32);
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
331 static void __alias_free_mem(struct rcu_head *head)
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
339 call_rcu(&fa->rcu, __alias_free_mem);
342 static void __leaf_free_rcu(struct rcu_head *head)
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
348 static inline void free_leaf(struct leaf *l)
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
353 static void __leaf_info_free_rcu(struct rcu_head *head)
355 kfree(container_of(head, struct leaf_info, rcu));
358 static inline void free_leaf_info(struct leaf_info *leaf)
360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
363 static struct tnode *tnode_alloc(size_t size)
365 if (size <= PAGE_SIZE)
366 return kzalloc(size, GFP_KERNEL);
367 else
368 return vzalloc(size);
371 static void __tnode_vfree(struct work_struct *arg)
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
377 static void __tnode_free_rcu(struct rcu_head *head)
379 struct tnode *tn = container_of(head, struct tnode, rcu);
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct rt_trie_node *) << tn->bits);
383 if (size <= PAGE_SIZE)
384 kfree(tn);
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
391 static inline void tnode_free(struct tnode *tn)
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
396 call_rcu(&tn->rcu, __tnode_free_rcu);
399 static void tnode_free_safe(struct tnode *tn)
401 BUG_ON(IS_LEAF(tn));
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct rt_trie_node *) << tn->bits);
408 static void tnode_free_flush(void)
410 struct tnode *tn;
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
424 static struct leaf *leaf_new(void)
426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
431 return l;
434 static struct leaf_info *leaf_info_new(int plen)
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
441 return li;
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
447 struct tnode *tn = tnode_alloc(sz);
449 if (tn) {
450 tn->parent = T_TNODE;
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct rt_trie_node) << bits);
460 return tn;
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
470 if (n == NULL || IS_LEAF(n))
471 return 0;
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct rt_trie_node *n)
479 tnode_put_child_reorg(tn, i, n, -1);
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
488 int wasfull)
490 struct rt_trie_node *chi = tn->child[i];
491 int isfull;
493 BUG_ON(i >= 1<<tn->bits);
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
501 /* update fullChildren */
502 if (wasfull == -1)
503 wasfull = tnode_full(tn, chi);
505 isfull = tnode_full(tn, n);
506 if (wasfull && !isfull)
507 tn->full_children--;
508 else if (!wasfull && isfull)
509 tn->full_children++;
511 if (n)
512 node_set_parent(n, tn);
514 rcu_assign_pointer(tn->child[i], n);
517 #define MAX_WORK 10
518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
520 int i;
521 struct tnode *old_tn;
522 int inflate_threshold_use;
523 int halve_threshold_use;
524 int max_work;
526 if (!tn)
527 return NULL;
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
534 tnode_free_safe(tn);
535 return NULL;
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
539 goto one_child;
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
566 * A clearer way to write this would be:
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 * tn->full_children;
572 * new_child_length = tnode_child_length(tn) * 2;
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
578 * ...and so on, tho it would mess up the while () loop.
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
597 * shorten again:
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
604 check_tnode(tn);
606 /* Keep root node larger */
608 if (!node_parent((struct rt_trie_node *)tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 } else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
622 old_tn = tn;
623 tn = inflate(t, tn);
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
634 check_tnode(tn);
636 /* Return if at least one inflate is run */
637 if (max_work != MAX_WORK)
638 return (struct rt_trie_node *) tn;
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct rt_trie_node *n;
668 n = tn->child[i];
669 if (!n)
670 continue;
672 /* compress one level */
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
679 return (struct rt_trie_node *) tn;
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
688 pr_debug("In inflate\n");
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
726 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
737 /* An empty child */
738 if (node == NULL)
739 continue;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
761 tnode_free_safe(inode);
762 continue;
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
785 * bit to zero.
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
791 BUG_ON(!left);
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
796 BUG_ON(!right);
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
806 tnode_free_safe(inode);
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
812 int size = tnode_child_length(tn);
813 int j;
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
819 tnode_free(tn);
821 return ERR_PTR(-ENOMEM);
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 struct tnode *oldtnode = tn;
828 struct rt_trie_node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
832 pr_debug("In halve\n");
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
856 if (!newn)
857 goto nomem;
859 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
894 int size = tnode_child_length(tn);
895 int j;
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
901 tnode_free(tn);
903 return ERR_PTR(-ENOMEM);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
920 return NULL;
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 struct leaf_info *li = find_leaf_info(l, plen);
927 if (!li)
928 return NULL;
930 return &li->falh;
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
945 last = li;
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 /* rcu_read_lock needs to be hold by caller from readside */
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
959 int pos;
960 struct tnode *tn;
961 struct rt_trie_node *n;
963 pos = 0;
964 n = rcu_dereference_rtnl(t->trie);
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
969 check_tnode(tn);
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
980 /* Case we have found a leaf. Compare prefixes */
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
985 return NULL;
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
990 int wasfull;
991 t_key cindex, key;
992 struct tnode *tp;
994 key = tn->key;
996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct rt_trie_node *)tn, wasfull);
1004 tp = node_parent((struct rt_trie_node *) tn);
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1008 tnode_free_flush();
1009 if (!tp)
1010 break;
1011 tn = tp;
1014 /* Handle last (top) tnode */
1015 if (IS_TNODE(tn))
1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019 tnode_free_flush();
1022 /* only used from updater-side */
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct rt_trie_node *n;
1029 struct leaf *l;
1030 int missbit;
1031 struct list_head *fa_head = NULL;
1032 struct leaf_info *li;
1033 t_key cindex;
1035 pos = 0;
1036 n = t->trie;
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
1040 * and we should just put our new leaf in that.
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 * not be the parent's 'pos'+'bits'!
1045 * If it does match the current key, get pos/bits from it, extract
1046 * the index from our key, push the T_TNODE and walk the tree.
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
1053 * If it doesn't, we need to replace it with a T_TNODE.
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
1059 check_tnode(tn);
1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 tp = tn;
1063 pos = tn->pos + tn->bits;
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
1069 BUG_ON(n && node_parent(n) != tn);
1070 } else
1071 break;
1075 * n ----> NULL, LEAF or TNODE
1077 * tp is n's (parent) ----> NULL or TNODE
1080 BUG_ON(tp && IS_LEAF(tp));
1082 /* Case 1: n is a leaf. Compare prefixes */
1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 l = (struct leaf *) n;
1086 li = leaf_info_new(plen);
1088 if (!li)
1089 return NULL;
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1095 l = leaf_new();
1097 if (!l)
1098 return NULL;
1100 l->key = key;
1101 li = leaf_info_new(plen);
1103 if (!li) {
1104 free_leaf(l);
1105 return NULL;
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1111 if (t->trie && n == NULL) {
1112 /* Case 2: n is NULL, and will just insert a new leaf */
1114 node_set_parent((struct rt_trie_node *)l, tp);
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1121 * Add a new tnode here
1122 * first tnode need some special handling
1125 if (tp)
1126 pos = tp->pos+tp->bits;
1127 else
1128 pos = 0;
1130 if (n) {
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
1133 } else {
1134 newpos = 0;
1135 tn = tnode_new(key, newpos, 1); /* First tnode */
1138 if (!tn) {
1139 free_leaf_info(li);
1140 free_leaf(l);
1141 return NULL;
1144 node_set_parent((struct rt_trie_node *)tn, tp);
1146 missbit = tkey_extract_bits(key, newpos, 1);
1147 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1148 put_child(t, tn, 1-missbit, n);
1150 if (tp) {
1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct rt_trie_node *)tn);
1154 } else {
1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1156 tp = tn;
1160 if (tp && tp->pos + tp->bits > 32)
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
1165 /* Rebalance the trie */
1167 trie_rebalance(t, tp);
1168 done:
1169 return fa_head;
1173 * Caller must hold RTNL.
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
1179 struct list_head *fa_head = NULL;
1180 struct fib_info *fi;
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1187 if (plen > 32)
1188 return -EINVAL;
1190 key = ntohl(cfg->fc_dst);
1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1194 mask = ntohl(inet_make_mask(plen));
1196 if (key & ~mask)
1197 return -EINVAL;
1199 key = key & mask;
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
1204 goto err;
1207 l = fib_find_node(t, key);
1208 fa = NULL;
1210 if (l) {
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
1230 err = -EEXIST;
1231 if (cfg->fc_nlflags & NLM_F_EXCL)
1232 goto out;
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1256 struct fib_info *fi_drop;
1257 u8 state;
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
1263 goto out;
1265 err = -ENOBUFS;
1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1267 if (new_fa == NULL)
1268 goto out;
1270 fi_drop = fa->fa_info;
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
1275 state = fa->fa_state;
1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1287 goto succeeded;
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1293 if (fa_match)
1294 goto out;
1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1297 fa = fa_first;
1299 err = -ENOENT;
1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1301 goto out;
1303 err = -ENOBUFS;
1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1305 if (new_fa == NULL)
1306 goto out;
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
1312 new_fa->fa_state = 0;
1314 * Insert new entry to the list.
1317 if (!fa_head) {
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
1321 goto out_free_new_fa;
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1330 &cfg->fc_nlinfo, 0);
1331 succeeded:
1332 return 0;
1334 out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
1336 out:
1337 fib_release_info(fi);
1338 err:
1339 return err;
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1344 t_key key, const struct flowi4 *flp,
1345 struct fib_result *res, int fib_flags)
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1352 struct fib_alias *fa;
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1356 if (l->key != (key & ntohl(mask)))
1357 continue;
1359 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1360 struct fib_info *fi = fa->fa_info;
1361 int nhsel, err;
1363 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1364 continue;
1365 if (fa->fa_scope < flp->flowi4_scope)
1366 continue;
1367 fib_alias_accessed(fa);
1368 err = fib_props[fa->fa_type].error;
1369 if (err) {
1370 #ifdef CONFIG_IP_FIB_TRIE_STATS
1371 t->stats.semantic_match_miss++;
1372 #endif
1373 return 1;
1375 if (fi->fib_flags & RTNH_F_DEAD)
1376 continue;
1377 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1378 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1380 if (nh->nh_flags & RTNH_F_DEAD)
1381 continue;
1382 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1383 continue;
1385 #ifdef CONFIG_IP_FIB_TRIE_STATS
1386 t->stats.semantic_match_passed++;
1387 #endif
1388 res->prefixlen = plen;
1389 res->nh_sel = nhsel;
1390 res->type = fa->fa_type;
1391 res->scope = fa->fa_scope;
1392 res->fi = fi;
1393 res->table = tb;
1394 res->fa_head = &li->falh;
1395 if (!(fib_flags & FIB_LOOKUP_NOREF))
1396 atomic_inc(&res->fi->fib_clntref);
1397 return 0;
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 t->stats.semantic_match_miss++;
1403 #endif
1406 return 1;
1409 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1410 struct fib_result *res, int fib_flags)
1412 struct trie *t = (struct trie *) tb->tb_data;
1413 int ret;
1414 struct rt_trie_node *n;
1415 struct tnode *pn;
1416 unsigned int pos, bits;
1417 t_key key = ntohl(flp->daddr);
1418 unsigned int chopped_off;
1419 t_key cindex = 0;
1420 unsigned int current_prefix_length = KEYLENGTH;
1421 struct tnode *cn;
1422 t_key pref_mismatch;
1424 rcu_read_lock();
1426 n = rcu_dereference(t->trie);
1427 if (!n)
1428 goto failed;
1430 #ifdef CONFIG_IP_FIB_TRIE_STATS
1431 t->stats.gets++;
1432 #endif
1434 /* Just a leaf? */
1435 if (IS_LEAF(n)) {
1436 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1437 goto found;
1440 pn = (struct tnode *) n;
1441 chopped_off = 0;
1443 while (pn) {
1444 pos = pn->pos;
1445 bits = pn->bits;
1447 if (!chopped_off)
1448 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1449 pos, bits);
1451 n = tnode_get_child_rcu(pn, cindex);
1453 if (n == NULL) {
1454 #ifdef CONFIG_IP_FIB_TRIE_STATS
1455 t->stats.null_node_hit++;
1456 #endif
1457 goto backtrace;
1460 if (IS_LEAF(n)) {
1461 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1462 if (ret > 0)
1463 goto backtrace;
1464 goto found;
1467 cn = (struct tnode *)n;
1470 * It's a tnode, and we can do some extra checks here if we
1471 * like, to avoid descending into a dead-end branch.
1472 * This tnode is in the parent's child array at index
1473 * key[p_pos..p_pos+p_bits] but potentially with some bits
1474 * chopped off, so in reality the index may be just a
1475 * subprefix, padded with zero at the end.
1476 * We can also take a look at any skipped bits in this
1477 * tnode - everything up to p_pos is supposed to be ok,
1478 * and the non-chopped bits of the index (se previous
1479 * paragraph) are also guaranteed ok, but the rest is
1480 * considered unknown.
1482 * The skipped bits are key[pos+bits..cn->pos].
1485 /* If current_prefix_length < pos+bits, we are already doing
1486 * actual prefix matching, which means everything from
1487 * pos+(bits-chopped_off) onward must be zero along some
1488 * branch of this subtree - otherwise there is *no* valid
1489 * prefix present. Here we can only check the skipped
1490 * bits. Remember, since we have already indexed into the
1491 * parent's child array, we know that the bits we chopped of
1492 * *are* zero.
1495 /* NOTA BENE: Checking only skipped bits
1496 for the new node here */
1498 if (current_prefix_length < pos+bits) {
1499 if (tkey_extract_bits(cn->key, current_prefix_length,
1500 cn->pos - current_prefix_length)
1501 || !(cn->child[0]))
1502 goto backtrace;
1506 * If chopped_off=0, the index is fully validated and we
1507 * only need to look at the skipped bits for this, the new,
1508 * tnode. What we actually want to do is to find out if
1509 * these skipped bits match our key perfectly, or if we will
1510 * have to count on finding a matching prefix further down,
1511 * because if we do, we would like to have some way of
1512 * verifying the existence of such a prefix at this point.
1515 /* The only thing we can do at this point is to verify that
1516 * any such matching prefix can indeed be a prefix to our
1517 * key, and if the bits in the node we are inspecting that
1518 * do not match our key are not ZERO, this cannot be true.
1519 * Thus, find out where there is a mismatch (before cn->pos)
1520 * and verify that all the mismatching bits are zero in the
1521 * new tnode's key.
1525 * Note: We aren't very concerned about the piece of
1526 * the key that precede pn->pos+pn->bits, since these
1527 * have already been checked. The bits after cn->pos
1528 * aren't checked since these are by definition
1529 * "unknown" at this point. Thus, what we want to see
1530 * is if we are about to enter the "prefix matching"
1531 * state, and in that case verify that the skipped
1532 * bits that will prevail throughout this subtree are
1533 * zero, as they have to be if we are to find a
1534 * matching prefix.
1537 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1540 * In short: If skipped bits in this node do not match
1541 * the search key, enter the "prefix matching"
1542 * state.directly.
1544 if (pref_mismatch) {
1545 int mp = KEYLENGTH - fls(pref_mismatch);
1547 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1548 goto backtrace;
1550 if (current_prefix_length >= cn->pos)
1551 current_prefix_length = mp;
1554 pn = (struct tnode *)n; /* Descend */
1555 chopped_off = 0;
1556 continue;
1558 backtrace:
1559 chopped_off++;
1561 /* As zero don't change the child key (cindex) */
1562 while ((chopped_off <= pn->bits)
1563 && !(cindex & (1<<(chopped_off-1))))
1564 chopped_off++;
1566 /* Decrease current_... with bits chopped off */
1567 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1568 current_prefix_length = pn->pos + pn->bits
1569 - chopped_off;
1572 * Either we do the actual chop off according or if we have
1573 * chopped off all bits in this tnode walk up to our parent.
1576 if (chopped_off <= pn->bits) {
1577 cindex &= ~(1 << (chopped_off-1));
1578 } else {
1579 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1580 if (!parent)
1581 goto failed;
1583 /* Get Child's index */
1584 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1585 pn = parent;
1586 chopped_off = 0;
1588 #ifdef CONFIG_IP_FIB_TRIE_STATS
1589 t->stats.backtrack++;
1590 #endif
1591 goto backtrace;
1594 failed:
1595 ret = 1;
1596 found:
1597 rcu_read_unlock();
1598 return ret;
1602 * Remove the leaf and return parent.
1604 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1606 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1608 pr_debug("entering trie_leaf_remove(%p)\n", l);
1610 if (tp) {
1611 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1612 put_child(t, (struct tnode *)tp, cindex, NULL);
1613 trie_rebalance(t, tp);
1614 } else
1615 rcu_assign_pointer(t->trie, NULL);
1617 free_leaf(l);
1621 * Caller must hold RTNL.
1623 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1625 struct trie *t = (struct trie *) tb->tb_data;
1626 u32 key, mask;
1627 int plen = cfg->fc_dst_len;
1628 u8 tos = cfg->fc_tos;
1629 struct fib_alias *fa, *fa_to_delete;
1630 struct list_head *fa_head;
1631 struct leaf *l;
1632 struct leaf_info *li;
1634 if (plen > 32)
1635 return -EINVAL;
1637 key = ntohl(cfg->fc_dst);
1638 mask = ntohl(inet_make_mask(plen));
1640 if (key & ~mask)
1641 return -EINVAL;
1643 key = key & mask;
1644 l = fib_find_node(t, key);
1646 if (!l)
1647 return -ESRCH;
1649 fa_head = get_fa_head(l, plen);
1650 fa = fib_find_alias(fa_head, tos, 0);
1652 if (!fa)
1653 return -ESRCH;
1655 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1657 fa_to_delete = NULL;
1658 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1659 list_for_each_entry_continue(fa, fa_head, fa_list) {
1660 struct fib_info *fi = fa->fa_info;
1662 if (fa->fa_tos != tos)
1663 break;
1665 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1666 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1667 fa->fa_scope == cfg->fc_scope) &&
1668 (!cfg->fc_protocol ||
1669 fi->fib_protocol == cfg->fc_protocol) &&
1670 fib_nh_match(cfg, fi) == 0) {
1671 fa_to_delete = fa;
1672 break;
1676 if (!fa_to_delete)
1677 return -ESRCH;
1679 fa = fa_to_delete;
1680 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1681 &cfg->fc_nlinfo, 0);
1683 l = fib_find_node(t, key);
1684 li = find_leaf_info(l, plen);
1686 list_del_rcu(&fa->fa_list);
1688 if (list_empty(fa_head)) {
1689 hlist_del_rcu(&li->hlist);
1690 free_leaf_info(li);
1693 if (hlist_empty(&l->list))
1694 trie_leaf_remove(t, l);
1696 if (fa->fa_state & FA_S_ACCESSED)
1697 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1699 fib_release_info(fa->fa_info);
1700 alias_free_mem_rcu(fa);
1701 return 0;
1704 static int trie_flush_list(struct list_head *head)
1706 struct fib_alias *fa, *fa_node;
1707 int found = 0;
1709 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1710 struct fib_info *fi = fa->fa_info;
1712 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1713 list_del_rcu(&fa->fa_list);
1714 fib_release_info(fa->fa_info);
1715 alias_free_mem_rcu(fa);
1716 found++;
1719 return found;
1722 static int trie_flush_leaf(struct leaf *l)
1724 int found = 0;
1725 struct hlist_head *lih = &l->list;
1726 struct hlist_node *node, *tmp;
1727 struct leaf_info *li = NULL;
1729 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1730 found += trie_flush_list(&li->falh);
1732 if (list_empty(&li->falh)) {
1733 hlist_del_rcu(&li->hlist);
1734 free_leaf_info(li);
1737 return found;
1741 * Scan for the next right leaf starting at node p->child[idx]
1742 * Since we have back pointer, no recursion necessary.
1744 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1746 do {
1747 t_key idx;
1749 if (c)
1750 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1751 else
1752 idx = 0;
1754 while (idx < 1u << p->bits) {
1755 c = tnode_get_child_rcu(p, idx++);
1756 if (!c)
1757 continue;
1759 if (IS_LEAF(c)) {
1760 prefetch(p->child[idx]);
1761 return (struct leaf *) c;
1764 /* Rescan start scanning in new node */
1765 p = (struct tnode *) c;
1766 idx = 0;
1769 /* Node empty, walk back up to parent */
1770 c = (struct rt_trie_node *) p;
1771 } while ((p = node_parent_rcu(c)) != NULL);
1773 return NULL; /* Root of trie */
1776 static struct leaf *trie_firstleaf(struct trie *t)
1778 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1780 if (!n)
1781 return NULL;
1783 if (IS_LEAF(n)) /* trie is just a leaf */
1784 return (struct leaf *) n;
1786 return leaf_walk_rcu(n, NULL);
1789 static struct leaf *trie_nextleaf(struct leaf *l)
1791 struct rt_trie_node *c = (struct rt_trie_node *) l;
1792 struct tnode *p = node_parent_rcu(c);
1794 if (!p)
1795 return NULL; /* trie with just one leaf */
1797 return leaf_walk_rcu(p, c);
1800 static struct leaf *trie_leafindex(struct trie *t, int index)
1802 struct leaf *l = trie_firstleaf(t);
1804 while (l && index-- > 0)
1805 l = trie_nextleaf(l);
1807 return l;
1812 * Caller must hold RTNL.
1814 int fib_table_flush(struct fib_table *tb)
1816 struct trie *t = (struct trie *) tb->tb_data;
1817 struct leaf *l, *ll = NULL;
1818 int found = 0;
1820 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1821 found += trie_flush_leaf(l);
1823 if (ll && hlist_empty(&ll->list))
1824 trie_leaf_remove(t, ll);
1825 ll = l;
1828 if (ll && hlist_empty(&ll->list))
1829 trie_leaf_remove(t, ll);
1831 pr_debug("trie_flush found=%d\n", found);
1832 return found;
1835 void fib_free_table(struct fib_table *tb)
1837 kfree(tb);
1840 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1841 struct fib_table *tb,
1842 struct sk_buff *skb, struct netlink_callback *cb)
1844 int i, s_i;
1845 struct fib_alias *fa;
1846 __be32 xkey = htonl(key);
1848 s_i = cb->args[5];
1849 i = 0;
1851 /* rcu_read_lock is hold by caller */
1853 list_for_each_entry_rcu(fa, fah, fa_list) {
1854 if (i < s_i) {
1855 i++;
1856 continue;
1859 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1860 cb->nlh->nlmsg_seq,
1861 RTM_NEWROUTE,
1862 tb->tb_id,
1863 fa->fa_type,
1864 fa->fa_scope,
1865 xkey,
1866 plen,
1867 fa->fa_tos,
1868 fa->fa_info, NLM_F_MULTI) < 0) {
1869 cb->args[5] = i;
1870 return -1;
1872 i++;
1874 cb->args[5] = i;
1875 return skb->len;
1878 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1879 struct sk_buff *skb, struct netlink_callback *cb)
1881 struct leaf_info *li;
1882 struct hlist_node *node;
1883 int i, s_i;
1885 s_i = cb->args[4];
1886 i = 0;
1888 /* rcu_read_lock is hold by caller */
1889 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1890 if (i < s_i) {
1891 i++;
1892 continue;
1895 if (i > s_i)
1896 cb->args[5] = 0;
1898 if (list_empty(&li->falh))
1899 continue;
1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1902 cb->args[4] = i;
1903 return -1;
1905 i++;
1908 cb->args[4] = i;
1909 return skb->len;
1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1913 struct netlink_callback *cb)
1915 struct leaf *l;
1916 struct trie *t = (struct trie *) tb->tb_data;
1917 t_key key = cb->args[2];
1918 int count = cb->args[3];
1920 rcu_read_lock();
1921 /* Dump starting at last key.
1922 * Note: 0.0.0.0/0 (ie default) is first key.
1924 if (count == 0)
1925 l = trie_firstleaf(t);
1926 else {
1927 /* Normally, continue from last key, but if that is missing
1928 * fallback to using slow rescan
1930 l = fib_find_node(t, key);
1931 if (!l)
1932 l = trie_leafindex(t, count);
1935 while (l) {
1936 cb->args[2] = l->key;
1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1938 cb->args[3] = count;
1939 rcu_read_unlock();
1940 return -1;
1943 ++count;
1944 l = trie_nextleaf(l);
1945 memset(&cb->args[4], 0,
1946 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1948 cb->args[3] = count;
1949 rcu_read_unlock();
1951 return skb->len;
1954 void __init fib_trie_init(void)
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
1958 0, SLAB_PANIC, NULL);
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 max(sizeof(struct leaf),
1962 sizeof(struct leaf_info)),
1963 0, SLAB_PANIC, NULL);
1967 struct fib_table *fib_trie_table(u32 id)
1969 struct fib_table *tb;
1970 struct trie *t;
1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1973 GFP_KERNEL);
1974 if (tb == NULL)
1975 return NULL;
1977 tb->tb_id = id;
1978 tb->tb_default = -1;
1980 t = (struct trie *) tb->tb_data;
1981 memset(t, 0, sizeof(*t));
1983 if (id == RT_TABLE_LOCAL)
1984 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1986 return tb;
1989 #ifdef CONFIG_PROC_FS
1990 /* Depth first Trie walk iterator */
1991 struct fib_trie_iter {
1992 struct seq_net_private p;
1993 struct fib_table *tb;
1994 struct tnode *tnode;
1995 unsigned int index;
1996 unsigned int depth;
1999 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2001 struct tnode *tn = iter->tnode;
2002 unsigned int cindex = iter->index;
2003 struct tnode *p;
2005 /* A single entry routing table */
2006 if (!tn)
2007 return NULL;
2009 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2010 iter->tnode, iter->index, iter->depth);
2011 rescan:
2012 while (cindex < (1<<tn->bits)) {
2013 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2015 if (n) {
2016 if (IS_LEAF(n)) {
2017 iter->tnode = tn;
2018 iter->index = cindex + 1;
2019 } else {
2020 /* push down one level */
2021 iter->tnode = (struct tnode *) n;
2022 iter->index = 0;
2023 ++iter->depth;
2025 return n;
2028 ++cindex;
2031 /* Current node exhausted, pop back up */
2032 p = node_parent_rcu((struct rt_trie_node *)tn);
2033 if (p) {
2034 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2035 tn = p;
2036 --iter->depth;
2037 goto rescan;
2040 /* got root? */
2041 return NULL;
2044 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2045 struct trie *t)
2047 struct rt_trie_node *n;
2049 if (!t)
2050 return NULL;
2052 n = rcu_dereference(t->trie);
2053 if (!n)
2054 return NULL;
2056 if (IS_TNODE(n)) {
2057 iter->tnode = (struct tnode *) n;
2058 iter->index = 0;
2059 iter->depth = 1;
2060 } else {
2061 iter->tnode = NULL;
2062 iter->index = 0;
2063 iter->depth = 0;
2066 return n;
2069 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2071 struct rt_trie_node *n;
2072 struct fib_trie_iter iter;
2074 memset(s, 0, sizeof(*s));
2076 rcu_read_lock();
2077 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2078 if (IS_LEAF(n)) {
2079 struct leaf *l = (struct leaf *)n;
2080 struct leaf_info *li;
2081 struct hlist_node *tmp;
2083 s->leaves++;
2084 s->totdepth += iter.depth;
2085 if (iter.depth > s->maxdepth)
2086 s->maxdepth = iter.depth;
2088 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2089 ++s->prefixes;
2090 } else {
2091 const struct tnode *tn = (const struct tnode *) n;
2092 int i;
2094 s->tnodes++;
2095 if (tn->bits < MAX_STAT_DEPTH)
2096 s->nodesizes[tn->bits]++;
2098 for (i = 0; i < (1<<tn->bits); i++)
2099 if (!tn->child[i])
2100 s->nullpointers++;
2103 rcu_read_unlock();
2107 * This outputs /proc/net/fib_triestats
2109 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2111 unsigned int i, max, pointers, bytes, avdepth;
2113 if (stat->leaves)
2114 avdepth = stat->totdepth*100 / stat->leaves;
2115 else
2116 avdepth = 0;
2118 seq_printf(seq, "\tAver depth: %u.%02d\n",
2119 avdepth / 100, avdepth % 100);
2120 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2122 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2123 bytes = sizeof(struct leaf) * stat->leaves;
2125 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2126 bytes += sizeof(struct leaf_info) * stat->prefixes;
2128 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2129 bytes += sizeof(struct tnode) * stat->tnodes;
2131 max = MAX_STAT_DEPTH;
2132 while (max > 0 && stat->nodesizes[max-1] == 0)
2133 max--;
2135 pointers = 0;
2136 for (i = 1; i <= max; i++)
2137 if (stat->nodesizes[i] != 0) {
2138 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2139 pointers += (1<<i) * stat->nodesizes[i];
2141 seq_putc(seq, '\n');
2142 seq_printf(seq, "\tPointers: %u\n", pointers);
2144 bytes += sizeof(struct rt_trie_node *) * pointers;
2145 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2146 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2149 #ifdef CONFIG_IP_FIB_TRIE_STATS
2150 static void trie_show_usage(struct seq_file *seq,
2151 const struct trie_use_stats *stats)
2153 seq_printf(seq, "\nCounters:\n---------\n");
2154 seq_printf(seq, "gets = %u\n", stats->gets);
2155 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2156 seq_printf(seq, "semantic match passed = %u\n",
2157 stats->semantic_match_passed);
2158 seq_printf(seq, "semantic match miss = %u\n",
2159 stats->semantic_match_miss);
2160 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2161 seq_printf(seq, "skipped node resize = %u\n\n",
2162 stats->resize_node_skipped);
2164 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2166 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2168 if (tb->tb_id == RT_TABLE_LOCAL)
2169 seq_puts(seq, "Local:\n");
2170 else if (tb->tb_id == RT_TABLE_MAIN)
2171 seq_puts(seq, "Main:\n");
2172 else
2173 seq_printf(seq, "Id %d:\n", tb->tb_id);
2177 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2179 struct net *net = (struct net *)seq->private;
2180 unsigned int h;
2182 seq_printf(seq,
2183 "Basic info: size of leaf:"
2184 " %Zd bytes, size of tnode: %Zd bytes.\n",
2185 sizeof(struct leaf), sizeof(struct tnode));
2187 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2188 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2189 struct hlist_node *node;
2190 struct fib_table *tb;
2192 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2193 struct trie *t = (struct trie *) tb->tb_data;
2194 struct trie_stat stat;
2196 if (!t)
2197 continue;
2199 fib_table_print(seq, tb);
2201 trie_collect_stats(t, &stat);
2202 trie_show_stats(seq, &stat);
2203 #ifdef CONFIG_IP_FIB_TRIE_STATS
2204 trie_show_usage(seq, &t->stats);
2205 #endif
2209 return 0;
2212 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2214 return single_open_net(inode, file, fib_triestat_seq_show);
2217 static const struct file_operations fib_triestat_fops = {
2218 .owner = THIS_MODULE,
2219 .open = fib_triestat_seq_open,
2220 .read = seq_read,
2221 .llseek = seq_lseek,
2222 .release = single_release_net,
2225 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2227 struct fib_trie_iter *iter = seq->private;
2228 struct net *net = seq_file_net(seq);
2229 loff_t idx = 0;
2230 unsigned int h;
2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 struct hlist_node *node;
2235 struct fib_table *tb;
2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2238 struct rt_trie_node *n;
2240 for (n = fib_trie_get_first(iter,
2241 (struct trie *) tb->tb_data);
2242 n; n = fib_trie_get_next(iter))
2243 if (pos == idx++) {
2244 iter->tb = tb;
2245 return n;
2250 return NULL;
2253 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2254 __acquires(RCU)
2256 rcu_read_lock();
2257 return fib_trie_get_idx(seq, *pos);
2260 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2262 struct fib_trie_iter *iter = seq->private;
2263 struct net *net = seq_file_net(seq);
2264 struct fib_table *tb = iter->tb;
2265 struct hlist_node *tb_node;
2266 unsigned int h;
2267 struct rt_trie_node *n;
2269 ++*pos;
2270 /* next node in same table */
2271 n = fib_trie_get_next(iter);
2272 if (n)
2273 return n;
2275 /* walk rest of this hash chain */
2276 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2277 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2278 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2279 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2280 if (n)
2281 goto found;
2284 /* new hash chain */
2285 while (++h < FIB_TABLE_HASHSZ) {
2286 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2287 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2288 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2289 if (n)
2290 goto found;
2293 return NULL;
2295 found:
2296 iter->tb = tb;
2297 return n;
2300 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2301 __releases(RCU)
2303 rcu_read_unlock();
2306 static void seq_indent(struct seq_file *seq, int n)
2308 while (n-- > 0)
2309 seq_puts(seq, " ");
2312 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2314 switch (s) {
2315 case RT_SCOPE_UNIVERSE: return "universe";
2316 case RT_SCOPE_SITE: return "site";
2317 case RT_SCOPE_LINK: return "link";
2318 case RT_SCOPE_HOST: return "host";
2319 case RT_SCOPE_NOWHERE: return "nowhere";
2320 default:
2321 snprintf(buf, len, "scope=%d", s);
2322 return buf;
2326 static const char *const rtn_type_names[__RTN_MAX] = {
2327 [RTN_UNSPEC] = "UNSPEC",
2328 [RTN_UNICAST] = "UNICAST",
2329 [RTN_LOCAL] = "LOCAL",
2330 [RTN_BROADCAST] = "BROADCAST",
2331 [RTN_ANYCAST] = "ANYCAST",
2332 [RTN_MULTICAST] = "MULTICAST",
2333 [RTN_BLACKHOLE] = "BLACKHOLE",
2334 [RTN_UNREACHABLE] = "UNREACHABLE",
2335 [RTN_PROHIBIT] = "PROHIBIT",
2336 [RTN_THROW] = "THROW",
2337 [RTN_NAT] = "NAT",
2338 [RTN_XRESOLVE] = "XRESOLVE",
2341 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2343 if (t < __RTN_MAX && rtn_type_names[t])
2344 return rtn_type_names[t];
2345 snprintf(buf, len, "type %u", t);
2346 return buf;
2349 /* Pretty print the trie */
2350 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2352 const struct fib_trie_iter *iter = seq->private;
2353 struct rt_trie_node *n = v;
2355 if (!node_parent_rcu(n))
2356 fib_table_print(seq, iter->tb);
2358 if (IS_TNODE(n)) {
2359 struct tnode *tn = (struct tnode *) n;
2360 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2362 seq_indent(seq, iter->depth-1);
2363 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2364 &prf, tn->pos, tn->bits, tn->full_children,
2365 tn->empty_children);
2367 } else {
2368 struct leaf *l = (struct leaf *) n;
2369 struct leaf_info *li;
2370 struct hlist_node *node;
2371 __be32 val = htonl(l->key);
2373 seq_indent(seq, iter->depth);
2374 seq_printf(seq, " |-- %pI4\n", &val);
2376 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2377 struct fib_alias *fa;
2379 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2380 char buf1[32], buf2[32];
2382 seq_indent(seq, iter->depth+1);
2383 seq_printf(seq, " /%d %s %s", li->plen,
2384 rtn_scope(buf1, sizeof(buf1),
2385 fa->fa_scope),
2386 rtn_type(buf2, sizeof(buf2),
2387 fa->fa_type));
2388 if (fa->fa_tos)
2389 seq_printf(seq, " tos=%d", fa->fa_tos);
2390 seq_putc(seq, '\n');
2395 return 0;
2398 static const struct seq_operations fib_trie_seq_ops = {
2399 .start = fib_trie_seq_start,
2400 .next = fib_trie_seq_next,
2401 .stop = fib_trie_seq_stop,
2402 .show = fib_trie_seq_show,
2405 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2407 return seq_open_net(inode, file, &fib_trie_seq_ops,
2408 sizeof(struct fib_trie_iter));
2411 static const struct file_operations fib_trie_fops = {
2412 .owner = THIS_MODULE,
2413 .open = fib_trie_seq_open,
2414 .read = seq_read,
2415 .llseek = seq_lseek,
2416 .release = seq_release_net,
2419 struct fib_route_iter {
2420 struct seq_net_private p;
2421 struct trie *main_trie;
2422 loff_t pos;
2423 t_key key;
2426 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2428 struct leaf *l = NULL;
2429 struct trie *t = iter->main_trie;
2431 /* use cache location of last found key */
2432 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2433 pos -= iter->pos;
2434 else {
2435 iter->pos = 0;
2436 l = trie_firstleaf(t);
2439 while (l && pos-- > 0) {
2440 iter->pos++;
2441 l = trie_nextleaf(l);
2444 if (l)
2445 iter->key = pos; /* remember it */
2446 else
2447 iter->pos = 0; /* forget it */
2449 return l;
2452 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2453 __acquires(RCU)
2455 struct fib_route_iter *iter = seq->private;
2456 struct fib_table *tb;
2458 rcu_read_lock();
2459 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2460 if (!tb)
2461 return NULL;
2463 iter->main_trie = (struct trie *) tb->tb_data;
2464 if (*pos == 0)
2465 return SEQ_START_TOKEN;
2466 else
2467 return fib_route_get_idx(iter, *pos - 1);
2470 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2472 struct fib_route_iter *iter = seq->private;
2473 struct leaf *l = v;
2475 ++*pos;
2476 if (v == SEQ_START_TOKEN) {
2477 iter->pos = 0;
2478 l = trie_firstleaf(iter->main_trie);
2479 } else {
2480 iter->pos++;
2481 l = trie_nextleaf(l);
2484 if (l)
2485 iter->key = l->key;
2486 else
2487 iter->pos = 0;
2488 return l;
2491 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2492 __releases(RCU)
2494 rcu_read_unlock();
2497 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2499 unsigned int flags = 0;
2501 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2502 flags = RTF_REJECT;
2503 if (fi && fi->fib_nh->nh_gw)
2504 flags |= RTF_GATEWAY;
2505 if (mask == htonl(0xFFFFFFFF))
2506 flags |= RTF_HOST;
2507 flags |= RTF_UP;
2508 return flags;
2512 * This outputs /proc/net/route.
2513 * The format of the file is not supposed to be changed
2514 * and needs to be same as fib_hash output to avoid breaking
2515 * legacy utilities
2517 static int fib_route_seq_show(struct seq_file *seq, void *v)
2519 struct leaf *l = v;
2520 struct leaf_info *li;
2521 struct hlist_node *node;
2523 if (v == SEQ_START_TOKEN) {
2524 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2525 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2526 "\tWindow\tIRTT");
2527 return 0;
2530 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2531 struct fib_alias *fa;
2532 __be32 mask, prefix;
2534 mask = inet_make_mask(li->plen);
2535 prefix = htonl(l->key);
2537 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2538 const struct fib_info *fi = fa->fa_info;
2539 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2540 int len;
2542 if (fa->fa_type == RTN_BROADCAST
2543 || fa->fa_type == RTN_MULTICAST)
2544 continue;
2546 if (fi)
2547 seq_printf(seq,
2548 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 "%d\t%08X\t%d\t%u\t%u%n",
2550 fi->fib_dev ? fi->fib_dev->name : "*",
2551 prefix,
2552 fi->fib_nh->nh_gw, flags, 0, 0,
2553 fi->fib_priority,
2554 mask,
2555 (fi->fib_advmss ?
2556 fi->fib_advmss + 40 : 0),
2557 fi->fib_window,
2558 fi->fib_rtt >> 3, &len);
2559 else
2560 seq_printf(seq,
2561 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
2563 prefix, 0, flags, 0, 0, 0,
2564 mask, 0, 0, 0, &len);
2566 seq_printf(seq, "%*s\n", 127 - len, "");
2570 return 0;
2573 static const struct seq_operations fib_route_seq_ops = {
2574 .start = fib_route_seq_start,
2575 .next = fib_route_seq_next,
2576 .stop = fib_route_seq_stop,
2577 .show = fib_route_seq_show,
2580 static int fib_route_seq_open(struct inode *inode, struct file *file)
2582 return seq_open_net(inode, file, &fib_route_seq_ops,
2583 sizeof(struct fib_route_iter));
2586 static const struct file_operations fib_route_fops = {
2587 .owner = THIS_MODULE,
2588 .open = fib_route_seq_open,
2589 .read = seq_read,
2590 .llseek = seq_lseek,
2591 .release = seq_release_net,
2594 int __net_init fib_proc_init(struct net *net)
2596 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2597 goto out1;
2599 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2600 &fib_triestat_fops))
2601 goto out2;
2603 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2604 goto out3;
2606 return 0;
2608 out3:
2609 proc_net_remove(net, "fib_triestat");
2610 out2:
2611 proc_net_remove(net, "fib_trie");
2612 out1:
2613 return -ENOMEM;
2616 void __net_exit fib_proc_exit(struct net *net)
2618 proc_net_remove(net, "fib_trie");
2619 proc_net_remove(net, "fib_triestat");
2620 proc_net_remove(net, "route");
2623 #endif /* CONFIG_PROC_FS */