2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
50 #define DRV_NAME "skge"
51 #define DRV_VERSION "1.13"
53 #define DEFAULT_TX_RING_SIZE 128
54 #define DEFAULT_RX_RING_SIZE 512
55 #define MAX_TX_RING_SIZE 1024
56 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
57 #define MAX_RX_RING_SIZE 4096
58 #define RX_COPY_THRESHOLD 128
59 #define RX_BUF_SIZE 1536
60 #define PHY_RETRIES 1000
61 #define ETH_JUMBO_MTU 9000
62 #define TX_WATCHDOG (5 * HZ)
63 #define NAPI_WEIGHT 64
67 #define SKGE_EEPROM_MAGIC 0x9933aabb
70 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
71 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_VERSION
);
75 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
76 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
79 static int debug
= -1; /* defaults above */
80 module_param(debug
, int, 0);
81 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
83 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
84 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
88 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
89 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
90 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
91 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
92 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
93 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
94 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
97 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
99 static int skge_up(struct net_device
*dev
);
100 static int skge_down(struct net_device
*dev
);
101 static void skge_phy_reset(struct skge_port
*skge
);
102 static void skge_tx_clean(struct net_device
*dev
);
103 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
104 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
105 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
106 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
107 static void yukon_init(struct skge_hw
*hw
, int port
);
108 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
109 static void genesis_link_up(struct skge_port
*skge
);
110 static void skge_set_multicast(struct net_device
*dev
);
112 /* Avoid conditionals by using array */
113 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
114 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
115 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
116 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
117 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
118 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
120 static int skge_get_regs_len(struct net_device
*dev
)
126 * Returns copy of whole control register region
127 * Note: skip RAM address register because accessing it will
130 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
133 const struct skge_port
*skge
= netdev_priv(dev
);
134 const void __iomem
*io
= skge
->hw
->regs
;
137 memset(p
, 0, regs
->len
);
138 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
140 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
141 regs
->len
- B3_RI_WTO_R1
);
144 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
145 static u32
wol_supported(const struct skge_hw
*hw
)
147 if (hw
->chip_id
== CHIP_ID_GENESIS
)
150 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
153 return WAKE_MAGIC
| WAKE_PHY
;
156 static void skge_wol_init(struct skge_port
*skge
)
158 struct skge_hw
*hw
= skge
->hw
;
159 int port
= skge
->port
;
162 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
163 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
166 skge_write8(hw
, B0_POWER_CTRL
,
167 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
169 /* WA code for COMA mode -- clear PHY reset */
170 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
171 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
172 u32 reg
= skge_read32(hw
, B2_GP_IO
);
175 skge_write32(hw
, B2_GP_IO
, reg
);
178 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
180 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
181 GPC_ANEG_1
| GPC_RST_SET
);
183 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
185 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
186 GPC_ANEG_1
| GPC_RST_CLR
);
188 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
190 /* Force to 10/100 skge_reset will re-enable on resume */
191 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
192 (PHY_AN_100FULL
| PHY_AN_100HALF
|
193 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
195 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
196 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
197 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
198 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
201 /* Set GMAC to no flow control and auto update for speed/duplex */
202 gma_write16(hw
, port
, GM_GP_CTRL
,
203 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
204 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
206 /* Set WOL address */
207 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
208 skge
->netdev
->dev_addr
, ETH_ALEN
);
210 /* Turn on appropriate WOL control bits */
211 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
213 if (skge
->wol
& WAKE_PHY
)
214 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
216 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
218 if (skge
->wol
& WAKE_MAGIC
)
219 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
221 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
223 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
224 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
227 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
230 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
232 struct skge_port
*skge
= netdev_priv(dev
);
234 wol
->supported
= wol_supported(skge
->hw
);
235 wol
->wolopts
= skge
->wol
;
238 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
240 struct skge_port
*skge
= netdev_priv(dev
);
241 struct skge_hw
*hw
= skge
->hw
;
243 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
244 !device_can_wakeup(&hw
->pdev
->dev
))
247 skge
->wol
= wol
->wolopts
;
249 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
254 /* Determine supported/advertised modes based on hardware.
255 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
257 static u32
skge_supported_modes(const struct skge_hw
*hw
)
262 supported
= (SUPPORTED_10baseT_Half
|
263 SUPPORTED_10baseT_Full
|
264 SUPPORTED_100baseT_Half
|
265 SUPPORTED_100baseT_Full
|
266 SUPPORTED_1000baseT_Half
|
267 SUPPORTED_1000baseT_Full
|
271 if (hw
->chip_id
== CHIP_ID_GENESIS
)
272 supported
&= ~(SUPPORTED_10baseT_Half
|
273 SUPPORTED_10baseT_Full
|
274 SUPPORTED_100baseT_Half
|
275 SUPPORTED_100baseT_Full
);
277 else if (hw
->chip_id
== CHIP_ID_YUKON
)
278 supported
&= ~SUPPORTED_1000baseT_Half
;
280 supported
= (SUPPORTED_1000baseT_Full
|
281 SUPPORTED_1000baseT_Half
|
288 static int skge_get_settings(struct net_device
*dev
,
289 struct ethtool_cmd
*ecmd
)
291 struct skge_port
*skge
= netdev_priv(dev
);
292 struct skge_hw
*hw
= skge
->hw
;
294 ecmd
->transceiver
= XCVR_INTERNAL
;
295 ecmd
->supported
= skge_supported_modes(hw
);
298 ecmd
->port
= PORT_TP
;
299 ecmd
->phy_address
= hw
->phy_addr
;
301 ecmd
->port
= PORT_FIBRE
;
303 ecmd
->advertising
= skge
->advertising
;
304 ecmd
->autoneg
= skge
->autoneg
;
305 ecmd
->speed
= skge
->speed
;
306 ecmd
->duplex
= skge
->duplex
;
310 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
312 struct skge_port
*skge
= netdev_priv(dev
);
313 const struct skge_hw
*hw
= skge
->hw
;
314 u32 supported
= skge_supported_modes(hw
);
317 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
318 ecmd
->advertising
= supported
;
324 switch (ecmd
->speed
) {
326 if (ecmd
->duplex
== DUPLEX_FULL
)
327 setting
= SUPPORTED_1000baseT_Full
;
328 else if (ecmd
->duplex
== DUPLEX_HALF
)
329 setting
= SUPPORTED_1000baseT_Half
;
334 if (ecmd
->duplex
== DUPLEX_FULL
)
335 setting
= SUPPORTED_100baseT_Full
;
336 else if (ecmd
->duplex
== DUPLEX_HALF
)
337 setting
= SUPPORTED_100baseT_Half
;
343 if (ecmd
->duplex
== DUPLEX_FULL
)
344 setting
= SUPPORTED_10baseT_Full
;
345 else if (ecmd
->duplex
== DUPLEX_HALF
)
346 setting
= SUPPORTED_10baseT_Half
;
354 if ((setting
& supported
) == 0)
357 skge
->speed
= ecmd
->speed
;
358 skge
->duplex
= ecmd
->duplex
;
361 skge
->autoneg
= ecmd
->autoneg
;
362 skge
->advertising
= ecmd
->advertising
;
364 if (netif_running(dev
)) {
376 static void skge_get_drvinfo(struct net_device
*dev
,
377 struct ethtool_drvinfo
*info
)
379 struct skge_port
*skge
= netdev_priv(dev
);
381 strcpy(info
->driver
, DRV_NAME
);
382 strcpy(info
->version
, DRV_VERSION
);
383 strcpy(info
->fw_version
, "N/A");
384 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
387 static const struct skge_stat
{
388 char name
[ETH_GSTRING_LEN
];
392 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
393 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
395 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
396 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
397 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
398 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
399 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
400 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
401 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
402 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
404 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
405 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
406 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
407 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
408 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
409 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
411 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
412 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
413 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
414 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
415 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
418 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
422 return ARRAY_SIZE(skge_stats
);
428 static void skge_get_ethtool_stats(struct net_device
*dev
,
429 struct ethtool_stats
*stats
, u64
*data
)
431 struct skge_port
*skge
= netdev_priv(dev
);
433 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
434 genesis_get_stats(skge
, data
);
436 yukon_get_stats(skge
, data
);
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
443 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 u64 data
[ARRAY_SIZE(skge_stats
)];
448 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
449 genesis_get_stats(skge
, data
);
451 yukon_get_stats(skge
, data
);
453 dev
->stats
.tx_bytes
= data
[0];
454 dev
->stats
.rx_bytes
= data
[1];
455 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
456 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
457 dev
->stats
.multicast
= data
[3] + data
[5];
458 dev
->stats
.collisions
= data
[10];
459 dev
->stats
.tx_aborted_errors
= data
[12];
464 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
470 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
471 memcpy(data
+ i
* ETH_GSTRING_LEN
,
472 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
477 static void skge_get_ring_param(struct net_device
*dev
,
478 struct ethtool_ringparam
*p
)
480 struct skge_port
*skge
= netdev_priv(dev
);
482 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
483 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
484 p
->rx_mini_max_pending
= 0;
485 p
->rx_jumbo_max_pending
= 0;
487 p
->rx_pending
= skge
->rx_ring
.count
;
488 p
->tx_pending
= skge
->tx_ring
.count
;
489 p
->rx_mini_pending
= 0;
490 p
->rx_jumbo_pending
= 0;
493 static int skge_set_ring_param(struct net_device
*dev
,
494 struct ethtool_ringparam
*p
)
496 struct skge_port
*skge
= netdev_priv(dev
);
499 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
500 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
503 skge
->rx_ring
.count
= p
->rx_pending
;
504 skge
->tx_ring
.count
= p
->tx_pending
;
506 if (netif_running(dev
)) {
516 static u32
skge_get_msglevel(struct net_device
*netdev
)
518 struct skge_port
*skge
= netdev_priv(netdev
);
519 return skge
->msg_enable
;
522 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
524 struct skge_port
*skge
= netdev_priv(netdev
);
525 skge
->msg_enable
= value
;
528 static int skge_nway_reset(struct net_device
*dev
)
530 struct skge_port
*skge
= netdev_priv(dev
);
532 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
535 skge_phy_reset(skge
);
539 static int skge_set_sg(struct net_device
*dev
, u32 data
)
541 struct skge_port
*skge
= netdev_priv(dev
);
542 struct skge_hw
*hw
= skge
->hw
;
544 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
546 return ethtool_op_set_sg(dev
, data
);
549 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
551 struct skge_port
*skge
= netdev_priv(dev
);
552 struct skge_hw
*hw
= skge
->hw
;
554 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
557 return ethtool_op_set_tx_csum(dev
, data
);
560 static u32
skge_get_rx_csum(struct net_device
*dev
)
562 struct skge_port
*skge
= netdev_priv(dev
);
564 return skge
->rx_csum
;
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
570 struct skge_port
*skge
= netdev_priv(dev
);
572 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
575 skge
->rx_csum
= data
;
579 static void skge_get_pauseparam(struct net_device
*dev
,
580 struct ethtool_pauseparam
*ecmd
)
582 struct skge_port
*skge
= netdev_priv(dev
);
584 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
585 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
586 ecmd
->tx_pause
= (ecmd
->rx_pause
||
587 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
589 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
592 static int skge_set_pauseparam(struct net_device
*dev
,
593 struct ethtool_pauseparam
*ecmd
)
595 struct skge_port
*skge
= netdev_priv(dev
);
596 struct ethtool_pauseparam old
;
599 skge_get_pauseparam(dev
, &old
);
601 if (ecmd
->autoneg
!= old
.autoneg
)
602 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
604 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
605 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
606 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
607 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
608 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
609 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
611 skge
->flow_control
= FLOW_MODE_NONE
;
614 if (netif_running(dev
)) {
626 /* Chip internal frequency for clock calculations */
627 static inline u32
hwkhz(const struct skge_hw
*hw
)
629 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
632 /* Chip HZ to microseconds */
633 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
635 return (ticks
* 1000) / hwkhz(hw
);
638 /* Microseconds to chip HZ */
639 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
641 return hwkhz(hw
) * usec
/ 1000;
644 static int skge_get_coalesce(struct net_device
*dev
,
645 struct ethtool_coalesce
*ecmd
)
647 struct skge_port
*skge
= netdev_priv(dev
);
648 struct skge_hw
*hw
= skge
->hw
;
649 int port
= skge
->port
;
651 ecmd
->rx_coalesce_usecs
= 0;
652 ecmd
->tx_coalesce_usecs
= 0;
654 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
655 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
656 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
658 if (msk
& rxirqmask
[port
])
659 ecmd
->rx_coalesce_usecs
= delay
;
660 if (msk
& txirqmask
[port
])
661 ecmd
->tx_coalesce_usecs
= delay
;
667 /* Note: interrupt timer is per board, but can turn on/off per port */
668 static int skge_set_coalesce(struct net_device
*dev
,
669 struct ethtool_coalesce
*ecmd
)
671 struct skge_port
*skge
= netdev_priv(dev
);
672 struct skge_hw
*hw
= skge
->hw
;
673 int port
= skge
->port
;
674 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
677 if (ecmd
->rx_coalesce_usecs
== 0)
678 msk
&= ~rxirqmask
[port
];
679 else if (ecmd
->rx_coalesce_usecs
< 25 ||
680 ecmd
->rx_coalesce_usecs
> 33333)
683 msk
|= rxirqmask
[port
];
684 delay
= ecmd
->rx_coalesce_usecs
;
687 if (ecmd
->tx_coalesce_usecs
== 0)
688 msk
&= ~txirqmask
[port
];
689 else if (ecmd
->tx_coalesce_usecs
< 25 ||
690 ecmd
->tx_coalesce_usecs
> 33333)
693 msk
|= txirqmask
[port
];
694 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
697 skge_write32(hw
, B2_IRQM_MSK
, msk
);
699 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
701 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
702 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
707 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
708 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
710 struct skge_hw
*hw
= skge
->hw
;
711 int port
= skge
->port
;
713 spin_lock_bh(&hw
->phy_lock
);
714 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
717 if (hw
->phy_type
== SK_PHY_BCOM
)
718 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
720 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
721 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
723 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
724 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
725 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
729 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
730 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
732 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
733 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
738 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
739 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
740 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
742 if (hw
->phy_type
== SK_PHY_BCOM
)
743 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
745 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
746 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
747 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
754 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
755 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
756 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
757 PHY_M_LED_MO_10(MO_LED_OFF
) |
758 PHY_M_LED_MO_100(MO_LED_OFF
) |
759 PHY_M_LED_MO_1000(MO_LED_OFF
) |
760 PHY_M_LED_MO_RX(MO_LED_OFF
));
763 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
764 PHY_M_LED_PULS_DUR(PULS_170MS
) |
765 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
769 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
770 PHY_M_LED_MO_RX(MO_LED_OFF
) |
771 (skge
->speed
== SPEED_100
?
772 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
775 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
776 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
777 PHY_M_LED_MO_DUP(MO_LED_ON
) |
778 PHY_M_LED_MO_10(MO_LED_ON
) |
779 PHY_M_LED_MO_100(MO_LED_ON
) |
780 PHY_M_LED_MO_1000(MO_LED_ON
) |
781 PHY_M_LED_MO_RX(MO_LED_ON
));
784 spin_unlock_bh(&hw
->phy_lock
);
787 /* blink LED's for finding board */
788 static int skge_phys_id(struct net_device
*dev
, u32 data
)
790 struct skge_port
*skge
= netdev_priv(dev
);
792 enum led_mode mode
= LED_MODE_TST
;
794 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
795 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
800 skge_led(skge
, mode
);
801 mode
^= LED_MODE_TST
;
803 if (msleep_interruptible(BLINK_MS
))
808 /* back to regular LED state */
809 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
814 static int skge_get_eeprom_len(struct net_device
*dev
)
816 struct skge_port
*skge
= netdev_priv(dev
);
819 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
820 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
823 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
827 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
830 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
831 } while (!(offset
& PCI_VPD_ADDR_F
));
833 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
837 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
839 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
840 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
841 offset
| PCI_VPD_ADDR_F
);
844 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
845 } while (offset
& PCI_VPD_ADDR_F
);
848 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
851 struct skge_port
*skge
= netdev_priv(dev
);
852 struct pci_dev
*pdev
= skge
->hw
->pdev
;
853 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
854 int length
= eeprom
->len
;
855 u16 offset
= eeprom
->offset
;
860 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
863 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
864 int n
= min_t(int, length
, sizeof(val
));
866 memcpy(data
, &val
, n
);
874 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
877 struct skge_port
*skge
= netdev_priv(dev
);
878 struct pci_dev
*pdev
= skge
->hw
->pdev
;
879 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
880 int length
= eeprom
->len
;
881 u16 offset
= eeprom
->offset
;
886 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
891 int n
= min_t(int, length
, sizeof(val
));
894 val
= skge_vpd_read(pdev
, cap
, offset
);
895 memcpy(&val
, data
, n
);
897 skge_vpd_write(pdev
, cap
, offset
, val
);
906 static const struct ethtool_ops skge_ethtool_ops
= {
907 .get_settings
= skge_get_settings
,
908 .set_settings
= skge_set_settings
,
909 .get_drvinfo
= skge_get_drvinfo
,
910 .get_regs_len
= skge_get_regs_len
,
911 .get_regs
= skge_get_regs
,
912 .get_wol
= skge_get_wol
,
913 .set_wol
= skge_set_wol
,
914 .get_msglevel
= skge_get_msglevel
,
915 .set_msglevel
= skge_set_msglevel
,
916 .nway_reset
= skge_nway_reset
,
917 .get_link
= ethtool_op_get_link
,
918 .get_eeprom_len
= skge_get_eeprom_len
,
919 .get_eeprom
= skge_get_eeprom
,
920 .set_eeprom
= skge_set_eeprom
,
921 .get_ringparam
= skge_get_ring_param
,
922 .set_ringparam
= skge_set_ring_param
,
923 .get_pauseparam
= skge_get_pauseparam
,
924 .set_pauseparam
= skge_set_pauseparam
,
925 .get_coalesce
= skge_get_coalesce
,
926 .set_coalesce
= skge_set_coalesce
,
927 .set_sg
= skge_set_sg
,
928 .set_tx_csum
= skge_set_tx_csum
,
929 .get_rx_csum
= skge_get_rx_csum
,
930 .set_rx_csum
= skge_set_rx_csum
,
931 .get_strings
= skge_get_strings
,
932 .phys_id
= skge_phys_id
,
933 .get_sset_count
= skge_get_sset_count
,
934 .get_ethtool_stats
= skge_get_ethtool_stats
,
938 * Allocate ring elements and chain them together
939 * One-to-one association of board descriptors with ring elements
941 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
943 struct skge_tx_desc
*d
;
944 struct skge_element
*e
;
947 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
951 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
953 if (i
== ring
->count
- 1) {
954 e
->next
= ring
->start
;
955 d
->next_offset
= base
;
958 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
961 ring
->to_use
= ring
->to_clean
= ring
->start
;
966 /* Allocate and setup a new buffer for receiving */
967 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
968 struct sk_buff
*skb
, unsigned int bufsize
)
970 struct skge_rx_desc
*rd
= e
->desc
;
973 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
977 rd
->dma_hi
= map
>> 32;
979 rd
->csum1_start
= ETH_HLEN
;
980 rd
->csum2_start
= ETH_HLEN
;
986 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
987 dma_unmap_addr_set(e
, mapaddr
, map
);
988 dma_unmap_len_set(e
, maplen
, bufsize
);
991 /* Resume receiving using existing skb,
992 * Note: DMA address is not changed by chip.
993 * MTU not changed while receiver active.
995 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
997 struct skge_rx_desc
*rd
= e
->desc
;
1000 rd
->csum2_start
= ETH_HLEN
;
1004 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1008 /* Free all buffers in receive ring, assumes receiver stopped */
1009 static void skge_rx_clean(struct skge_port
*skge
)
1011 struct skge_hw
*hw
= skge
->hw
;
1012 struct skge_ring
*ring
= &skge
->rx_ring
;
1013 struct skge_element
*e
;
1017 struct skge_rx_desc
*rd
= e
->desc
;
1020 pci_unmap_single(hw
->pdev
,
1021 dma_unmap_addr(e
, mapaddr
),
1022 dma_unmap_len(e
, maplen
),
1023 PCI_DMA_FROMDEVICE
);
1024 dev_kfree_skb(e
->skb
);
1027 } while ((e
= e
->next
) != ring
->start
);
1031 /* Allocate buffers for receive ring
1032 * For receive: to_clean is next received frame.
1034 static int skge_rx_fill(struct net_device
*dev
)
1036 struct skge_port
*skge
= netdev_priv(dev
);
1037 struct skge_ring
*ring
= &skge
->rx_ring
;
1038 struct skge_element
*e
;
1042 struct sk_buff
*skb
;
1044 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1049 skb_reserve(skb
, NET_IP_ALIGN
);
1050 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1051 } while ((e
= e
->next
) != ring
->start
);
1053 ring
->to_clean
= ring
->start
;
1057 static const char *skge_pause(enum pause_status status
)
1060 case FLOW_STAT_NONE
:
1062 case FLOW_STAT_REM_SEND
:
1064 case FLOW_STAT_LOC_SEND
:
1066 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1069 return "indeterminated";
1074 static void skge_link_up(struct skge_port
*skge
)
1076 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1077 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1079 netif_carrier_on(skge
->netdev
);
1080 netif_wake_queue(skge
->netdev
);
1082 netif_info(skge
, link
, skge
->netdev
,
1083 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1085 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1086 skge_pause(skge
->flow_status
));
1089 static void skge_link_down(struct skge_port
*skge
)
1091 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1092 netif_carrier_off(skge
->netdev
);
1093 netif_stop_queue(skge
->netdev
);
1095 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1099 static void xm_link_down(struct skge_hw
*hw
, int port
)
1101 struct net_device
*dev
= hw
->dev
[port
];
1102 struct skge_port
*skge
= netdev_priv(dev
);
1104 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1106 if (netif_carrier_ok(dev
))
1107 skge_link_down(skge
);
1110 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1114 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1115 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1117 if (hw
->phy_type
== SK_PHY_XMAC
)
1120 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1121 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1128 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1133 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1136 if (__xm_phy_read(hw
, port
, reg
, &v
))
1137 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1141 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1145 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1146 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1147 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1154 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1155 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1156 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1163 static void genesis_init(struct skge_hw
*hw
)
1165 /* set blink source counter */
1166 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1167 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1169 /* configure mac arbiter */
1170 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1172 /* configure mac arbiter timeout values */
1173 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1174 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1175 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1176 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1178 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1179 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1180 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1181 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1183 /* configure packet arbiter timeout */
1184 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1185 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1186 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1187 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1188 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1191 static void genesis_reset(struct skge_hw
*hw
, int port
)
1193 const u8 zero
[8] = { 0 };
1196 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1198 /* reset the statistics module */
1199 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1200 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1201 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1202 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1203 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1205 /* disable Broadcom PHY IRQ */
1206 if (hw
->phy_type
== SK_PHY_BCOM
)
1207 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1209 xm_outhash(hw
, port
, XM_HSM
, zero
);
1211 /* Flush TX and RX fifo */
1212 reg
= xm_read32(hw
, port
, XM_MODE
);
1213 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1214 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1218 /* Convert mode to MII values */
1219 static const u16 phy_pause_map
[] = {
1220 [FLOW_MODE_NONE
] = 0,
1221 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1222 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1223 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1226 /* special defines for FIBER (88E1011S only) */
1227 static const u16 fiber_pause_map
[] = {
1228 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1229 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1230 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1231 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1235 /* Check status of Broadcom phy link */
1236 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1238 struct net_device
*dev
= hw
->dev
[port
];
1239 struct skge_port
*skge
= netdev_priv(dev
);
1242 /* read twice because of latch */
1243 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1244 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1246 if ((status
& PHY_ST_LSYNC
) == 0) {
1247 xm_link_down(hw
, port
);
1251 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1254 if (!(status
& PHY_ST_AN_OVER
))
1257 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1258 if (lpa
& PHY_B_AN_RF
) {
1259 netdev_notice(dev
, "remote fault\n");
1263 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1265 /* Check Duplex mismatch */
1266 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1267 case PHY_B_RES_1000FD
:
1268 skge
->duplex
= DUPLEX_FULL
;
1270 case PHY_B_RES_1000HD
:
1271 skge
->duplex
= DUPLEX_HALF
;
1274 netdev_notice(dev
, "duplex mismatch\n");
1278 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1279 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1280 case PHY_B_AS_PAUSE_MSK
:
1281 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1284 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1287 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1290 skge
->flow_status
= FLOW_STAT_NONE
;
1292 skge
->speed
= SPEED_1000
;
1295 if (!netif_carrier_ok(dev
))
1296 genesis_link_up(skge
);
1299 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1300 * Phy on for 100 or 10Mbit operation
1302 static void bcom_phy_init(struct skge_port
*skge
)
1304 struct skge_hw
*hw
= skge
->hw
;
1305 int port
= skge
->port
;
1307 u16 id1
, r
, ext
, ctl
;
1309 /* magic workaround patterns for Broadcom */
1310 static const struct {
1314 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1315 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1316 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1317 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1319 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1320 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1323 /* read Id from external PHY (all have the same address) */
1324 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1326 /* Optimize MDIO transfer by suppressing preamble. */
1327 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1329 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1332 case PHY_BCOM_ID1_C0
:
1334 * Workaround BCOM Errata for the C0 type.
1335 * Write magic patterns to reserved registers.
1337 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1338 xm_phy_write(hw
, port
,
1339 C0hack
[i
].reg
, C0hack
[i
].val
);
1342 case PHY_BCOM_ID1_A1
:
1344 * Workaround BCOM Errata for the A1 type.
1345 * Write magic patterns to reserved registers.
1347 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1348 xm_phy_write(hw
, port
,
1349 A1hack
[i
].reg
, A1hack
[i
].val
);
1354 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1355 * Disable Power Management after reset.
1357 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1358 r
|= PHY_B_AC_DIS_PM
;
1359 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1362 xm_read16(hw
, port
, XM_ISRC
);
1364 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1365 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1367 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1369 * Workaround BCOM Errata #1 for the C5 type.
1370 * 1000Base-T Link Acquisition Failure in Slave Mode
1371 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1373 u16 adv
= PHY_B_1000C_RD
;
1374 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1375 adv
|= PHY_B_1000C_AHD
;
1376 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1377 adv
|= PHY_B_1000C_AFD
;
1378 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1380 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1382 if (skge
->duplex
== DUPLEX_FULL
)
1383 ctl
|= PHY_CT_DUP_MD
;
1384 /* Force to slave */
1385 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1388 /* Set autonegotiation pause parameters */
1389 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1390 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1392 /* Handle Jumbo frames */
1393 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1394 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1395 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1397 ext
|= PHY_B_PEC_HIGH_LA
;
1401 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1402 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1404 /* Use link status change interrupt */
1405 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1408 static void xm_phy_init(struct skge_port
*skge
)
1410 struct skge_hw
*hw
= skge
->hw
;
1411 int port
= skge
->port
;
1414 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1415 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1416 ctrl
|= PHY_X_AN_HD
;
1417 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1418 ctrl
|= PHY_X_AN_FD
;
1420 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1422 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1424 /* Restart Auto-negotiation */
1425 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1427 /* Set DuplexMode in Config register */
1428 if (skge
->duplex
== DUPLEX_FULL
)
1429 ctrl
|= PHY_CT_DUP_MD
;
1431 * Do NOT enable Auto-negotiation here. This would hold
1432 * the link down because no IDLEs are transmitted
1436 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1438 /* Poll PHY for status changes */
1439 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1442 static int xm_check_link(struct net_device
*dev
)
1444 struct skge_port
*skge
= netdev_priv(dev
);
1445 struct skge_hw
*hw
= skge
->hw
;
1446 int port
= skge
->port
;
1449 /* read twice because of latch */
1450 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1451 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1453 if ((status
& PHY_ST_LSYNC
) == 0) {
1454 xm_link_down(hw
, port
);
1458 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1461 if (!(status
& PHY_ST_AN_OVER
))
1464 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1465 if (lpa
& PHY_B_AN_RF
) {
1466 netdev_notice(dev
, "remote fault\n");
1470 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1472 /* Check Duplex mismatch */
1473 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1475 skge
->duplex
= DUPLEX_FULL
;
1478 skge
->duplex
= DUPLEX_HALF
;
1481 netdev_notice(dev
, "duplex mismatch\n");
1485 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1486 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1487 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1488 (lpa
& PHY_X_P_SYM_MD
))
1489 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1490 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1491 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1492 /* Enable PAUSE receive, disable PAUSE transmit */
1493 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1494 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1495 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1496 /* Disable PAUSE receive, enable PAUSE transmit */
1497 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1499 skge
->flow_status
= FLOW_STAT_NONE
;
1501 skge
->speed
= SPEED_1000
;
1504 if (!netif_carrier_ok(dev
))
1505 genesis_link_up(skge
);
1509 /* Poll to check for link coming up.
1511 * Since internal PHY is wired to a level triggered pin, can't
1512 * get an interrupt when carrier is detected, need to poll for
1515 static void xm_link_timer(unsigned long arg
)
1517 struct skge_port
*skge
= (struct skge_port
*) arg
;
1518 struct net_device
*dev
= skge
->netdev
;
1519 struct skge_hw
*hw
= skge
->hw
;
1520 int port
= skge
->port
;
1522 unsigned long flags
;
1524 if (!netif_running(dev
))
1527 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1530 * Verify that the link by checking GPIO register three times.
1531 * This pin has the signal from the link_sync pin connected to it.
1533 for (i
= 0; i
< 3; i
++) {
1534 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1538 /* Re-enable interrupt to detect link down */
1539 if (xm_check_link(dev
)) {
1540 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1541 msk
&= ~XM_IS_INP_ASS
;
1542 xm_write16(hw
, port
, XM_IMSK
, msk
);
1543 xm_read16(hw
, port
, XM_ISRC
);
1546 mod_timer(&skge
->link_timer
,
1547 round_jiffies(jiffies
+ LINK_HZ
));
1549 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1552 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1554 struct net_device
*dev
= hw
->dev
[port
];
1555 struct skge_port
*skge
= netdev_priv(dev
);
1556 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1559 const u8 zero
[6] = { 0 };
1561 for (i
= 0; i
< 10; i
++) {
1562 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1564 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1569 netdev_warn(dev
, "genesis reset failed\n");
1572 /* Unreset the XMAC. */
1573 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1576 * Perform additional initialization for external PHYs,
1577 * namely for the 1000baseTX cards that use the XMAC's
1580 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1581 /* Take external Phy out of reset */
1582 r
= skge_read32(hw
, B2_GP_IO
);
1584 r
|= GP_DIR_0
|GP_IO_0
;
1586 r
|= GP_DIR_2
|GP_IO_2
;
1588 skge_write32(hw
, B2_GP_IO
, r
);
1590 /* Enable GMII interface */
1591 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1595 switch (hw
->phy_type
) {
1600 bcom_phy_init(skge
);
1601 bcom_check_link(hw
, port
);
1604 /* Set Station Address */
1605 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1607 /* We don't use match addresses so clear */
1608 for (i
= 1; i
< 16; i
++)
1609 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1611 /* Clear MIB counters */
1612 xm_write16(hw
, port
, XM_STAT_CMD
,
1613 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1614 /* Clear two times according to Errata #3 */
1615 xm_write16(hw
, port
, XM_STAT_CMD
,
1616 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1618 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1619 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1621 /* We don't need the FCS appended to the packet. */
1622 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1624 r
|= XM_RX_BIG_PK_OK
;
1626 if (skge
->duplex
== DUPLEX_HALF
) {
1628 * If in manual half duplex mode the other side might be in
1629 * full duplex mode, so ignore if a carrier extension is not seen
1630 * on frames received
1632 r
|= XM_RX_DIS_CEXT
;
1634 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1636 /* We want short frames padded to 60 bytes. */
1637 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1639 /* Increase threshold for jumbo frames on dual port */
1640 if (hw
->ports
> 1 && jumbo
)
1641 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1643 xm_write16(hw
, port
, XM_TX_THR
, 512);
1646 * Enable the reception of all error frames. This is is
1647 * a necessary evil due to the design of the XMAC. The
1648 * XMAC's receive FIFO is only 8K in size, however jumbo
1649 * frames can be up to 9000 bytes in length. When bad
1650 * frame filtering is enabled, the XMAC's RX FIFO operates
1651 * in 'store and forward' mode. For this to work, the
1652 * entire frame has to fit into the FIFO, but that means
1653 * that jumbo frames larger than 8192 bytes will be
1654 * truncated. Disabling all bad frame filtering causes
1655 * the RX FIFO to operate in streaming mode, in which
1656 * case the XMAC will start transferring frames out of the
1657 * RX FIFO as soon as the FIFO threshold is reached.
1659 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1663 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1664 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1665 * and 'Octets Rx OK Hi Cnt Ov'.
1667 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1670 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1671 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1672 * and 'Octets Tx OK Hi Cnt Ov'.
1674 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1676 /* Configure MAC arbiter */
1677 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1679 /* configure timeout values */
1680 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1681 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1682 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1685 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1686 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1687 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1690 /* Configure Rx MAC FIFO */
1691 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1692 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1693 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1695 /* Configure Tx MAC FIFO */
1696 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1697 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1698 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1701 /* Enable frame flushing if jumbo frames used */
1702 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1704 /* enable timeout timers if normal frames */
1705 skge_write16(hw
, B3_PA_CTRL
,
1706 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1710 static void genesis_stop(struct skge_port
*skge
)
1712 struct skge_hw
*hw
= skge
->hw
;
1713 int port
= skge
->port
;
1714 unsigned retries
= 1000;
1717 /* Disable Tx and Rx */
1718 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1719 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1720 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1722 genesis_reset(hw
, port
);
1724 /* Clear Tx packet arbiter timeout IRQ */
1725 skge_write16(hw
, B3_PA_CTRL
,
1726 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1729 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1731 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1732 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1734 } while (--retries
> 0);
1736 /* For external PHYs there must be special handling */
1737 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1738 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1746 skge_write32(hw
, B2_GP_IO
, reg
);
1747 skge_read32(hw
, B2_GP_IO
);
1750 xm_write16(hw
, port
, XM_MMU_CMD
,
1751 xm_read16(hw
, port
, XM_MMU_CMD
)
1752 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1754 xm_read16(hw
, port
, XM_MMU_CMD
);
1758 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1760 struct skge_hw
*hw
= skge
->hw
;
1761 int port
= skge
->port
;
1763 unsigned long timeout
= jiffies
+ HZ
;
1765 xm_write16(hw
, port
,
1766 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1768 /* wait for update to complete */
1769 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1770 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1771 if (time_after(jiffies
, timeout
))
1776 /* special case for 64 bit octet counter */
1777 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1778 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1779 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1780 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1782 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1783 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1786 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1788 struct net_device
*dev
= hw
->dev
[port
];
1789 struct skge_port
*skge
= netdev_priv(dev
);
1790 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1792 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1793 "mac interrupt status 0x%x\n", status
);
1795 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1796 xm_link_down(hw
, port
);
1797 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1800 if (status
& XM_IS_TXF_UR
) {
1801 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1802 ++dev
->stats
.tx_fifo_errors
;
1806 static void genesis_link_up(struct skge_port
*skge
)
1808 struct skge_hw
*hw
= skge
->hw
;
1809 int port
= skge
->port
;
1813 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1816 * enabling pause frame reception is required for 1000BT
1817 * because the XMAC is not reset if the link is going down
1819 if (skge
->flow_status
== FLOW_STAT_NONE
||
1820 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1821 /* Disable Pause Frame Reception */
1822 cmd
|= XM_MMU_IGN_PF
;
1824 /* Enable Pause Frame Reception */
1825 cmd
&= ~XM_MMU_IGN_PF
;
1827 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1829 mode
= xm_read32(hw
, port
, XM_MODE
);
1830 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1831 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1833 * Configure Pause Frame Generation
1834 * Use internal and external Pause Frame Generation.
1835 * Sending pause frames is edge triggered.
1836 * Send a Pause frame with the maximum pause time if
1837 * internal oder external FIFO full condition occurs.
1838 * Send a zero pause time frame to re-start transmission.
1840 /* XM_PAUSE_DA = '010000C28001' (default) */
1841 /* XM_MAC_PTIME = 0xffff (maximum) */
1842 /* remember this value is defined in big endian (!) */
1843 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1845 mode
|= XM_PAUSE_MODE
;
1846 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1849 * disable pause frame generation is required for 1000BT
1850 * because the XMAC is not reset if the link is going down
1852 /* Disable Pause Mode in Mode Register */
1853 mode
&= ~XM_PAUSE_MODE
;
1855 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1858 xm_write32(hw
, port
, XM_MODE
, mode
);
1860 /* Turn on detection of Tx underrun */
1861 msk
= xm_read16(hw
, port
, XM_IMSK
);
1862 msk
&= ~XM_IS_TXF_UR
;
1863 xm_write16(hw
, port
, XM_IMSK
, msk
);
1865 xm_read16(hw
, port
, XM_ISRC
);
1867 /* get MMU Command Reg. */
1868 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1869 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1870 cmd
|= XM_MMU_GMII_FD
;
1873 * Workaround BCOM Errata (#10523) for all BCom Phys
1874 * Enable Power Management after link up
1876 if (hw
->phy_type
== SK_PHY_BCOM
) {
1877 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1878 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1879 & ~PHY_B_AC_DIS_PM
);
1880 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1884 xm_write16(hw
, port
, XM_MMU_CMD
,
1885 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1890 static inline void bcom_phy_intr(struct skge_port
*skge
)
1892 struct skge_hw
*hw
= skge
->hw
;
1893 int port
= skge
->port
;
1896 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1897 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1898 "phy interrupt status 0x%x\n", isrc
);
1900 if (isrc
& PHY_B_IS_PSE
)
1901 pr_err("%s: uncorrectable pair swap error\n",
1902 hw
->dev
[port
]->name
);
1904 /* Workaround BCom Errata:
1905 * enable and disable loopback mode if "NO HCD" occurs.
1907 if (isrc
& PHY_B_IS_NO_HDCL
) {
1908 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1909 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1910 ctrl
| PHY_CT_LOOP
);
1911 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1912 ctrl
& ~PHY_CT_LOOP
);
1915 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1916 bcom_check_link(hw
, port
);
1920 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1924 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1925 gma_write16(hw
, port
, GM_SMI_CTRL
,
1926 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1927 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1930 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1934 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1938 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1942 gma_write16(hw
, port
, GM_SMI_CTRL
,
1943 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1944 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1946 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1948 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1954 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1958 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1961 if (__gm_phy_read(hw
, port
, reg
, &v
))
1962 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1966 /* Marvell Phy Initialization */
1967 static void yukon_init(struct skge_hw
*hw
, int port
)
1969 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1970 u16 ctrl
, ct1000
, adv
;
1972 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1973 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1975 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1976 PHY_M_EC_MAC_S_MSK
);
1977 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1979 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1981 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1984 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1985 if (skge
->autoneg
== AUTONEG_DISABLE
)
1986 ctrl
&= ~PHY_CT_ANE
;
1988 ctrl
|= PHY_CT_RESET
;
1989 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1995 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1997 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1998 ct1000
|= PHY_M_1000C_AFD
;
1999 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2000 ct1000
|= PHY_M_1000C_AHD
;
2001 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2002 adv
|= PHY_M_AN_100_FD
;
2003 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2004 adv
|= PHY_M_AN_100_HD
;
2005 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2006 adv
|= PHY_M_AN_10_FD
;
2007 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2008 adv
|= PHY_M_AN_10_HD
;
2010 /* Set Flow-control capabilities */
2011 adv
|= phy_pause_map
[skge
->flow_control
];
2013 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2014 adv
|= PHY_M_AN_1000X_AFD
;
2015 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2016 adv
|= PHY_M_AN_1000X_AHD
;
2018 adv
|= fiber_pause_map
[skge
->flow_control
];
2021 /* Restart Auto-negotiation */
2022 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2024 /* forced speed/duplex settings */
2025 ct1000
= PHY_M_1000C_MSE
;
2027 if (skge
->duplex
== DUPLEX_FULL
)
2028 ctrl
|= PHY_CT_DUP_MD
;
2030 switch (skge
->speed
) {
2032 ctrl
|= PHY_CT_SP1000
;
2035 ctrl
|= PHY_CT_SP100
;
2039 ctrl
|= PHY_CT_RESET
;
2042 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2044 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2045 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2047 /* Enable phy interrupt on autonegotiation complete (or link up) */
2048 if (skge
->autoneg
== AUTONEG_ENABLE
)
2049 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2051 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2054 static void yukon_reset(struct skge_hw
*hw
, int port
)
2056 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2057 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2058 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2059 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2060 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2062 gma_write16(hw
, port
, GM_RX_CTRL
,
2063 gma_read16(hw
, port
, GM_RX_CTRL
)
2064 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2067 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2068 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2073 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2076 reg
= skge_read32(hw
, B2_FAR
);
2077 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2078 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2079 skge_write32(hw
, B2_FAR
, reg
);
2083 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2085 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2088 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2090 /* WA code for COMA mode -- set PHY reset */
2091 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2092 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2093 reg
= skge_read32(hw
, B2_GP_IO
);
2094 reg
|= GP_DIR_9
| GP_IO_9
;
2095 skge_write32(hw
, B2_GP_IO
, reg
);
2099 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2100 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2102 /* WA code for COMA mode -- clear PHY reset */
2103 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2104 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2105 reg
= skge_read32(hw
, B2_GP_IO
);
2108 skge_write32(hw
, B2_GP_IO
, reg
);
2111 /* Set hardware config mode */
2112 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2113 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2114 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2116 /* Clear GMC reset */
2117 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2118 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2119 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2121 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2122 reg
= GM_GPCR_AU_ALL_DIS
;
2123 gma_write16(hw
, port
, GM_GP_CTRL
,
2124 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2126 switch (skge
->speed
) {
2128 reg
&= ~GM_GPCR_SPEED_100
;
2129 reg
|= GM_GPCR_SPEED_1000
;
2132 reg
&= ~GM_GPCR_SPEED_1000
;
2133 reg
|= GM_GPCR_SPEED_100
;
2136 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2140 if (skge
->duplex
== DUPLEX_FULL
)
2141 reg
|= GM_GPCR_DUP_FULL
;
2143 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2145 switch (skge
->flow_control
) {
2146 case FLOW_MODE_NONE
:
2147 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2148 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2150 case FLOW_MODE_LOC_SEND
:
2151 /* disable Rx flow-control */
2152 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2154 case FLOW_MODE_SYMMETRIC
:
2155 case FLOW_MODE_SYM_OR_REM
:
2156 /* enable Tx & Rx flow-control */
2160 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2161 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2163 yukon_init(hw
, port
);
2166 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2167 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2169 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2170 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2171 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2173 /* transmit control */
2174 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2176 /* receive control reg: unicast + multicast + no FCS */
2177 gma_write16(hw
, port
, GM_RX_CTRL
,
2178 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2180 /* transmit flow control */
2181 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2183 /* transmit parameter */
2184 gma_write16(hw
, port
, GM_TX_PARAM
,
2185 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2186 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2187 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2189 /* configure the Serial Mode Register */
2190 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2192 | IPG_DATA_VAL(IPG_DATA_DEF
);
2194 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2195 reg
|= GM_SMOD_JUMBO_ENA
;
2197 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2199 /* physical address: used for pause frames */
2200 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2201 /* virtual address for data */
2202 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2204 /* enable interrupt mask for counter overflows */
2205 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2206 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2207 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2209 /* Initialize Mac Fifo */
2211 /* Configure Rx MAC FIFO */
2212 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2213 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2215 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2216 if (is_yukon_lite_a0(hw
))
2217 reg
&= ~GMF_RX_F_FL_ON
;
2219 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2220 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2222 * because Pause Packet Truncation in GMAC is not working
2223 * we have to increase the Flush Threshold to 64 bytes
2224 * in order to flush pause packets in Rx FIFO on Yukon-1
2226 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2228 /* Configure Tx MAC FIFO */
2229 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2230 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2233 /* Go into power down mode */
2234 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2238 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2239 ctrl
|= PHY_M_PC_POL_R_DIS
;
2240 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2242 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2243 ctrl
|= PHY_CT_RESET
;
2244 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2246 /* switch IEEE compatible power down mode on */
2247 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2248 ctrl
|= PHY_CT_PDOWN
;
2249 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2252 static void yukon_stop(struct skge_port
*skge
)
2254 struct skge_hw
*hw
= skge
->hw
;
2255 int port
= skge
->port
;
2257 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2258 yukon_reset(hw
, port
);
2260 gma_write16(hw
, port
, GM_GP_CTRL
,
2261 gma_read16(hw
, port
, GM_GP_CTRL
)
2262 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2263 gma_read16(hw
, port
, GM_GP_CTRL
);
2265 yukon_suspend(hw
, port
);
2267 /* set GPHY Control reset */
2268 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2269 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2272 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2274 struct skge_hw
*hw
= skge
->hw
;
2275 int port
= skge
->port
;
2278 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2279 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2280 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2281 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2283 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2284 data
[i
] = gma_read32(hw
, port
,
2285 skge_stats
[i
].gma_offset
);
2288 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2290 struct net_device
*dev
= hw
->dev
[port
];
2291 struct skge_port
*skge
= netdev_priv(dev
);
2292 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2294 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2295 "mac interrupt status 0x%x\n", status
);
2297 if (status
& GM_IS_RX_FF_OR
) {
2298 ++dev
->stats
.rx_fifo_errors
;
2299 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2302 if (status
& GM_IS_TX_FF_UR
) {
2303 ++dev
->stats
.tx_fifo_errors
;
2304 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2309 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2311 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2312 case PHY_M_PS_SPEED_1000
:
2314 case PHY_M_PS_SPEED_100
:
2321 static void yukon_link_up(struct skge_port
*skge
)
2323 struct skge_hw
*hw
= skge
->hw
;
2324 int port
= skge
->port
;
2327 /* Enable Transmit FIFO Underrun */
2328 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2330 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2331 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2332 reg
|= GM_GPCR_DUP_FULL
;
2335 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2336 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2338 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2342 static void yukon_link_down(struct skge_port
*skge
)
2344 struct skge_hw
*hw
= skge
->hw
;
2345 int port
= skge
->port
;
2348 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2349 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2350 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2352 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2353 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2354 ctrl
|= PHY_M_AN_ASP
;
2355 /* restore Asymmetric Pause bit */
2356 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2359 skge_link_down(skge
);
2361 yukon_init(hw
, port
);
2364 static void yukon_phy_intr(struct skge_port
*skge
)
2366 struct skge_hw
*hw
= skge
->hw
;
2367 int port
= skge
->port
;
2368 const char *reason
= NULL
;
2369 u16 istatus
, phystat
;
2371 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2372 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2374 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2375 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2377 if (istatus
& PHY_M_IS_AN_COMPL
) {
2378 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2380 reason
= "remote fault";
2384 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2385 reason
= "master/slave fault";
2389 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2390 reason
= "speed/duplex";
2394 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2395 ? DUPLEX_FULL
: DUPLEX_HALF
;
2396 skge
->speed
= yukon_speed(hw
, phystat
);
2398 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2399 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2400 case PHY_M_PS_PAUSE_MSK
:
2401 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2403 case PHY_M_PS_RX_P_EN
:
2404 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2406 case PHY_M_PS_TX_P_EN
:
2407 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2410 skge
->flow_status
= FLOW_STAT_NONE
;
2413 if (skge
->flow_status
== FLOW_STAT_NONE
||
2414 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2415 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2417 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2418 yukon_link_up(skge
);
2422 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2423 skge
->speed
= yukon_speed(hw
, phystat
);
2425 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2426 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2427 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2428 if (phystat
& PHY_M_PS_LINK_UP
)
2429 yukon_link_up(skge
);
2431 yukon_link_down(skge
);
2435 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2437 /* XXX restart autonegotiation? */
2440 static void skge_phy_reset(struct skge_port
*skge
)
2442 struct skge_hw
*hw
= skge
->hw
;
2443 int port
= skge
->port
;
2444 struct net_device
*dev
= hw
->dev
[port
];
2446 netif_stop_queue(skge
->netdev
);
2447 netif_carrier_off(skge
->netdev
);
2449 spin_lock_bh(&hw
->phy_lock
);
2450 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2451 genesis_reset(hw
, port
);
2452 genesis_mac_init(hw
, port
);
2454 yukon_reset(hw
, port
);
2455 yukon_init(hw
, port
);
2457 spin_unlock_bh(&hw
->phy_lock
);
2459 skge_set_multicast(dev
);
2462 /* Basic MII support */
2463 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2465 struct mii_ioctl_data
*data
= if_mii(ifr
);
2466 struct skge_port
*skge
= netdev_priv(dev
);
2467 struct skge_hw
*hw
= skge
->hw
;
2468 int err
= -EOPNOTSUPP
;
2470 if (!netif_running(dev
))
2471 return -ENODEV
; /* Phy still in reset */
2475 data
->phy_id
= hw
->phy_addr
;
2480 spin_lock_bh(&hw
->phy_lock
);
2481 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2482 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2484 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2485 spin_unlock_bh(&hw
->phy_lock
);
2486 data
->val_out
= val
;
2491 spin_lock_bh(&hw
->phy_lock
);
2492 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2493 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2496 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2498 spin_unlock_bh(&hw
->phy_lock
);
2504 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2510 end
= start
+ len
- 1;
2512 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2513 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2514 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2515 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2516 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2518 if (q
== Q_R1
|| q
== Q_R2
) {
2519 /* Set thresholds on receive queue's */
2520 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2522 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2525 /* Enable store & forward on Tx queue's because
2526 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2528 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2531 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2534 /* Setup Bus Memory Interface */
2535 static void skge_qset(struct skge_port
*skge
, u16 q
,
2536 const struct skge_element
*e
)
2538 struct skge_hw
*hw
= skge
->hw
;
2539 u32 watermark
= 0x600;
2540 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2542 /* optimization to reduce window on 32bit/33mhz */
2543 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2546 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2547 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2548 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2549 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2552 static int skge_up(struct net_device
*dev
)
2554 struct skge_port
*skge
= netdev_priv(dev
);
2555 struct skge_hw
*hw
= skge
->hw
;
2556 int port
= skge
->port
;
2557 u32 chunk
, ram_addr
;
2558 size_t rx_size
, tx_size
;
2561 if (!is_valid_ether_addr(dev
->dev_addr
))
2564 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2566 if (dev
->mtu
> RX_BUF_SIZE
)
2567 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2569 skge
->rx_buf_size
= RX_BUF_SIZE
;
2572 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2573 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2574 skge
->mem_size
= tx_size
+ rx_size
;
2575 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2579 BUG_ON(skge
->dma
& 7);
2581 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2582 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2587 memset(skge
->mem
, 0, skge
->mem_size
);
2589 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2593 err
= skge_rx_fill(dev
);
2597 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2598 skge
->dma
+ rx_size
);
2602 /* Initialize MAC */
2603 spin_lock_bh(&hw
->phy_lock
);
2604 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2605 genesis_mac_init(hw
, port
);
2607 yukon_mac_init(hw
, port
);
2608 spin_unlock_bh(&hw
->phy_lock
);
2610 /* Configure RAMbuffers - equally between ports and tx/rx */
2611 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2612 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2614 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2615 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2617 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2618 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2619 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2621 /* Start receiver BMU */
2623 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2624 skge_led(skge
, LED_MODE_ON
);
2626 spin_lock_irq(&hw
->hw_lock
);
2627 hw
->intr_mask
|= portmask
[port
];
2628 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2629 spin_unlock_irq(&hw
->hw_lock
);
2631 napi_enable(&skge
->napi
);
2635 skge_rx_clean(skge
);
2636 kfree(skge
->rx_ring
.start
);
2638 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2645 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2647 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2648 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2649 RB_RST_SET
|RB_DIS_OP_MD
);
2650 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2653 static int skge_down(struct net_device
*dev
)
2655 struct skge_port
*skge
= netdev_priv(dev
);
2656 struct skge_hw
*hw
= skge
->hw
;
2657 int port
= skge
->port
;
2659 if (skge
->mem
== NULL
)
2662 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2664 netif_tx_disable(dev
);
2666 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2667 del_timer_sync(&skge
->link_timer
);
2669 napi_disable(&skge
->napi
);
2670 netif_carrier_off(dev
);
2672 spin_lock_irq(&hw
->hw_lock
);
2673 hw
->intr_mask
&= ~portmask
[port
];
2674 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2675 spin_unlock_irq(&hw
->hw_lock
);
2677 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2678 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2683 /* Stop transmitter */
2684 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2685 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2686 RB_RST_SET
|RB_DIS_OP_MD
);
2689 /* Disable Force Sync bit and Enable Alloc bit */
2690 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2691 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2693 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2694 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2695 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2697 /* Reset PCI FIFO */
2698 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2699 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2701 /* Reset the RAM Buffer async Tx queue */
2702 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2704 skge_rx_stop(hw
, port
);
2706 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2707 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2708 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2710 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2711 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2714 skge_led(skge
, LED_MODE_OFF
);
2716 netif_tx_lock_bh(dev
);
2718 netif_tx_unlock_bh(dev
);
2720 skge_rx_clean(skge
);
2722 kfree(skge
->rx_ring
.start
);
2723 kfree(skge
->tx_ring
.start
);
2724 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2729 static inline int skge_avail(const struct skge_ring
*ring
)
2732 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2733 + (ring
->to_clean
- ring
->to_use
) - 1;
2736 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2737 struct net_device
*dev
)
2739 struct skge_port
*skge
= netdev_priv(dev
);
2740 struct skge_hw
*hw
= skge
->hw
;
2741 struct skge_element
*e
;
2742 struct skge_tx_desc
*td
;
2747 if (skb_padto(skb
, ETH_ZLEN
))
2748 return NETDEV_TX_OK
;
2750 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2751 return NETDEV_TX_BUSY
;
2753 e
= skge
->tx_ring
.to_use
;
2755 BUG_ON(td
->control
& BMU_OWN
);
2757 len
= skb_headlen(skb
);
2758 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2759 dma_unmap_addr_set(e
, mapaddr
, map
);
2760 dma_unmap_len_set(e
, maplen
, len
);
2763 td
->dma_hi
= map
>> 32;
2765 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2766 const int offset
= skb_transport_offset(skb
);
2768 /* This seems backwards, but it is what the sk98lin
2769 * does. Looks like hardware is wrong?
2771 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2772 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2773 control
= BMU_TCP_CHECK
;
2775 control
= BMU_UDP_CHECK
;
2778 td
->csum_start
= offset
;
2779 td
->csum_write
= offset
+ skb
->csum_offset
;
2781 control
= BMU_CHECK
;
2783 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2784 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2786 struct skge_tx_desc
*tf
= td
;
2788 control
|= BMU_STFWD
;
2789 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2790 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2792 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2793 frag
->size
, PCI_DMA_TODEVICE
);
2798 BUG_ON(tf
->control
& BMU_OWN
);
2801 tf
->dma_hi
= (u64
) map
>> 32;
2802 dma_unmap_addr_set(e
, mapaddr
, map
);
2803 dma_unmap_len_set(e
, maplen
, frag
->size
);
2805 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2807 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2809 /* Make sure all the descriptors written */
2811 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2814 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2816 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2817 "tx queued, slot %td, len %d\n",
2818 e
- skge
->tx_ring
.start
, skb
->len
);
2820 skge
->tx_ring
.to_use
= e
->next
;
2823 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2824 netdev_dbg(dev
, "transmit queue full\n");
2825 netif_stop_queue(dev
);
2828 return NETDEV_TX_OK
;
2832 /* Free resources associated with this reing element */
2833 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2836 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2838 /* skb header vs. fragment */
2839 if (control
& BMU_STF
)
2840 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2841 dma_unmap_len(e
, maplen
),
2844 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2845 dma_unmap_len(e
, maplen
),
2848 if (control
& BMU_EOF
) {
2849 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
2850 "tx done slot %td\n", e
- skge
->tx_ring
.start
);
2852 dev_kfree_skb(e
->skb
);
2856 /* Free all buffers in transmit ring */
2857 static void skge_tx_clean(struct net_device
*dev
)
2859 struct skge_port
*skge
= netdev_priv(dev
);
2860 struct skge_element
*e
;
2862 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2863 struct skge_tx_desc
*td
= e
->desc
;
2864 skge_tx_free(skge
, e
, td
->control
);
2868 skge
->tx_ring
.to_clean
= e
;
2871 static void skge_tx_timeout(struct net_device
*dev
)
2873 struct skge_port
*skge
= netdev_priv(dev
);
2875 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2877 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2879 netif_wake_queue(dev
);
2882 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2886 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2889 if (!netif_running(dev
)) {
2905 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2907 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2911 crc
= ether_crc_le(ETH_ALEN
, addr
);
2913 filter
[bit
/8] |= 1 << (bit
%8);
2916 static void genesis_set_multicast(struct net_device
*dev
)
2918 struct skge_port
*skge
= netdev_priv(dev
);
2919 struct skge_hw
*hw
= skge
->hw
;
2920 int port
= skge
->port
;
2921 struct netdev_hw_addr
*ha
;
2925 mode
= xm_read32(hw
, port
, XM_MODE
);
2926 mode
|= XM_MD_ENA_HASH
;
2927 if (dev
->flags
& IFF_PROMISC
)
2928 mode
|= XM_MD_ENA_PROM
;
2930 mode
&= ~XM_MD_ENA_PROM
;
2932 if (dev
->flags
& IFF_ALLMULTI
)
2933 memset(filter
, 0xff, sizeof(filter
));
2935 memset(filter
, 0, sizeof(filter
));
2937 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2938 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2939 genesis_add_filter(filter
, pause_mc_addr
);
2941 netdev_for_each_mc_addr(ha
, dev
)
2942 genesis_add_filter(filter
, ha
->addr
);
2945 xm_write32(hw
, port
, XM_MODE
, mode
);
2946 xm_outhash(hw
, port
, XM_HSM
, filter
);
2949 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2951 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2952 filter
[bit
/8] |= 1 << (bit
%8);
2955 static void yukon_set_multicast(struct net_device
*dev
)
2957 struct skge_port
*skge
= netdev_priv(dev
);
2958 struct skge_hw
*hw
= skge
->hw
;
2959 int port
= skge
->port
;
2960 struct netdev_hw_addr
*ha
;
2961 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2962 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2966 memset(filter
, 0, sizeof(filter
));
2968 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2969 reg
|= GM_RXCR_UCF_ENA
;
2971 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2972 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2973 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2974 memset(filter
, 0xff, sizeof(filter
));
2975 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2976 reg
&= ~GM_RXCR_MCF_ENA
;
2978 reg
|= GM_RXCR_MCF_ENA
;
2981 yukon_add_filter(filter
, pause_mc_addr
);
2983 netdev_for_each_mc_addr(ha
, dev
)
2984 yukon_add_filter(filter
, ha
->addr
);
2988 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2989 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2990 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2991 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2992 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2993 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2994 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2995 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2997 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3000 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3002 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3003 return status
>> XMR_FS_LEN_SHIFT
;
3005 return status
>> GMR_FS_LEN_SHIFT
;
3008 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3010 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3011 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3013 return (status
& GMR_FS_ANY_ERR
) ||
3014 (status
& GMR_FS_RX_OK
) == 0;
3017 static void skge_set_multicast(struct net_device
*dev
)
3019 struct skge_port
*skge
= netdev_priv(dev
);
3020 struct skge_hw
*hw
= skge
->hw
;
3022 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3023 genesis_set_multicast(dev
);
3025 yukon_set_multicast(dev
);
3030 /* Get receive buffer from descriptor.
3031 * Handles copy of small buffers and reallocation failures
3033 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3034 struct skge_element
*e
,
3035 u32 control
, u32 status
, u16 csum
)
3037 struct skge_port
*skge
= netdev_priv(dev
);
3038 struct sk_buff
*skb
;
3039 u16 len
= control
& BMU_BBC
;
3041 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3042 "rx slot %td status 0x%x len %d\n",
3043 e
- skge
->rx_ring
.start
, status
, len
);
3045 if (len
> skge
->rx_buf_size
)
3048 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3051 if (bad_phy_status(skge
->hw
, status
))
3054 if (phy_length(skge
->hw
, status
) != len
)
3057 if (len
< RX_COPY_THRESHOLD
) {
3058 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3062 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3063 dma_unmap_addr(e
, mapaddr
),
3064 len
, PCI_DMA_FROMDEVICE
);
3065 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3066 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3067 dma_unmap_addr(e
, mapaddr
),
3068 len
, PCI_DMA_FROMDEVICE
);
3069 skge_rx_reuse(e
, skge
->rx_buf_size
);
3071 struct sk_buff
*nskb
;
3073 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3077 pci_unmap_single(skge
->hw
->pdev
,
3078 dma_unmap_addr(e
, mapaddr
),
3079 dma_unmap_len(e
, maplen
),
3080 PCI_DMA_FROMDEVICE
);
3082 prefetch(skb
->data
);
3083 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3087 if (skge
->rx_csum
) {
3089 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3092 skb
->protocol
= eth_type_trans(skb
, dev
);
3097 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3098 "rx err, slot %td control 0x%x status 0x%x\n",
3099 e
- skge
->rx_ring
.start
, control
, status
);
3101 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3102 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3103 dev
->stats
.rx_length_errors
++;
3104 if (status
& XMR_FS_FRA_ERR
)
3105 dev
->stats
.rx_frame_errors
++;
3106 if (status
& XMR_FS_FCS_ERR
)
3107 dev
->stats
.rx_crc_errors
++;
3109 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3110 dev
->stats
.rx_length_errors
++;
3111 if (status
& GMR_FS_FRAGMENT
)
3112 dev
->stats
.rx_frame_errors
++;
3113 if (status
& GMR_FS_CRC_ERR
)
3114 dev
->stats
.rx_crc_errors
++;
3118 skge_rx_reuse(e
, skge
->rx_buf_size
);
3122 /* Free all buffers in Tx ring which are no longer owned by device */
3123 static void skge_tx_done(struct net_device
*dev
)
3125 struct skge_port
*skge
= netdev_priv(dev
);
3126 struct skge_ring
*ring
= &skge
->tx_ring
;
3127 struct skge_element
*e
;
3129 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3131 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3132 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3134 if (control
& BMU_OWN
)
3137 skge_tx_free(skge
, e
, control
);
3139 skge
->tx_ring
.to_clean
= e
;
3141 /* Can run lockless until we need to synchronize to restart queue. */
3144 if (unlikely(netif_queue_stopped(dev
) &&
3145 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3147 if (unlikely(netif_queue_stopped(dev
) &&
3148 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3149 netif_wake_queue(dev
);
3152 netif_tx_unlock(dev
);
3156 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3158 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3159 struct net_device
*dev
= skge
->netdev
;
3160 struct skge_hw
*hw
= skge
->hw
;
3161 struct skge_ring
*ring
= &skge
->rx_ring
;
3162 struct skge_element
*e
;
3167 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3169 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3170 struct skge_rx_desc
*rd
= e
->desc
;
3171 struct sk_buff
*skb
;
3175 control
= rd
->control
;
3176 if (control
& BMU_OWN
)
3179 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3181 netif_receive_skb(skb
);
3188 /* restart receiver */
3190 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3192 if (work_done
< to_do
) {
3193 unsigned long flags
;
3195 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3196 __napi_complete(napi
);
3197 hw
->intr_mask
|= napimask
[skge
->port
];
3198 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3199 skge_read32(hw
, B0_IMSK
);
3200 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3206 /* Parity errors seem to happen when Genesis is connected to a switch
3207 * with no other ports present. Heartbeat error??
3209 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3211 struct net_device
*dev
= hw
->dev
[port
];
3213 ++dev
->stats
.tx_heartbeat_errors
;
3215 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3216 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3219 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3220 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3221 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3222 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3225 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3227 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3228 genesis_mac_intr(hw
, port
);
3230 yukon_mac_intr(hw
, port
);
3233 /* Handle device specific framing and timeout interrupts */
3234 static void skge_error_irq(struct skge_hw
*hw
)
3236 struct pci_dev
*pdev
= hw
->pdev
;
3237 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3239 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3240 /* clear xmac errors */
3241 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3242 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3243 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3244 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3246 /* Timestamp (unused) overflow */
3247 if (hwstatus
& IS_IRQ_TIST_OV
)
3248 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3251 if (hwstatus
& IS_RAM_RD_PAR
) {
3252 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3253 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3256 if (hwstatus
& IS_RAM_WR_PAR
) {
3257 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3258 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3261 if (hwstatus
& IS_M1_PAR_ERR
)
3262 skge_mac_parity(hw
, 0);
3264 if (hwstatus
& IS_M2_PAR_ERR
)
3265 skge_mac_parity(hw
, 1);
3267 if (hwstatus
& IS_R1_PAR_ERR
) {
3268 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3270 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3273 if (hwstatus
& IS_R2_PAR_ERR
) {
3274 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3276 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3279 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3280 u16 pci_status
, pci_cmd
;
3282 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3283 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3285 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3286 pci_cmd
, pci_status
);
3288 /* Write the error bits back to clear them. */
3289 pci_status
&= PCI_STATUS_ERROR_BITS
;
3290 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3291 pci_write_config_word(pdev
, PCI_COMMAND
,
3292 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3293 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3294 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3296 /* if error still set then just ignore it */
3297 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3298 if (hwstatus
& IS_IRQ_STAT
) {
3299 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3300 hw
->intr_mask
&= ~IS_HW_ERR
;
3306 * Interrupt from PHY are handled in tasklet (softirq)
3307 * because accessing phy registers requires spin wait which might
3308 * cause excess interrupt latency.
3310 static void skge_extirq(unsigned long arg
)
3312 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3315 for (port
= 0; port
< hw
->ports
; port
++) {
3316 struct net_device
*dev
= hw
->dev
[port
];
3318 if (netif_running(dev
)) {
3319 struct skge_port
*skge
= netdev_priv(dev
);
3321 spin_lock(&hw
->phy_lock
);
3322 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3323 yukon_phy_intr(skge
);
3324 else if (hw
->phy_type
== SK_PHY_BCOM
)
3325 bcom_phy_intr(skge
);
3326 spin_unlock(&hw
->phy_lock
);
3330 spin_lock_irq(&hw
->hw_lock
);
3331 hw
->intr_mask
|= IS_EXT_REG
;
3332 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3333 skge_read32(hw
, B0_IMSK
);
3334 spin_unlock_irq(&hw
->hw_lock
);
3337 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3339 struct skge_hw
*hw
= dev_id
;
3343 spin_lock(&hw
->hw_lock
);
3344 /* Reading this register masks IRQ */
3345 status
= skge_read32(hw
, B0_SP_ISRC
);
3346 if (status
== 0 || status
== ~0)
3350 status
&= hw
->intr_mask
;
3351 if (status
& IS_EXT_REG
) {
3352 hw
->intr_mask
&= ~IS_EXT_REG
;
3353 tasklet_schedule(&hw
->phy_task
);
3356 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3357 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3358 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3359 napi_schedule(&skge
->napi
);
3362 if (status
& IS_PA_TO_TX1
)
3363 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3365 if (status
& IS_PA_TO_RX1
) {
3366 ++hw
->dev
[0]->stats
.rx_over_errors
;
3367 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3371 if (status
& IS_MAC1
)
3372 skge_mac_intr(hw
, 0);
3375 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3377 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3378 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3379 napi_schedule(&skge
->napi
);
3382 if (status
& IS_PA_TO_RX2
) {
3383 ++hw
->dev
[1]->stats
.rx_over_errors
;
3384 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3387 if (status
& IS_PA_TO_TX2
)
3388 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3390 if (status
& IS_MAC2
)
3391 skge_mac_intr(hw
, 1);
3394 if (status
& IS_HW_ERR
)
3397 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3398 skge_read32(hw
, B0_IMSK
);
3400 spin_unlock(&hw
->hw_lock
);
3402 return IRQ_RETVAL(handled
);
3405 #ifdef CONFIG_NET_POLL_CONTROLLER
3406 static void skge_netpoll(struct net_device
*dev
)
3408 struct skge_port
*skge
= netdev_priv(dev
);
3410 disable_irq(dev
->irq
);
3411 skge_intr(dev
->irq
, skge
->hw
);
3412 enable_irq(dev
->irq
);
3416 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3418 struct skge_port
*skge
= netdev_priv(dev
);
3419 struct skge_hw
*hw
= skge
->hw
;
3420 unsigned port
= skge
->port
;
3421 const struct sockaddr
*addr
= p
;
3424 if (!is_valid_ether_addr(addr
->sa_data
))
3425 return -EADDRNOTAVAIL
;
3427 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3429 if (!netif_running(dev
)) {
3430 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3431 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3434 spin_lock_bh(&hw
->phy_lock
);
3435 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3436 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3438 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3439 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3441 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3442 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3444 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3445 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3448 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3449 spin_unlock_bh(&hw
->phy_lock
);
3455 static const struct {
3459 { CHIP_ID_GENESIS
, "Genesis" },
3460 { CHIP_ID_YUKON
, "Yukon" },
3461 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3462 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3465 static const char *skge_board_name(const struct skge_hw
*hw
)
3468 static char buf
[16];
3470 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3471 if (skge_chips
[i
].id
== hw
->chip_id
)
3472 return skge_chips
[i
].name
;
3474 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3480 * Setup the board data structure, but don't bring up
3483 static int skge_reset(struct skge_hw
*hw
)
3486 u16 ctst
, pci_status
;
3487 u8 t8
, mac_cfg
, pmd_type
;
3490 ctst
= skge_read16(hw
, B0_CTST
);
3493 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3494 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3496 /* clear PCI errors, if any */
3497 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3498 skge_write8(hw
, B2_TST_CTRL2
, 0);
3500 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3501 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3502 pci_status
| PCI_STATUS_ERROR_BITS
);
3503 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3504 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3506 /* restore CLK_RUN bits (for Yukon-Lite) */
3507 skge_write16(hw
, B0_CTST
,
3508 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3510 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3511 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3512 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3513 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3515 switch (hw
->chip_id
) {
3516 case CHIP_ID_GENESIS
:
3517 switch (hw
->phy_type
) {
3519 hw
->phy_addr
= PHY_ADDR_XMAC
;
3522 hw
->phy_addr
= PHY_ADDR_BCOM
;
3525 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3532 case CHIP_ID_YUKON_LITE
:
3533 case CHIP_ID_YUKON_LP
:
3534 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3537 hw
->phy_addr
= PHY_ADDR_MARV
;
3541 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3546 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3547 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3548 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3550 /* read the adapters RAM size */
3551 t8
= skge_read8(hw
, B2_E_0
);
3552 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3554 /* special case: 4 x 64k x 36, offset = 0x80000 */
3555 hw
->ram_size
= 0x100000;
3556 hw
->ram_offset
= 0x80000;
3558 hw
->ram_size
= t8
* 512;
3560 hw
->ram_size
= 0x20000;
3562 hw
->ram_size
= t8
* 4096;
3564 hw
->intr_mask
= IS_HW_ERR
;
3566 /* Use PHY IRQ for all but fiber based Genesis board */
3567 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3568 hw
->intr_mask
|= IS_EXT_REG
;
3570 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3573 /* switch power to VCC (WA for VAUX problem) */
3574 skge_write8(hw
, B0_POWER_CTRL
,
3575 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3577 /* avoid boards with stuck Hardware error bits */
3578 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3579 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3580 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3581 hw
->intr_mask
&= ~IS_HW_ERR
;
3584 /* Clear PHY COMA */
3585 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3586 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3587 reg
&= ~PCI_PHY_COMA
;
3588 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3589 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3592 for (i
= 0; i
< hw
->ports
; i
++) {
3593 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3594 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3598 /* turn off hardware timer (unused) */
3599 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3600 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3601 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3603 /* enable the Tx Arbiters */
3604 for (i
= 0; i
< hw
->ports
; i
++)
3605 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3607 /* Initialize ram interface */
3608 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3610 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3611 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3612 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3613 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3614 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3615 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3616 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3617 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3618 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3619 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3620 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3621 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3623 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3625 /* Set interrupt moderation for Transmit only
3626 * Receive interrupts avoided by NAPI
3628 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3629 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3630 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3632 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3634 for (i
= 0; i
< hw
->ports
; i
++) {
3635 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3636 genesis_reset(hw
, i
);
3645 #ifdef CONFIG_SKGE_DEBUG
3647 static struct dentry
*skge_debug
;
3649 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3651 struct net_device
*dev
= seq
->private;
3652 const struct skge_port
*skge
= netdev_priv(dev
);
3653 const struct skge_hw
*hw
= skge
->hw
;
3654 const struct skge_element
*e
;
3656 if (!netif_running(dev
))
3659 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3660 skge_read32(hw
, B0_IMSK
));
3662 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3663 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3664 const struct skge_tx_desc
*t
= e
->desc
;
3665 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3666 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3667 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3670 seq_printf(seq
, "\nRx Ring:\n");
3671 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3672 const struct skge_rx_desc
*r
= e
->desc
;
3674 if (r
->control
& BMU_OWN
)
3677 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3678 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3679 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3685 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3687 return single_open(file
, skge_debug_show
, inode
->i_private
);
3690 static const struct file_operations skge_debug_fops
= {
3691 .owner
= THIS_MODULE
,
3692 .open
= skge_debug_open
,
3694 .llseek
= seq_lseek
,
3695 .release
= single_release
,
3699 * Use network device events to create/remove/rename
3700 * debugfs file entries
3702 static int skge_device_event(struct notifier_block
*unused
,
3703 unsigned long event
, void *ptr
)
3705 struct net_device
*dev
= ptr
;
3706 struct skge_port
*skge
;
3709 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3712 skge
= netdev_priv(dev
);
3714 case NETDEV_CHANGENAME
:
3715 if (skge
->debugfs
) {
3716 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3717 skge_debug
, dev
->name
);
3721 netdev_info(dev
, "rename failed\n");
3722 debugfs_remove(skge
->debugfs
);
3727 case NETDEV_GOING_DOWN
:
3728 if (skge
->debugfs
) {
3729 debugfs_remove(skge
->debugfs
);
3730 skge
->debugfs
= NULL
;
3735 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3738 if (!d
|| IS_ERR(d
))
3739 netdev_info(dev
, "debugfs create failed\n");
3749 static struct notifier_block skge_notifier
= {
3750 .notifier_call
= skge_device_event
,
3754 static __init
void skge_debug_init(void)
3758 ent
= debugfs_create_dir("skge", NULL
);
3759 if (!ent
|| IS_ERR(ent
)) {
3760 pr_info("debugfs create directory failed\n");
3765 register_netdevice_notifier(&skge_notifier
);
3768 static __exit
void skge_debug_cleanup(void)
3771 unregister_netdevice_notifier(&skge_notifier
);
3772 debugfs_remove(skge_debug
);
3778 #define skge_debug_init()
3779 #define skge_debug_cleanup()
3782 static const struct net_device_ops skge_netdev_ops
= {
3783 .ndo_open
= skge_up
,
3784 .ndo_stop
= skge_down
,
3785 .ndo_start_xmit
= skge_xmit_frame
,
3786 .ndo_do_ioctl
= skge_ioctl
,
3787 .ndo_get_stats
= skge_get_stats
,
3788 .ndo_tx_timeout
= skge_tx_timeout
,
3789 .ndo_change_mtu
= skge_change_mtu
,
3790 .ndo_validate_addr
= eth_validate_addr
,
3791 .ndo_set_multicast_list
= skge_set_multicast
,
3792 .ndo_set_mac_address
= skge_set_mac_address
,
3793 #ifdef CONFIG_NET_POLL_CONTROLLER
3794 .ndo_poll_controller
= skge_netpoll
,
3799 /* Initialize network device */
3800 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3803 struct skge_port
*skge
;
3804 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3807 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3811 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3812 dev
->netdev_ops
= &skge_netdev_ops
;
3813 dev
->ethtool_ops
= &skge_ethtool_ops
;
3814 dev
->watchdog_timeo
= TX_WATCHDOG
;
3815 dev
->irq
= hw
->pdev
->irq
;
3818 dev
->features
|= NETIF_F_HIGHDMA
;
3820 skge
= netdev_priv(dev
);
3821 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3824 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3826 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3827 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3829 /* Auto speed and flow control */
3830 skge
->autoneg
= AUTONEG_ENABLE
;
3831 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3834 skge
->advertising
= skge_supported_modes(hw
);
3836 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3837 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3838 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3841 hw
->dev
[port
] = dev
;
3845 /* Only used for Genesis XMAC */
3846 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3848 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3849 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3853 /* read the mac address */
3854 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3855 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3857 /* device is off until link detection */
3858 netif_carrier_off(dev
);
3859 netif_stop_queue(dev
);
3864 static void __devinit
skge_show_addr(struct net_device
*dev
)
3866 const struct skge_port
*skge
= netdev_priv(dev
);
3868 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3871 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3872 const struct pci_device_id
*ent
)
3874 struct net_device
*dev
, *dev1
;
3876 int err
, using_dac
= 0;
3878 err
= pci_enable_device(pdev
);
3880 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3884 err
= pci_request_regions(pdev
, DRV_NAME
);
3886 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3887 goto err_out_disable_pdev
;
3890 pci_set_master(pdev
);
3892 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3894 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3895 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3897 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3901 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3902 goto err_out_free_regions
;
3906 /* byte swap descriptors in hardware */
3910 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3911 reg
|= PCI_REV_DESC
;
3912 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3917 /* space for skge@pci:0000:04:00.0 */
3918 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3919 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3921 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3922 goto err_out_free_regions
;
3924 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3927 spin_lock_init(&hw
->hw_lock
);
3928 spin_lock_init(&hw
->phy_lock
);
3929 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3931 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3933 dev_err(&pdev
->dev
, "cannot map device registers\n");
3934 goto err_out_free_hw
;
3937 err
= skge_reset(hw
);
3939 goto err_out_iounmap
;
3941 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3944 skge_board_name(hw
), hw
->chip_rev
);
3946 dev
= skge_devinit(hw
, 0, using_dac
);
3948 goto err_out_led_off
;
3950 /* Some motherboards are broken and has zero in ROM. */
3951 if (!is_valid_ether_addr(dev
->dev_addr
))
3952 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3954 err
= register_netdev(dev
);
3956 dev_err(&pdev
->dev
, "cannot register net device\n");
3957 goto err_out_free_netdev
;
3960 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3962 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3963 dev
->name
, pdev
->irq
);
3964 goto err_out_unregister
;
3966 skge_show_addr(dev
);
3968 if (hw
->ports
> 1) {
3969 dev1
= skge_devinit(hw
, 1, using_dac
);
3970 if (dev1
&& register_netdev(dev1
) == 0)
3971 skge_show_addr(dev1
);
3973 /* Failure to register second port need not be fatal */
3974 dev_warn(&pdev
->dev
, "register of second port failed\n");
3981 pci_set_drvdata(pdev
, hw
);
3986 unregister_netdev(dev
);
3987 err_out_free_netdev
:
3990 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3995 err_out_free_regions
:
3996 pci_release_regions(pdev
);
3997 err_out_disable_pdev
:
3998 pci_disable_device(pdev
);
3999 pci_set_drvdata(pdev
, NULL
);
4004 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4006 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4007 struct net_device
*dev0
, *dev1
;
4012 flush_scheduled_work();
4016 unregister_netdev(dev1
);
4018 unregister_netdev(dev0
);
4020 tasklet_disable(&hw
->phy_task
);
4022 spin_lock_irq(&hw
->hw_lock
);
4024 skge_write32(hw
, B0_IMSK
, 0);
4025 skge_read32(hw
, B0_IMSK
);
4026 spin_unlock_irq(&hw
->hw_lock
);
4028 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4029 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4031 free_irq(pdev
->irq
, hw
);
4032 pci_release_regions(pdev
);
4033 pci_disable_device(pdev
);
4040 pci_set_drvdata(pdev
, NULL
);
4044 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4046 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4047 int i
, err
, wol
= 0;
4052 err
= pci_save_state(pdev
);
4056 for (i
= 0; i
< hw
->ports
; i
++) {
4057 struct net_device
*dev
= hw
->dev
[i
];
4058 struct skge_port
*skge
= netdev_priv(dev
);
4060 if (netif_running(dev
))
4063 skge_wol_init(skge
);
4068 skge_write32(hw
, B0_IMSK
, 0);
4070 pci_prepare_to_sleep(pdev
);
4075 static int skge_resume(struct pci_dev
*pdev
)
4077 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4083 err
= pci_back_from_sleep(pdev
);
4087 err
= pci_restore_state(pdev
);
4091 err
= skge_reset(hw
);
4095 for (i
= 0; i
< hw
->ports
; i
++) {
4096 struct net_device
*dev
= hw
->dev
[i
];
4098 if (netif_running(dev
)) {
4102 netdev_err(dev
, "could not up: %d\n", err
);
4113 static void skge_shutdown(struct pci_dev
*pdev
)
4115 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4121 for (i
= 0; i
< hw
->ports
; i
++) {
4122 struct net_device
*dev
= hw
->dev
[i
];
4123 struct skge_port
*skge
= netdev_priv(dev
);
4126 skge_wol_init(skge
);
4130 if (pci_enable_wake(pdev
, PCI_D3cold
, wol
))
4131 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4133 pci_disable_device(pdev
);
4134 pci_set_power_state(pdev
, PCI_D3hot
);
4138 static struct pci_driver skge_driver
= {
4140 .id_table
= skge_id_table
,
4141 .probe
= skge_probe
,
4142 .remove
= __devexit_p(skge_remove
),
4144 .suspend
= skge_suspend
,
4145 .resume
= skge_resume
,
4147 .shutdown
= skge_shutdown
,
4150 static int __init
skge_init_module(void)
4153 return pci_register_driver(&skge_driver
);
4156 static void __exit
skge_cleanup_module(void)
4158 pci_unregister_driver(&skge_driver
);
4159 skge_debug_cleanup();
4162 module_init(skge_init_module
);
4163 module_exit(skge_cleanup_module
);