Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
blobe537610d2f09475bf321b8652815fb9eaa46c762
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
74 #define PFX "ipmi_si: "
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 short timeout */
86 enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105 enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
118 #define DEVICE_NAME "ipmi_si"
120 static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
129 * Indexes into stats[] in smi_info below.
131 enum si_stat_indexes {
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
136 SI_STAT_short_timeouts = 0,
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
142 SI_STAT_long_timeouts,
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
176 struct smi_info {
177 int intf_num;
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
215 #define RECEIVE_MSG_AVAIL 0x01
216 #define EVENT_MSG_BUFFER_FULL 0x02
217 #define WDT_PRE_TIMEOUT_INT 0x08
218 #define OEM0_DATA_AVAIL 0x20
219 #define OEM1_DATA_AVAIL 0x40
220 #define OEM2_DATA_AVAIL 0x80
221 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
224 unsigned char msg_flags;
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
230 * If set to true, this will request events the next time the
231 * state machine is idle.
233 atomic_t req_events;
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
240 int run_to_completion;
242 /* The I/O port of an SI interface. */
243 int port;
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
250 unsigned int spacing;
252 /* zero if no irq; */
253 int irq;
255 /* The timer for this si. */
256 struct timer_list si_timer;
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
261 /* Used to gracefully stop the timer without race conditions. */
262 atomic_t stop_operation;
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
270 int interrupt_disabled;
272 /* From the get device id response... */
273 struct ipmi_device_id device_id;
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
283 int dev_registered;
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
288 /* Counters and things for the proc filesystem. */
289 atomic_t stats[SI_NUM_STATS];
291 struct task_struct *thread;
293 struct list_head link;
296 #define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
301 #define SI_MAX_PARMS 4
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
318 static int unload_when_empty = 1;
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
327 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
330 static void deliver_recv_msg(struct smi_info *smi_info,
331 struct ipmi_smi_msg *msg)
333 /* Deliver the message to the upper layer with the lock
334 released. */
336 if (smi_info->run_to_completion) {
337 ipmi_smi_msg_received(smi_info->intf, msg);
338 } else {
339 spin_unlock(&(smi_info->si_lock));
340 ipmi_smi_msg_received(smi_info->intf, msg);
341 spin_lock(&(smi_info->si_lock));
345 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
347 struct ipmi_smi_msg *msg = smi_info->curr_msg;
349 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350 cCode = IPMI_ERR_UNSPECIFIED;
351 /* else use it as is */
353 /* Make it a reponse */
354 msg->rsp[0] = msg->data[0] | 4;
355 msg->rsp[1] = msg->data[1];
356 msg->rsp[2] = cCode;
357 msg->rsp_size = 3;
359 smi_info->curr_msg = NULL;
360 deliver_recv_msg(smi_info, msg);
363 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
365 int rv;
366 struct list_head *entry = NULL;
367 #ifdef DEBUG_TIMING
368 struct timeval t;
369 #endif
372 * No need to save flags, we aleady have interrupts off and we
373 * already hold the SMI lock.
375 if (!smi_info->run_to_completion)
376 spin_lock(&(smi_info->msg_lock));
378 /* Pick the high priority queue first. */
379 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
380 entry = smi_info->hp_xmit_msgs.next;
381 } else if (!list_empty(&(smi_info->xmit_msgs))) {
382 entry = smi_info->xmit_msgs.next;
385 if (!entry) {
386 smi_info->curr_msg = NULL;
387 rv = SI_SM_IDLE;
388 } else {
389 int err;
391 list_del(entry);
392 smi_info->curr_msg = list_entry(entry,
393 struct ipmi_smi_msg,
394 link);
395 #ifdef DEBUG_TIMING
396 do_gettimeofday(&t);
397 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
398 #endif
399 err = atomic_notifier_call_chain(&xaction_notifier_list,
400 0, smi_info);
401 if (err & NOTIFY_STOP_MASK) {
402 rv = SI_SM_CALL_WITHOUT_DELAY;
403 goto out;
405 err = smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
409 if (err)
410 return_hosed_msg(smi_info, err);
412 rv = SI_SM_CALL_WITHOUT_DELAY;
414 out:
415 if (!smi_info->run_to_completion)
416 spin_unlock(&(smi_info->msg_lock));
418 return rv;
421 static void start_enable_irq(struct smi_info *smi_info)
423 unsigned char msg[2];
426 * If we are enabling interrupts, we have to tell the
427 * BMC to use them.
429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
436 static void start_disable_irq(struct smi_info *smi_info)
438 unsigned char msg[2];
440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
447 static void start_clear_flags(struct smi_info *smi_info)
449 unsigned char msg[3];
451 /* Make sure the watchdog pre-timeout flag is not set at startup. */
452 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454 msg[2] = WDT_PRE_TIMEOUT_INT;
456 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457 smi_info->si_state = SI_CLEARING_FLAGS;
461 * When we have a situtaion where we run out of memory and cannot
462 * allocate messages, we just leave them in the BMC and run the system
463 * polled until we can allocate some memory. Once we have some
464 * memory, we will re-enable the interrupt.
466 static inline void disable_si_irq(struct smi_info *smi_info)
468 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
469 start_disable_irq(smi_info);
470 smi_info->interrupt_disabled = 1;
471 if (!atomic_read(&smi_info->stop_operation))
472 mod_timer(&smi_info->si_timer,
473 jiffies + SI_TIMEOUT_JIFFIES);
477 static inline void enable_si_irq(struct smi_info *smi_info)
479 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
480 start_enable_irq(smi_info);
481 smi_info->interrupt_disabled = 0;
485 static void handle_flags(struct smi_info *smi_info)
487 retry:
488 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489 /* Watchdog pre-timeout */
490 smi_inc_stat(smi_info, watchdog_pretimeouts);
492 start_clear_flags(smi_info);
493 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494 spin_unlock(&(smi_info->si_lock));
495 ipmi_smi_watchdog_pretimeout(smi_info->intf);
496 spin_lock(&(smi_info->si_lock));
497 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498 /* Messages available. */
499 smi_info->curr_msg = ipmi_alloc_smi_msg();
500 if (!smi_info->curr_msg) {
501 disable_si_irq(smi_info);
502 smi_info->si_state = SI_NORMAL;
503 return;
505 enable_si_irq(smi_info);
507 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509 smi_info->curr_msg->data_size = 2;
511 smi_info->handlers->start_transaction(
512 smi_info->si_sm,
513 smi_info->curr_msg->data,
514 smi_info->curr_msg->data_size);
515 smi_info->si_state = SI_GETTING_MESSAGES;
516 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517 /* Events available. */
518 smi_info->curr_msg = ipmi_alloc_smi_msg();
519 if (!smi_info->curr_msg) {
520 disable_si_irq(smi_info);
521 smi_info->si_state = SI_NORMAL;
522 return;
524 enable_si_irq(smi_info);
526 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528 smi_info->curr_msg->data_size = 2;
530 smi_info->handlers->start_transaction(
531 smi_info->si_sm,
532 smi_info->curr_msg->data,
533 smi_info->curr_msg->data_size);
534 smi_info->si_state = SI_GETTING_EVENTS;
535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
536 smi_info->oem_data_avail_handler) {
537 if (smi_info->oem_data_avail_handler(smi_info))
538 goto retry;
539 } else
540 smi_info->si_state = SI_NORMAL;
543 static void handle_transaction_done(struct smi_info *smi_info)
545 struct ipmi_smi_msg *msg;
546 #ifdef DEBUG_TIMING
547 struct timeval t;
549 do_gettimeofday(&t);
550 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
551 #endif
552 switch (smi_info->si_state) {
553 case SI_NORMAL:
554 if (!smi_info->curr_msg)
555 break;
557 smi_info->curr_msg->rsp_size
558 = smi_info->handlers->get_result(
559 smi_info->si_sm,
560 smi_info->curr_msg->rsp,
561 IPMI_MAX_MSG_LENGTH);
564 * Do this here becase deliver_recv_msg() releases the
565 * lock, and a new message can be put in during the
566 * time the lock is released.
568 msg = smi_info->curr_msg;
569 smi_info->curr_msg = NULL;
570 deliver_recv_msg(smi_info, msg);
571 break;
573 case SI_GETTING_FLAGS:
575 unsigned char msg[4];
576 unsigned int len;
578 /* We got the flags from the SMI, now handle them. */
579 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580 if (msg[2] != 0) {
581 /* Error fetching flags, just give up for now. */
582 smi_info->si_state = SI_NORMAL;
583 } else if (len < 4) {
585 * Hmm, no flags. That's technically illegal, but
586 * don't use uninitialized data.
588 smi_info->si_state = SI_NORMAL;
589 } else {
590 smi_info->msg_flags = msg[3];
591 handle_flags(smi_info);
593 break;
596 case SI_CLEARING_FLAGS:
597 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
599 unsigned char msg[3];
601 /* We cleared the flags. */
602 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603 if (msg[2] != 0) {
604 /* Error clearing flags */
605 dev_warn(smi_info->dev,
606 "Error clearing flags: %2.2x\n", msg[2]);
608 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609 start_enable_irq(smi_info);
610 else
611 smi_info->si_state = SI_NORMAL;
612 break;
615 case SI_GETTING_EVENTS:
617 smi_info->curr_msg->rsp_size
618 = smi_info->handlers->get_result(
619 smi_info->si_sm,
620 smi_info->curr_msg->rsp,
621 IPMI_MAX_MSG_LENGTH);
624 * Do this here becase deliver_recv_msg() releases the
625 * lock, and a new message can be put in during the
626 * time the lock is released.
628 msg = smi_info->curr_msg;
629 smi_info->curr_msg = NULL;
630 if (msg->rsp[2] != 0) {
631 /* Error getting event, probably done. */
632 msg->done(msg);
634 /* Take off the event flag. */
635 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636 handle_flags(smi_info);
637 } else {
638 smi_inc_stat(smi_info, events);
641 * Do this before we deliver the message
642 * because delivering the message releases the
643 * lock and something else can mess with the
644 * state.
646 handle_flags(smi_info);
648 deliver_recv_msg(smi_info, msg);
650 break;
653 case SI_GETTING_MESSAGES:
655 smi_info->curr_msg->rsp_size
656 = smi_info->handlers->get_result(
657 smi_info->si_sm,
658 smi_info->curr_msg->rsp,
659 IPMI_MAX_MSG_LENGTH);
662 * Do this here becase deliver_recv_msg() releases the
663 * lock, and a new message can be put in during the
664 * time the lock is released.
666 msg = smi_info->curr_msg;
667 smi_info->curr_msg = NULL;
668 if (msg->rsp[2] != 0) {
669 /* Error getting event, probably done. */
670 msg->done(msg);
672 /* Take off the msg flag. */
673 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674 handle_flags(smi_info);
675 } else {
676 smi_inc_stat(smi_info, incoming_messages);
679 * Do this before we deliver the message
680 * because delivering the message releases the
681 * lock and something else can mess with the
682 * state.
684 handle_flags(smi_info);
686 deliver_recv_msg(smi_info, msg);
688 break;
691 case SI_ENABLE_INTERRUPTS1:
693 unsigned char msg[4];
695 /* We got the flags from the SMI, now handle them. */
696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 if (msg[2] != 0) {
698 dev_warn(smi_info->dev, "Could not enable interrupts"
699 ", failed get, using polled mode.\n");
700 smi_info->si_state = SI_NORMAL;
701 } else {
702 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
704 msg[2] = (msg[3] |
705 IPMI_BMC_RCV_MSG_INTR |
706 IPMI_BMC_EVT_MSG_INTR);
707 smi_info->handlers->start_transaction(
708 smi_info->si_sm, msg, 3);
709 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
711 break;
714 case SI_ENABLE_INTERRUPTS2:
716 unsigned char msg[4];
718 /* We got the flags from the SMI, now handle them. */
719 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720 if (msg[2] != 0)
721 dev_warn(smi_info->dev, "Could not enable interrupts"
722 ", failed set, using polled mode.\n");
723 else
724 smi_info->interrupt_disabled = 0;
725 smi_info->si_state = SI_NORMAL;
726 break;
729 case SI_DISABLE_INTERRUPTS1:
731 unsigned char msg[4];
733 /* We got the flags from the SMI, now handle them. */
734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 if (msg[2] != 0) {
736 dev_warn(smi_info->dev, "Could not disable interrupts"
737 ", failed get.\n");
738 smi_info->si_state = SI_NORMAL;
739 } else {
740 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742 msg[2] = (msg[3] &
743 ~(IPMI_BMC_RCV_MSG_INTR |
744 IPMI_BMC_EVT_MSG_INTR));
745 smi_info->handlers->start_transaction(
746 smi_info->si_sm, msg, 3);
747 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
749 break;
752 case SI_DISABLE_INTERRUPTS2:
754 unsigned char msg[4];
756 /* We got the flags from the SMI, now handle them. */
757 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758 if (msg[2] != 0) {
759 dev_warn(smi_info->dev, "Could not disable interrupts"
760 ", failed set.\n");
762 smi_info->si_state = SI_NORMAL;
763 break;
769 * Called on timeouts and events. Timeouts should pass the elapsed
770 * time, interrupts should pass in zero. Must be called with
771 * si_lock held and interrupts disabled.
773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774 int time)
776 enum si_sm_result si_sm_result;
778 restart:
780 * There used to be a loop here that waited a little while
781 * (around 25us) before giving up. That turned out to be
782 * pointless, the minimum delays I was seeing were in the 300us
783 * range, which is far too long to wait in an interrupt. So
784 * we just run until the state machine tells us something
785 * happened or it needs a delay.
787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788 time = 0;
789 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
793 smi_inc_stat(smi_info, complete_transactions);
795 handle_transaction_done(smi_info);
796 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797 } else if (si_sm_result == SI_SM_HOSED) {
798 smi_inc_stat(smi_info, hosed_count);
801 * Do the before return_hosed_msg, because that
802 * releases the lock.
804 smi_info->si_state = SI_NORMAL;
805 if (smi_info->curr_msg != NULL) {
807 * If we were handling a user message, format
808 * a response to send to the upper layer to
809 * tell it about the error.
811 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
817 * We prefer handling attn over new messages. But don't do
818 * this if there is not yet an upper layer to handle anything.
820 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
821 unsigned char msg[2];
823 smi_inc_stat(smi_info, attentions);
826 * Got a attn, send down a get message flags to see
827 * what's causing it. It would be better to handle
828 * this in the upper layer, but due to the way
829 * interrupts work with the SMI, that's not really
830 * possible.
832 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
835 smi_info->handlers->start_transaction(
836 smi_info->si_sm, msg, 2);
837 smi_info->si_state = SI_GETTING_FLAGS;
838 goto restart;
841 /* If we are currently idle, try to start the next message. */
842 if (si_sm_result == SI_SM_IDLE) {
843 smi_inc_stat(smi_info, idles);
845 si_sm_result = start_next_msg(smi_info);
846 if (si_sm_result != SI_SM_IDLE)
847 goto restart;
850 if ((si_sm_result == SI_SM_IDLE)
851 && (atomic_read(&smi_info->req_events))) {
853 * We are idle and the upper layer requested that I fetch
854 * events, so do so.
856 atomic_set(&smi_info->req_events, 0);
858 smi_info->curr_msg = ipmi_alloc_smi_msg();
859 if (!smi_info->curr_msg)
860 goto out;
862 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864 smi_info->curr_msg->data_size = 2;
866 smi_info->handlers->start_transaction(
867 smi_info->si_sm,
868 smi_info->curr_msg->data,
869 smi_info->curr_msg->data_size);
870 smi_info->si_state = SI_GETTING_EVENTS;
871 goto restart;
873 out:
874 return si_sm_result;
877 static void sender(void *send_info,
878 struct ipmi_smi_msg *msg,
879 int priority)
881 struct smi_info *smi_info = send_info;
882 enum si_sm_result result;
883 unsigned long flags;
884 #ifdef DEBUG_TIMING
885 struct timeval t;
886 #endif
888 if (atomic_read(&smi_info->stop_operation)) {
889 msg->rsp[0] = msg->data[0] | 4;
890 msg->rsp[1] = msg->data[1];
891 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892 msg->rsp_size = 3;
893 deliver_recv_msg(smi_info, msg);
894 return;
897 #ifdef DEBUG_TIMING
898 do_gettimeofday(&t);
899 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
902 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
904 if (smi_info->thread)
905 wake_up_process(smi_info->thread);
907 if (smi_info->run_to_completion) {
909 * If we are running to completion, then throw it in
910 * the list and run transactions until everything is
911 * clear. Priority doesn't matter here.
915 * Run to completion means we are single-threaded, no
916 * need for locks.
918 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
920 result = smi_event_handler(smi_info, 0);
921 while (result != SI_SM_IDLE) {
922 udelay(SI_SHORT_TIMEOUT_USEC);
923 result = smi_event_handler(smi_info,
924 SI_SHORT_TIMEOUT_USEC);
926 return;
929 spin_lock_irqsave(&smi_info->msg_lock, flags);
930 if (priority > 0)
931 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932 else
933 list_add_tail(&msg->link, &smi_info->xmit_msgs);
934 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
936 spin_lock_irqsave(&smi_info->si_lock, flags);
937 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
938 start_next_msg(smi_info);
939 spin_unlock_irqrestore(&smi_info->si_lock, flags);
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
944 struct smi_info *smi_info = send_info;
945 enum si_sm_result result;
947 smi_info->run_to_completion = i_run_to_completion;
948 if (i_run_to_completion) {
949 result = smi_event_handler(smi_info, 0);
950 while (result != SI_SM_IDLE) {
951 udelay(SI_SHORT_TIMEOUT_USEC);
952 result = smi_event_handler(smi_info,
953 SI_SHORT_TIMEOUT_USEC);
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
961 * between checks
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
965 ts->tv_nsec = -1;
967 static inline int ipmi_si_is_busy(struct timespec *ts)
969 return ts->tv_nsec != -1;
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 const struct smi_info *smi_info,
974 struct timespec *busy_until)
976 unsigned int max_busy_us = 0;
978 if (smi_info->intf_num < num_max_busy_us)
979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 ipmi_si_set_not_busy(busy_until);
982 else if (!ipmi_si_is_busy(busy_until)) {
983 getnstimeofday(busy_until);
984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985 } else {
986 struct timespec now;
987 getnstimeofday(&now);
988 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989 ipmi_si_set_not_busy(busy_until);
990 return 0;
993 return 1;
998 * A busy-waiting loop for speeding up IPMI operation.
1000 * Lousy hardware makes this hard. This is only enabled for systems
1001 * that are not BT and do not have interrupts. It starts spinning
1002 * when an operation is complete or until max_busy tells it to stop
1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1004 * Documentation/IPMI.txt for details.
1006 static int ipmi_thread(void *data)
1008 struct smi_info *smi_info = data;
1009 unsigned long flags;
1010 enum si_sm_result smi_result;
1011 struct timespec busy_until;
1013 ipmi_si_set_not_busy(&busy_until);
1014 set_user_nice(current, 19);
1015 while (!kthread_should_stop()) {
1016 int busy_wait;
1018 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019 smi_result = smi_event_handler(smi_info, 0);
1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022 &busy_until);
1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024 ; /* do nothing */
1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026 schedule();
1027 else if (smi_result == SI_SM_IDLE)
1028 schedule_timeout_interruptible(100);
1029 else
1030 schedule_timeout_interruptible(1);
1032 return 0;
1036 static void poll(void *send_info)
1038 struct smi_info *smi_info = send_info;
1039 unsigned long flags;
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1045 udelay(10);
1046 spin_lock_irqsave(&smi_info->si_lock, flags);
1047 smi_event_handler(smi_info, 10);
1048 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 static void request_events(void *send_info)
1053 struct smi_info *smi_info = send_info;
1055 if (atomic_read(&smi_info->stop_operation) ||
1056 !smi_info->has_event_buffer)
1057 return;
1059 atomic_set(&smi_info->req_events, 1);
1062 static int initialized;
1064 static void smi_timeout(unsigned long data)
1066 struct smi_info *smi_info = (struct smi_info *) data;
1067 enum si_sm_result smi_result;
1068 unsigned long flags;
1069 unsigned long jiffies_now;
1070 long time_diff;
1071 long timeout;
1072 #ifdef DEBUG_TIMING
1073 struct timeval t;
1074 #endif
1076 spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078 do_gettimeofday(&t);
1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081 jiffies_now = jiffies;
1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083 * SI_USEC_PER_JIFFY);
1084 smi_result = smi_event_handler(smi_info, time_diff);
1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1088 smi_info->last_timeout_jiffies = jiffies_now;
1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091 /* Running with interrupts, only do long timeouts. */
1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 smi_inc_stat(smi_info, long_timeouts);
1094 goto do_mod_timer;
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 smi_inc_stat(smi_info, short_timeouts);
1103 timeout = jiffies + 1;
1104 } else {
1105 smi_inc_stat(smi_info, long_timeouts);
1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1109 do_mod_timer:
1110 if (smi_result != SI_SM_IDLE)
1111 mod_timer(&(smi_info->si_timer), timeout);
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1116 struct smi_info *smi_info = data;
1117 unsigned long flags;
1118 #ifdef DEBUG_TIMING
1119 struct timeval t;
1120 #endif
1122 spin_lock_irqsave(&(smi_info->si_lock), flags);
1124 smi_inc_stat(smi_info, interrupts);
1126 #ifdef DEBUG_TIMING
1127 do_gettimeofday(&t);
1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130 smi_event_handler(smi_info, 0);
1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132 return IRQ_HANDLED;
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1137 struct smi_info *smi_info = data;
1138 /* We need to clear the IRQ flag for the BT interface. */
1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142 return si_irq_handler(irq, data);
1145 static int smi_start_processing(void *send_info,
1146 ipmi_smi_t intf)
1148 struct smi_info *new_smi = send_info;
1149 int enable = 0;
1151 new_smi->intf = intf;
1153 /* Try to claim any interrupts. */
1154 if (new_smi->irq_setup)
1155 new_smi->irq_setup(new_smi);
1157 /* Set up the timer that drives the interface. */
1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159 new_smi->last_timeout_jiffies = jiffies;
1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1163 * Check if the user forcefully enabled the daemon.
1165 if (new_smi->intf_num < num_force_kipmid)
1166 enable = force_kipmid[new_smi->intf_num];
1168 * The BT interface is efficient enough to not need a thread,
1169 * and there is no need for a thread if we have interrupts.
1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172 enable = 1;
1174 if (enable) {
1175 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 "kipmi%d", new_smi->intf_num);
1177 if (IS_ERR(new_smi->thread)) {
1178 dev_notice(new_smi->dev, "Could not start"
1179 " kernel thread due to error %ld, only using"
1180 " timers to drive the interface\n",
1181 PTR_ERR(new_smi->thread));
1182 new_smi->thread = NULL;
1186 return 0;
1189 static void set_maintenance_mode(void *send_info, int enable)
1191 struct smi_info *smi_info = send_info;
1193 if (!enable)
1194 atomic_set(&smi_info->req_events, 0);
1197 static struct ipmi_smi_handlers handlers = {
1198 .owner = THIS_MODULE,
1199 .start_processing = smi_start_processing,
1200 .sender = sender,
1201 .request_events = request_events,
1202 .set_maintenance_mode = set_maintenance_mode,
1203 .set_run_to_completion = set_run_to_completion,
1204 .poll = poll,
1208 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1209 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1212 static LIST_HEAD(smi_infos);
1213 static DEFINE_MUTEX(smi_infos_lock);
1214 static int smi_num; /* Used to sequence the SMIs */
1216 #define DEFAULT_REGSPACING 1
1217 #define DEFAULT_REGSIZE 1
1219 static int si_trydefaults = 1;
1220 static char *si_type[SI_MAX_PARMS];
1221 #define MAX_SI_TYPE_STR 30
1222 static char si_type_str[MAX_SI_TYPE_STR];
1223 static unsigned long addrs[SI_MAX_PARMS];
1224 static unsigned int num_addrs;
1225 static unsigned int ports[SI_MAX_PARMS];
1226 static unsigned int num_ports;
1227 static int irqs[SI_MAX_PARMS];
1228 static unsigned int num_irqs;
1229 static int regspacings[SI_MAX_PARMS];
1230 static unsigned int num_regspacings;
1231 static int regsizes[SI_MAX_PARMS];
1232 static unsigned int num_regsizes;
1233 static int regshifts[SI_MAX_PARMS];
1234 static unsigned int num_regshifts;
1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1236 static unsigned int num_slave_addrs;
1238 #define IPMI_IO_ADDR_SPACE 0
1239 #define IPMI_MEM_ADDR_SPACE 1
1240 static char *addr_space_to_str[] = { "i/o", "mem" };
1242 static int hotmod_handler(const char *val, struct kernel_param *kp);
1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1246 " Documentation/IPMI.txt in the kernel sources for the"
1247 " gory details.");
1249 module_param_named(trydefaults, si_trydefaults, bool, 0);
1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1251 " default scan of the KCS and SMIC interface at the standard"
1252 " address");
1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1255 " interface separated by commas. The types are 'kcs',"
1256 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1257 " the first interface to kcs and the second to bt");
1258 module_param_array(addrs, ulong, &num_addrs, 0);
1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1260 " addresses separated by commas. Only use if an interface"
1261 " is in memory. Otherwise, set it to zero or leave"
1262 " it blank.");
1263 module_param_array(ports, uint, &num_ports, 0);
1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1265 " addresses separated by commas. Only use if an interface"
1266 " is a port. Otherwise, set it to zero or leave"
1267 " it blank.");
1268 module_param_array(irqs, int, &num_irqs, 0);
1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1270 " addresses separated by commas. Only use if an interface"
1271 " has an interrupt. Otherwise, set it to zero or leave"
1272 " it blank.");
1273 module_param_array(regspacings, int, &num_regspacings, 0);
1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1275 " and each successive register used by the interface. For"
1276 " instance, if the start address is 0xca2 and the spacing"
1277 " is 2, then the second address is at 0xca4. Defaults"
1278 " to 1.");
1279 module_param_array(regsizes, int, &num_regsizes, 0);
1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1281 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1282 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1283 " the 8-bit IPMI register has to be read from a larger"
1284 " register.");
1285 module_param_array(regshifts, int, &num_regshifts, 0);
1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1287 " IPMI register, in bits. For instance, if the data"
1288 " is read from a 32-bit word and the IPMI data is in"
1289 " bit 8-15, then the shift would be 8");
1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1292 " the controller. Normally this is 0x20, but can be"
1293 " overridden by this parm. This is an array indexed"
1294 " by interface number.");
1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1297 " disabled(0). Normally the IPMI driver auto-detects"
1298 " this, but the value may be overridden by this parm.");
1299 module_param(unload_when_empty, int, 0);
1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1301 " specified or found, default is 1. Setting to 0"
1302 " is useful for hot add of devices using hotmod.");
1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1304 MODULE_PARM_DESC(kipmid_max_busy_us,
1305 "Max time (in microseconds) to busy-wait for IPMI data before"
1306 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1307 " if kipmid is using up a lot of CPU time.");
1310 static void std_irq_cleanup(struct smi_info *info)
1312 if (info->si_type == SI_BT)
1313 /* Disable the interrupt in the BT interface. */
1314 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1315 free_irq(info->irq, info);
1318 static int std_irq_setup(struct smi_info *info)
1320 int rv;
1322 if (!info->irq)
1323 return 0;
1325 if (info->si_type == SI_BT) {
1326 rv = request_irq(info->irq,
1327 si_bt_irq_handler,
1328 IRQF_SHARED | IRQF_DISABLED,
1329 DEVICE_NAME,
1330 info);
1331 if (!rv)
1332 /* Enable the interrupt in the BT interface. */
1333 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1334 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1335 } else
1336 rv = request_irq(info->irq,
1337 si_irq_handler,
1338 IRQF_SHARED | IRQF_DISABLED,
1339 DEVICE_NAME,
1340 info);
1341 if (rv) {
1342 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1343 " running polled\n",
1344 DEVICE_NAME, info->irq);
1345 info->irq = 0;
1346 } else {
1347 info->irq_cleanup = std_irq_cleanup;
1348 dev_info(info->dev, "Using irq %d\n", info->irq);
1351 return rv;
1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1356 unsigned int addr = io->addr_data;
1358 return inb(addr + (offset * io->regspacing));
1361 static void port_outb(struct si_sm_io *io, unsigned int offset,
1362 unsigned char b)
1364 unsigned int addr = io->addr_data;
1366 outb(b, addr + (offset * io->regspacing));
1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1371 unsigned int addr = io->addr_data;
1373 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1376 static void port_outw(struct si_sm_io *io, unsigned int offset,
1377 unsigned char b)
1379 unsigned int addr = io->addr_data;
1381 outw(b << io->regshift, addr + (offset * io->regspacing));
1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1386 unsigned int addr = io->addr_data;
1388 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1391 static void port_outl(struct si_sm_io *io, unsigned int offset,
1392 unsigned char b)
1394 unsigned int addr = io->addr_data;
1396 outl(b << io->regshift, addr+(offset * io->regspacing));
1399 static void port_cleanup(struct smi_info *info)
1401 unsigned int addr = info->io.addr_data;
1402 int idx;
1404 if (addr) {
1405 for (idx = 0; idx < info->io_size; idx++)
1406 release_region(addr + idx * info->io.regspacing,
1407 info->io.regsize);
1411 static int port_setup(struct smi_info *info)
1413 unsigned int addr = info->io.addr_data;
1414 int idx;
1416 if (!addr)
1417 return -ENODEV;
1419 info->io_cleanup = port_cleanup;
1422 * Figure out the actual inb/inw/inl/etc routine to use based
1423 * upon the register size.
1425 switch (info->io.regsize) {
1426 case 1:
1427 info->io.inputb = port_inb;
1428 info->io.outputb = port_outb;
1429 break;
1430 case 2:
1431 info->io.inputb = port_inw;
1432 info->io.outputb = port_outw;
1433 break;
1434 case 4:
1435 info->io.inputb = port_inl;
1436 info->io.outputb = port_outl;
1437 break;
1438 default:
1439 dev_warn(info->dev, "Invalid register size: %d\n",
1440 info->io.regsize);
1441 return -EINVAL;
1445 * Some BIOSes reserve disjoint I/O regions in their ACPI
1446 * tables. This causes problems when trying to register the
1447 * entire I/O region. Therefore we must register each I/O
1448 * port separately.
1450 for (idx = 0; idx < info->io_size; idx++) {
1451 if (request_region(addr + idx * info->io.regspacing,
1452 info->io.regsize, DEVICE_NAME) == NULL) {
1453 /* Undo allocations */
1454 while (idx--) {
1455 release_region(addr + idx * info->io.regspacing,
1456 info->io.regsize);
1458 return -EIO;
1461 return 0;
1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1466 return readb((io->addr)+(offset * io->regspacing));
1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1470 unsigned char b)
1472 writeb(b, (io->addr)+(offset * io->regspacing));
1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1477 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1478 & 0xff;
1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1482 unsigned char b)
1484 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1489 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1490 & 0xff;
1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1494 unsigned char b)
1496 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499 #ifdef readq
1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1502 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503 & 0xff;
1506 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1507 unsigned char b)
1509 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1511 #endif
1513 static void mem_cleanup(struct smi_info *info)
1515 unsigned long addr = info->io.addr_data;
1516 int mapsize;
1518 if (info->io.addr) {
1519 iounmap(info->io.addr);
1521 mapsize = ((info->io_size * info->io.regspacing)
1522 - (info->io.regspacing - info->io.regsize));
1524 release_mem_region(addr, mapsize);
1528 static int mem_setup(struct smi_info *info)
1530 unsigned long addr = info->io.addr_data;
1531 int mapsize;
1533 if (!addr)
1534 return -ENODEV;
1536 info->io_cleanup = mem_cleanup;
1539 * Figure out the actual readb/readw/readl/etc routine to use based
1540 * upon the register size.
1542 switch (info->io.regsize) {
1543 case 1:
1544 info->io.inputb = intf_mem_inb;
1545 info->io.outputb = intf_mem_outb;
1546 break;
1547 case 2:
1548 info->io.inputb = intf_mem_inw;
1549 info->io.outputb = intf_mem_outw;
1550 break;
1551 case 4:
1552 info->io.inputb = intf_mem_inl;
1553 info->io.outputb = intf_mem_outl;
1554 break;
1555 #ifdef readq
1556 case 8:
1557 info->io.inputb = mem_inq;
1558 info->io.outputb = mem_outq;
1559 break;
1560 #endif
1561 default:
1562 dev_warn(info->dev, "Invalid register size: %d\n",
1563 info->io.regsize);
1564 return -EINVAL;
1568 * Calculate the total amount of memory to claim. This is an
1569 * unusual looking calculation, but it avoids claiming any
1570 * more memory than it has to. It will claim everything
1571 * between the first address to the end of the last full
1572 * register.
1574 mapsize = ((info->io_size * info->io.regspacing)
1575 - (info->io.regspacing - info->io.regsize));
1577 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1578 return -EIO;
1580 info->io.addr = ioremap(addr, mapsize);
1581 if (info->io.addr == NULL) {
1582 release_mem_region(addr, mapsize);
1583 return -EIO;
1585 return 0;
1589 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1590 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1591 * Options are:
1592 * rsp=<regspacing>
1593 * rsi=<regsize>
1594 * rsh=<regshift>
1595 * irq=<irq>
1596 * ipmb=<ipmb addr>
1598 enum hotmod_op { HM_ADD, HM_REMOVE };
1599 struct hotmod_vals {
1600 char *name;
1601 int val;
1603 static struct hotmod_vals hotmod_ops[] = {
1604 { "add", HM_ADD },
1605 { "remove", HM_REMOVE },
1606 { NULL }
1608 static struct hotmod_vals hotmod_si[] = {
1609 { "kcs", SI_KCS },
1610 { "smic", SI_SMIC },
1611 { "bt", SI_BT },
1612 { NULL }
1614 static struct hotmod_vals hotmod_as[] = {
1615 { "mem", IPMI_MEM_ADDR_SPACE },
1616 { "i/o", IPMI_IO_ADDR_SPACE },
1617 { NULL }
1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1622 char *s;
1623 int i;
1625 s = strchr(*curr, ',');
1626 if (!s) {
1627 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1628 return -EINVAL;
1630 *s = '\0';
1631 s++;
1632 for (i = 0; hotmod_ops[i].name; i++) {
1633 if (strcmp(*curr, v[i].name) == 0) {
1634 *val = v[i].val;
1635 *curr = s;
1636 return 0;
1640 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1641 return -EINVAL;
1644 static int check_hotmod_int_op(const char *curr, const char *option,
1645 const char *name, int *val)
1647 char *n;
1649 if (strcmp(curr, name) == 0) {
1650 if (!option) {
1651 printk(KERN_WARNING PFX
1652 "No option given for '%s'\n",
1653 curr);
1654 return -EINVAL;
1656 *val = simple_strtoul(option, &n, 0);
1657 if ((*n != '\0') || (*option == '\0')) {
1658 printk(KERN_WARNING PFX
1659 "Bad option given for '%s'\n",
1660 curr);
1661 return -EINVAL;
1663 return 1;
1665 return 0;
1668 static int hotmod_handler(const char *val, struct kernel_param *kp)
1670 char *str = kstrdup(val, GFP_KERNEL);
1671 int rv;
1672 char *next, *curr, *s, *n, *o;
1673 enum hotmod_op op;
1674 enum si_type si_type;
1675 int addr_space;
1676 unsigned long addr;
1677 int regspacing;
1678 int regsize;
1679 int regshift;
1680 int irq;
1681 int ipmb;
1682 int ival;
1683 int len;
1684 struct smi_info *info;
1686 if (!str)
1687 return -ENOMEM;
1689 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1690 len = strlen(str);
1691 ival = len - 1;
1692 while ((ival >= 0) && isspace(str[ival])) {
1693 str[ival] = '\0';
1694 ival--;
1697 for (curr = str; curr; curr = next) {
1698 regspacing = 1;
1699 regsize = 1;
1700 regshift = 0;
1701 irq = 0;
1702 ipmb = 0; /* Choose the default if not specified */
1704 next = strchr(curr, ':');
1705 if (next) {
1706 *next = '\0';
1707 next++;
1710 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1711 if (rv)
1712 break;
1713 op = ival;
1715 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1716 if (rv)
1717 break;
1718 si_type = ival;
1720 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1721 if (rv)
1722 break;
1724 s = strchr(curr, ',');
1725 if (s) {
1726 *s = '\0';
1727 s++;
1729 addr = simple_strtoul(curr, &n, 0);
1730 if ((*n != '\0') || (*curr == '\0')) {
1731 printk(KERN_WARNING PFX "Invalid hotmod address"
1732 " '%s'\n", curr);
1733 break;
1736 while (s) {
1737 curr = s;
1738 s = strchr(curr, ',');
1739 if (s) {
1740 *s = '\0';
1741 s++;
1743 o = strchr(curr, '=');
1744 if (o) {
1745 *o = '\0';
1746 o++;
1748 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1749 if (rv < 0)
1750 goto out;
1751 else if (rv)
1752 continue;
1753 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1754 if (rv < 0)
1755 goto out;
1756 else if (rv)
1757 continue;
1758 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1759 if (rv < 0)
1760 goto out;
1761 else if (rv)
1762 continue;
1763 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1764 if (rv < 0)
1765 goto out;
1766 else if (rv)
1767 continue;
1768 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1769 if (rv < 0)
1770 goto out;
1771 else if (rv)
1772 continue;
1774 rv = -EINVAL;
1775 printk(KERN_WARNING PFX
1776 "Invalid hotmod option '%s'\n",
1777 curr);
1778 goto out;
1781 if (op == HM_ADD) {
1782 info = kzalloc(sizeof(*info), GFP_KERNEL);
1783 if (!info) {
1784 rv = -ENOMEM;
1785 goto out;
1788 info->addr_source = SI_HOTMOD;
1789 info->si_type = si_type;
1790 info->io.addr_data = addr;
1791 info->io.addr_type = addr_space;
1792 if (addr_space == IPMI_MEM_ADDR_SPACE)
1793 info->io_setup = mem_setup;
1794 else
1795 info->io_setup = port_setup;
1797 info->io.addr = NULL;
1798 info->io.regspacing = regspacing;
1799 if (!info->io.regspacing)
1800 info->io.regspacing = DEFAULT_REGSPACING;
1801 info->io.regsize = regsize;
1802 if (!info->io.regsize)
1803 info->io.regsize = DEFAULT_REGSPACING;
1804 info->io.regshift = regshift;
1805 info->irq = irq;
1806 if (info->irq)
1807 info->irq_setup = std_irq_setup;
1808 info->slave_addr = ipmb;
1810 if (!add_smi(info)) {
1811 if (try_smi_init(info))
1812 cleanup_one_si(info);
1813 } else {
1814 kfree(info);
1816 } else {
1817 /* remove */
1818 struct smi_info *e, *tmp_e;
1820 mutex_lock(&smi_infos_lock);
1821 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1822 if (e->io.addr_type != addr_space)
1823 continue;
1824 if (e->si_type != si_type)
1825 continue;
1826 if (e->io.addr_data == addr)
1827 cleanup_one_si(e);
1829 mutex_unlock(&smi_infos_lock);
1832 rv = len;
1833 out:
1834 kfree(str);
1835 return rv;
1838 static __devinit void hardcode_find_bmc(void)
1840 int i;
1841 struct smi_info *info;
1843 for (i = 0; i < SI_MAX_PARMS; i++) {
1844 if (!ports[i] && !addrs[i])
1845 continue;
1847 info = kzalloc(sizeof(*info), GFP_KERNEL);
1848 if (!info)
1849 return;
1851 info->addr_source = SI_HARDCODED;
1852 printk(KERN_INFO PFX "probing via hardcoded address\n");
1854 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1855 info->si_type = SI_KCS;
1856 } else if (strcmp(si_type[i], "smic") == 0) {
1857 info->si_type = SI_SMIC;
1858 } else if (strcmp(si_type[i], "bt") == 0) {
1859 info->si_type = SI_BT;
1860 } else {
1861 printk(KERN_WARNING PFX "Interface type specified "
1862 "for interface %d, was invalid: %s\n",
1863 i, si_type[i]);
1864 kfree(info);
1865 continue;
1868 if (ports[i]) {
1869 /* An I/O port */
1870 info->io_setup = port_setup;
1871 info->io.addr_data = ports[i];
1872 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1873 } else if (addrs[i]) {
1874 /* A memory port */
1875 info->io_setup = mem_setup;
1876 info->io.addr_data = addrs[i];
1877 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1878 } else {
1879 printk(KERN_WARNING PFX "Interface type specified "
1880 "for interface %d, but port and address were "
1881 "not set or set to zero.\n", i);
1882 kfree(info);
1883 continue;
1886 info->io.addr = NULL;
1887 info->io.regspacing = regspacings[i];
1888 if (!info->io.regspacing)
1889 info->io.regspacing = DEFAULT_REGSPACING;
1890 info->io.regsize = regsizes[i];
1891 if (!info->io.regsize)
1892 info->io.regsize = DEFAULT_REGSPACING;
1893 info->io.regshift = regshifts[i];
1894 info->irq = irqs[i];
1895 if (info->irq)
1896 info->irq_setup = std_irq_setup;
1897 info->slave_addr = slave_addrs[i];
1899 if (!add_smi(info)) {
1900 if (try_smi_init(info))
1901 cleanup_one_si(info);
1902 } else {
1903 kfree(info);
1908 #ifdef CONFIG_ACPI
1910 #include <linux/acpi.h>
1913 * Once we get an ACPI failure, we don't try any more, because we go
1914 * through the tables sequentially. Once we don't find a table, there
1915 * are no more.
1917 static int acpi_failure;
1919 /* For GPE-type interrupts. */
1920 static u32 ipmi_acpi_gpe(void *context)
1922 struct smi_info *smi_info = context;
1923 unsigned long flags;
1924 #ifdef DEBUG_TIMING
1925 struct timeval t;
1926 #endif
1928 spin_lock_irqsave(&(smi_info->si_lock), flags);
1930 smi_inc_stat(smi_info, interrupts);
1932 #ifdef DEBUG_TIMING
1933 do_gettimeofday(&t);
1934 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1935 #endif
1936 smi_event_handler(smi_info, 0);
1937 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1939 return ACPI_INTERRUPT_HANDLED;
1942 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1944 if (!info->irq)
1945 return;
1947 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1950 static int acpi_gpe_irq_setup(struct smi_info *info)
1952 acpi_status status;
1954 if (!info->irq)
1955 return 0;
1957 /* FIXME - is level triggered right? */
1958 status = acpi_install_gpe_handler(NULL,
1959 info->irq,
1960 ACPI_GPE_LEVEL_TRIGGERED,
1961 &ipmi_acpi_gpe,
1962 info);
1963 if (status != AE_OK) {
1964 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1965 " running polled\n", DEVICE_NAME, info->irq);
1966 info->irq = 0;
1967 return -EINVAL;
1968 } else {
1969 info->irq_cleanup = acpi_gpe_irq_cleanup;
1970 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1971 return 0;
1976 * Defined at
1977 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1979 struct SPMITable {
1980 s8 Signature[4];
1981 u32 Length;
1982 u8 Revision;
1983 u8 Checksum;
1984 s8 OEMID[6];
1985 s8 OEMTableID[8];
1986 s8 OEMRevision[4];
1987 s8 CreatorID[4];
1988 s8 CreatorRevision[4];
1989 u8 InterfaceType;
1990 u8 IPMIlegacy;
1991 s16 SpecificationRevision;
1994 * Bit 0 - SCI interrupt supported
1995 * Bit 1 - I/O APIC/SAPIC
1997 u8 InterruptType;
2000 * If bit 0 of InterruptType is set, then this is the SCI
2001 * interrupt in the GPEx_STS register.
2003 u8 GPE;
2005 s16 Reserved;
2008 * If bit 1 of InterruptType is set, then this is the I/O
2009 * APIC/SAPIC interrupt.
2011 u32 GlobalSystemInterrupt;
2013 /* The actual register address. */
2014 struct acpi_generic_address addr;
2016 u8 UID[4];
2018 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2021 static __devinit int try_init_spmi(struct SPMITable *spmi)
2023 struct smi_info *info;
2025 if (spmi->IPMIlegacy != 1) {
2026 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2027 return -ENODEV;
2030 info = kzalloc(sizeof(*info), GFP_KERNEL);
2031 if (!info) {
2032 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2033 return -ENOMEM;
2036 info->addr_source = SI_SPMI;
2037 printk(KERN_INFO PFX "probing via SPMI\n");
2039 /* Figure out the interface type. */
2040 switch (spmi->InterfaceType) {
2041 case 1: /* KCS */
2042 info->si_type = SI_KCS;
2043 break;
2044 case 2: /* SMIC */
2045 info->si_type = SI_SMIC;
2046 break;
2047 case 3: /* BT */
2048 info->si_type = SI_BT;
2049 break;
2050 default:
2051 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2052 spmi->InterfaceType);
2053 kfree(info);
2054 return -EIO;
2057 if (spmi->InterruptType & 1) {
2058 /* We've got a GPE interrupt. */
2059 info->irq = spmi->GPE;
2060 info->irq_setup = acpi_gpe_irq_setup;
2061 } else if (spmi->InterruptType & 2) {
2062 /* We've got an APIC/SAPIC interrupt. */
2063 info->irq = spmi->GlobalSystemInterrupt;
2064 info->irq_setup = std_irq_setup;
2065 } else {
2066 /* Use the default interrupt setting. */
2067 info->irq = 0;
2068 info->irq_setup = NULL;
2071 if (spmi->addr.bit_width) {
2072 /* A (hopefully) properly formed register bit width. */
2073 info->io.regspacing = spmi->addr.bit_width / 8;
2074 } else {
2075 info->io.regspacing = DEFAULT_REGSPACING;
2077 info->io.regsize = info->io.regspacing;
2078 info->io.regshift = spmi->addr.bit_offset;
2080 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2081 info->io_setup = mem_setup;
2082 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2083 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2084 info->io_setup = port_setup;
2085 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2086 } else {
2087 kfree(info);
2088 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2089 return -EIO;
2091 info->io.addr_data = spmi->addr.address;
2093 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2094 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2095 info->io.addr_data, info->io.regsize, info->io.regspacing,
2096 info->irq);
2098 if (add_smi(info))
2099 kfree(info);
2101 return 0;
2104 static __devinit void spmi_find_bmc(void)
2106 acpi_status status;
2107 struct SPMITable *spmi;
2108 int i;
2110 if (acpi_disabled)
2111 return;
2113 if (acpi_failure)
2114 return;
2116 for (i = 0; ; i++) {
2117 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2118 (struct acpi_table_header **)&spmi);
2119 if (status != AE_OK)
2120 return;
2122 try_init_spmi(spmi);
2126 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2127 const struct pnp_device_id *dev_id)
2129 struct acpi_device *acpi_dev;
2130 struct smi_info *info;
2131 struct resource *res, *res_second;
2132 acpi_handle handle;
2133 acpi_status status;
2134 unsigned long long tmp;
2136 acpi_dev = pnp_acpi_device(dev);
2137 if (!acpi_dev)
2138 return -ENODEV;
2140 info = kzalloc(sizeof(*info), GFP_KERNEL);
2141 if (!info)
2142 return -ENOMEM;
2144 info->addr_source = SI_ACPI;
2145 printk(KERN_INFO PFX "probing via ACPI\n");
2147 handle = acpi_dev->handle;
2149 /* _IFT tells us the interface type: KCS, BT, etc */
2150 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2151 if (ACPI_FAILURE(status))
2152 goto err_free;
2154 switch (tmp) {
2155 case 1:
2156 info->si_type = SI_KCS;
2157 break;
2158 case 2:
2159 info->si_type = SI_SMIC;
2160 break;
2161 case 3:
2162 info->si_type = SI_BT;
2163 break;
2164 default:
2165 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2166 goto err_free;
2169 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2170 if (res) {
2171 info->io_setup = port_setup;
2172 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2173 } else {
2174 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2175 if (res) {
2176 info->io_setup = mem_setup;
2177 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2180 if (!res) {
2181 dev_err(&dev->dev, "no I/O or memory address\n");
2182 goto err_free;
2184 info->io.addr_data = res->start;
2186 info->io.regspacing = DEFAULT_REGSPACING;
2187 res_second = pnp_get_resource(dev,
2188 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2189 IORESOURCE_IO : IORESOURCE_MEM,
2191 if (res_second) {
2192 if (res_second->start > info->io.addr_data)
2193 info->io.regspacing = res_second->start - info->io.addr_data;
2195 info->io.regsize = DEFAULT_REGSPACING;
2196 info->io.regshift = 0;
2198 /* If _GPE exists, use it; otherwise use standard interrupts */
2199 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2200 if (ACPI_SUCCESS(status)) {
2201 info->irq = tmp;
2202 info->irq_setup = acpi_gpe_irq_setup;
2203 } else if (pnp_irq_valid(dev, 0)) {
2204 info->irq = pnp_irq(dev, 0);
2205 info->irq_setup = std_irq_setup;
2208 info->dev = &dev->dev;
2209 pnp_set_drvdata(dev, info);
2211 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2212 res, info->io.regsize, info->io.regspacing,
2213 info->irq);
2215 if (add_smi(info))
2216 goto err_free;
2218 return 0;
2220 err_free:
2221 kfree(info);
2222 return -EINVAL;
2225 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2227 struct smi_info *info = pnp_get_drvdata(dev);
2229 cleanup_one_si(info);
2232 static const struct pnp_device_id pnp_dev_table[] = {
2233 {"IPI0001", 0},
2234 {"", 0},
2237 static struct pnp_driver ipmi_pnp_driver = {
2238 .name = DEVICE_NAME,
2239 .probe = ipmi_pnp_probe,
2240 .remove = __devexit_p(ipmi_pnp_remove),
2241 .id_table = pnp_dev_table,
2243 #endif
2245 #ifdef CONFIG_DMI
2246 struct dmi_ipmi_data {
2247 u8 type;
2248 u8 addr_space;
2249 unsigned long base_addr;
2250 u8 irq;
2251 u8 offset;
2252 u8 slave_addr;
2255 static int __devinit decode_dmi(const struct dmi_header *dm,
2256 struct dmi_ipmi_data *dmi)
2258 const u8 *data = (const u8 *)dm;
2259 unsigned long base_addr;
2260 u8 reg_spacing;
2261 u8 len = dm->length;
2263 dmi->type = data[4];
2265 memcpy(&base_addr, data+8, sizeof(unsigned long));
2266 if (len >= 0x11) {
2267 if (base_addr & 1) {
2268 /* I/O */
2269 base_addr &= 0xFFFE;
2270 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2271 } else
2272 /* Memory */
2273 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2275 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2276 is odd. */
2277 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2279 dmi->irq = data[0x11];
2281 /* The top two bits of byte 0x10 hold the register spacing. */
2282 reg_spacing = (data[0x10] & 0xC0) >> 6;
2283 switch (reg_spacing) {
2284 case 0x00: /* Byte boundaries */
2285 dmi->offset = 1;
2286 break;
2287 case 0x01: /* 32-bit boundaries */
2288 dmi->offset = 4;
2289 break;
2290 case 0x02: /* 16-byte boundaries */
2291 dmi->offset = 16;
2292 break;
2293 default:
2294 /* Some other interface, just ignore it. */
2295 return -EIO;
2297 } else {
2298 /* Old DMI spec. */
2300 * Note that technically, the lower bit of the base
2301 * address should be 1 if the address is I/O and 0 if
2302 * the address is in memory. So many systems get that
2303 * wrong (and all that I have seen are I/O) so we just
2304 * ignore that bit and assume I/O. Systems that use
2305 * memory should use the newer spec, anyway.
2307 dmi->base_addr = base_addr & 0xfffe;
2308 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2309 dmi->offset = 1;
2312 dmi->slave_addr = data[6];
2314 return 0;
2317 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2319 struct smi_info *info;
2321 info = kzalloc(sizeof(*info), GFP_KERNEL);
2322 if (!info) {
2323 printk(KERN_ERR PFX "Could not allocate SI data\n");
2324 return;
2327 info->addr_source = SI_SMBIOS;
2328 printk(KERN_INFO PFX "probing via SMBIOS\n");
2330 switch (ipmi_data->type) {
2331 case 0x01: /* KCS */
2332 info->si_type = SI_KCS;
2333 break;
2334 case 0x02: /* SMIC */
2335 info->si_type = SI_SMIC;
2336 break;
2337 case 0x03: /* BT */
2338 info->si_type = SI_BT;
2339 break;
2340 default:
2341 kfree(info);
2342 return;
2345 switch (ipmi_data->addr_space) {
2346 case IPMI_MEM_ADDR_SPACE:
2347 info->io_setup = mem_setup;
2348 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2349 break;
2351 case IPMI_IO_ADDR_SPACE:
2352 info->io_setup = port_setup;
2353 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2354 break;
2356 default:
2357 kfree(info);
2358 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2359 ipmi_data->addr_space);
2360 return;
2362 info->io.addr_data = ipmi_data->base_addr;
2364 info->io.regspacing = ipmi_data->offset;
2365 if (!info->io.regspacing)
2366 info->io.regspacing = DEFAULT_REGSPACING;
2367 info->io.regsize = DEFAULT_REGSPACING;
2368 info->io.regshift = 0;
2370 info->slave_addr = ipmi_data->slave_addr;
2372 info->irq = ipmi_data->irq;
2373 if (info->irq)
2374 info->irq_setup = std_irq_setup;
2376 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2377 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2378 info->io.addr_data, info->io.regsize, info->io.regspacing,
2379 info->irq);
2381 if (add_smi(info))
2382 kfree(info);
2385 static void __devinit dmi_find_bmc(void)
2387 const struct dmi_device *dev = NULL;
2388 struct dmi_ipmi_data data;
2389 int rv;
2391 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2392 memset(&data, 0, sizeof(data));
2393 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2394 &data);
2395 if (!rv)
2396 try_init_dmi(&data);
2399 #endif /* CONFIG_DMI */
2401 #ifdef CONFIG_PCI
2403 #define PCI_ERMC_CLASSCODE 0x0C0700
2404 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2405 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2406 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2407 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2408 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2410 #define PCI_HP_VENDOR_ID 0x103C
2411 #define PCI_MMC_DEVICE_ID 0x121A
2412 #define PCI_MMC_ADDR_CW 0x10
2414 static void ipmi_pci_cleanup(struct smi_info *info)
2416 struct pci_dev *pdev = info->addr_source_data;
2418 pci_disable_device(pdev);
2421 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2422 const struct pci_device_id *ent)
2424 int rv;
2425 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2426 struct smi_info *info;
2428 info = kzalloc(sizeof(*info), GFP_KERNEL);
2429 if (!info)
2430 return -ENOMEM;
2432 info->addr_source = SI_PCI;
2433 dev_info(&pdev->dev, "probing via PCI");
2435 switch (class_type) {
2436 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2437 info->si_type = SI_SMIC;
2438 break;
2440 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2441 info->si_type = SI_KCS;
2442 break;
2444 case PCI_ERMC_CLASSCODE_TYPE_BT:
2445 info->si_type = SI_BT;
2446 break;
2448 default:
2449 kfree(info);
2450 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2451 return -ENOMEM;
2454 rv = pci_enable_device(pdev);
2455 if (rv) {
2456 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2457 kfree(info);
2458 return rv;
2461 info->addr_source_cleanup = ipmi_pci_cleanup;
2462 info->addr_source_data = pdev;
2464 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2465 info->io_setup = port_setup;
2466 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2467 } else {
2468 info->io_setup = mem_setup;
2469 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2471 info->io.addr_data = pci_resource_start(pdev, 0);
2473 info->io.regspacing = DEFAULT_REGSPACING;
2474 info->io.regsize = DEFAULT_REGSPACING;
2475 info->io.regshift = 0;
2477 info->irq = pdev->irq;
2478 if (info->irq)
2479 info->irq_setup = std_irq_setup;
2481 info->dev = &pdev->dev;
2482 pci_set_drvdata(pdev, info);
2484 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2485 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2486 info->irq);
2488 if (add_smi(info))
2489 kfree(info);
2491 return 0;
2494 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2496 struct smi_info *info = pci_get_drvdata(pdev);
2497 cleanup_one_si(info);
2500 #ifdef CONFIG_PM
2501 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2503 return 0;
2506 static int ipmi_pci_resume(struct pci_dev *pdev)
2508 return 0;
2510 #endif
2512 static struct pci_device_id ipmi_pci_devices[] = {
2513 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2514 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2515 { 0, }
2517 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2519 static struct pci_driver ipmi_pci_driver = {
2520 .name = DEVICE_NAME,
2521 .id_table = ipmi_pci_devices,
2522 .probe = ipmi_pci_probe,
2523 .remove = __devexit_p(ipmi_pci_remove),
2524 #ifdef CONFIG_PM
2525 .suspend = ipmi_pci_suspend,
2526 .resume = ipmi_pci_resume,
2527 #endif
2529 #endif /* CONFIG_PCI */
2532 #ifdef CONFIG_PPC_OF
2533 static int __devinit ipmi_of_probe(struct platform_device *dev,
2534 const struct of_device_id *match)
2536 struct smi_info *info;
2537 struct resource resource;
2538 const int *regsize, *regspacing, *regshift;
2539 struct device_node *np = dev->dev.of_node;
2540 int ret;
2541 int proplen;
2543 dev_info(&dev->dev, "probing via device tree\n");
2545 ret = of_address_to_resource(np, 0, &resource);
2546 if (ret) {
2547 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2548 return ret;
2551 regsize = of_get_property(np, "reg-size", &proplen);
2552 if (regsize && proplen != 4) {
2553 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2554 return -EINVAL;
2557 regspacing = of_get_property(np, "reg-spacing", &proplen);
2558 if (regspacing && proplen != 4) {
2559 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2560 return -EINVAL;
2563 regshift = of_get_property(np, "reg-shift", &proplen);
2564 if (regshift && proplen != 4) {
2565 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2566 return -EINVAL;
2569 info = kzalloc(sizeof(*info), GFP_KERNEL);
2571 if (!info) {
2572 dev_err(&dev->dev,
2573 "could not allocate memory for OF probe\n");
2574 return -ENOMEM;
2577 info->si_type = (enum si_type) match->data;
2578 info->addr_source = SI_DEVICETREE;
2579 info->irq_setup = std_irq_setup;
2581 if (resource.flags & IORESOURCE_IO) {
2582 info->io_setup = port_setup;
2583 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2584 } else {
2585 info->io_setup = mem_setup;
2586 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2589 info->io.addr_data = resource.start;
2591 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2592 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2593 info->io.regshift = regshift ? *regshift : 0;
2595 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2596 info->dev = &dev->dev;
2598 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2599 info->io.addr_data, info->io.regsize, info->io.regspacing,
2600 info->irq);
2602 dev_set_drvdata(&dev->dev, info);
2604 if (add_smi(info)) {
2605 kfree(info);
2606 return -EBUSY;
2609 return 0;
2612 static int __devexit ipmi_of_remove(struct platform_device *dev)
2614 cleanup_one_si(dev_get_drvdata(&dev->dev));
2615 return 0;
2618 static struct of_device_id ipmi_match[] =
2620 { .type = "ipmi", .compatible = "ipmi-kcs",
2621 .data = (void *)(unsigned long) SI_KCS },
2622 { .type = "ipmi", .compatible = "ipmi-smic",
2623 .data = (void *)(unsigned long) SI_SMIC },
2624 { .type = "ipmi", .compatible = "ipmi-bt",
2625 .data = (void *)(unsigned long) SI_BT },
2629 static struct of_platform_driver ipmi_of_platform_driver = {
2630 .driver = {
2631 .name = "ipmi",
2632 .owner = THIS_MODULE,
2633 .of_match_table = ipmi_match,
2635 .probe = ipmi_of_probe,
2636 .remove = __devexit_p(ipmi_of_remove),
2638 #endif /* CONFIG_PPC_OF */
2640 static int wait_for_msg_done(struct smi_info *smi_info)
2642 enum si_sm_result smi_result;
2644 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2645 for (;;) {
2646 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2647 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2648 schedule_timeout_uninterruptible(1);
2649 smi_result = smi_info->handlers->event(
2650 smi_info->si_sm, 100);
2651 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2652 smi_result = smi_info->handlers->event(
2653 smi_info->si_sm, 0);
2654 } else
2655 break;
2657 if (smi_result == SI_SM_HOSED)
2659 * We couldn't get the state machine to run, so whatever's at
2660 * the port is probably not an IPMI SMI interface.
2662 return -ENODEV;
2664 return 0;
2667 static int try_get_dev_id(struct smi_info *smi_info)
2669 unsigned char msg[2];
2670 unsigned char *resp;
2671 unsigned long resp_len;
2672 int rv = 0;
2674 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2675 if (!resp)
2676 return -ENOMEM;
2679 * Do a Get Device ID command, since it comes back with some
2680 * useful info.
2682 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2683 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2684 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2686 rv = wait_for_msg_done(smi_info);
2687 if (rv)
2688 goto out;
2690 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2691 resp, IPMI_MAX_MSG_LENGTH);
2693 /* Check and record info from the get device id, in case we need it. */
2694 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2696 out:
2697 kfree(resp);
2698 return rv;
2701 static int try_enable_event_buffer(struct smi_info *smi_info)
2703 unsigned char msg[3];
2704 unsigned char *resp;
2705 unsigned long resp_len;
2706 int rv = 0;
2708 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2709 if (!resp)
2710 return -ENOMEM;
2712 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2713 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2714 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2716 rv = wait_for_msg_done(smi_info);
2717 if (rv) {
2718 printk(KERN_WARNING PFX "Error getting response from get"
2719 " global enables command, the event buffer is not"
2720 " enabled.\n");
2721 goto out;
2724 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2725 resp, IPMI_MAX_MSG_LENGTH);
2727 if (resp_len < 4 ||
2728 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2729 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2730 resp[2] != 0) {
2731 printk(KERN_WARNING PFX "Invalid return from get global"
2732 " enables command, cannot enable the event buffer.\n");
2733 rv = -EINVAL;
2734 goto out;
2737 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2738 /* buffer is already enabled, nothing to do. */
2739 goto out;
2741 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2742 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2743 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2744 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2746 rv = wait_for_msg_done(smi_info);
2747 if (rv) {
2748 printk(KERN_WARNING PFX "Error getting response from set"
2749 " global, enables command, the event buffer is not"
2750 " enabled.\n");
2751 goto out;
2754 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2755 resp, IPMI_MAX_MSG_LENGTH);
2757 if (resp_len < 3 ||
2758 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2759 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2760 printk(KERN_WARNING PFX "Invalid return from get global,"
2761 "enables command, not enable the event buffer.\n");
2762 rv = -EINVAL;
2763 goto out;
2766 if (resp[2] != 0)
2768 * An error when setting the event buffer bit means
2769 * that the event buffer is not supported.
2771 rv = -ENOENT;
2772 out:
2773 kfree(resp);
2774 return rv;
2777 static int type_file_read_proc(char *page, char **start, off_t off,
2778 int count, int *eof, void *data)
2780 struct smi_info *smi = data;
2782 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2785 static int stat_file_read_proc(char *page, char **start, off_t off,
2786 int count, int *eof, void *data)
2788 char *out = (char *) page;
2789 struct smi_info *smi = data;
2791 out += sprintf(out, "interrupts_enabled: %d\n",
2792 smi->irq && !smi->interrupt_disabled);
2793 out += sprintf(out, "short_timeouts: %u\n",
2794 smi_get_stat(smi, short_timeouts));
2795 out += sprintf(out, "long_timeouts: %u\n",
2796 smi_get_stat(smi, long_timeouts));
2797 out += sprintf(out, "idles: %u\n",
2798 smi_get_stat(smi, idles));
2799 out += sprintf(out, "interrupts: %u\n",
2800 smi_get_stat(smi, interrupts));
2801 out += sprintf(out, "attentions: %u\n",
2802 smi_get_stat(smi, attentions));
2803 out += sprintf(out, "flag_fetches: %u\n",
2804 smi_get_stat(smi, flag_fetches));
2805 out += sprintf(out, "hosed_count: %u\n",
2806 smi_get_stat(smi, hosed_count));
2807 out += sprintf(out, "complete_transactions: %u\n",
2808 smi_get_stat(smi, complete_transactions));
2809 out += sprintf(out, "events: %u\n",
2810 smi_get_stat(smi, events));
2811 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2812 smi_get_stat(smi, watchdog_pretimeouts));
2813 out += sprintf(out, "incoming_messages: %u\n",
2814 smi_get_stat(smi, incoming_messages));
2816 return out - page;
2819 static int param_read_proc(char *page, char **start, off_t off,
2820 int count, int *eof, void *data)
2822 struct smi_info *smi = data;
2824 return sprintf(page,
2825 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2826 si_to_str[smi->si_type],
2827 addr_space_to_str[smi->io.addr_type],
2828 smi->io.addr_data,
2829 smi->io.regspacing,
2830 smi->io.regsize,
2831 smi->io.regshift,
2832 smi->irq,
2833 smi->slave_addr);
2837 * oem_data_avail_to_receive_msg_avail
2838 * @info - smi_info structure with msg_flags set
2840 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2841 * Returns 1 indicating need to re-run handle_flags().
2843 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2845 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2846 RECEIVE_MSG_AVAIL);
2847 return 1;
2851 * setup_dell_poweredge_oem_data_handler
2852 * @info - smi_info.device_id must be populated
2854 * Systems that match, but have firmware version < 1.40 may assert
2855 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2856 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2857 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2858 * as RECEIVE_MSG_AVAIL instead.
2860 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2861 * assert the OEM[012] bits, and if it did, the driver would have to
2862 * change to handle that properly, we don't actually check for the
2863 * firmware version.
2864 * Device ID = 0x20 BMC on PowerEdge 8G servers
2865 * Device Revision = 0x80
2866 * Firmware Revision1 = 0x01 BMC version 1.40
2867 * Firmware Revision2 = 0x40 BCD encoded
2868 * IPMI Version = 0x51 IPMI 1.5
2869 * Manufacturer ID = A2 02 00 Dell IANA
2871 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2872 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2875 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2876 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2877 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2878 #define DELL_IANA_MFR_ID 0x0002a2
2879 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2881 struct ipmi_device_id *id = &smi_info->device_id;
2882 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2883 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2884 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2885 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2886 smi_info->oem_data_avail_handler =
2887 oem_data_avail_to_receive_msg_avail;
2888 } else if (ipmi_version_major(id) < 1 ||
2889 (ipmi_version_major(id) == 1 &&
2890 ipmi_version_minor(id) < 5)) {
2891 smi_info->oem_data_avail_handler =
2892 oem_data_avail_to_receive_msg_avail;
2897 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2898 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2900 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2902 /* Make it a reponse */
2903 msg->rsp[0] = msg->data[0] | 4;
2904 msg->rsp[1] = msg->data[1];
2905 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2906 msg->rsp_size = 3;
2907 smi_info->curr_msg = NULL;
2908 deliver_recv_msg(smi_info, msg);
2912 * dell_poweredge_bt_xaction_handler
2913 * @info - smi_info.device_id must be populated
2915 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2916 * not respond to a Get SDR command if the length of the data
2917 * requested is exactly 0x3A, which leads to command timeouts and no
2918 * data returned. This intercepts such commands, and causes userspace
2919 * callers to try again with a different-sized buffer, which succeeds.
2922 #define STORAGE_NETFN 0x0A
2923 #define STORAGE_CMD_GET_SDR 0x23
2924 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2925 unsigned long unused,
2926 void *in)
2928 struct smi_info *smi_info = in;
2929 unsigned char *data = smi_info->curr_msg->data;
2930 unsigned int size = smi_info->curr_msg->data_size;
2931 if (size >= 8 &&
2932 (data[0]>>2) == STORAGE_NETFN &&
2933 data[1] == STORAGE_CMD_GET_SDR &&
2934 data[7] == 0x3A) {
2935 return_hosed_msg_badsize(smi_info);
2936 return NOTIFY_STOP;
2938 return NOTIFY_DONE;
2941 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2942 .notifier_call = dell_poweredge_bt_xaction_handler,
2946 * setup_dell_poweredge_bt_xaction_handler
2947 * @info - smi_info.device_id must be filled in already
2949 * Fills in smi_info.device_id.start_transaction_pre_hook
2950 * when we know what function to use there.
2952 static void
2953 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2955 struct ipmi_device_id *id = &smi_info->device_id;
2956 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2957 smi_info->si_type == SI_BT)
2958 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2962 * setup_oem_data_handler
2963 * @info - smi_info.device_id must be filled in already
2965 * Fills in smi_info.device_id.oem_data_available_handler
2966 * when we know what function to use there.
2969 static void setup_oem_data_handler(struct smi_info *smi_info)
2971 setup_dell_poweredge_oem_data_handler(smi_info);
2974 static void setup_xaction_handlers(struct smi_info *smi_info)
2976 setup_dell_poweredge_bt_xaction_handler(smi_info);
2979 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2981 if (smi_info->intf) {
2983 * The timer and thread are only running if the
2984 * interface has been started up and registered.
2986 if (smi_info->thread != NULL)
2987 kthread_stop(smi_info->thread);
2988 del_timer_sync(&smi_info->si_timer);
2992 static __devinitdata struct ipmi_default_vals
2994 int type;
2995 int port;
2996 } ipmi_defaults[] =
2998 { .type = SI_KCS, .port = 0xca2 },
2999 { .type = SI_SMIC, .port = 0xca9 },
3000 { .type = SI_BT, .port = 0xe4 },
3001 { .port = 0 }
3004 static __devinit void default_find_bmc(void)
3006 struct smi_info *info;
3007 int i;
3009 for (i = 0; ; i++) {
3010 if (!ipmi_defaults[i].port)
3011 break;
3012 #ifdef CONFIG_PPC
3013 if (check_legacy_ioport(ipmi_defaults[i].port))
3014 continue;
3015 #endif
3016 info = kzalloc(sizeof(*info), GFP_KERNEL);
3017 if (!info)
3018 return;
3020 info->addr_source = SI_DEFAULT;
3022 info->si_type = ipmi_defaults[i].type;
3023 info->io_setup = port_setup;
3024 info->io.addr_data = ipmi_defaults[i].port;
3025 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3027 info->io.addr = NULL;
3028 info->io.regspacing = DEFAULT_REGSPACING;
3029 info->io.regsize = DEFAULT_REGSPACING;
3030 info->io.regshift = 0;
3032 if (add_smi(info) == 0) {
3033 if ((try_smi_init(info)) == 0) {
3034 /* Found one... */
3035 printk(KERN_INFO PFX "Found default %s"
3036 " state machine at %s address 0x%lx\n",
3037 si_to_str[info->si_type],
3038 addr_space_to_str[info->io.addr_type],
3039 info->io.addr_data);
3040 } else
3041 cleanup_one_si(info);
3042 } else {
3043 kfree(info);
3048 static int is_new_interface(struct smi_info *info)
3050 struct smi_info *e;
3052 list_for_each_entry(e, &smi_infos, link) {
3053 if (e->io.addr_type != info->io.addr_type)
3054 continue;
3055 if (e->io.addr_data == info->io.addr_data)
3056 return 0;
3059 return 1;
3062 static int add_smi(struct smi_info *new_smi)
3064 int rv = 0;
3066 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3067 ipmi_addr_src_to_str[new_smi->addr_source],
3068 si_to_str[new_smi->si_type]);
3069 mutex_lock(&smi_infos_lock);
3070 if (!is_new_interface(new_smi)) {
3071 printk(KERN_CONT " duplicate interface\n");
3072 rv = -EBUSY;
3073 goto out_err;
3076 printk(KERN_CONT "\n");
3078 /* So we know not to free it unless we have allocated one. */
3079 new_smi->intf = NULL;
3080 new_smi->si_sm = NULL;
3081 new_smi->handlers = NULL;
3083 list_add_tail(&new_smi->link, &smi_infos);
3085 out_err:
3086 mutex_unlock(&smi_infos_lock);
3087 return rv;
3090 static int try_smi_init(struct smi_info *new_smi)
3092 int rv = 0;
3093 int i;
3095 printk(KERN_INFO PFX "Trying %s-specified %s state"
3096 " machine at %s address 0x%lx, slave address 0x%x,"
3097 " irq %d\n",
3098 ipmi_addr_src_to_str[new_smi->addr_source],
3099 si_to_str[new_smi->si_type],
3100 addr_space_to_str[new_smi->io.addr_type],
3101 new_smi->io.addr_data,
3102 new_smi->slave_addr, new_smi->irq);
3104 switch (new_smi->si_type) {
3105 case SI_KCS:
3106 new_smi->handlers = &kcs_smi_handlers;
3107 break;
3109 case SI_SMIC:
3110 new_smi->handlers = &smic_smi_handlers;
3111 break;
3113 case SI_BT:
3114 new_smi->handlers = &bt_smi_handlers;
3115 break;
3117 default:
3118 /* No support for anything else yet. */
3119 rv = -EIO;
3120 goto out_err;
3123 /* Allocate the state machine's data and initialize it. */
3124 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3125 if (!new_smi->si_sm) {
3126 printk(KERN_ERR PFX
3127 "Could not allocate state machine memory\n");
3128 rv = -ENOMEM;
3129 goto out_err;
3131 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3132 &new_smi->io);
3134 /* Now that we know the I/O size, we can set up the I/O. */
3135 rv = new_smi->io_setup(new_smi);
3136 if (rv) {
3137 printk(KERN_ERR PFX "Could not set up I/O space\n");
3138 goto out_err;
3141 spin_lock_init(&(new_smi->si_lock));
3142 spin_lock_init(&(new_smi->msg_lock));
3144 /* Do low-level detection first. */
3145 if (new_smi->handlers->detect(new_smi->si_sm)) {
3146 if (new_smi->addr_source)
3147 printk(KERN_INFO PFX "Interface detection failed\n");
3148 rv = -ENODEV;
3149 goto out_err;
3153 * Attempt a get device id command. If it fails, we probably
3154 * don't have a BMC here.
3156 rv = try_get_dev_id(new_smi);
3157 if (rv) {
3158 if (new_smi->addr_source)
3159 printk(KERN_INFO PFX "There appears to be no BMC"
3160 " at this location\n");
3161 goto out_err;
3164 setup_oem_data_handler(new_smi);
3165 setup_xaction_handlers(new_smi);
3167 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3168 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3169 new_smi->curr_msg = NULL;
3170 atomic_set(&new_smi->req_events, 0);
3171 new_smi->run_to_completion = 0;
3172 for (i = 0; i < SI_NUM_STATS; i++)
3173 atomic_set(&new_smi->stats[i], 0);
3175 new_smi->interrupt_disabled = 1;
3176 atomic_set(&new_smi->stop_operation, 0);
3177 new_smi->intf_num = smi_num;
3178 smi_num++;
3180 rv = try_enable_event_buffer(new_smi);
3181 if (rv == 0)
3182 new_smi->has_event_buffer = 1;
3185 * Start clearing the flags before we enable interrupts or the
3186 * timer to avoid racing with the timer.
3188 start_clear_flags(new_smi);
3189 /* IRQ is defined to be set when non-zero. */
3190 if (new_smi->irq)
3191 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3193 if (!new_smi->dev) {
3195 * If we don't already have a device from something
3196 * else (like PCI), then register a new one.
3198 new_smi->pdev = platform_device_alloc("ipmi_si",
3199 new_smi->intf_num);
3200 if (!new_smi->pdev) {
3201 printk(KERN_ERR PFX
3202 "Unable to allocate platform device\n");
3203 goto out_err;
3205 new_smi->dev = &new_smi->pdev->dev;
3206 new_smi->dev->driver = &ipmi_driver.driver;
3208 rv = platform_device_add(new_smi->pdev);
3209 if (rv) {
3210 printk(KERN_ERR PFX
3211 "Unable to register system interface device:"
3212 " %d\n",
3213 rv);
3214 goto out_err;
3216 new_smi->dev_registered = 1;
3219 rv = ipmi_register_smi(&handlers,
3220 new_smi,
3221 &new_smi->device_id,
3222 new_smi->dev,
3223 "bmc",
3224 new_smi->slave_addr);
3225 if (rv) {
3226 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3227 rv);
3228 goto out_err_stop_timer;
3231 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3232 type_file_read_proc,
3233 new_smi);
3234 if (rv) {
3235 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3236 goto out_err_stop_timer;
3239 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3240 stat_file_read_proc,
3241 new_smi);
3242 if (rv) {
3243 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3244 goto out_err_stop_timer;
3247 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3248 param_read_proc,
3249 new_smi);
3250 if (rv) {
3251 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3252 goto out_err_stop_timer;
3255 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3256 si_to_str[new_smi->si_type]);
3258 return 0;
3260 out_err_stop_timer:
3261 atomic_inc(&new_smi->stop_operation);
3262 wait_for_timer_and_thread(new_smi);
3264 out_err:
3265 new_smi->interrupt_disabled = 1;
3267 if (new_smi->intf) {
3268 ipmi_unregister_smi(new_smi->intf);
3269 new_smi->intf = NULL;
3272 if (new_smi->irq_cleanup) {
3273 new_smi->irq_cleanup(new_smi);
3274 new_smi->irq_cleanup = NULL;
3278 * Wait until we know that we are out of any interrupt
3279 * handlers might have been running before we freed the
3280 * interrupt.
3282 synchronize_sched();
3284 if (new_smi->si_sm) {
3285 if (new_smi->handlers)
3286 new_smi->handlers->cleanup(new_smi->si_sm);
3287 kfree(new_smi->si_sm);
3288 new_smi->si_sm = NULL;
3290 if (new_smi->addr_source_cleanup) {
3291 new_smi->addr_source_cleanup(new_smi);
3292 new_smi->addr_source_cleanup = NULL;
3294 if (new_smi->io_cleanup) {
3295 new_smi->io_cleanup(new_smi);
3296 new_smi->io_cleanup = NULL;
3299 if (new_smi->dev_registered) {
3300 platform_device_unregister(new_smi->pdev);
3301 new_smi->dev_registered = 0;
3304 return rv;
3307 static __devinit int init_ipmi_si(void)
3309 int i;
3310 char *str;
3311 int rv;
3312 struct smi_info *e;
3313 enum ipmi_addr_src type = SI_INVALID;
3315 if (initialized)
3316 return 0;
3317 initialized = 1;
3319 /* Register the device drivers. */
3320 rv = driver_register(&ipmi_driver.driver);
3321 if (rv) {
3322 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3323 return rv;
3327 /* Parse out the si_type string into its components. */
3328 str = si_type_str;
3329 if (*str != '\0') {
3330 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3331 si_type[i] = str;
3332 str = strchr(str, ',');
3333 if (str) {
3334 *str = '\0';
3335 str++;
3336 } else {
3337 break;
3342 printk(KERN_INFO "IPMI System Interface driver.\n");
3344 hardcode_find_bmc();
3346 /* If the user gave us a device, they presumably want us to use it */
3347 mutex_lock(&smi_infos_lock);
3348 if (!list_empty(&smi_infos)) {
3349 mutex_unlock(&smi_infos_lock);
3350 return 0;
3352 mutex_unlock(&smi_infos_lock);
3354 #ifdef CONFIG_PCI
3355 rv = pci_register_driver(&ipmi_pci_driver);
3356 if (rv)
3357 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3358 else
3359 pci_registered = 1;
3360 #endif
3362 #ifdef CONFIG_ACPI
3363 pnp_register_driver(&ipmi_pnp_driver);
3364 pnp_registered = 1;
3365 #endif
3367 #ifdef CONFIG_DMI
3368 dmi_find_bmc();
3369 #endif
3371 #ifdef CONFIG_ACPI
3372 spmi_find_bmc();
3373 #endif
3375 #ifdef CONFIG_PPC_OF
3376 of_register_platform_driver(&ipmi_of_platform_driver);
3377 of_registered = 1;
3378 #endif
3380 /* We prefer devices with interrupts, but in the case of a machine
3381 with multiple BMCs we assume that there will be several instances
3382 of a given type so if we succeed in registering a type then also
3383 try to register everything else of the same type */
3385 mutex_lock(&smi_infos_lock);
3386 list_for_each_entry(e, &smi_infos, link) {
3387 /* Try to register a device if it has an IRQ and we either
3388 haven't successfully registered a device yet or this
3389 device has the same type as one we successfully registered */
3390 if (e->irq && (!type || e->addr_source == type)) {
3391 if (!try_smi_init(e)) {
3392 type = e->addr_source;
3397 /* type will only have been set if we successfully registered an si */
3398 if (type) {
3399 mutex_unlock(&smi_infos_lock);
3400 return 0;
3403 /* Fall back to the preferred device */
3405 list_for_each_entry(e, &smi_infos, link) {
3406 if (!e->irq && (!type || e->addr_source == type)) {
3407 if (!try_smi_init(e)) {
3408 type = e->addr_source;
3412 mutex_unlock(&smi_infos_lock);
3414 if (type)
3415 return 0;
3417 if (si_trydefaults) {
3418 mutex_lock(&smi_infos_lock);
3419 if (list_empty(&smi_infos)) {
3420 /* No BMC was found, try defaults. */
3421 mutex_unlock(&smi_infos_lock);
3422 default_find_bmc();
3423 } else
3424 mutex_unlock(&smi_infos_lock);
3427 mutex_lock(&smi_infos_lock);
3428 if (unload_when_empty && list_empty(&smi_infos)) {
3429 mutex_unlock(&smi_infos_lock);
3430 #ifdef CONFIG_PCI
3431 if (pci_registered)
3432 pci_unregister_driver(&ipmi_pci_driver);
3433 #endif
3435 #ifdef CONFIG_PPC_OF
3436 if (of_registered)
3437 of_unregister_platform_driver(&ipmi_of_platform_driver);
3438 #endif
3439 driver_unregister(&ipmi_driver.driver);
3440 printk(KERN_WARNING PFX
3441 "Unable to find any System Interface(s)\n");
3442 return -ENODEV;
3443 } else {
3444 mutex_unlock(&smi_infos_lock);
3445 return 0;
3448 module_init(init_ipmi_si);
3450 static void cleanup_one_si(struct smi_info *to_clean)
3452 int rv = 0;
3453 unsigned long flags;
3455 if (!to_clean)
3456 return;
3458 list_del(&to_clean->link);
3460 /* Tell the driver that we are shutting down. */
3461 atomic_inc(&to_clean->stop_operation);
3464 * Make sure the timer and thread are stopped and will not run
3465 * again.
3467 wait_for_timer_and_thread(to_clean);
3470 * Timeouts are stopped, now make sure the interrupts are off
3471 * for the device. A little tricky with locks to make sure
3472 * there are no races.
3474 spin_lock_irqsave(&to_clean->si_lock, flags);
3475 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3476 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3477 poll(to_clean);
3478 schedule_timeout_uninterruptible(1);
3479 spin_lock_irqsave(&to_clean->si_lock, flags);
3481 disable_si_irq(to_clean);
3482 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3483 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3484 poll(to_clean);
3485 schedule_timeout_uninterruptible(1);
3488 /* Clean up interrupts and make sure that everything is done. */
3489 if (to_clean->irq_cleanup)
3490 to_clean->irq_cleanup(to_clean);
3491 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3492 poll(to_clean);
3493 schedule_timeout_uninterruptible(1);
3496 if (to_clean->intf)
3497 rv = ipmi_unregister_smi(to_clean->intf);
3499 if (rv) {
3500 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3501 rv);
3504 if (to_clean->handlers)
3505 to_clean->handlers->cleanup(to_clean->si_sm);
3507 kfree(to_clean->si_sm);
3509 if (to_clean->addr_source_cleanup)
3510 to_clean->addr_source_cleanup(to_clean);
3511 if (to_clean->io_cleanup)
3512 to_clean->io_cleanup(to_clean);
3514 if (to_clean->dev_registered)
3515 platform_device_unregister(to_clean->pdev);
3517 kfree(to_clean);
3520 static __exit void cleanup_ipmi_si(void)
3522 struct smi_info *e, *tmp_e;
3524 if (!initialized)
3525 return;
3527 #ifdef CONFIG_PCI
3528 if (pci_registered)
3529 pci_unregister_driver(&ipmi_pci_driver);
3530 #endif
3531 #ifdef CONFIG_ACPI
3532 if (pnp_registered)
3533 pnp_unregister_driver(&ipmi_pnp_driver);
3534 #endif
3536 #ifdef CONFIG_PPC_OF
3537 if (of_registered)
3538 of_unregister_platform_driver(&ipmi_of_platform_driver);
3539 #endif
3541 mutex_lock(&smi_infos_lock);
3542 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3543 cleanup_one_si(e);
3544 mutex_unlock(&smi_infos_lock);
3546 driver_unregister(&ipmi_driver.driver);
3548 module_exit(cleanup_ipmi_si);
3550 MODULE_LICENSE("GPL");
3551 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3552 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3553 " system interfaces.");