[IPV6] ROUTE: Prune clones from main tree as well.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv6 / ip6_fib.c
blob35b91ff95db2c9e7e570628da82359715dd56a0d
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
42 #define RT6_DEBUG 2
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
50 struct rt6_statistics rt6_stats;
52 static kmem_cache_t * fib6_node_kmem __read_mostly;
54 enum fib_walk_state_t
56 #ifdef CONFIG_IPV6_SUBTREES
57 FWS_S,
58 #endif
59 FWS_L,
60 FWS_R,
61 FWS_C,
62 FWS_U
65 struct fib6_cleaner_t
67 struct fib6_walker_t w;
68 int (*func)(struct rt6_info *, void *arg);
69 void *arg;
72 static DEFINE_RWLOCK(fib6_walker_lock);
74 #ifdef CONFIG_IPV6_SUBTREES
75 #define FWS_INIT FWS_S
76 #define SUBTREE(fn) ((fn)->subtree)
77 #else
78 #define FWS_INIT FWS_L
79 #define SUBTREE(fn) NULL
80 #endif
82 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
83 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
84 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
85 static int fib6_walk(struct fib6_walker_t *w);
86 static int fib6_walk_continue(struct fib6_walker_t *w);
89 * A routing update causes an increase of the serial number on the
90 * affected subtree. This allows for cached routes to be asynchronously
91 * tested when modifications are made to the destination cache as a
92 * result of redirects, path MTU changes, etc.
95 static __u32 rt_sernum;
97 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
99 static struct fib6_walker_t fib6_walker_list = {
100 .prev = &fib6_walker_list,
101 .next = &fib6_walker_list,
104 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
106 static inline void fib6_walker_link(struct fib6_walker_t *w)
108 write_lock_bh(&fib6_walker_lock);
109 w->next = fib6_walker_list.next;
110 w->prev = &fib6_walker_list;
111 w->next->prev = w;
112 w->prev->next = w;
113 write_unlock_bh(&fib6_walker_lock);
116 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
118 write_lock_bh(&fib6_walker_lock);
119 w->next->prev = w->prev;
120 w->prev->next = w->next;
121 w->prev = w->next = w;
122 write_unlock_bh(&fib6_walker_lock);
124 static __inline__ u32 fib6_new_sernum(void)
126 u32 n = ++rt_sernum;
127 if ((__s32)n <= 0)
128 rt_sernum = n = 1;
129 return n;
133 * Auxiliary address test functions for the radix tree.
135 * These assume a 32bit processor (although it will work on
136 * 64bit processors)
140 * test bit
143 static __inline__ int addr_bit_set(void *token, int fn_bit)
145 __u32 *addr = token;
147 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
150 static __inline__ struct fib6_node * node_alloc(void)
152 struct fib6_node *fn;
154 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
155 memset(fn, 0, sizeof(struct fib6_node));
157 return fn;
160 static __inline__ void node_free(struct fib6_node * fn)
162 kmem_cache_free(fib6_node_kmem, fn);
165 static __inline__ void rt6_release(struct rt6_info *rt)
167 if (atomic_dec_and_test(&rt->rt6i_ref))
168 dst_free(&rt->u.dst);
171 static struct fib6_table fib6_main_tbl = {
172 .tb6_id = RT6_TABLE_MAIN,
173 .tb6_lock = RW_LOCK_UNLOCKED,
174 .tb6_root = {
175 .leaf = &ip6_null_entry,
176 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
180 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
181 #define FIB_TABLE_HASHSZ 256
182 #else
183 #define FIB_TABLE_HASHSZ 1
184 #endif
185 static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
187 static void fib6_link_table(struct fib6_table *tb)
189 unsigned int h;
191 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
194 * No protection necessary, this is the only list mutatation
195 * operation, tables never disappear once they exist.
197 hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]);
200 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
201 static struct fib6_table fib6_local_tbl = {
202 .tb6_id = RT6_TABLE_LOCAL,
203 .tb6_lock = RW_LOCK_UNLOCKED,
204 .tb6_root = {
205 .leaf = &ip6_null_entry,
206 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
210 static struct fib6_table *fib6_alloc_table(u32 id)
212 struct fib6_table *table;
214 table = kzalloc(sizeof(*table), GFP_ATOMIC);
215 if (table != NULL) {
216 table->tb6_id = id;
217 table->tb6_lock = RW_LOCK_UNLOCKED;
218 table->tb6_root.leaf = &ip6_null_entry;
219 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 return table;
225 struct fib6_table *fib6_new_table(u32 id)
227 struct fib6_table *tb;
229 if (id == 0)
230 id = RT6_TABLE_MAIN;
231 tb = fib6_get_table(id);
232 if (tb)
233 return tb;
235 tb = fib6_alloc_table(id);
236 if (tb != NULL)
237 fib6_link_table(tb);
239 return tb;
242 struct fib6_table *fib6_get_table(u32 id)
244 struct fib6_table *tb;
245 struct hlist_node *node;
246 unsigned int h;
248 if (id == 0)
249 id = RT6_TABLE_MAIN;
250 h = id & (FIB_TABLE_HASHSZ - 1);
251 rcu_read_lock();
252 hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) {
253 if (tb->tb6_id == id) {
254 rcu_read_unlock();
255 return tb;
258 rcu_read_unlock();
260 return NULL;
263 static void __init fib6_tables_init(void)
265 fib6_link_table(&fib6_main_tbl);
266 fib6_link_table(&fib6_local_tbl);
269 #else
271 struct fib6_table *fib6_new_table(u32 id)
273 return fib6_get_table(id);
276 struct fib6_table *fib6_get_table(u32 id)
278 return &fib6_main_tbl;
281 struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags,
282 pol_lookup_t lookup)
284 return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags);
287 static void __init fib6_tables_init(void)
289 fib6_link_table(&fib6_main_tbl);
292 #endif
294 static int fib6_dump_node(struct fib6_walker_t *w)
296 int res;
297 struct rt6_info *rt;
299 for (rt = w->leaf; rt; rt = rt->u.next) {
300 res = rt6_dump_route(rt, w->args);
301 if (res < 0) {
302 /* Frame is full, suspend walking */
303 w->leaf = rt;
304 return 1;
306 BUG_TRAP(res!=0);
308 w->leaf = NULL;
309 return 0;
312 static void fib6_dump_end(struct netlink_callback *cb)
314 struct fib6_walker_t *w = (void*)cb->args[2];
316 if (w) {
317 cb->args[2] = 0;
318 kfree(w);
320 cb->done = (void*)cb->args[3];
321 cb->args[1] = 3;
324 static int fib6_dump_done(struct netlink_callback *cb)
326 fib6_dump_end(cb);
327 return cb->done ? cb->done(cb) : 0;
330 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
331 struct netlink_callback *cb)
333 struct fib6_walker_t *w;
334 int res;
336 w = (void *)cb->args[2];
337 w->root = &table->tb6_root;
339 if (cb->args[4] == 0) {
340 read_lock_bh(&table->tb6_lock);
341 res = fib6_walk(w);
342 read_unlock_bh(&table->tb6_lock);
343 if (res > 0)
344 cb->args[4] = 1;
345 } else {
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res != 0) {
350 if (res < 0)
351 fib6_walker_unlink(w);
352 goto end;
354 fib6_walker_unlink(w);
355 cb->args[4] = 0;
357 end:
358 return res;
361 int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
363 unsigned int h, s_h;
364 unsigned int e = 0, s_e;
365 struct rt6_rtnl_dump_arg arg;
366 struct fib6_walker_t *w;
367 struct fib6_table *tb;
368 struct hlist_node *node;
369 int res = 0;
371 s_h = cb->args[0];
372 s_e = cb->args[1];
374 w = (void *)cb->args[2];
375 if (w == NULL) {
376 /* New dump:
378 * 1. hook callback destructor.
380 cb->args[3] = (long)cb->done;
381 cb->done = fib6_dump_done;
384 * 2. allocate and initialize walker.
386 w = kzalloc(sizeof(*w), GFP_ATOMIC);
387 if (w == NULL)
388 return -ENOMEM;
389 w->func = fib6_dump_node;
390 cb->args[2] = (long)w;
393 arg.skb = skb;
394 arg.cb = cb;
395 w->args = &arg;
397 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
398 e = 0;
399 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) {
400 if (e < s_e)
401 goto next;
402 res = fib6_dump_table(tb, skb, cb);
403 if (res != 0)
404 goto out;
405 next:
406 e++;
409 out:
410 cb->args[1] = e;
411 cb->args[0] = h;
413 res = res < 0 ? res : skb->len;
414 if (res <= 0)
415 fib6_dump_end(cb);
416 return res;
420 * Routing Table
422 * return the appropriate node for a routing tree "add" operation
423 * by either creating and inserting or by returning an existing
424 * node.
427 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
428 int addrlen, int plen,
429 int offset)
431 struct fib6_node *fn, *in, *ln;
432 struct fib6_node *pn = NULL;
433 struct rt6key *key;
434 int bit;
435 int dir = 0;
436 __u32 sernum = fib6_new_sernum();
438 RT6_TRACE("fib6_add_1\n");
440 /* insert node in tree */
442 fn = root;
444 do {
445 key = (struct rt6key *)((u8 *)fn->leaf + offset);
448 * Prefix match
450 if (plen < fn->fn_bit ||
451 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
452 goto insert_above;
455 * Exact match ?
458 if (plen == fn->fn_bit) {
459 /* clean up an intermediate node */
460 if ((fn->fn_flags & RTN_RTINFO) == 0) {
461 rt6_release(fn->leaf);
462 fn->leaf = NULL;
465 fn->fn_sernum = sernum;
467 return fn;
471 * We have more bits to go
474 /* Try to walk down on tree. */
475 fn->fn_sernum = sernum;
476 dir = addr_bit_set(addr, fn->fn_bit);
477 pn = fn;
478 fn = dir ? fn->right: fn->left;
479 } while (fn);
482 * We walked to the bottom of tree.
483 * Create new leaf node without children.
486 ln = node_alloc();
488 if (ln == NULL)
489 return NULL;
490 ln->fn_bit = plen;
492 ln->parent = pn;
493 ln->fn_sernum = sernum;
495 if (dir)
496 pn->right = ln;
497 else
498 pn->left = ln;
500 return ln;
503 insert_above:
505 * split since we don't have a common prefix anymore or
506 * we have a less significant route.
507 * we've to insert an intermediate node on the list
508 * this new node will point to the one we need to create
509 * and the current
512 pn = fn->parent;
514 /* find 1st bit in difference between the 2 addrs.
516 See comment in __ipv6_addr_diff: bit may be an invalid value,
517 but if it is >= plen, the value is ignored in any case.
520 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
523 * (intermediate)[in]
524 * / \
525 * (new leaf node)[ln] (old node)[fn]
527 if (plen > bit) {
528 in = node_alloc();
529 ln = node_alloc();
531 if (in == NULL || ln == NULL) {
532 if (in)
533 node_free(in);
534 if (ln)
535 node_free(ln);
536 return NULL;
540 * new intermediate node.
541 * RTN_RTINFO will
542 * be off since that an address that chooses one of
543 * the branches would not match less specific routes
544 * in the other branch
547 in->fn_bit = bit;
549 in->parent = pn;
550 in->leaf = fn->leaf;
551 atomic_inc(&in->leaf->rt6i_ref);
553 in->fn_sernum = sernum;
555 /* update parent pointer */
556 if (dir)
557 pn->right = in;
558 else
559 pn->left = in;
561 ln->fn_bit = plen;
563 ln->parent = in;
564 fn->parent = in;
566 ln->fn_sernum = sernum;
568 if (addr_bit_set(addr, bit)) {
569 in->right = ln;
570 in->left = fn;
571 } else {
572 in->left = ln;
573 in->right = fn;
575 } else { /* plen <= bit */
578 * (new leaf node)[ln]
579 * / \
580 * (old node)[fn] NULL
583 ln = node_alloc();
585 if (ln == NULL)
586 return NULL;
588 ln->fn_bit = plen;
590 ln->parent = pn;
592 ln->fn_sernum = sernum;
594 if (dir)
595 pn->right = ln;
596 else
597 pn->left = ln;
599 if (addr_bit_set(&key->addr, plen))
600 ln->right = fn;
601 else
602 ln->left = fn;
604 fn->parent = ln;
606 return ln;
610 * Insert routing information in a node.
613 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
614 struct nl_info *info)
616 struct rt6_info *iter = NULL;
617 struct rt6_info **ins;
619 ins = &fn->leaf;
621 if (fn->fn_flags&RTN_TL_ROOT &&
622 fn->leaf == &ip6_null_entry &&
623 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
624 fn->leaf = rt;
625 rt->u.next = NULL;
626 goto out;
629 for (iter = fn->leaf; iter; iter=iter->u.next) {
631 * Search for duplicates
634 if (iter->rt6i_metric == rt->rt6i_metric) {
636 * Same priority level
639 if (iter->rt6i_dev == rt->rt6i_dev &&
640 iter->rt6i_idev == rt->rt6i_idev &&
641 ipv6_addr_equal(&iter->rt6i_gateway,
642 &rt->rt6i_gateway)) {
643 if (!(iter->rt6i_flags&RTF_EXPIRES))
644 return -EEXIST;
645 iter->rt6i_expires = rt->rt6i_expires;
646 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
647 iter->rt6i_flags &= ~RTF_EXPIRES;
648 iter->rt6i_expires = 0;
650 return -EEXIST;
654 if (iter->rt6i_metric > rt->rt6i_metric)
655 break;
657 ins = &iter->u.next;
661 * insert node
664 out:
665 rt->u.next = iter;
666 *ins = rt;
667 rt->rt6i_node = fn;
668 atomic_inc(&rt->rt6i_ref);
669 inet6_rt_notify(RTM_NEWROUTE, rt, info);
670 rt6_stats.fib_rt_entries++;
672 if ((fn->fn_flags & RTN_RTINFO) == 0) {
673 rt6_stats.fib_route_nodes++;
674 fn->fn_flags |= RTN_RTINFO;
677 return 0;
680 static __inline__ void fib6_start_gc(struct rt6_info *rt)
682 if (ip6_fib_timer.expires == 0 &&
683 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
684 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
687 void fib6_force_start_gc(void)
689 if (ip6_fib_timer.expires == 0)
690 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
694 * Add routing information to the routing tree.
695 * <destination addr>/<source addr>
696 * with source addr info in sub-trees
699 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
701 struct fib6_node *fn, *pn = NULL;
702 int err = -ENOMEM;
704 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
705 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
707 if (fn == NULL)
708 goto out;
710 pn = fn;
712 #ifdef CONFIG_IPV6_SUBTREES
713 if (rt->rt6i_src.plen) {
714 struct fib6_node *sn;
716 if (fn->subtree == NULL) {
717 struct fib6_node *sfn;
720 * Create subtree.
722 * fn[main tree]
724 * sfn[subtree root]
726 * sn[new leaf node]
729 /* Create subtree root node */
730 sfn = node_alloc();
731 if (sfn == NULL)
732 goto st_failure;
734 sfn->leaf = &ip6_null_entry;
735 atomic_inc(&ip6_null_entry.rt6i_ref);
736 sfn->fn_flags = RTN_ROOT;
737 sfn->fn_sernum = fib6_new_sernum();
739 /* Now add the first leaf node to new subtree */
741 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
742 sizeof(struct in6_addr), rt->rt6i_src.plen,
743 offsetof(struct rt6_info, rt6i_src));
745 if (sn == NULL) {
746 /* If it is failed, discard just allocated
747 root, and then (in st_failure) stale node
748 in main tree.
750 node_free(sfn);
751 goto st_failure;
754 /* Now link new subtree to main tree */
755 sfn->parent = fn;
756 fn->subtree = sfn;
757 } else {
758 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
759 sizeof(struct in6_addr), rt->rt6i_src.plen,
760 offsetof(struct rt6_info, rt6i_src));
762 if (sn == NULL)
763 goto st_failure;
766 if (fn->leaf == NULL) {
767 fn->leaf = rt;
768 atomic_inc(&rt->rt6i_ref);
770 fn = sn;
772 #endif
774 err = fib6_add_rt2node(fn, rt, info);
776 if (err == 0) {
777 fib6_start_gc(rt);
778 if (!(rt->rt6i_flags&RTF_CACHE))
779 fib6_prune_clones(pn, rt);
782 out:
783 if (err) {
784 #ifdef CONFIG_IPV6_SUBTREES
786 * If fib6_add_1 has cleared the old leaf pointer in the
787 * super-tree leaf node we have to find a new one for it.
789 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
790 pn->leaf = fib6_find_prefix(pn);
791 #if RT6_DEBUG >= 2
792 if (!pn->leaf) {
793 BUG_TRAP(pn->leaf != NULL);
794 pn->leaf = &ip6_null_entry;
796 #endif
797 atomic_inc(&pn->leaf->rt6i_ref);
799 #endif
800 dst_free(&rt->u.dst);
802 return err;
804 #ifdef CONFIG_IPV6_SUBTREES
805 /* Subtree creation failed, probably main tree node
806 is orphan. If it is, shoot it.
808 st_failure:
809 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
810 fib6_repair_tree(fn);
811 dst_free(&rt->u.dst);
812 return err;
813 #endif
817 * Routing tree lookup
821 struct lookup_args {
822 int offset; /* key offset on rt6_info */
823 struct in6_addr *addr; /* search key */
826 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
827 struct lookup_args *args)
829 struct fib6_node *fn;
830 int dir;
833 * Descend on a tree
836 fn = root;
838 for (;;) {
839 struct fib6_node *next;
841 dir = addr_bit_set(args->addr, fn->fn_bit);
843 next = dir ? fn->right : fn->left;
845 if (next) {
846 fn = next;
847 continue;
850 break;
853 while ((fn->fn_flags & RTN_ROOT) == 0) {
854 #ifdef CONFIG_IPV6_SUBTREES
855 if (fn->subtree) {
856 struct fib6_node *st;
857 struct lookup_args *narg;
859 narg = args + 1;
861 if (narg->addr) {
862 st = fib6_lookup_1(fn->subtree, narg);
864 if (st && !(st->fn_flags & RTN_ROOT))
865 return st;
868 #endif
870 if (fn->fn_flags & RTN_RTINFO) {
871 struct rt6key *key;
873 key = (struct rt6key *) ((u8 *) fn->leaf +
874 args->offset);
876 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen))
877 return fn;
880 fn = fn->parent;
883 return NULL;
886 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
887 struct in6_addr *saddr)
889 struct lookup_args args[2];
890 struct fib6_node *fn;
892 args[0].offset = offsetof(struct rt6_info, rt6i_dst);
893 args[0].addr = daddr;
895 #ifdef CONFIG_IPV6_SUBTREES
896 args[1].offset = offsetof(struct rt6_info, rt6i_src);
897 args[1].addr = saddr;
898 #endif
900 fn = fib6_lookup_1(root, args);
902 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
903 fn = root;
905 return fn;
909 * Get node with specified destination prefix (and source prefix,
910 * if subtrees are used)
914 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
915 struct in6_addr *addr,
916 int plen, int offset)
918 struct fib6_node *fn;
920 for (fn = root; fn ; ) {
921 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
924 * Prefix match
926 if (plen < fn->fn_bit ||
927 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
928 return NULL;
930 if (plen == fn->fn_bit)
931 return fn;
934 * We have more bits to go
936 if (addr_bit_set(addr, fn->fn_bit))
937 fn = fn->right;
938 else
939 fn = fn->left;
941 return NULL;
944 struct fib6_node * fib6_locate(struct fib6_node *root,
945 struct in6_addr *daddr, int dst_len,
946 struct in6_addr *saddr, int src_len)
948 struct fib6_node *fn;
950 fn = fib6_locate_1(root, daddr, dst_len,
951 offsetof(struct rt6_info, rt6i_dst));
953 #ifdef CONFIG_IPV6_SUBTREES
954 if (src_len) {
955 BUG_TRAP(saddr!=NULL);
956 if (fn == NULL)
957 fn = fn->subtree;
958 if (fn)
959 fn = fib6_locate_1(fn, saddr, src_len,
960 offsetof(struct rt6_info, rt6i_src));
962 #endif
964 if (fn && fn->fn_flags&RTN_RTINFO)
965 return fn;
967 return NULL;
972 * Deletion
976 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
978 if (fn->fn_flags&RTN_ROOT)
979 return &ip6_null_entry;
981 while(fn) {
982 if(fn->left)
983 return fn->left->leaf;
985 if(fn->right)
986 return fn->right->leaf;
988 fn = SUBTREE(fn);
990 return NULL;
994 * Called to trim the tree of intermediate nodes when possible. "fn"
995 * is the node we want to try and remove.
998 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
1000 int children;
1001 int nstate;
1002 struct fib6_node *child, *pn;
1003 struct fib6_walker_t *w;
1004 int iter = 0;
1006 for (;;) {
1007 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1008 iter++;
1010 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1011 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1012 BUG_TRAP(fn->leaf==NULL);
1014 children = 0;
1015 child = NULL;
1016 if (fn->right) child = fn->right, children |= 1;
1017 if (fn->left) child = fn->left, children |= 2;
1019 if (children == 3 || SUBTREE(fn)
1020 #ifdef CONFIG_IPV6_SUBTREES
1021 /* Subtree root (i.e. fn) may have one child */
1022 || (children && fn->fn_flags&RTN_ROOT)
1023 #endif
1025 fn->leaf = fib6_find_prefix(fn);
1026 #if RT6_DEBUG >= 2
1027 if (fn->leaf==NULL) {
1028 BUG_TRAP(fn->leaf);
1029 fn->leaf = &ip6_null_entry;
1031 #endif
1032 atomic_inc(&fn->leaf->rt6i_ref);
1033 return fn->parent;
1036 pn = fn->parent;
1037 #ifdef CONFIG_IPV6_SUBTREES
1038 if (SUBTREE(pn) == fn) {
1039 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1040 SUBTREE(pn) = NULL;
1041 nstate = FWS_L;
1042 } else {
1043 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1044 #endif
1045 if (pn->right == fn) pn->right = child;
1046 else if (pn->left == fn) pn->left = child;
1047 #if RT6_DEBUG >= 2
1048 else BUG_TRAP(0);
1049 #endif
1050 if (child)
1051 child->parent = pn;
1052 nstate = FWS_R;
1053 #ifdef CONFIG_IPV6_SUBTREES
1055 #endif
1057 read_lock(&fib6_walker_lock);
1058 FOR_WALKERS(w) {
1059 if (child == NULL) {
1060 if (w->root == fn) {
1061 w->root = w->node = NULL;
1062 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1063 } else if (w->node == fn) {
1064 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1065 w->node = pn;
1066 w->state = nstate;
1068 } else {
1069 if (w->root == fn) {
1070 w->root = child;
1071 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1073 if (w->node == fn) {
1074 w->node = child;
1075 if (children&2) {
1076 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1077 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1078 } else {
1079 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1080 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1085 read_unlock(&fib6_walker_lock);
1087 node_free(fn);
1088 if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
1089 return pn;
1091 rt6_release(pn->leaf);
1092 pn->leaf = NULL;
1093 fn = pn;
1097 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1098 struct nl_info *info)
1100 struct fib6_walker_t *w;
1101 struct rt6_info *rt = *rtp;
1103 RT6_TRACE("fib6_del_route\n");
1105 /* Unlink it */
1106 *rtp = rt->u.next;
1107 rt->rt6i_node = NULL;
1108 rt6_stats.fib_rt_entries--;
1109 rt6_stats.fib_discarded_routes++;
1111 /* Adjust walkers */
1112 read_lock(&fib6_walker_lock);
1113 FOR_WALKERS(w) {
1114 if (w->state == FWS_C && w->leaf == rt) {
1115 RT6_TRACE("walker %p adjusted by delroute\n", w);
1116 w->leaf = rt->u.next;
1117 if (w->leaf == NULL)
1118 w->state = FWS_U;
1121 read_unlock(&fib6_walker_lock);
1123 rt->u.next = NULL;
1125 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
1126 fn->leaf = &ip6_null_entry;
1128 /* If it was last route, expunge its radix tree node */
1129 if (fn->leaf == NULL) {
1130 fn->fn_flags &= ~RTN_RTINFO;
1131 rt6_stats.fib_route_nodes--;
1132 fn = fib6_repair_tree(fn);
1135 if (atomic_read(&rt->rt6i_ref) != 1) {
1136 /* This route is used as dummy address holder in some split
1137 * nodes. It is not leaked, but it still holds other resources,
1138 * which must be released in time. So, scan ascendant nodes
1139 * and replace dummy references to this route with references
1140 * to still alive ones.
1142 while (fn) {
1143 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1144 fn->leaf = fib6_find_prefix(fn);
1145 atomic_inc(&fn->leaf->rt6i_ref);
1146 rt6_release(rt);
1148 fn = fn->parent;
1150 /* No more references are possible at this point. */
1151 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
1154 inet6_rt_notify(RTM_DELROUTE, rt, info);
1155 rt6_release(rt);
1158 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1160 struct fib6_node *fn = rt->rt6i_node;
1161 struct rt6_info **rtp;
1163 #if RT6_DEBUG >= 2
1164 if (rt->u.dst.obsolete>0) {
1165 BUG_TRAP(fn==NULL);
1166 return -ENOENT;
1168 #endif
1169 if (fn == NULL || rt == &ip6_null_entry)
1170 return -ENOENT;
1172 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1174 if (!(rt->rt6i_flags&RTF_CACHE))
1175 fib6_prune_clones(fn, rt);
1178 * Walk the leaf entries looking for ourself
1181 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
1182 if (*rtp == rt) {
1183 fib6_del_route(fn, rtp, info);
1184 return 0;
1187 return -ENOENT;
1191 * Tree traversal function.
1193 * Certainly, it is not interrupt safe.
1194 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1195 * It means, that we can modify tree during walking
1196 * and use this function for garbage collection, clone pruning,
1197 * cleaning tree when a device goes down etc. etc.
1199 * It guarantees that every node will be traversed,
1200 * and that it will be traversed only once.
1202 * Callback function w->func may return:
1203 * 0 -> continue walking.
1204 * positive value -> walking is suspended (used by tree dumps,
1205 * and probably by gc, if it will be split to several slices)
1206 * negative value -> terminate walking.
1208 * The function itself returns:
1209 * 0 -> walk is complete.
1210 * >0 -> walk is incomplete (i.e. suspended)
1211 * <0 -> walk is terminated by an error.
1214 static int fib6_walk_continue(struct fib6_walker_t *w)
1216 struct fib6_node *fn, *pn;
1218 for (;;) {
1219 fn = w->node;
1220 if (fn == NULL)
1221 return 0;
1223 if (w->prune && fn != w->root &&
1224 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1225 w->state = FWS_C;
1226 w->leaf = fn->leaf;
1228 switch (w->state) {
1229 #ifdef CONFIG_IPV6_SUBTREES
1230 case FWS_S:
1231 if (SUBTREE(fn)) {
1232 w->node = SUBTREE(fn);
1233 continue;
1235 w->state = FWS_L;
1236 #endif
1237 case FWS_L:
1238 if (fn->left) {
1239 w->node = fn->left;
1240 w->state = FWS_INIT;
1241 continue;
1243 w->state = FWS_R;
1244 case FWS_R:
1245 if (fn->right) {
1246 w->node = fn->right;
1247 w->state = FWS_INIT;
1248 continue;
1250 w->state = FWS_C;
1251 w->leaf = fn->leaf;
1252 case FWS_C:
1253 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1254 int err = w->func(w);
1255 if (err)
1256 return err;
1257 continue;
1259 w->state = FWS_U;
1260 case FWS_U:
1261 if (fn == w->root)
1262 return 0;
1263 pn = fn->parent;
1264 w->node = pn;
1265 #ifdef CONFIG_IPV6_SUBTREES
1266 if (SUBTREE(pn) == fn) {
1267 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1268 w->state = FWS_L;
1269 continue;
1271 #endif
1272 if (pn->left == fn) {
1273 w->state = FWS_R;
1274 continue;
1276 if (pn->right == fn) {
1277 w->state = FWS_C;
1278 w->leaf = w->node->leaf;
1279 continue;
1281 #if RT6_DEBUG >= 2
1282 BUG_TRAP(0);
1283 #endif
1288 static int fib6_walk(struct fib6_walker_t *w)
1290 int res;
1292 w->state = FWS_INIT;
1293 w->node = w->root;
1295 fib6_walker_link(w);
1296 res = fib6_walk_continue(w);
1297 if (res <= 0)
1298 fib6_walker_unlink(w);
1299 return res;
1302 static int fib6_clean_node(struct fib6_walker_t *w)
1304 int res;
1305 struct rt6_info *rt;
1306 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1308 for (rt = w->leaf; rt; rt = rt->u.next) {
1309 res = c->func(rt, c->arg);
1310 if (res < 0) {
1311 w->leaf = rt;
1312 res = fib6_del(rt, NULL);
1313 if (res) {
1314 #if RT6_DEBUG >= 2
1315 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1316 #endif
1317 continue;
1319 return 0;
1321 BUG_TRAP(res==0);
1323 w->leaf = rt;
1324 return 0;
1328 * Convenient frontend to tree walker.
1330 * func is called on each route.
1331 * It may return -1 -> delete this route.
1332 * 0 -> continue walking
1334 * prune==1 -> only immediate children of node (certainly,
1335 * ignoring pure split nodes) will be scanned.
1338 static void fib6_clean_tree(struct fib6_node *root,
1339 int (*func)(struct rt6_info *, void *arg),
1340 int prune, void *arg)
1342 struct fib6_cleaner_t c;
1344 c.w.root = root;
1345 c.w.func = fib6_clean_node;
1346 c.w.prune = prune;
1347 c.func = func;
1348 c.arg = arg;
1350 fib6_walk(&c.w);
1353 void fib6_clean_all(int (*func)(struct rt6_info *, void *arg),
1354 int prune, void *arg)
1356 struct fib6_table *table;
1357 struct hlist_node *node;
1358 unsigned int h;
1360 rcu_read_lock();
1361 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1362 hlist_for_each_entry_rcu(table, node, &fib_table_hash[h],
1363 tb6_hlist) {
1364 write_lock_bh(&table->tb6_lock);
1365 fib6_clean_tree(&table->tb6_root, func, prune, arg);
1366 write_unlock_bh(&table->tb6_lock);
1369 rcu_read_unlock();
1372 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1374 if (rt->rt6i_flags & RTF_CACHE) {
1375 RT6_TRACE("pruning clone %p\n", rt);
1376 return -1;
1379 return 0;
1382 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1384 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1388 * Garbage collection
1391 static struct fib6_gc_args
1393 int timeout;
1394 int more;
1395 } gc_args;
1397 static int fib6_age(struct rt6_info *rt, void *arg)
1399 unsigned long now = jiffies;
1402 * check addrconf expiration here.
1403 * Routes are expired even if they are in use.
1405 * Also age clones. Note, that clones are aged out
1406 * only if they are not in use now.
1409 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1410 if (time_after(now, rt->rt6i_expires)) {
1411 RT6_TRACE("expiring %p\n", rt);
1412 return -1;
1414 gc_args.more++;
1415 } else if (rt->rt6i_flags & RTF_CACHE) {
1416 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1417 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1418 RT6_TRACE("aging clone %p\n", rt);
1419 return -1;
1420 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1421 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1422 RT6_TRACE("purging route %p via non-router but gateway\n",
1423 rt);
1424 return -1;
1426 gc_args.more++;
1429 return 0;
1432 static DEFINE_SPINLOCK(fib6_gc_lock);
1434 void fib6_run_gc(unsigned long dummy)
1436 if (dummy != ~0UL) {
1437 spin_lock_bh(&fib6_gc_lock);
1438 gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1439 } else {
1440 local_bh_disable();
1441 if (!spin_trylock(&fib6_gc_lock)) {
1442 mod_timer(&ip6_fib_timer, jiffies + HZ);
1443 local_bh_enable();
1444 return;
1446 gc_args.timeout = ip6_rt_gc_interval;
1448 gc_args.more = 0;
1450 ndisc_dst_gc(&gc_args.more);
1451 fib6_clean_all(fib6_age, 0, NULL);
1453 if (gc_args.more)
1454 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1455 else {
1456 del_timer(&ip6_fib_timer);
1457 ip6_fib_timer.expires = 0;
1459 spin_unlock_bh(&fib6_gc_lock);
1462 void __init fib6_init(void)
1464 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1465 sizeof(struct fib6_node),
1466 0, SLAB_HWCACHE_ALIGN,
1467 NULL, NULL);
1468 if (!fib6_node_kmem)
1469 panic("cannot create fib6_nodes cache");
1471 fib6_tables_init();
1474 void fib6_gc_cleanup(void)
1476 del_timer(&ip6_fib_timer);
1477 kmem_cache_destroy(fib6_node_kmem);