ext4: Fix up comments in inode.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobdb3cc913ee8f8662007fa523b9c646b6dcffe2e1
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
56 trace_ext4_begin_ordered_truncate(inode, new_size);
57 return jbd2_journal_begin_ordered_truncate(
58 EXT4_SB(inode->i_sb)->s_journal,
59 &EXT4_I(inode)->jinode,
60 new_size);
63 static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
65 struct buffer_head *bh_result, int create);
66 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
67 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
68 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
69 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
72 * Test whether an inode is a fast symlink.
74 static int ext4_inode_is_fast_symlink(struct inode *inode)
76 int ea_blocks = EXT4_I(inode)->i_file_acl ?
77 (inode->i_sb->s_blocksize >> 9) : 0;
79 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
83 * Work out how many blocks we need to proceed with the next chunk of a
84 * truncate transaction.
86 static unsigned long blocks_for_truncate(struct inode *inode)
88 ext4_lblk_t needed;
90 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
92 /* Give ourselves just enough room to cope with inodes in which
93 * i_blocks is corrupt: we've seen disk corruptions in the past
94 * which resulted in random data in an inode which looked enough
95 * like a regular file for ext4 to try to delete it. Things
96 * will go a bit crazy if that happens, but at least we should
97 * try not to panic the whole kernel. */
98 if (needed < 2)
99 needed = 2;
101 /* But we need to bound the transaction so we don't overflow the
102 * journal. */
103 if (needed > EXT4_MAX_TRANS_DATA)
104 needed = EXT4_MAX_TRANS_DATA;
106 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
110 * Truncate transactions can be complex and absolutely huge. So we need to
111 * be able to restart the transaction at a conventient checkpoint to make
112 * sure we don't overflow the journal.
114 * start_transaction gets us a new handle for a truncate transaction,
115 * and extend_transaction tries to extend the existing one a bit. If
116 * extend fails, we need to propagate the failure up and restart the
117 * transaction in the top-level truncate loop. --sct
119 static handle_t *start_transaction(struct inode *inode)
121 handle_t *result;
123 result = ext4_journal_start(inode, blocks_for_truncate(inode));
124 if (!IS_ERR(result))
125 return result;
127 ext4_std_error(inode->i_sb, PTR_ERR(result));
128 return result;
132 * Try to extend this transaction for the purposes of truncation.
134 * Returns 0 if we managed to create more room. If we can't create more
135 * room, and the transaction must be restarted we return 1.
137 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
139 if (!ext4_handle_valid(handle))
140 return 0;
141 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
142 return 0;
143 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
144 return 0;
145 return 1;
149 * Restart the transaction associated with *handle. This does a commit,
150 * so before we call here everything must be consistently dirtied against
151 * this transaction.
153 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
154 int nblocks)
156 int ret;
159 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
160 * moment, get_block can be called only for blocks inside i_size since
161 * page cache has been already dropped and writes are blocked by
162 * i_mutex. So we can safely drop the i_data_sem here.
164 BUG_ON(EXT4_JOURNAL(inode) == NULL);
165 jbd_debug(2, "restarting handle %p\n", handle);
166 up_write(&EXT4_I(inode)->i_data_sem);
167 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
168 down_write(&EXT4_I(inode)->i_data_sem);
169 ext4_discard_preallocations(inode);
171 return ret;
175 * Called at the last iput() if i_nlink is zero.
177 void ext4_evict_inode(struct inode *inode)
179 handle_t *handle;
180 int err;
182 trace_ext4_evict_inode(inode);
183 if (inode->i_nlink) {
184 truncate_inode_pages(&inode->i_data, 0);
185 goto no_delete;
188 if (!is_bad_inode(inode))
189 dquot_initialize(inode);
191 if (ext4_should_order_data(inode))
192 ext4_begin_ordered_truncate(inode, 0);
193 truncate_inode_pages(&inode->i_data, 0);
195 if (is_bad_inode(inode))
196 goto no_delete;
198 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
199 if (IS_ERR(handle)) {
200 ext4_std_error(inode->i_sb, PTR_ERR(handle));
202 * If we're going to skip the normal cleanup, we still need to
203 * make sure that the in-core orphan linked list is properly
204 * cleaned up.
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
210 if (IS_SYNC(inode))
211 ext4_handle_sync(handle);
212 inode->i_size = 0;
213 err = ext4_mark_inode_dirty(handle, inode);
214 if (err) {
215 ext4_warning(inode->i_sb,
216 "couldn't mark inode dirty (err %d)", err);
217 goto stop_handle;
219 if (inode->i_blocks)
220 ext4_truncate(inode);
223 * ext4_ext_truncate() doesn't reserve any slop when it
224 * restarts journal transactions; therefore there may not be
225 * enough credits left in the handle to remove the inode from
226 * the orphan list and set the dtime field.
228 if (!ext4_handle_has_enough_credits(handle, 3)) {
229 err = ext4_journal_extend(handle, 3);
230 if (err > 0)
231 err = ext4_journal_restart(handle, 3);
232 if (err != 0) {
233 ext4_warning(inode->i_sb,
234 "couldn't extend journal (err %d)", err);
235 stop_handle:
236 ext4_journal_stop(handle);
237 ext4_orphan_del(NULL, inode);
238 goto no_delete;
243 * Kill off the orphan record which ext4_truncate created.
244 * AKPM: I think this can be inside the above `if'.
245 * Note that ext4_orphan_del() has to be able to cope with the
246 * deletion of a non-existent orphan - this is because we don't
247 * know if ext4_truncate() actually created an orphan record.
248 * (Well, we could do this if we need to, but heck - it works)
250 ext4_orphan_del(handle, inode);
251 EXT4_I(inode)->i_dtime = get_seconds();
254 * One subtle ordering requirement: if anything has gone wrong
255 * (transaction abort, IO errors, whatever), then we can still
256 * do these next steps (the fs will already have been marked as
257 * having errors), but we can't free the inode if the mark_dirty
258 * fails.
260 if (ext4_mark_inode_dirty(handle, inode))
261 /* If that failed, just do the required in-core inode clear. */
262 ext4_clear_inode(inode);
263 else
264 ext4_free_inode(handle, inode);
265 ext4_journal_stop(handle);
266 return;
267 no_delete:
268 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
271 typedef struct {
272 __le32 *p;
273 __le32 key;
274 struct buffer_head *bh;
275 } Indirect;
277 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
279 p->key = *(p->p = v);
280 p->bh = bh;
284 * ext4_block_to_path - parse the block number into array of offsets
285 * @inode: inode in question (we are only interested in its superblock)
286 * @i_block: block number to be parsed
287 * @offsets: array to store the offsets in
288 * @boundary: set this non-zero if the referred-to block is likely to be
289 * followed (on disk) by an indirect block.
291 * To store the locations of file's data ext4 uses a data structure common
292 * for UNIX filesystems - tree of pointers anchored in the inode, with
293 * data blocks at leaves and indirect blocks in intermediate nodes.
294 * This function translates the block number into path in that tree -
295 * return value is the path length and @offsets[n] is the offset of
296 * pointer to (n+1)th node in the nth one. If @block is out of range
297 * (negative or too large) warning is printed and zero returned.
299 * Note: function doesn't find node addresses, so no IO is needed. All
300 * we need to know is the capacity of indirect blocks (taken from the
301 * inode->i_sb).
305 * Portability note: the last comparison (check that we fit into triple
306 * indirect block) is spelled differently, because otherwise on an
307 * architecture with 32-bit longs and 8Kb pages we might get into trouble
308 * if our filesystem had 8Kb blocks. We might use long long, but that would
309 * kill us on x86. Oh, well, at least the sign propagation does not matter -
310 * i_block would have to be negative in the very beginning, so we would not
311 * get there at all.
314 static int ext4_block_to_path(struct inode *inode,
315 ext4_lblk_t i_block,
316 ext4_lblk_t offsets[4], int *boundary)
318 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
319 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
320 const long direct_blocks = EXT4_NDIR_BLOCKS,
321 indirect_blocks = ptrs,
322 double_blocks = (1 << (ptrs_bits * 2));
323 int n = 0;
324 int final = 0;
326 if (i_block < direct_blocks) {
327 offsets[n++] = i_block;
328 final = direct_blocks;
329 } else if ((i_block -= direct_blocks) < indirect_blocks) {
330 offsets[n++] = EXT4_IND_BLOCK;
331 offsets[n++] = i_block;
332 final = ptrs;
333 } else if ((i_block -= indirect_blocks) < double_blocks) {
334 offsets[n++] = EXT4_DIND_BLOCK;
335 offsets[n++] = i_block >> ptrs_bits;
336 offsets[n++] = i_block & (ptrs - 1);
337 final = ptrs;
338 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
339 offsets[n++] = EXT4_TIND_BLOCK;
340 offsets[n++] = i_block >> (ptrs_bits * 2);
341 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else {
345 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
346 i_block + direct_blocks +
347 indirect_blocks + double_blocks, inode->i_ino);
349 if (boundary)
350 *boundary = final - 1 - (i_block & (ptrs - 1));
351 return n;
354 static int __ext4_check_blockref(const char *function, unsigned int line,
355 struct inode *inode,
356 __le32 *p, unsigned int max)
358 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
359 __le32 *bref = p;
360 unsigned int blk;
362 while (bref < p+max) {
363 blk = le32_to_cpu(*bref++);
364 if (blk &&
365 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
366 blk, 1))) {
367 es->s_last_error_block = cpu_to_le64(blk);
368 ext4_error_inode(inode, function, line, blk,
369 "invalid block");
370 return -EIO;
373 return 0;
377 #define ext4_check_indirect_blockref(inode, bh) \
378 __ext4_check_blockref(__func__, __LINE__, inode, \
379 (__le32 *)(bh)->b_data, \
380 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
382 #define ext4_check_inode_blockref(inode) \
383 __ext4_check_blockref(__func__, __LINE__, inode, \
384 EXT4_I(inode)->i_data, \
385 EXT4_NDIR_BLOCKS)
388 * ext4_get_branch - read the chain of indirect blocks leading to data
389 * @inode: inode in question
390 * @depth: depth of the chain (1 - direct pointer, etc.)
391 * @offsets: offsets of pointers in inode/indirect blocks
392 * @chain: place to store the result
393 * @err: here we store the error value
395 * Function fills the array of triples <key, p, bh> and returns %NULL
396 * if everything went OK or the pointer to the last filled triple
397 * (incomplete one) otherwise. Upon the return chain[i].key contains
398 * the number of (i+1)-th block in the chain (as it is stored in memory,
399 * i.e. little-endian 32-bit), chain[i].p contains the address of that
400 * number (it points into struct inode for i==0 and into the bh->b_data
401 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
402 * block for i>0 and NULL for i==0. In other words, it holds the block
403 * numbers of the chain, addresses they were taken from (and where we can
404 * verify that chain did not change) and buffer_heads hosting these
405 * numbers.
407 * Function stops when it stumbles upon zero pointer (absent block)
408 * (pointer to last triple returned, *@err == 0)
409 * or when it gets an IO error reading an indirect block
410 * (ditto, *@err == -EIO)
411 * or when it reads all @depth-1 indirect blocks successfully and finds
412 * the whole chain, all way to the data (returns %NULL, *err == 0).
414 * Need to be called with
415 * down_read(&EXT4_I(inode)->i_data_sem)
417 static Indirect *ext4_get_branch(struct inode *inode, int depth,
418 ext4_lblk_t *offsets,
419 Indirect chain[4], int *err)
421 struct super_block *sb = inode->i_sb;
422 Indirect *p = chain;
423 struct buffer_head *bh;
425 *err = 0;
426 /* i_data is not going away, no lock needed */
427 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
428 if (!p->key)
429 goto no_block;
430 while (--depth) {
431 bh = sb_getblk(sb, le32_to_cpu(p->key));
432 if (unlikely(!bh))
433 goto failure;
435 if (!bh_uptodate_or_lock(bh)) {
436 if (bh_submit_read(bh) < 0) {
437 put_bh(bh);
438 goto failure;
440 /* validate block references */
441 if (ext4_check_indirect_blockref(inode, bh)) {
442 put_bh(bh);
443 goto failure;
447 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
448 /* Reader: end */
449 if (!p->key)
450 goto no_block;
452 return NULL;
454 failure:
455 *err = -EIO;
456 no_block:
457 return p;
461 * ext4_find_near - find a place for allocation with sufficient locality
462 * @inode: owner
463 * @ind: descriptor of indirect block.
465 * This function returns the preferred place for block allocation.
466 * It is used when heuristic for sequential allocation fails.
467 * Rules are:
468 * + if there is a block to the left of our position - allocate near it.
469 * + if pointer will live in indirect block - allocate near that block.
470 * + if pointer will live in inode - allocate in the same
471 * cylinder group.
473 * In the latter case we colour the starting block by the callers PID to
474 * prevent it from clashing with concurrent allocations for a different inode
475 * in the same block group. The PID is used here so that functionally related
476 * files will be close-by on-disk.
478 * Caller must make sure that @ind is valid and will stay that way.
480 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
482 struct ext4_inode_info *ei = EXT4_I(inode);
483 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
484 __le32 *p;
485 ext4_fsblk_t bg_start;
486 ext4_fsblk_t last_block;
487 ext4_grpblk_t colour;
488 ext4_group_t block_group;
489 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
491 /* Try to find previous block */
492 for (p = ind->p - 1; p >= start; p--) {
493 if (*p)
494 return le32_to_cpu(*p);
497 /* No such thing, so let's try location of indirect block */
498 if (ind->bh)
499 return ind->bh->b_blocknr;
502 * It is going to be referred to from the inode itself? OK, just put it
503 * into the same cylinder group then.
505 block_group = ei->i_block_group;
506 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
507 block_group &= ~(flex_size-1);
508 if (S_ISREG(inode->i_mode))
509 block_group++;
511 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
512 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
515 * If we are doing delayed allocation, we don't need take
516 * colour into account.
518 if (test_opt(inode->i_sb, DELALLOC))
519 return bg_start;
521 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
522 colour = (current->pid % 16) *
523 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
524 else
525 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
526 return bg_start + colour;
530 * ext4_find_goal - find a preferred place for allocation.
531 * @inode: owner
532 * @block: block we want
533 * @partial: pointer to the last triple within a chain
535 * Normally this function find the preferred place for block allocation,
536 * returns it.
537 * Because this is only used for non-extent files, we limit the block nr
538 * to 32 bits.
540 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
541 Indirect *partial)
543 ext4_fsblk_t goal;
546 * XXX need to get goal block from mballoc's data structures
549 goal = ext4_find_near(inode, partial);
550 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
551 return goal;
555 * ext4_blks_to_allocate - Look up the block map and count the number
556 * of direct blocks need to be allocated for the given branch.
558 * @branch: chain of indirect blocks
559 * @k: number of blocks need for indirect blocks
560 * @blks: number of data blocks to be mapped.
561 * @blocks_to_boundary: the offset in the indirect block
563 * return the total number of blocks to be allocate, including the
564 * direct and indirect blocks.
566 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
567 int blocks_to_boundary)
569 unsigned int count = 0;
572 * Simple case, [t,d]Indirect block(s) has not allocated yet
573 * then it's clear blocks on that path have not allocated
575 if (k > 0) {
576 /* right now we don't handle cross boundary allocation */
577 if (blks < blocks_to_boundary + 1)
578 count += blks;
579 else
580 count += blocks_to_boundary + 1;
581 return count;
584 count++;
585 while (count < blks && count <= blocks_to_boundary &&
586 le32_to_cpu(*(branch[0].p + count)) == 0) {
587 count++;
589 return count;
593 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
594 * @handle: handle for this transaction
595 * @inode: inode which needs allocated blocks
596 * @iblock: the logical block to start allocated at
597 * @goal: preferred physical block of allocation
598 * @indirect_blks: the number of blocks need to allocate for indirect
599 * blocks
600 * @blks: number of desired blocks
601 * @new_blocks: on return it will store the new block numbers for
602 * the indirect blocks(if needed) and the first direct block,
603 * @err: on return it will store the error code
605 * This function will return the number of blocks allocated as
606 * requested by the passed-in parameters.
608 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
609 ext4_lblk_t iblock, ext4_fsblk_t goal,
610 int indirect_blks, int blks,
611 ext4_fsblk_t new_blocks[4], int *err)
613 struct ext4_allocation_request ar;
614 int target, i;
615 unsigned long count = 0, blk_allocated = 0;
616 int index = 0;
617 ext4_fsblk_t current_block = 0;
618 int ret = 0;
621 * Here we try to allocate the requested multiple blocks at once,
622 * on a best-effort basis.
623 * To build a branch, we should allocate blocks for
624 * the indirect blocks(if not allocated yet), and at least
625 * the first direct block of this branch. That's the
626 * minimum number of blocks need to allocate(required)
628 /* first we try to allocate the indirect blocks */
629 target = indirect_blks;
630 while (target > 0) {
631 count = target;
632 /* allocating blocks for indirect blocks and direct blocks */
633 current_block = ext4_new_meta_blocks(handle, inode,
634 goal, &count, err);
635 if (*err)
636 goto failed_out;
638 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
639 EXT4_ERROR_INODE(inode,
640 "current_block %llu + count %lu > %d!",
641 current_block, count,
642 EXT4_MAX_BLOCK_FILE_PHYS);
643 *err = -EIO;
644 goto failed_out;
647 target -= count;
648 /* allocate blocks for indirect blocks */
649 while (index < indirect_blks && count) {
650 new_blocks[index++] = current_block++;
651 count--;
653 if (count > 0) {
655 * save the new block number
656 * for the first direct block
658 new_blocks[index] = current_block;
659 printk(KERN_INFO "%s returned more blocks than "
660 "requested\n", __func__);
661 WARN_ON(1);
662 break;
666 target = blks - count ;
667 blk_allocated = count;
668 if (!target)
669 goto allocated;
670 /* Now allocate data blocks */
671 memset(&ar, 0, sizeof(ar));
672 ar.inode = inode;
673 ar.goal = goal;
674 ar.len = target;
675 ar.logical = iblock;
676 if (S_ISREG(inode->i_mode))
677 /* enable in-core preallocation only for regular files */
678 ar.flags = EXT4_MB_HINT_DATA;
680 current_block = ext4_mb_new_blocks(handle, &ar, err);
681 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
682 EXT4_ERROR_INODE(inode,
683 "current_block %llu + ar.len %d > %d!",
684 current_block, ar.len,
685 EXT4_MAX_BLOCK_FILE_PHYS);
686 *err = -EIO;
687 goto failed_out;
690 if (*err && (target == blks)) {
692 * if the allocation failed and we didn't allocate
693 * any blocks before
695 goto failed_out;
697 if (!*err) {
698 if (target == blks) {
700 * save the new block number
701 * for the first direct block
703 new_blocks[index] = current_block;
705 blk_allocated += ar.len;
707 allocated:
708 /* total number of blocks allocated for direct blocks */
709 ret = blk_allocated;
710 *err = 0;
711 return ret;
712 failed_out:
713 for (i = 0; i < index; i++)
714 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
715 return ret;
719 * ext4_alloc_branch - allocate and set up a chain of blocks.
720 * @handle: handle for this transaction
721 * @inode: owner
722 * @indirect_blks: number of allocated indirect blocks
723 * @blks: number of allocated direct blocks
724 * @goal: preferred place for allocation
725 * @offsets: offsets (in the blocks) to store the pointers to next.
726 * @branch: place to store the chain in.
728 * This function allocates blocks, zeroes out all but the last one,
729 * links them into chain and (if we are synchronous) writes them to disk.
730 * In other words, it prepares a branch that can be spliced onto the
731 * inode. It stores the information about that chain in the branch[], in
732 * the same format as ext4_get_branch() would do. We are calling it after
733 * we had read the existing part of chain and partial points to the last
734 * triple of that (one with zero ->key). Upon the exit we have the same
735 * picture as after the successful ext4_get_block(), except that in one
736 * place chain is disconnected - *branch->p is still zero (we did not
737 * set the last link), but branch->key contains the number that should
738 * be placed into *branch->p to fill that gap.
740 * If allocation fails we free all blocks we've allocated (and forget
741 * their buffer_heads) and return the error value the from failed
742 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
743 * as described above and return 0.
745 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
746 ext4_lblk_t iblock, int indirect_blks,
747 int *blks, ext4_fsblk_t goal,
748 ext4_lblk_t *offsets, Indirect *branch)
750 int blocksize = inode->i_sb->s_blocksize;
751 int i, n = 0;
752 int err = 0;
753 struct buffer_head *bh;
754 int num;
755 ext4_fsblk_t new_blocks[4];
756 ext4_fsblk_t current_block;
758 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
759 *blks, new_blocks, &err);
760 if (err)
761 return err;
763 branch[0].key = cpu_to_le32(new_blocks[0]);
765 * metadata blocks and data blocks are allocated.
767 for (n = 1; n <= indirect_blks; n++) {
769 * Get buffer_head for parent block, zero it out
770 * and set the pointer to new one, then send
771 * parent to disk.
773 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
774 if (unlikely(!bh)) {
775 err = -EIO;
776 goto failed;
779 branch[n].bh = bh;
780 lock_buffer(bh);
781 BUFFER_TRACE(bh, "call get_create_access");
782 err = ext4_journal_get_create_access(handle, bh);
783 if (err) {
784 /* Don't brelse(bh) here; it's done in
785 * ext4_journal_forget() below */
786 unlock_buffer(bh);
787 goto failed;
790 memset(bh->b_data, 0, blocksize);
791 branch[n].p = (__le32 *) bh->b_data + offsets[n];
792 branch[n].key = cpu_to_le32(new_blocks[n]);
793 *branch[n].p = branch[n].key;
794 if (n == indirect_blks) {
795 current_block = new_blocks[n];
797 * End of chain, update the last new metablock of
798 * the chain to point to the new allocated
799 * data blocks numbers
801 for (i = 1; i < num; i++)
802 *(branch[n].p + i) = cpu_to_le32(++current_block);
804 BUFFER_TRACE(bh, "marking uptodate");
805 set_buffer_uptodate(bh);
806 unlock_buffer(bh);
808 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
809 err = ext4_handle_dirty_metadata(handle, inode, bh);
810 if (err)
811 goto failed;
813 *blks = num;
814 return err;
815 failed:
816 /* Allocation failed, free what we already allocated */
817 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
818 for (i = 1; i <= n ; i++) {
820 * branch[i].bh is newly allocated, so there is no
821 * need to revoke the block, which is why we don't
822 * need to set EXT4_FREE_BLOCKS_METADATA.
824 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
825 EXT4_FREE_BLOCKS_FORGET);
827 for (i = n+1; i < indirect_blks; i++)
828 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
830 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
832 return err;
836 * ext4_splice_branch - splice the allocated branch onto inode.
837 * @handle: handle for this transaction
838 * @inode: owner
839 * @block: (logical) number of block we are adding
840 * @chain: chain of indirect blocks (with a missing link - see
841 * ext4_alloc_branch)
842 * @where: location of missing link
843 * @num: number of indirect blocks we are adding
844 * @blks: number of direct blocks we are adding
846 * This function fills the missing link and does all housekeeping needed in
847 * inode (->i_blocks, etc.). In case of success we end up with the full
848 * chain to new block and return 0.
850 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
851 ext4_lblk_t block, Indirect *where, int num,
852 int blks)
854 int i;
855 int err = 0;
856 ext4_fsblk_t current_block;
859 * If we're splicing into a [td]indirect block (as opposed to the
860 * inode) then we need to get write access to the [td]indirect block
861 * before the splice.
863 if (where->bh) {
864 BUFFER_TRACE(where->bh, "get_write_access");
865 err = ext4_journal_get_write_access(handle, where->bh);
866 if (err)
867 goto err_out;
869 /* That's it */
871 *where->p = where->key;
874 * Update the host buffer_head or inode to point to more just allocated
875 * direct blocks blocks
877 if (num == 0 && blks > 1) {
878 current_block = le32_to_cpu(where->key) + 1;
879 for (i = 1; i < blks; i++)
880 *(where->p + i) = cpu_to_le32(current_block++);
883 /* We are done with atomic stuff, now do the rest of housekeeping */
884 /* had we spliced it onto indirect block? */
885 if (where->bh) {
887 * If we spliced it onto an indirect block, we haven't
888 * altered the inode. Note however that if it is being spliced
889 * onto an indirect block at the very end of the file (the
890 * file is growing) then we *will* alter the inode to reflect
891 * the new i_size. But that is not done here - it is done in
892 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
894 jbd_debug(5, "splicing indirect only\n");
895 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
896 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
897 if (err)
898 goto err_out;
899 } else {
901 * OK, we spliced it into the inode itself on a direct block.
903 ext4_mark_inode_dirty(handle, inode);
904 jbd_debug(5, "splicing direct\n");
906 return err;
908 err_out:
909 for (i = 1; i <= num; i++) {
911 * branch[i].bh is newly allocated, so there is no
912 * need to revoke the block, which is why we don't
913 * need to set EXT4_FREE_BLOCKS_METADATA.
915 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
916 EXT4_FREE_BLOCKS_FORGET);
918 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
919 blks, 0);
921 return err;
925 * The ext4_ind_map_blocks() function handles non-extents inodes
926 * (i.e., using the traditional indirect/double-indirect i_blocks
927 * scheme) for ext4_map_blocks().
929 * Allocation strategy is simple: if we have to allocate something, we will
930 * have to go the whole way to leaf. So let's do it before attaching anything
931 * to tree, set linkage between the newborn blocks, write them if sync is
932 * required, recheck the path, free and repeat if check fails, otherwise
933 * set the last missing link (that will protect us from any truncate-generated
934 * removals - all blocks on the path are immune now) and possibly force the
935 * write on the parent block.
936 * That has a nice additional property: no special recovery from the failed
937 * allocations is needed - we simply release blocks and do not touch anything
938 * reachable from inode.
940 * `handle' can be NULL if create == 0.
942 * return > 0, # of blocks mapped or allocated.
943 * return = 0, if plain lookup failed.
944 * return < 0, error case.
946 * The ext4_ind_get_blocks() function should be called with
947 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
948 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
949 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
950 * blocks.
952 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
953 struct ext4_map_blocks *map,
954 int flags)
956 int err = -EIO;
957 ext4_lblk_t offsets[4];
958 Indirect chain[4];
959 Indirect *partial;
960 ext4_fsblk_t goal;
961 int indirect_blks;
962 int blocks_to_boundary = 0;
963 int depth;
964 int count = 0;
965 ext4_fsblk_t first_block = 0;
967 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
968 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
969 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
970 &blocks_to_boundary);
972 if (depth == 0)
973 goto out;
975 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
977 /* Simplest case - block found, no allocation needed */
978 if (!partial) {
979 first_block = le32_to_cpu(chain[depth - 1].key);
980 count++;
981 /*map more blocks*/
982 while (count < map->m_len && count <= blocks_to_boundary) {
983 ext4_fsblk_t blk;
985 blk = le32_to_cpu(*(chain[depth-1].p + count));
987 if (blk == first_block + count)
988 count++;
989 else
990 break;
992 goto got_it;
995 /* Next simple case - plain lookup or failed read of indirect block */
996 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
997 goto cleanup;
1000 * Okay, we need to do block allocation.
1002 goal = ext4_find_goal(inode, map->m_lblk, partial);
1004 /* the number of blocks need to allocate for [d,t]indirect blocks */
1005 indirect_blks = (chain + depth) - partial - 1;
1008 * Next look up the indirect map to count the totoal number of
1009 * direct blocks to allocate for this branch.
1011 count = ext4_blks_to_allocate(partial, indirect_blks,
1012 map->m_len, blocks_to_boundary);
1014 * Block out ext4_truncate while we alter the tree
1016 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1017 &count, goal,
1018 offsets + (partial - chain), partial);
1021 * The ext4_splice_branch call will free and forget any buffers
1022 * on the new chain if there is a failure, but that risks using
1023 * up transaction credits, especially for bitmaps where the
1024 * credits cannot be returned. Can we handle this somehow? We
1025 * may need to return -EAGAIN upwards in the worst case. --sct
1027 if (!err)
1028 err = ext4_splice_branch(handle, inode, map->m_lblk,
1029 partial, indirect_blks, count);
1030 if (err)
1031 goto cleanup;
1033 map->m_flags |= EXT4_MAP_NEW;
1035 ext4_update_inode_fsync_trans(handle, inode, 1);
1036 got_it:
1037 map->m_flags |= EXT4_MAP_MAPPED;
1038 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1039 map->m_len = count;
1040 if (count > blocks_to_boundary)
1041 map->m_flags |= EXT4_MAP_BOUNDARY;
1042 err = count;
1043 /* Clean up and exit */
1044 partial = chain + depth - 1; /* the whole chain */
1045 cleanup:
1046 while (partial > chain) {
1047 BUFFER_TRACE(partial->bh, "call brelse");
1048 brelse(partial->bh);
1049 partial--;
1051 out:
1052 return err;
1055 #ifdef CONFIG_QUOTA
1056 qsize_t *ext4_get_reserved_space(struct inode *inode)
1058 return &EXT4_I(inode)->i_reserved_quota;
1060 #endif
1063 * Calculate the number of metadata blocks need to reserve
1064 * to allocate a new block at @lblocks for non extent file based file
1066 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1067 sector_t lblock)
1069 struct ext4_inode_info *ei = EXT4_I(inode);
1070 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1071 int blk_bits;
1073 if (lblock < EXT4_NDIR_BLOCKS)
1074 return 0;
1076 lblock -= EXT4_NDIR_BLOCKS;
1078 if (ei->i_da_metadata_calc_len &&
1079 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1080 ei->i_da_metadata_calc_len++;
1081 return 0;
1083 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1084 ei->i_da_metadata_calc_len = 1;
1085 blk_bits = order_base_2(lblock);
1086 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1090 * Calculate the number of metadata blocks need to reserve
1091 * to allocate a block located at @lblock
1093 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1095 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1096 return ext4_ext_calc_metadata_amount(inode, lblock);
1098 return ext4_indirect_calc_metadata_amount(inode, lblock);
1102 * Called with i_data_sem down, which is important since we can call
1103 * ext4_discard_preallocations() from here.
1105 void ext4_da_update_reserve_space(struct inode *inode,
1106 int used, int quota_claim)
1108 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1109 struct ext4_inode_info *ei = EXT4_I(inode);
1111 spin_lock(&ei->i_block_reservation_lock);
1112 trace_ext4_da_update_reserve_space(inode, used);
1113 if (unlikely(used > ei->i_reserved_data_blocks)) {
1114 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1115 "with only %d reserved data blocks\n",
1116 __func__, inode->i_ino, used,
1117 ei->i_reserved_data_blocks);
1118 WARN_ON(1);
1119 used = ei->i_reserved_data_blocks;
1122 /* Update per-inode reservations */
1123 ei->i_reserved_data_blocks -= used;
1124 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1125 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1126 used + ei->i_allocated_meta_blocks);
1127 ei->i_allocated_meta_blocks = 0;
1129 if (ei->i_reserved_data_blocks == 0) {
1131 * We can release all of the reserved metadata blocks
1132 * only when we have written all of the delayed
1133 * allocation blocks.
1135 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1136 ei->i_reserved_meta_blocks);
1137 ei->i_reserved_meta_blocks = 0;
1138 ei->i_da_metadata_calc_len = 0;
1140 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1142 /* Update quota subsystem for data blocks */
1143 if (quota_claim)
1144 dquot_claim_block(inode, used);
1145 else {
1147 * We did fallocate with an offset that is already delayed
1148 * allocated. So on delayed allocated writeback we should
1149 * not re-claim the quota for fallocated blocks.
1151 dquot_release_reservation_block(inode, used);
1155 * If we have done all the pending block allocations and if
1156 * there aren't any writers on the inode, we can discard the
1157 * inode's preallocations.
1159 if ((ei->i_reserved_data_blocks == 0) &&
1160 (atomic_read(&inode->i_writecount) == 0))
1161 ext4_discard_preallocations(inode);
1164 static int __check_block_validity(struct inode *inode, const char *func,
1165 unsigned int line,
1166 struct ext4_map_blocks *map)
1168 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1169 map->m_len)) {
1170 ext4_error_inode(inode, func, line, map->m_pblk,
1171 "lblock %lu mapped to illegal pblock "
1172 "(length %d)", (unsigned long) map->m_lblk,
1173 map->m_len);
1174 return -EIO;
1176 return 0;
1179 #define check_block_validity(inode, map) \
1180 __check_block_validity((inode), __func__, __LINE__, (map))
1183 * Return the number of contiguous dirty pages in a given inode
1184 * starting at page frame idx.
1186 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1187 unsigned int max_pages)
1189 struct address_space *mapping = inode->i_mapping;
1190 pgoff_t index;
1191 struct pagevec pvec;
1192 pgoff_t num = 0;
1193 int i, nr_pages, done = 0;
1195 if (max_pages == 0)
1196 return 0;
1197 pagevec_init(&pvec, 0);
1198 while (!done) {
1199 index = idx;
1200 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1201 PAGECACHE_TAG_DIRTY,
1202 (pgoff_t)PAGEVEC_SIZE);
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
1206 struct page *page = pvec.pages[i];
1207 struct buffer_head *bh, *head;
1209 lock_page(page);
1210 if (unlikely(page->mapping != mapping) ||
1211 !PageDirty(page) ||
1212 PageWriteback(page) ||
1213 page->index != idx) {
1214 done = 1;
1215 unlock_page(page);
1216 break;
1218 if (page_has_buffers(page)) {
1219 bh = head = page_buffers(page);
1220 do {
1221 if (!buffer_delay(bh) &&
1222 !buffer_unwritten(bh))
1223 done = 1;
1224 bh = bh->b_this_page;
1225 } while (!done && (bh != head));
1227 unlock_page(page);
1228 if (done)
1229 break;
1230 idx++;
1231 num++;
1232 if (num >= max_pages) {
1233 done = 1;
1234 break;
1237 pagevec_release(&pvec);
1239 return num;
1243 * The ext4_map_blocks() function tries to look up the requested blocks,
1244 * and returns if the blocks are already mapped.
1246 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1247 * and store the allocated blocks in the result buffer head and mark it
1248 * mapped.
1250 * If file type is extents based, it will call ext4_ext_map_blocks(),
1251 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1252 * based files
1254 * On success, it returns the number of blocks being mapped or allocate.
1255 * if create==0 and the blocks are pre-allocated and uninitialized block,
1256 * the result buffer head is unmapped. If the create ==1, it will make sure
1257 * the buffer head is mapped.
1259 * It returns 0 if plain look up failed (blocks have not been allocated), in
1260 * that casem, buffer head is unmapped
1262 * It returns the error in case of allocation failure.
1264 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1265 struct ext4_map_blocks *map, int flags)
1267 int retval;
1269 map->m_flags = 0;
1270 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1271 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1272 (unsigned long) map->m_lblk);
1274 * Try to see if we can get the block without requesting a new
1275 * file system block.
1277 down_read((&EXT4_I(inode)->i_data_sem));
1278 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1279 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1280 } else {
1281 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1283 up_read((&EXT4_I(inode)->i_data_sem));
1285 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1286 int ret = check_block_validity(inode, map);
1287 if (ret != 0)
1288 return ret;
1291 /* If it is only a block(s) look up */
1292 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1293 return retval;
1296 * Returns if the blocks have already allocated
1298 * Note that if blocks have been preallocated
1299 * ext4_ext_get_block() returns th create = 0
1300 * with buffer head unmapped.
1302 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1303 return retval;
1306 * When we call get_blocks without the create flag, the
1307 * BH_Unwritten flag could have gotten set if the blocks
1308 * requested were part of a uninitialized extent. We need to
1309 * clear this flag now that we are committed to convert all or
1310 * part of the uninitialized extent to be an initialized
1311 * extent. This is because we need to avoid the combination
1312 * of BH_Unwritten and BH_Mapped flags being simultaneously
1313 * set on the buffer_head.
1315 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1318 * New blocks allocate and/or writing to uninitialized extent
1319 * will possibly result in updating i_data, so we take
1320 * the write lock of i_data_sem, and call get_blocks()
1321 * with create == 1 flag.
1323 down_write((&EXT4_I(inode)->i_data_sem));
1326 * if the caller is from delayed allocation writeout path
1327 * we have already reserved fs blocks for allocation
1328 * let the underlying get_block() function know to
1329 * avoid double accounting
1331 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1332 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1334 * We need to check for EXT4 here because migrate
1335 * could have changed the inode type in between
1337 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1338 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1339 } else {
1340 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1342 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1344 * We allocated new blocks which will result in
1345 * i_data's format changing. Force the migrate
1346 * to fail by clearing migrate flags
1348 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1352 * Update reserved blocks/metadata blocks after successful
1353 * block allocation which had been deferred till now. We don't
1354 * support fallocate for non extent files. So we can update
1355 * reserve space here.
1357 if ((retval > 0) &&
1358 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1359 ext4_da_update_reserve_space(inode, retval, 1);
1361 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1362 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1364 up_write((&EXT4_I(inode)->i_data_sem));
1365 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1366 int ret = check_block_validity(inode, map);
1367 if (ret != 0)
1368 return ret;
1370 return retval;
1373 /* Maximum number of blocks we map for direct IO at once. */
1374 #define DIO_MAX_BLOCKS 4096
1376 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1377 struct buffer_head *bh, int flags)
1379 handle_t *handle = ext4_journal_current_handle();
1380 struct ext4_map_blocks map;
1381 int ret = 0, started = 0;
1382 int dio_credits;
1384 map.m_lblk = iblock;
1385 map.m_len = bh->b_size >> inode->i_blkbits;
1387 if (flags && !handle) {
1388 /* Direct IO write... */
1389 if (map.m_len > DIO_MAX_BLOCKS)
1390 map.m_len = DIO_MAX_BLOCKS;
1391 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1392 handle = ext4_journal_start(inode, dio_credits);
1393 if (IS_ERR(handle)) {
1394 ret = PTR_ERR(handle);
1395 return ret;
1397 started = 1;
1400 ret = ext4_map_blocks(handle, inode, &map, flags);
1401 if (ret > 0) {
1402 map_bh(bh, inode->i_sb, map.m_pblk);
1403 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1404 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1405 ret = 0;
1407 if (started)
1408 ext4_journal_stop(handle);
1409 return ret;
1412 int ext4_get_block(struct inode *inode, sector_t iblock,
1413 struct buffer_head *bh, int create)
1415 return _ext4_get_block(inode, iblock, bh,
1416 create ? EXT4_GET_BLOCKS_CREATE : 0);
1420 * `handle' can be NULL if create is zero
1422 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1423 ext4_lblk_t block, int create, int *errp)
1425 struct ext4_map_blocks map;
1426 struct buffer_head *bh;
1427 int fatal = 0, err;
1429 J_ASSERT(handle != NULL || create == 0);
1431 map.m_lblk = block;
1432 map.m_len = 1;
1433 err = ext4_map_blocks(handle, inode, &map,
1434 create ? EXT4_GET_BLOCKS_CREATE : 0);
1436 if (err < 0)
1437 *errp = err;
1438 if (err <= 0)
1439 return NULL;
1440 *errp = 0;
1442 bh = sb_getblk(inode->i_sb, map.m_pblk);
1443 if (!bh) {
1444 *errp = -EIO;
1445 return NULL;
1447 if (map.m_flags & EXT4_MAP_NEW) {
1448 J_ASSERT(create != 0);
1449 J_ASSERT(handle != NULL);
1452 * Now that we do not always journal data, we should
1453 * keep in mind whether this should always journal the
1454 * new buffer as metadata. For now, regular file
1455 * writes use ext4_get_block instead, so it's not a
1456 * problem.
1458 lock_buffer(bh);
1459 BUFFER_TRACE(bh, "call get_create_access");
1460 fatal = ext4_journal_get_create_access(handle, bh);
1461 if (!fatal && !buffer_uptodate(bh)) {
1462 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1463 set_buffer_uptodate(bh);
1465 unlock_buffer(bh);
1466 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1467 err = ext4_handle_dirty_metadata(handle, inode, bh);
1468 if (!fatal)
1469 fatal = err;
1470 } else {
1471 BUFFER_TRACE(bh, "not a new buffer");
1473 if (fatal) {
1474 *errp = fatal;
1475 brelse(bh);
1476 bh = NULL;
1478 return bh;
1481 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1482 ext4_lblk_t block, int create, int *err)
1484 struct buffer_head *bh;
1486 bh = ext4_getblk(handle, inode, block, create, err);
1487 if (!bh)
1488 return bh;
1489 if (buffer_uptodate(bh))
1490 return bh;
1491 ll_rw_block(READ_META, 1, &bh);
1492 wait_on_buffer(bh);
1493 if (buffer_uptodate(bh))
1494 return bh;
1495 put_bh(bh);
1496 *err = -EIO;
1497 return NULL;
1500 static int walk_page_buffers(handle_t *handle,
1501 struct buffer_head *head,
1502 unsigned from,
1503 unsigned to,
1504 int *partial,
1505 int (*fn)(handle_t *handle,
1506 struct buffer_head *bh))
1508 struct buffer_head *bh;
1509 unsigned block_start, block_end;
1510 unsigned blocksize = head->b_size;
1511 int err, ret = 0;
1512 struct buffer_head *next;
1514 for (bh = head, block_start = 0;
1515 ret == 0 && (bh != head || !block_start);
1516 block_start = block_end, bh = next) {
1517 next = bh->b_this_page;
1518 block_end = block_start + blocksize;
1519 if (block_end <= from || block_start >= to) {
1520 if (partial && !buffer_uptodate(bh))
1521 *partial = 1;
1522 continue;
1524 err = (*fn)(handle, bh);
1525 if (!ret)
1526 ret = err;
1528 return ret;
1532 * To preserve ordering, it is essential that the hole instantiation and
1533 * the data write be encapsulated in a single transaction. We cannot
1534 * close off a transaction and start a new one between the ext4_get_block()
1535 * and the commit_write(). So doing the jbd2_journal_start at the start of
1536 * prepare_write() is the right place.
1538 * Also, this function can nest inside ext4_writepage() ->
1539 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1540 * has generated enough buffer credits to do the whole page. So we won't
1541 * block on the journal in that case, which is good, because the caller may
1542 * be PF_MEMALLOC.
1544 * By accident, ext4 can be reentered when a transaction is open via
1545 * quota file writes. If we were to commit the transaction while thus
1546 * reentered, there can be a deadlock - we would be holding a quota
1547 * lock, and the commit would never complete if another thread had a
1548 * transaction open and was blocking on the quota lock - a ranking
1549 * violation.
1551 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1552 * will _not_ run commit under these circumstances because handle->h_ref
1553 * is elevated. We'll still have enough credits for the tiny quotafile
1554 * write.
1556 static int do_journal_get_write_access(handle_t *handle,
1557 struct buffer_head *bh)
1559 int dirty = buffer_dirty(bh);
1560 int ret;
1562 if (!buffer_mapped(bh) || buffer_freed(bh))
1563 return 0;
1565 * __block_write_begin() could have dirtied some buffers. Clean
1566 * the dirty bit as jbd2_journal_get_write_access() could complain
1567 * otherwise about fs integrity issues. Setting of the dirty bit
1568 * by __block_write_begin() isn't a real problem here as we clear
1569 * the bit before releasing a page lock and thus writeback cannot
1570 * ever write the buffer.
1572 if (dirty)
1573 clear_buffer_dirty(bh);
1574 ret = ext4_journal_get_write_access(handle, bh);
1575 if (!ret && dirty)
1576 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1577 return ret;
1581 * Truncate blocks that were not used by write. We have to truncate the
1582 * pagecache as well so that corresponding buffers get properly unmapped.
1584 static void ext4_truncate_failed_write(struct inode *inode)
1586 truncate_inode_pages(inode->i_mapping, inode->i_size);
1587 ext4_truncate(inode);
1590 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1591 struct buffer_head *bh_result, int create);
1592 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1593 loff_t pos, unsigned len, unsigned flags,
1594 struct page **pagep, void **fsdata)
1596 struct inode *inode = mapping->host;
1597 int ret, needed_blocks;
1598 handle_t *handle;
1599 int retries = 0;
1600 struct page *page;
1601 pgoff_t index;
1602 unsigned from, to;
1604 trace_ext4_write_begin(inode, pos, len, flags);
1606 * Reserve one block more for addition to orphan list in case
1607 * we allocate blocks but write fails for some reason
1609 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1610 index = pos >> PAGE_CACHE_SHIFT;
1611 from = pos & (PAGE_CACHE_SIZE - 1);
1612 to = from + len;
1614 retry:
1615 handle = ext4_journal_start(inode, needed_blocks);
1616 if (IS_ERR(handle)) {
1617 ret = PTR_ERR(handle);
1618 goto out;
1621 /* We cannot recurse into the filesystem as the transaction is already
1622 * started */
1623 flags |= AOP_FLAG_NOFS;
1625 page = grab_cache_page_write_begin(mapping, index, flags);
1626 if (!page) {
1627 ext4_journal_stop(handle);
1628 ret = -ENOMEM;
1629 goto out;
1631 *pagep = page;
1633 if (ext4_should_dioread_nolock(inode))
1634 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1635 else
1636 ret = __block_write_begin(page, pos, len, ext4_get_block);
1638 if (!ret && ext4_should_journal_data(inode)) {
1639 ret = walk_page_buffers(handle, page_buffers(page),
1640 from, to, NULL, do_journal_get_write_access);
1643 if (ret) {
1644 unlock_page(page);
1645 page_cache_release(page);
1647 * __block_write_begin may have instantiated a few blocks
1648 * outside i_size. Trim these off again. Don't need
1649 * i_size_read because we hold i_mutex.
1651 * Add inode to orphan list in case we crash before
1652 * truncate finishes
1654 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1655 ext4_orphan_add(handle, inode);
1657 ext4_journal_stop(handle);
1658 if (pos + len > inode->i_size) {
1659 ext4_truncate_failed_write(inode);
1661 * If truncate failed early the inode might
1662 * still be on the orphan list; we need to
1663 * make sure the inode is removed from the
1664 * orphan list in that case.
1666 if (inode->i_nlink)
1667 ext4_orphan_del(NULL, inode);
1671 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1672 goto retry;
1673 out:
1674 return ret;
1677 /* For write_end() in data=journal mode */
1678 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1680 if (!buffer_mapped(bh) || buffer_freed(bh))
1681 return 0;
1682 set_buffer_uptodate(bh);
1683 return ext4_handle_dirty_metadata(handle, NULL, bh);
1686 static int ext4_generic_write_end(struct file *file,
1687 struct address_space *mapping,
1688 loff_t pos, unsigned len, unsigned copied,
1689 struct page *page, void *fsdata)
1691 int i_size_changed = 0;
1692 struct inode *inode = mapping->host;
1693 handle_t *handle = ext4_journal_current_handle();
1695 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1698 * No need to use i_size_read() here, the i_size
1699 * cannot change under us because we hold i_mutex.
1701 * But it's important to update i_size while still holding page lock:
1702 * page writeout could otherwise come in and zero beyond i_size.
1704 if (pos + copied > inode->i_size) {
1705 i_size_write(inode, pos + copied);
1706 i_size_changed = 1;
1709 if (pos + copied > EXT4_I(inode)->i_disksize) {
1710 /* We need to mark inode dirty even if
1711 * new_i_size is less that inode->i_size
1712 * bu greater than i_disksize.(hint delalloc)
1714 ext4_update_i_disksize(inode, (pos + copied));
1715 i_size_changed = 1;
1717 unlock_page(page);
1718 page_cache_release(page);
1721 * Don't mark the inode dirty under page lock. First, it unnecessarily
1722 * makes the holding time of page lock longer. Second, it forces lock
1723 * ordering of page lock and transaction start for journaling
1724 * filesystems.
1726 if (i_size_changed)
1727 ext4_mark_inode_dirty(handle, inode);
1729 return copied;
1733 * We need to pick up the new inode size which generic_commit_write gave us
1734 * `file' can be NULL - eg, when called from page_symlink().
1736 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1737 * buffers are managed internally.
1739 static int ext4_ordered_write_end(struct file *file,
1740 struct address_space *mapping,
1741 loff_t pos, unsigned len, unsigned copied,
1742 struct page *page, void *fsdata)
1744 handle_t *handle = ext4_journal_current_handle();
1745 struct inode *inode = mapping->host;
1746 int ret = 0, ret2;
1748 trace_ext4_ordered_write_end(inode, pos, len, copied);
1749 ret = ext4_jbd2_file_inode(handle, inode);
1751 if (ret == 0) {
1752 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1753 page, fsdata);
1754 copied = ret2;
1755 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1756 /* if we have allocated more blocks and copied
1757 * less. We will have blocks allocated outside
1758 * inode->i_size. So truncate them
1760 ext4_orphan_add(handle, inode);
1761 if (ret2 < 0)
1762 ret = ret2;
1764 ret2 = ext4_journal_stop(handle);
1765 if (!ret)
1766 ret = ret2;
1768 if (pos + len > inode->i_size) {
1769 ext4_truncate_failed_write(inode);
1771 * If truncate failed early the inode might still be
1772 * on the orphan list; we need to make sure the inode
1773 * is removed from the orphan list in that case.
1775 if (inode->i_nlink)
1776 ext4_orphan_del(NULL, inode);
1780 return ret ? ret : copied;
1783 static int ext4_writeback_write_end(struct file *file,
1784 struct address_space *mapping,
1785 loff_t pos, unsigned len, unsigned copied,
1786 struct page *page, void *fsdata)
1788 handle_t *handle = ext4_journal_current_handle();
1789 struct inode *inode = mapping->host;
1790 int ret = 0, ret2;
1792 trace_ext4_writeback_write_end(inode, pos, len, copied);
1793 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1794 page, fsdata);
1795 copied = ret2;
1796 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1797 /* if we have allocated more blocks and copied
1798 * less. We will have blocks allocated outside
1799 * inode->i_size. So truncate them
1801 ext4_orphan_add(handle, inode);
1803 if (ret2 < 0)
1804 ret = ret2;
1806 ret2 = ext4_journal_stop(handle);
1807 if (!ret)
1808 ret = ret2;
1810 if (pos + len > inode->i_size) {
1811 ext4_truncate_failed_write(inode);
1813 * If truncate failed early the inode might still be
1814 * on the orphan list; we need to make sure the inode
1815 * is removed from the orphan list in that case.
1817 if (inode->i_nlink)
1818 ext4_orphan_del(NULL, inode);
1821 return ret ? ret : copied;
1824 static int ext4_journalled_write_end(struct file *file,
1825 struct address_space *mapping,
1826 loff_t pos, unsigned len, unsigned copied,
1827 struct page *page, void *fsdata)
1829 handle_t *handle = ext4_journal_current_handle();
1830 struct inode *inode = mapping->host;
1831 int ret = 0, ret2;
1832 int partial = 0;
1833 unsigned from, to;
1834 loff_t new_i_size;
1836 trace_ext4_journalled_write_end(inode, pos, len, copied);
1837 from = pos & (PAGE_CACHE_SIZE - 1);
1838 to = from + len;
1840 if (copied < len) {
1841 if (!PageUptodate(page))
1842 copied = 0;
1843 page_zero_new_buffers(page, from+copied, to);
1846 ret = walk_page_buffers(handle, page_buffers(page), from,
1847 to, &partial, write_end_fn);
1848 if (!partial)
1849 SetPageUptodate(page);
1850 new_i_size = pos + copied;
1851 if (new_i_size > inode->i_size)
1852 i_size_write(inode, pos+copied);
1853 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1854 if (new_i_size > EXT4_I(inode)->i_disksize) {
1855 ext4_update_i_disksize(inode, new_i_size);
1856 ret2 = ext4_mark_inode_dirty(handle, inode);
1857 if (!ret)
1858 ret = ret2;
1861 unlock_page(page);
1862 page_cache_release(page);
1863 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1864 /* if we have allocated more blocks and copied
1865 * less. We will have blocks allocated outside
1866 * inode->i_size. So truncate them
1868 ext4_orphan_add(handle, inode);
1870 ret2 = ext4_journal_stop(handle);
1871 if (!ret)
1872 ret = ret2;
1873 if (pos + len > inode->i_size) {
1874 ext4_truncate_failed_write(inode);
1876 * If truncate failed early the inode might still be
1877 * on the orphan list; we need to make sure the inode
1878 * is removed from the orphan list in that case.
1880 if (inode->i_nlink)
1881 ext4_orphan_del(NULL, inode);
1884 return ret ? ret : copied;
1888 * Reserve a single block located at lblock
1890 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1892 int retries = 0;
1893 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1894 struct ext4_inode_info *ei = EXT4_I(inode);
1895 unsigned long md_needed;
1896 int ret;
1899 * recalculate the amount of metadata blocks to reserve
1900 * in order to allocate nrblocks
1901 * worse case is one extent per block
1903 repeat:
1904 spin_lock(&ei->i_block_reservation_lock);
1905 md_needed = ext4_calc_metadata_amount(inode, lblock);
1906 trace_ext4_da_reserve_space(inode, md_needed);
1907 spin_unlock(&ei->i_block_reservation_lock);
1910 * We will charge metadata quota at writeout time; this saves
1911 * us from metadata over-estimation, though we may go over by
1912 * a small amount in the end. Here we just reserve for data.
1914 ret = dquot_reserve_block(inode, 1);
1915 if (ret)
1916 return ret;
1918 * We do still charge estimated metadata to the sb though;
1919 * we cannot afford to run out of free blocks.
1921 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1922 dquot_release_reservation_block(inode, 1);
1923 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1924 yield();
1925 goto repeat;
1927 return -ENOSPC;
1929 spin_lock(&ei->i_block_reservation_lock);
1930 ei->i_reserved_data_blocks++;
1931 ei->i_reserved_meta_blocks += md_needed;
1932 spin_unlock(&ei->i_block_reservation_lock);
1934 return 0; /* success */
1937 static void ext4_da_release_space(struct inode *inode, int to_free)
1939 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1940 struct ext4_inode_info *ei = EXT4_I(inode);
1942 if (!to_free)
1943 return; /* Nothing to release, exit */
1945 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1947 trace_ext4_da_release_space(inode, to_free);
1948 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1950 * if there aren't enough reserved blocks, then the
1951 * counter is messed up somewhere. Since this
1952 * function is called from invalidate page, it's
1953 * harmless to return without any action.
1955 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1956 "ino %lu, to_free %d with only %d reserved "
1957 "data blocks\n", inode->i_ino, to_free,
1958 ei->i_reserved_data_blocks);
1959 WARN_ON(1);
1960 to_free = ei->i_reserved_data_blocks;
1962 ei->i_reserved_data_blocks -= to_free;
1964 if (ei->i_reserved_data_blocks == 0) {
1966 * We can release all of the reserved metadata blocks
1967 * only when we have written all of the delayed
1968 * allocation blocks.
1970 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1971 ei->i_reserved_meta_blocks);
1972 ei->i_reserved_meta_blocks = 0;
1973 ei->i_da_metadata_calc_len = 0;
1976 /* update fs dirty data blocks counter */
1977 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1979 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1981 dquot_release_reservation_block(inode, to_free);
1984 static void ext4_da_page_release_reservation(struct page *page,
1985 unsigned long offset)
1987 int to_release = 0;
1988 struct buffer_head *head, *bh;
1989 unsigned int curr_off = 0;
1991 head = page_buffers(page);
1992 bh = head;
1993 do {
1994 unsigned int next_off = curr_off + bh->b_size;
1996 if ((offset <= curr_off) && (buffer_delay(bh))) {
1997 to_release++;
1998 clear_buffer_delay(bh);
2000 curr_off = next_off;
2001 } while ((bh = bh->b_this_page) != head);
2002 ext4_da_release_space(page->mapping->host, to_release);
2006 * Delayed allocation stuff
2010 * mpage_da_submit_io - walks through extent of pages and try to write
2011 * them with writepage() call back
2013 * @mpd->inode: inode
2014 * @mpd->first_page: first page of the extent
2015 * @mpd->next_page: page after the last page of the extent
2017 * By the time mpage_da_submit_io() is called we expect all blocks
2018 * to be allocated. this may be wrong if allocation failed.
2020 * As pages are already locked by write_cache_pages(), we can't use it
2022 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2023 struct ext4_map_blocks *map)
2025 struct pagevec pvec;
2026 unsigned long index, end;
2027 int ret = 0, err, nr_pages, i;
2028 struct inode *inode = mpd->inode;
2029 struct address_space *mapping = inode->i_mapping;
2030 loff_t size = i_size_read(inode);
2031 unsigned int len, block_start;
2032 struct buffer_head *bh, *page_bufs = NULL;
2033 int journal_data = ext4_should_journal_data(inode);
2034 sector_t pblock = 0, cur_logical = 0;
2035 struct ext4_io_submit io_submit;
2037 BUG_ON(mpd->next_page <= mpd->first_page);
2038 memset(&io_submit, 0, sizeof(io_submit));
2040 * We need to start from the first_page to the next_page - 1
2041 * to make sure we also write the mapped dirty buffer_heads.
2042 * If we look at mpd->b_blocknr we would only be looking
2043 * at the currently mapped buffer_heads.
2045 index = mpd->first_page;
2046 end = mpd->next_page - 1;
2048 pagevec_init(&pvec, 0);
2049 while (index <= end) {
2050 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2051 if (nr_pages == 0)
2052 break;
2053 for (i = 0; i < nr_pages; i++) {
2054 int commit_write = 0, redirty_page = 0;
2055 struct page *page = pvec.pages[i];
2057 index = page->index;
2058 if (index > end)
2059 break;
2061 if (index == size >> PAGE_CACHE_SHIFT)
2062 len = size & ~PAGE_CACHE_MASK;
2063 else
2064 len = PAGE_CACHE_SIZE;
2065 if (map) {
2066 cur_logical = index << (PAGE_CACHE_SHIFT -
2067 inode->i_blkbits);
2068 pblock = map->m_pblk + (cur_logical -
2069 map->m_lblk);
2071 index++;
2073 BUG_ON(!PageLocked(page));
2074 BUG_ON(PageWriteback(page));
2077 * If the page does not have buffers (for
2078 * whatever reason), try to create them using
2079 * __block_write_begin. If this fails,
2080 * redirty the page and move on.
2082 if (!page_has_buffers(page)) {
2083 if (__block_write_begin(page, 0, len,
2084 noalloc_get_block_write)) {
2085 redirty_page:
2086 redirty_page_for_writepage(mpd->wbc,
2087 page);
2088 unlock_page(page);
2089 continue;
2091 commit_write = 1;
2094 bh = page_bufs = page_buffers(page);
2095 block_start = 0;
2096 do {
2097 if (!bh)
2098 goto redirty_page;
2099 if (map && (cur_logical >= map->m_lblk) &&
2100 (cur_logical <= (map->m_lblk +
2101 (map->m_len - 1)))) {
2102 if (buffer_delay(bh)) {
2103 clear_buffer_delay(bh);
2104 bh->b_blocknr = pblock;
2106 if (buffer_unwritten(bh) ||
2107 buffer_mapped(bh))
2108 BUG_ON(bh->b_blocknr != pblock);
2109 if (map->m_flags & EXT4_MAP_UNINIT)
2110 set_buffer_uninit(bh);
2111 clear_buffer_unwritten(bh);
2114 /* redirty page if block allocation undone */
2115 if (buffer_delay(bh) || buffer_unwritten(bh))
2116 redirty_page = 1;
2117 bh = bh->b_this_page;
2118 block_start += bh->b_size;
2119 cur_logical++;
2120 pblock++;
2121 } while (bh != page_bufs);
2123 if (redirty_page)
2124 goto redirty_page;
2126 if (commit_write)
2127 /* mark the buffer_heads as dirty & uptodate */
2128 block_commit_write(page, 0, len);
2131 * Delalloc doesn't support data journalling,
2132 * but eventually maybe we'll lift this
2133 * restriction.
2135 if (unlikely(journal_data && PageChecked(page)))
2136 err = __ext4_journalled_writepage(page, len);
2137 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2138 err = ext4_bio_write_page(&io_submit, page,
2139 len, mpd->wbc);
2140 else
2141 err = block_write_full_page(page,
2142 noalloc_get_block_write, mpd->wbc);
2144 if (!err)
2145 mpd->pages_written++;
2147 * In error case, we have to continue because
2148 * remaining pages are still locked
2150 if (ret == 0)
2151 ret = err;
2153 pagevec_release(&pvec);
2155 ext4_io_submit(&io_submit);
2156 return ret;
2159 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2160 sector_t logical, long blk_cnt)
2162 int nr_pages, i;
2163 pgoff_t index, end;
2164 struct pagevec pvec;
2165 struct inode *inode = mpd->inode;
2166 struct address_space *mapping = inode->i_mapping;
2168 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2169 end = (logical + blk_cnt - 1) >>
2170 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2171 while (index <= end) {
2172 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2173 if (nr_pages == 0)
2174 break;
2175 for (i = 0; i < nr_pages; i++) {
2176 struct page *page = pvec.pages[i];
2177 if (page->index > end)
2178 break;
2179 BUG_ON(!PageLocked(page));
2180 BUG_ON(PageWriteback(page));
2181 block_invalidatepage(page, 0);
2182 ClearPageUptodate(page);
2183 unlock_page(page);
2185 index = pvec.pages[nr_pages - 1]->index + 1;
2186 pagevec_release(&pvec);
2188 return;
2191 static void ext4_print_free_blocks(struct inode *inode)
2193 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2194 printk(KERN_CRIT "Total free blocks count %lld\n",
2195 ext4_count_free_blocks(inode->i_sb));
2196 printk(KERN_CRIT "Free/Dirty block details\n");
2197 printk(KERN_CRIT "free_blocks=%lld\n",
2198 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2199 printk(KERN_CRIT "dirty_blocks=%lld\n",
2200 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2201 printk(KERN_CRIT "Block reservation details\n");
2202 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2203 EXT4_I(inode)->i_reserved_data_blocks);
2204 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2205 EXT4_I(inode)->i_reserved_meta_blocks);
2206 return;
2210 * mpage_da_map_and_submit - go through given space, map them
2211 * if necessary, and then submit them for I/O
2213 * @mpd - bh describing space
2215 * The function skips space we know is already mapped to disk blocks.
2218 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2220 int err, blks, get_blocks_flags;
2221 struct ext4_map_blocks map, *mapp = NULL;
2222 sector_t next = mpd->b_blocknr;
2223 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2224 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2225 handle_t *handle = NULL;
2228 * If the blocks are mapped already, or we couldn't accumulate
2229 * any blocks, then proceed immediately to the submission stage.
2231 if ((mpd->b_size == 0) ||
2232 ((mpd->b_state & (1 << BH_Mapped)) &&
2233 !(mpd->b_state & (1 << BH_Delay)) &&
2234 !(mpd->b_state & (1 << BH_Unwritten))))
2235 goto submit_io;
2237 handle = ext4_journal_current_handle();
2238 BUG_ON(!handle);
2241 * Call ext4_map_blocks() to allocate any delayed allocation
2242 * blocks, or to convert an uninitialized extent to be
2243 * initialized (in the case where we have written into
2244 * one or more preallocated blocks).
2246 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2247 * indicate that we are on the delayed allocation path. This
2248 * affects functions in many different parts of the allocation
2249 * call path. This flag exists primarily because we don't
2250 * want to change *many* call functions, so ext4_map_blocks()
2251 * will set the magic i_delalloc_reserved_flag once the
2252 * inode's allocation semaphore is taken.
2254 * If the blocks in questions were delalloc blocks, set
2255 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2256 * variables are updated after the blocks have been allocated.
2258 map.m_lblk = next;
2259 map.m_len = max_blocks;
2260 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2261 if (ext4_should_dioread_nolock(mpd->inode))
2262 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2263 if (mpd->b_state & (1 << BH_Delay))
2264 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2266 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2267 if (blks < 0) {
2268 struct super_block *sb = mpd->inode->i_sb;
2270 err = blks;
2272 * If get block returns EAGAIN or ENOSPC and there
2273 * appears to be free blocks we will call
2274 * ext4_writepage() for all of the pages which will
2275 * just redirty the pages.
2277 if (err == -EAGAIN)
2278 goto submit_io;
2280 if (err == -ENOSPC &&
2281 ext4_count_free_blocks(sb)) {
2282 mpd->retval = err;
2283 goto submit_io;
2287 * get block failure will cause us to loop in
2288 * writepages, because a_ops->writepage won't be able
2289 * to make progress. The page will be redirtied by
2290 * writepage and writepages will again try to write
2291 * the same.
2293 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2294 ext4_msg(sb, KERN_CRIT,
2295 "delayed block allocation failed for inode %lu "
2296 "at logical offset %llu with max blocks %zd "
2297 "with error %d", mpd->inode->i_ino,
2298 (unsigned long long) next,
2299 mpd->b_size >> mpd->inode->i_blkbits, err);
2300 ext4_msg(sb, KERN_CRIT,
2301 "This should not happen!! Data will be lost\n");
2302 if (err == -ENOSPC)
2303 ext4_print_free_blocks(mpd->inode);
2305 /* invalidate all the pages */
2306 ext4_da_block_invalidatepages(mpd, next,
2307 mpd->b_size >> mpd->inode->i_blkbits);
2308 return;
2310 BUG_ON(blks == 0);
2312 mapp = &map;
2313 if (map.m_flags & EXT4_MAP_NEW) {
2314 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2315 int i;
2317 for (i = 0; i < map.m_len; i++)
2318 unmap_underlying_metadata(bdev, map.m_pblk + i);
2321 if (ext4_should_order_data(mpd->inode)) {
2322 err = ext4_jbd2_file_inode(handle, mpd->inode);
2323 if (err)
2324 /* This only happens if the journal is aborted */
2325 return;
2329 * Update on-disk size along with block allocation.
2331 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2332 if (disksize > i_size_read(mpd->inode))
2333 disksize = i_size_read(mpd->inode);
2334 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2335 ext4_update_i_disksize(mpd->inode, disksize);
2336 err = ext4_mark_inode_dirty(handle, mpd->inode);
2337 if (err)
2338 ext4_error(mpd->inode->i_sb,
2339 "Failed to mark inode %lu dirty",
2340 mpd->inode->i_ino);
2343 submit_io:
2344 mpage_da_submit_io(mpd, mapp);
2345 mpd->io_done = 1;
2348 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2349 (1 << BH_Delay) | (1 << BH_Unwritten))
2352 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2354 * @mpd->lbh - extent of blocks
2355 * @logical - logical number of the block in the file
2356 * @bh - bh of the block (used to access block's state)
2358 * the function is used to collect contig. blocks in same state
2360 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2361 sector_t logical, size_t b_size,
2362 unsigned long b_state)
2364 sector_t next;
2365 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2368 * XXX Don't go larger than mballoc is willing to allocate
2369 * This is a stopgap solution. We eventually need to fold
2370 * mpage_da_submit_io() into this function and then call
2371 * ext4_map_blocks() multiple times in a loop
2373 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2374 goto flush_it;
2376 /* check if thereserved journal credits might overflow */
2377 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2378 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2380 * With non-extent format we are limited by the journal
2381 * credit available. Total credit needed to insert
2382 * nrblocks contiguous blocks is dependent on the
2383 * nrblocks. So limit nrblocks.
2385 goto flush_it;
2386 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2387 EXT4_MAX_TRANS_DATA) {
2389 * Adding the new buffer_head would make it cross the
2390 * allowed limit for which we have journal credit
2391 * reserved. So limit the new bh->b_size
2393 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2394 mpd->inode->i_blkbits;
2395 /* we will do mpage_da_submit_io in the next loop */
2399 * First block in the extent
2401 if (mpd->b_size == 0) {
2402 mpd->b_blocknr = logical;
2403 mpd->b_size = b_size;
2404 mpd->b_state = b_state & BH_FLAGS;
2405 return;
2408 next = mpd->b_blocknr + nrblocks;
2410 * Can we merge the block to our big extent?
2412 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2413 mpd->b_size += b_size;
2414 return;
2417 flush_it:
2419 * We couldn't merge the block to our extent, so we
2420 * need to flush current extent and start new one
2422 mpage_da_map_and_submit(mpd);
2423 return;
2426 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2428 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2432 * __mpage_da_writepage - finds extent of pages and blocks
2434 * @page: page to consider
2435 * @wbc: not used, we just follow rules
2436 * @data: context
2438 * The function finds extents of pages and scan them for all blocks.
2440 static int __mpage_da_writepage(struct page *page,
2441 struct writeback_control *wbc,
2442 struct mpage_da_data *mpd)
2444 struct inode *inode = mpd->inode;
2445 struct buffer_head *bh, *head;
2446 sector_t logical;
2449 * Can we merge this page to current extent?
2451 if (mpd->next_page != page->index) {
2453 * Nope, we can't. So, we map non-allocated blocks
2454 * and start IO on them
2456 if (mpd->next_page != mpd->first_page) {
2457 mpage_da_map_and_submit(mpd);
2459 * skip rest of the page in the page_vec
2461 redirty_page_for_writepage(wbc, page);
2462 unlock_page(page);
2463 return MPAGE_DA_EXTENT_TAIL;
2467 * Start next extent of pages ...
2469 mpd->first_page = page->index;
2472 * ... and blocks
2474 mpd->b_size = 0;
2475 mpd->b_state = 0;
2476 mpd->b_blocknr = 0;
2479 mpd->next_page = page->index + 1;
2480 logical = (sector_t) page->index <<
2481 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2483 if (!page_has_buffers(page)) {
2484 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2485 (1 << BH_Dirty) | (1 << BH_Uptodate));
2486 if (mpd->io_done)
2487 return MPAGE_DA_EXTENT_TAIL;
2488 } else {
2490 * Page with regular buffer heads, just add all dirty ones
2492 head = page_buffers(page);
2493 bh = head;
2494 do {
2495 BUG_ON(buffer_locked(bh));
2497 * We need to try to allocate
2498 * unmapped blocks in the same page.
2499 * Otherwise we won't make progress
2500 * with the page in ext4_writepage
2502 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2503 mpage_add_bh_to_extent(mpd, logical,
2504 bh->b_size,
2505 bh->b_state);
2506 if (mpd->io_done)
2507 return MPAGE_DA_EXTENT_TAIL;
2508 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2510 * mapped dirty buffer. We need to update
2511 * the b_state because we look at
2512 * b_state in mpage_da_map_blocks. We don't
2513 * update b_size because if we find an
2514 * unmapped buffer_head later we need to
2515 * use the b_state flag of that buffer_head.
2517 if (mpd->b_size == 0)
2518 mpd->b_state = bh->b_state & BH_FLAGS;
2520 logical++;
2521 } while ((bh = bh->b_this_page) != head);
2524 return 0;
2528 * This is a special get_blocks_t callback which is used by
2529 * ext4_da_write_begin(). It will either return mapped block or
2530 * reserve space for a single block.
2532 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2533 * We also have b_blocknr = -1 and b_bdev initialized properly
2535 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2536 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2537 * initialized properly.
2539 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2540 struct buffer_head *bh, int create)
2542 struct ext4_map_blocks map;
2543 int ret = 0;
2544 sector_t invalid_block = ~((sector_t) 0xffff);
2546 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2547 invalid_block = ~0;
2549 BUG_ON(create == 0);
2550 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2552 map.m_lblk = iblock;
2553 map.m_len = 1;
2556 * first, we need to know whether the block is allocated already
2557 * preallocated blocks are unmapped but should treated
2558 * the same as allocated blocks.
2560 ret = ext4_map_blocks(NULL, inode, &map, 0);
2561 if (ret < 0)
2562 return ret;
2563 if (ret == 0) {
2564 if (buffer_delay(bh))
2565 return 0; /* Not sure this could or should happen */
2567 * XXX: __block_write_begin() unmaps passed block, is it OK?
2569 ret = ext4_da_reserve_space(inode, iblock);
2570 if (ret)
2571 /* not enough space to reserve */
2572 return ret;
2574 map_bh(bh, inode->i_sb, invalid_block);
2575 set_buffer_new(bh);
2576 set_buffer_delay(bh);
2577 return 0;
2580 map_bh(bh, inode->i_sb, map.m_pblk);
2581 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2583 if (buffer_unwritten(bh)) {
2584 /* A delayed write to unwritten bh should be marked
2585 * new and mapped. Mapped ensures that we don't do
2586 * get_block multiple times when we write to the same
2587 * offset and new ensures that we do proper zero out
2588 * for partial write.
2590 set_buffer_new(bh);
2591 set_buffer_mapped(bh);
2593 return 0;
2597 * This function is used as a standard get_block_t calback function
2598 * when there is no desire to allocate any blocks. It is used as a
2599 * callback function for block_write_begin() and block_write_full_page().
2600 * These functions should only try to map a single block at a time.
2602 * Since this function doesn't do block allocations even if the caller
2603 * requests it by passing in create=1, it is critically important that
2604 * any caller checks to make sure that any buffer heads are returned
2605 * by this function are either all already mapped or marked for
2606 * delayed allocation before calling block_write_full_page(). Otherwise,
2607 * b_blocknr could be left unitialized, and the page write functions will
2608 * be taken by surprise.
2610 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2611 struct buffer_head *bh_result, int create)
2613 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2614 return _ext4_get_block(inode, iblock, bh_result, 0);
2617 static int bget_one(handle_t *handle, struct buffer_head *bh)
2619 get_bh(bh);
2620 return 0;
2623 static int bput_one(handle_t *handle, struct buffer_head *bh)
2625 put_bh(bh);
2626 return 0;
2629 static int __ext4_journalled_writepage(struct page *page,
2630 unsigned int len)
2632 struct address_space *mapping = page->mapping;
2633 struct inode *inode = mapping->host;
2634 struct buffer_head *page_bufs;
2635 handle_t *handle = NULL;
2636 int ret = 0;
2637 int err;
2639 ClearPageChecked(page);
2640 page_bufs = page_buffers(page);
2641 BUG_ON(!page_bufs);
2642 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2643 /* As soon as we unlock the page, it can go away, but we have
2644 * references to buffers so we are safe */
2645 unlock_page(page);
2647 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2648 if (IS_ERR(handle)) {
2649 ret = PTR_ERR(handle);
2650 goto out;
2653 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2654 do_journal_get_write_access);
2656 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2657 write_end_fn);
2658 if (ret == 0)
2659 ret = err;
2660 err = ext4_journal_stop(handle);
2661 if (!ret)
2662 ret = err;
2664 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2665 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2666 out:
2667 return ret;
2670 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2671 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2674 * Note that we don't need to start a transaction unless we're journaling data
2675 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2676 * need to file the inode to the transaction's list in ordered mode because if
2677 * we are writing back data added by write(), the inode is already there and if
2678 * we are writing back data modified via mmap(), noone guarantees in which
2679 * transaction the data will hit the disk. In case we are journaling data, we
2680 * cannot start transaction directly because transaction start ranks above page
2681 * lock so we have to do some magic.
2683 * This function can get called via...
2684 * - ext4_da_writepages after taking page lock (have journal handle)
2685 * - journal_submit_inode_data_buffers (no journal handle)
2686 * - shrink_page_list via pdflush (no journal handle)
2687 * - grab_page_cache when doing write_begin (have journal handle)
2689 * We don't do any block allocation in this function. If we have page with
2690 * multiple blocks we need to write those buffer_heads that are mapped. This
2691 * is important for mmaped based write. So if we do with blocksize 1K
2692 * truncate(f, 1024);
2693 * a = mmap(f, 0, 4096);
2694 * a[0] = 'a';
2695 * truncate(f, 4096);
2696 * we have in the page first buffer_head mapped via page_mkwrite call back
2697 * but other bufer_heads would be unmapped but dirty(dirty done via the
2698 * do_wp_page). So writepage should write the first block. If we modify
2699 * the mmap area beyond 1024 we will again get a page_fault and the
2700 * page_mkwrite callback will do the block allocation and mark the
2701 * buffer_heads mapped.
2703 * We redirty the page if we have any buffer_heads that is either delay or
2704 * unwritten in the page.
2706 * We can get recursively called as show below.
2708 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2709 * ext4_writepage()
2711 * But since we don't do any block allocation we should not deadlock.
2712 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2714 static int ext4_writepage(struct page *page,
2715 struct writeback_control *wbc)
2717 int ret = 0, commit_write = 0;
2718 loff_t size;
2719 unsigned int len;
2720 struct buffer_head *page_bufs = NULL;
2721 struct inode *inode = page->mapping->host;
2723 trace_ext4_writepage(inode, page);
2724 size = i_size_read(inode);
2725 if (page->index == size >> PAGE_CACHE_SHIFT)
2726 len = size & ~PAGE_CACHE_MASK;
2727 else
2728 len = PAGE_CACHE_SIZE;
2731 * If the page does not have buffers (for whatever reason),
2732 * try to create them using __block_write_begin. If this
2733 * fails, redirty the page and move on.
2735 if (!page_has_buffers(page)) {
2736 if (__block_write_begin(page, 0, len,
2737 noalloc_get_block_write)) {
2738 redirty_page:
2739 redirty_page_for_writepage(wbc, page);
2740 unlock_page(page);
2741 return 0;
2743 commit_write = 1;
2745 page_bufs = page_buffers(page);
2746 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2747 ext4_bh_delay_or_unwritten)) {
2749 * We don't want to do block allocation, so redirty
2750 * the page and return. We may reach here when we do
2751 * a journal commit via journal_submit_inode_data_buffers.
2752 * We can also reach here via shrink_page_list
2754 goto redirty_page;
2756 if (commit_write)
2757 /* now mark the buffer_heads as dirty and uptodate */
2758 block_commit_write(page, 0, len);
2760 if (PageChecked(page) && ext4_should_journal_data(inode))
2762 * It's mmapped pagecache. Add buffers and journal it. There
2763 * doesn't seem much point in redirtying the page here.
2765 return __ext4_journalled_writepage(page, len);
2767 if (buffer_uninit(page_bufs)) {
2768 ext4_set_bh_endio(page_bufs, inode);
2769 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2770 wbc, ext4_end_io_buffer_write);
2771 } else
2772 ret = block_write_full_page(page, noalloc_get_block_write,
2773 wbc);
2775 return ret;
2779 * This is called via ext4_da_writepages() to
2780 * calulate the total number of credits to reserve to fit
2781 * a single extent allocation into a single transaction,
2782 * ext4_da_writpeages() will loop calling this before
2783 * the block allocation.
2786 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2788 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2791 * With non-extent format the journal credit needed to
2792 * insert nrblocks contiguous block is dependent on
2793 * number of contiguous block. So we will limit
2794 * number of contiguous block to a sane value
2796 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2797 (max_blocks > EXT4_MAX_TRANS_DATA))
2798 max_blocks = EXT4_MAX_TRANS_DATA;
2800 return ext4_chunk_trans_blocks(inode, max_blocks);
2804 * write_cache_pages_da - walk the list of dirty pages of the given
2805 * address space and call the callback function (which usually writes
2806 * the pages).
2808 * This is a forked version of write_cache_pages(). Differences:
2809 * Range cyclic is ignored.
2810 * no_nrwrite_index_update is always presumed true
2812 static int write_cache_pages_da(struct address_space *mapping,
2813 struct writeback_control *wbc,
2814 struct mpage_da_data *mpd,
2815 pgoff_t *done_index)
2817 int ret = 0;
2818 int done = 0;
2819 struct pagevec pvec;
2820 unsigned nr_pages;
2821 pgoff_t index;
2822 pgoff_t end; /* Inclusive */
2823 long nr_to_write = wbc->nr_to_write;
2824 int tag;
2826 pagevec_init(&pvec, 0);
2827 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2828 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2830 if (wbc->sync_mode == WB_SYNC_ALL)
2831 tag = PAGECACHE_TAG_TOWRITE;
2832 else
2833 tag = PAGECACHE_TAG_DIRTY;
2835 *done_index = index;
2836 while (!done && (index <= end)) {
2837 int i;
2839 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2840 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2841 if (nr_pages == 0)
2842 break;
2844 for (i = 0; i < nr_pages; i++) {
2845 struct page *page = pvec.pages[i];
2848 * At this point, the page may be truncated or
2849 * invalidated (changing page->mapping to NULL), or
2850 * even swizzled back from swapper_space to tmpfs file
2851 * mapping. However, page->index will not change
2852 * because we have a reference on the page.
2854 if (page->index > end) {
2855 done = 1;
2856 break;
2859 *done_index = page->index + 1;
2861 lock_page(page);
2864 * Page truncated or invalidated. We can freely skip it
2865 * then, even for data integrity operations: the page
2866 * has disappeared concurrently, so there could be no
2867 * real expectation of this data interity operation
2868 * even if there is now a new, dirty page at the same
2869 * pagecache address.
2871 if (unlikely(page->mapping != mapping)) {
2872 continue_unlock:
2873 unlock_page(page);
2874 continue;
2877 if (!PageDirty(page)) {
2878 /* someone wrote it for us */
2879 goto continue_unlock;
2882 if (PageWriteback(page)) {
2883 if (wbc->sync_mode != WB_SYNC_NONE)
2884 wait_on_page_writeback(page);
2885 else
2886 goto continue_unlock;
2889 BUG_ON(PageWriteback(page));
2890 if (!clear_page_dirty_for_io(page))
2891 goto continue_unlock;
2893 ret = __mpage_da_writepage(page, wbc, mpd);
2894 if (unlikely(ret)) {
2895 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2896 unlock_page(page);
2897 ret = 0;
2898 } else {
2899 done = 1;
2900 break;
2904 if (nr_to_write > 0) {
2905 nr_to_write--;
2906 if (nr_to_write == 0 &&
2907 wbc->sync_mode == WB_SYNC_NONE) {
2909 * We stop writing back only if we are
2910 * not doing integrity sync. In case of
2911 * integrity sync we have to keep going
2912 * because someone may be concurrently
2913 * dirtying pages, and we might have
2914 * synced a lot of newly appeared dirty
2915 * pages, but have not synced all of the
2916 * old dirty pages.
2918 done = 1;
2919 break;
2923 pagevec_release(&pvec);
2924 cond_resched();
2926 return ret;
2930 static int ext4_da_writepages(struct address_space *mapping,
2931 struct writeback_control *wbc)
2933 pgoff_t index;
2934 int range_whole = 0;
2935 handle_t *handle = NULL;
2936 struct mpage_da_data mpd;
2937 struct inode *inode = mapping->host;
2938 int pages_written = 0;
2939 long pages_skipped;
2940 unsigned int max_pages;
2941 int range_cyclic, cycled = 1, io_done = 0;
2942 int needed_blocks, ret = 0;
2943 long desired_nr_to_write, nr_to_writebump = 0;
2944 loff_t range_start = wbc->range_start;
2945 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946 pgoff_t done_index = 0;
2947 pgoff_t end;
2949 trace_ext4_da_writepages(inode, wbc);
2952 * No pages to write? This is mainly a kludge to avoid starting
2953 * a transaction for special inodes like journal inode on last iput()
2954 * because that could violate lock ordering on umount
2956 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2957 return 0;
2960 * If the filesystem has aborted, it is read-only, so return
2961 * right away instead of dumping stack traces later on that
2962 * will obscure the real source of the problem. We test
2963 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2964 * the latter could be true if the filesystem is mounted
2965 * read-only, and in that case, ext4_da_writepages should
2966 * *never* be called, so if that ever happens, we would want
2967 * the stack trace.
2969 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2970 return -EROFS;
2972 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2973 range_whole = 1;
2975 range_cyclic = wbc->range_cyclic;
2976 if (wbc->range_cyclic) {
2977 index = mapping->writeback_index;
2978 if (index)
2979 cycled = 0;
2980 wbc->range_start = index << PAGE_CACHE_SHIFT;
2981 wbc->range_end = LLONG_MAX;
2982 wbc->range_cyclic = 0;
2983 end = -1;
2984 } else {
2985 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2986 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2990 * This works around two forms of stupidity. The first is in
2991 * the writeback code, which caps the maximum number of pages
2992 * written to be 1024 pages. This is wrong on multiple
2993 * levels; different architectues have a different page size,
2994 * which changes the maximum amount of data which gets
2995 * written. Secondly, 4 megabytes is way too small. XFS
2996 * forces this value to be 16 megabytes by multiplying
2997 * nr_to_write parameter by four, and then relies on its
2998 * allocator to allocate larger extents to make them
2999 * contiguous. Unfortunately this brings us to the second
3000 * stupidity, which is that ext4's mballoc code only allocates
3001 * at most 2048 blocks. So we force contiguous writes up to
3002 * the number of dirty blocks in the inode, or
3003 * sbi->max_writeback_mb_bump whichever is smaller.
3005 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3006 if (!range_cyclic && range_whole) {
3007 if (wbc->nr_to_write == LONG_MAX)
3008 desired_nr_to_write = wbc->nr_to_write;
3009 else
3010 desired_nr_to_write = wbc->nr_to_write * 8;
3011 } else
3012 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3013 max_pages);
3014 if (desired_nr_to_write > max_pages)
3015 desired_nr_to_write = max_pages;
3017 if (wbc->nr_to_write < desired_nr_to_write) {
3018 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3019 wbc->nr_to_write = desired_nr_to_write;
3022 mpd.wbc = wbc;
3023 mpd.inode = mapping->host;
3025 pages_skipped = wbc->pages_skipped;
3027 retry:
3028 if (wbc->sync_mode == WB_SYNC_ALL)
3029 tag_pages_for_writeback(mapping, index, end);
3031 while (!ret && wbc->nr_to_write > 0) {
3034 * we insert one extent at a time. So we need
3035 * credit needed for single extent allocation.
3036 * journalled mode is currently not supported
3037 * by delalloc
3039 BUG_ON(ext4_should_journal_data(inode));
3040 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3042 /* start a new transaction*/
3043 handle = ext4_journal_start(inode, needed_blocks);
3044 if (IS_ERR(handle)) {
3045 ret = PTR_ERR(handle);
3046 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3047 "%ld pages, ino %lu; err %d", __func__,
3048 wbc->nr_to_write, inode->i_ino, ret);
3049 goto out_writepages;
3053 * Now call __mpage_da_writepage to find the next
3054 * contiguous region of logical blocks that need
3055 * blocks to be allocated by ext4. We don't actually
3056 * submit the blocks for I/O here, even though
3057 * write_cache_pages thinks it will, and will set the
3058 * pages as clean for write before calling
3059 * __mpage_da_writepage().
3061 mpd.b_size = 0;
3062 mpd.b_state = 0;
3063 mpd.b_blocknr = 0;
3064 mpd.first_page = 0;
3065 mpd.next_page = 0;
3066 mpd.io_done = 0;
3067 mpd.pages_written = 0;
3068 mpd.retval = 0;
3069 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3071 * If we have a contiguous extent of pages and we
3072 * haven't done the I/O yet, map the blocks and submit
3073 * them for I/O.
3075 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3076 mpage_da_map_and_submit(&mpd);
3077 ret = MPAGE_DA_EXTENT_TAIL;
3079 trace_ext4_da_write_pages(inode, &mpd);
3080 wbc->nr_to_write -= mpd.pages_written;
3082 ext4_journal_stop(handle);
3084 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3085 /* commit the transaction which would
3086 * free blocks released in the transaction
3087 * and try again
3089 jbd2_journal_force_commit_nested(sbi->s_journal);
3090 wbc->pages_skipped = pages_skipped;
3091 ret = 0;
3092 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3094 * got one extent now try with
3095 * rest of the pages
3097 pages_written += mpd.pages_written;
3098 wbc->pages_skipped = pages_skipped;
3099 ret = 0;
3100 io_done = 1;
3101 } else if (wbc->nr_to_write)
3103 * There is no more writeout needed
3104 * or we requested for a noblocking writeout
3105 * and we found the device congested
3107 break;
3109 if (!io_done && !cycled) {
3110 cycled = 1;
3111 index = 0;
3112 wbc->range_start = index << PAGE_CACHE_SHIFT;
3113 wbc->range_end = mapping->writeback_index - 1;
3114 goto retry;
3116 if (pages_skipped != wbc->pages_skipped)
3117 ext4_msg(inode->i_sb, KERN_CRIT,
3118 "This should not happen leaving %s "
3119 "with nr_to_write = %ld ret = %d",
3120 __func__, wbc->nr_to_write, ret);
3122 /* Update index */
3123 wbc->range_cyclic = range_cyclic;
3124 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3126 * set the writeback_index so that range_cyclic
3127 * mode will write it back later
3129 mapping->writeback_index = done_index;
3131 out_writepages:
3132 wbc->nr_to_write -= nr_to_writebump;
3133 wbc->range_start = range_start;
3134 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3135 return ret;
3138 #define FALL_BACK_TO_NONDELALLOC 1
3139 static int ext4_nonda_switch(struct super_block *sb)
3141 s64 free_blocks, dirty_blocks;
3142 struct ext4_sb_info *sbi = EXT4_SB(sb);
3145 * switch to non delalloc mode if we are running low
3146 * on free block. The free block accounting via percpu
3147 * counters can get slightly wrong with percpu_counter_batch getting
3148 * accumulated on each CPU without updating global counters
3149 * Delalloc need an accurate free block accounting. So switch
3150 * to non delalloc when we are near to error range.
3152 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3153 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3154 if (2 * free_blocks < 3 * dirty_blocks ||
3155 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3157 * free block count is less than 150% of dirty blocks
3158 * or free blocks is less than watermark
3160 return 1;
3163 * Even if we don't switch but are nearing capacity,
3164 * start pushing delalloc when 1/2 of free blocks are dirty.
3166 if (free_blocks < 2 * dirty_blocks)
3167 writeback_inodes_sb_if_idle(sb);
3169 return 0;
3172 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3173 loff_t pos, unsigned len, unsigned flags,
3174 struct page **pagep, void **fsdata)
3176 int ret, retries = 0;
3177 struct page *page;
3178 pgoff_t index;
3179 struct inode *inode = mapping->host;
3180 handle_t *handle;
3182 index = pos >> PAGE_CACHE_SHIFT;
3184 if (ext4_nonda_switch(inode->i_sb)) {
3185 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3186 return ext4_write_begin(file, mapping, pos,
3187 len, flags, pagep, fsdata);
3189 *fsdata = (void *)0;
3190 trace_ext4_da_write_begin(inode, pos, len, flags);
3191 retry:
3193 * With delayed allocation, we don't log the i_disksize update
3194 * if there is delayed block allocation. But we still need
3195 * to journalling the i_disksize update if writes to the end
3196 * of file which has an already mapped buffer.
3198 handle = ext4_journal_start(inode, 1);
3199 if (IS_ERR(handle)) {
3200 ret = PTR_ERR(handle);
3201 goto out;
3203 /* We cannot recurse into the filesystem as the transaction is already
3204 * started */
3205 flags |= AOP_FLAG_NOFS;
3207 page = grab_cache_page_write_begin(mapping, index, flags);
3208 if (!page) {
3209 ext4_journal_stop(handle);
3210 ret = -ENOMEM;
3211 goto out;
3213 *pagep = page;
3215 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3216 if (ret < 0) {
3217 unlock_page(page);
3218 ext4_journal_stop(handle);
3219 page_cache_release(page);
3221 * block_write_begin may have instantiated a few blocks
3222 * outside i_size. Trim these off again. Don't need
3223 * i_size_read because we hold i_mutex.
3225 if (pos + len > inode->i_size)
3226 ext4_truncate_failed_write(inode);
3229 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3230 goto retry;
3231 out:
3232 return ret;
3236 * Check if we should update i_disksize
3237 * when write to the end of file but not require block allocation
3239 static int ext4_da_should_update_i_disksize(struct page *page,
3240 unsigned long offset)
3242 struct buffer_head *bh;
3243 struct inode *inode = page->mapping->host;
3244 unsigned int idx;
3245 int i;
3247 bh = page_buffers(page);
3248 idx = offset >> inode->i_blkbits;
3250 for (i = 0; i < idx; i++)
3251 bh = bh->b_this_page;
3253 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3254 return 0;
3255 return 1;
3258 static int ext4_da_write_end(struct file *file,
3259 struct address_space *mapping,
3260 loff_t pos, unsigned len, unsigned copied,
3261 struct page *page, void *fsdata)
3263 struct inode *inode = mapping->host;
3264 int ret = 0, ret2;
3265 handle_t *handle = ext4_journal_current_handle();
3266 loff_t new_i_size;
3267 unsigned long start, end;
3268 int write_mode = (int)(unsigned long)fsdata;
3270 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3271 if (ext4_should_order_data(inode)) {
3272 return ext4_ordered_write_end(file, mapping, pos,
3273 len, copied, page, fsdata);
3274 } else if (ext4_should_writeback_data(inode)) {
3275 return ext4_writeback_write_end(file, mapping, pos,
3276 len, copied, page, fsdata);
3277 } else {
3278 BUG();
3282 trace_ext4_da_write_end(inode, pos, len, copied);
3283 start = pos & (PAGE_CACHE_SIZE - 1);
3284 end = start + copied - 1;
3287 * generic_write_end() will run mark_inode_dirty() if i_size
3288 * changes. So let's piggyback the i_disksize mark_inode_dirty
3289 * into that.
3292 new_i_size = pos + copied;
3293 if (new_i_size > EXT4_I(inode)->i_disksize) {
3294 if (ext4_da_should_update_i_disksize(page, end)) {
3295 down_write(&EXT4_I(inode)->i_data_sem);
3296 if (new_i_size > EXT4_I(inode)->i_disksize) {
3298 * Updating i_disksize when extending file
3299 * without needing block allocation
3301 if (ext4_should_order_data(inode))
3302 ret = ext4_jbd2_file_inode(handle,
3303 inode);
3305 EXT4_I(inode)->i_disksize = new_i_size;
3307 up_write(&EXT4_I(inode)->i_data_sem);
3308 /* We need to mark inode dirty even if
3309 * new_i_size is less that inode->i_size
3310 * bu greater than i_disksize.(hint delalloc)
3312 ext4_mark_inode_dirty(handle, inode);
3315 ret2 = generic_write_end(file, mapping, pos, len, copied,
3316 page, fsdata);
3317 copied = ret2;
3318 if (ret2 < 0)
3319 ret = ret2;
3320 ret2 = ext4_journal_stop(handle);
3321 if (!ret)
3322 ret = ret2;
3324 return ret ? ret : copied;
3327 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3330 * Drop reserved blocks
3332 BUG_ON(!PageLocked(page));
3333 if (!page_has_buffers(page))
3334 goto out;
3336 ext4_da_page_release_reservation(page, offset);
3338 out:
3339 ext4_invalidatepage(page, offset);
3341 return;
3345 * Force all delayed allocation blocks to be allocated for a given inode.
3347 int ext4_alloc_da_blocks(struct inode *inode)
3349 trace_ext4_alloc_da_blocks(inode);
3351 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3352 !EXT4_I(inode)->i_reserved_meta_blocks)
3353 return 0;
3356 * We do something simple for now. The filemap_flush() will
3357 * also start triggering a write of the data blocks, which is
3358 * not strictly speaking necessary (and for users of
3359 * laptop_mode, not even desirable). However, to do otherwise
3360 * would require replicating code paths in:
3362 * ext4_da_writepages() ->
3363 * write_cache_pages() ---> (via passed in callback function)
3364 * __mpage_da_writepage() -->
3365 * mpage_add_bh_to_extent()
3366 * mpage_da_map_blocks()
3368 * The problem is that write_cache_pages(), located in
3369 * mm/page-writeback.c, marks pages clean in preparation for
3370 * doing I/O, which is not desirable if we're not planning on
3371 * doing I/O at all.
3373 * We could call write_cache_pages(), and then redirty all of
3374 * the pages by calling redirty_page_for_writeback() but that
3375 * would be ugly in the extreme. So instead we would need to
3376 * replicate parts of the code in the above functions,
3377 * simplifying them becuase we wouldn't actually intend to
3378 * write out the pages, but rather only collect contiguous
3379 * logical block extents, call the multi-block allocator, and
3380 * then update the buffer heads with the block allocations.
3382 * For now, though, we'll cheat by calling filemap_flush(),
3383 * which will map the blocks, and start the I/O, but not
3384 * actually wait for the I/O to complete.
3386 return filemap_flush(inode->i_mapping);
3390 * bmap() is special. It gets used by applications such as lilo and by
3391 * the swapper to find the on-disk block of a specific piece of data.
3393 * Naturally, this is dangerous if the block concerned is still in the
3394 * journal. If somebody makes a swapfile on an ext4 data-journaling
3395 * filesystem and enables swap, then they may get a nasty shock when the
3396 * data getting swapped to that swapfile suddenly gets overwritten by
3397 * the original zero's written out previously to the journal and
3398 * awaiting writeback in the kernel's buffer cache.
3400 * So, if we see any bmap calls here on a modified, data-journaled file,
3401 * take extra steps to flush any blocks which might be in the cache.
3403 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3405 struct inode *inode = mapping->host;
3406 journal_t *journal;
3407 int err;
3409 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3410 test_opt(inode->i_sb, DELALLOC)) {
3412 * With delalloc we want to sync the file
3413 * so that we can make sure we allocate
3414 * blocks for file
3416 filemap_write_and_wait(mapping);
3419 if (EXT4_JOURNAL(inode) &&
3420 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3422 * This is a REALLY heavyweight approach, but the use of
3423 * bmap on dirty files is expected to be extremely rare:
3424 * only if we run lilo or swapon on a freshly made file
3425 * do we expect this to happen.
3427 * (bmap requires CAP_SYS_RAWIO so this does not
3428 * represent an unprivileged user DOS attack --- we'd be
3429 * in trouble if mortal users could trigger this path at
3430 * will.)
3432 * NB. EXT4_STATE_JDATA is not set on files other than
3433 * regular files. If somebody wants to bmap a directory
3434 * or symlink and gets confused because the buffer
3435 * hasn't yet been flushed to disk, they deserve
3436 * everything they get.
3439 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3440 journal = EXT4_JOURNAL(inode);
3441 jbd2_journal_lock_updates(journal);
3442 err = jbd2_journal_flush(journal);
3443 jbd2_journal_unlock_updates(journal);
3445 if (err)
3446 return 0;
3449 return generic_block_bmap(mapping, block, ext4_get_block);
3452 static int ext4_readpage(struct file *file, struct page *page)
3454 return mpage_readpage(page, ext4_get_block);
3457 static int
3458 ext4_readpages(struct file *file, struct address_space *mapping,
3459 struct list_head *pages, unsigned nr_pages)
3461 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3464 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3466 struct buffer_head *head, *bh;
3467 unsigned int curr_off = 0;
3469 if (!page_has_buffers(page))
3470 return;
3471 head = bh = page_buffers(page);
3472 do {
3473 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3474 && bh->b_private) {
3475 ext4_free_io_end(bh->b_private);
3476 bh->b_private = NULL;
3477 bh->b_end_io = NULL;
3479 curr_off = curr_off + bh->b_size;
3480 bh = bh->b_this_page;
3481 } while (bh != head);
3484 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3486 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3489 * free any io_end structure allocated for buffers to be discarded
3491 if (ext4_should_dioread_nolock(page->mapping->host))
3492 ext4_invalidatepage_free_endio(page, offset);
3494 * If it's a full truncate we just forget about the pending dirtying
3496 if (offset == 0)
3497 ClearPageChecked(page);
3499 if (journal)
3500 jbd2_journal_invalidatepage(journal, page, offset);
3501 else
3502 block_invalidatepage(page, offset);
3505 static int ext4_releasepage(struct page *page, gfp_t wait)
3507 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3509 WARN_ON(PageChecked(page));
3510 if (!page_has_buffers(page))
3511 return 0;
3512 if (journal)
3513 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3514 else
3515 return try_to_free_buffers(page);
3519 * O_DIRECT for ext3 (or indirect map) based files
3521 * If the O_DIRECT write will extend the file then add this inode to the
3522 * orphan list. So recovery will truncate it back to the original size
3523 * if the machine crashes during the write.
3525 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3526 * crashes then stale disk data _may_ be exposed inside the file. But current
3527 * VFS code falls back into buffered path in that case so we are safe.
3529 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3530 const struct iovec *iov, loff_t offset,
3531 unsigned long nr_segs)
3533 struct file *file = iocb->ki_filp;
3534 struct inode *inode = file->f_mapping->host;
3535 struct ext4_inode_info *ei = EXT4_I(inode);
3536 handle_t *handle;
3537 ssize_t ret;
3538 int orphan = 0;
3539 size_t count = iov_length(iov, nr_segs);
3540 int retries = 0;
3542 if (rw == WRITE) {
3543 loff_t final_size = offset + count;
3545 if (final_size > inode->i_size) {
3546 /* Credits for sb + inode write */
3547 handle = ext4_journal_start(inode, 2);
3548 if (IS_ERR(handle)) {
3549 ret = PTR_ERR(handle);
3550 goto out;
3552 ret = ext4_orphan_add(handle, inode);
3553 if (ret) {
3554 ext4_journal_stop(handle);
3555 goto out;
3557 orphan = 1;
3558 ei->i_disksize = inode->i_size;
3559 ext4_journal_stop(handle);
3563 retry:
3564 if (rw == READ && ext4_should_dioread_nolock(inode))
3565 ret = __blockdev_direct_IO(rw, iocb, inode,
3566 inode->i_sb->s_bdev, iov,
3567 offset, nr_segs,
3568 ext4_get_block, NULL, NULL, 0);
3569 else {
3570 ret = blockdev_direct_IO(rw, iocb, inode,
3571 inode->i_sb->s_bdev, iov,
3572 offset, nr_segs,
3573 ext4_get_block, NULL);
3575 if (unlikely((rw & WRITE) && ret < 0)) {
3576 loff_t isize = i_size_read(inode);
3577 loff_t end = offset + iov_length(iov, nr_segs);
3579 if (end > isize)
3580 vmtruncate(inode, isize);
3583 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3584 goto retry;
3586 if (orphan) {
3587 int err;
3589 /* Credits for sb + inode write */
3590 handle = ext4_journal_start(inode, 2);
3591 if (IS_ERR(handle)) {
3592 /* This is really bad luck. We've written the data
3593 * but cannot extend i_size. Bail out and pretend
3594 * the write failed... */
3595 ret = PTR_ERR(handle);
3596 if (inode->i_nlink)
3597 ext4_orphan_del(NULL, inode);
3599 goto out;
3601 if (inode->i_nlink)
3602 ext4_orphan_del(handle, inode);
3603 if (ret > 0) {
3604 loff_t end = offset + ret;
3605 if (end > inode->i_size) {
3606 ei->i_disksize = end;
3607 i_size_write(inode, end);
3609 * We're going to return a positive `ret'
3610 * here due to non-zero-length I/O, so there's
3611 * no way of reporting error returns from
3612 * ext4_mark_inode_dirty() to userspace. So
3613 * ignore it.
3615 ext4_mark_inode_dirty(handle, inode);
3618 err = ext4_journal_stop(handle);
3619 if (ret == 0)
3620 ret = err;
3622 out:
3623 return ret;
3627 * ext4_get_block used when preparing for a DIO write or buffer write.
3628 * We allocate an uinitialized extent if blocks haven't been allocated.
3629 * The extent will be converted to initialized after the IO is complete.
3631 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3632 struct buffer_head *bh_result, int create)
3634 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3635 inode->i_ino, create);
3636 return _ext4_get_block(inode, iblock, bh_result,
3637 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3640 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3641 ssize_t size, void *private, int ret,
3642 bool is_async)
3644 ext4_io_end_t *io_end = iocb->private;
3645 struct workqueue_struct *wq;
3646 unsigned long flags;
3647 struct ext4_inode_info *ei;
3649 /* if not async direct IO or dio with 0 bytes write, just return */
3650 if (!io_end || !size)
3651 goto out;
3653 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3654 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3655 iocb->private, io_end->inode->i_ino, iocb, offset,
3656 size);
3658 /* if not aio dio with unwritten extents, just free io and return */
3659 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3660 ext4_free_io_end(io_end);
3661 iocb->private = NULL;
3662 out:
3663 if (is_async)
3664 aio_complete(iocb, ret, 0);
3665 return;
3668 io_end->offset = offset;
3669 io_end->size = size;
3670 if (is_async) {
3671 io_end->iocb = iocb;
3672 io_end->result = ret;
3674 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3676 /* Add the io_end to per-inode completed aio dio list*/
3677 ei = EXT4_I(io_end->inode);
3678 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3679 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3680 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3682 /* queue the work to convert unwritten extents to written */
3683 queue_work(wq, &io_end->work);
3684 iocb->private = NULL;
3687 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3689 ext4_io_end_t *io_end = bh->b_private;
3690 struct workqueue_struct *wq;
3691 struct inode *inode;
3692 unsigned long flags;
3694 if (!test_clear_buffer_uninit(bh) || !io_end)
3695 goto out;
3697 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3698 printk("sb umounted, discard end_io request for inode %lu\n",
3699 io_end->inode->i_ino);
3700 ext4_free_io_end(io_end);
3701 goto out;
3704 io_end->flag = EXT4_IO_END_UNWRITTEN;
3705 inode = io_end->inode;
3707 /* Add the io_end to per-inode completed io list*/
3708 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3709 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3710 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3712 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3713 /* queue the work to convert unwritten extents to written */
3714 queue_work(wq, &io_end->work);
3715 out:
3716 bh->b_private = NULL;
3717 bh->b_end_io = NULL;
3718 clear_buffer_uninit(bh);
3719 end_buffer_async_write(bh, uptodate);
3722 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3724 ext4_io_end_t *io_end;
3725 struct page *page = bh->b_page;
3726 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3727 size_t size = bh->b_size;
3729 retry:
3730 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3731 if (!io_end) {
3732 if (printk_ratelimit())
3733 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3734 schedule();
3735 goto retry;
3737 io_end->offset = offset;
3738 io_end->size = size;
3740 * We need to hold a reference to the page to make sure it
3741 * doesn't get evicted before ext4_end_io_work() has a chance
3742 * to convert the extent from written to unwritten.
3744 io_end->page = page;
3745 get_page(io_end->page);
3747 bh->b_private = io_end;
3748 bh->b_end_io = ext4_end_io_buffer_write;
3749 return 0;
3753 * For ext4 extent files, ext4 will do direct-io write to holes,
3754 * preallocated extents, and those write extend the file, no need to
3755 * fall back to buffered IO.
3757 * For holes, we fallocate those blocks, mark them as unintialized
3758 * If those blocks were preallocated, we mark sure they are splited, but
3759 * still keep the range to write as unintialized.
3761 * The unwrritten extents will be converted to written when DIO is completed.
3762 * For async direct IO, since the IO may still pending when return, we
3763 * set up an end_io call back function, which will do the convertion
3764 * when async direct IO completed.
3766 * If the O_DIRECT write will extend the file then add this inode to the
3767 * orphan list. So recovery will truncate it back to the original size
3768 * if the machine crashes during the write.
3771 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3772 const struct iovec *iov, loff_t offset,
3773 unsigned long nr_segs)
3775 struct file *file = iocb->ki_filp;
3776 struct inode *inode = file->f_mapping->host;
3777 ssize_t ret;
3778 size_t count = iov_length(iov, nr_segs);
3780 loff_t final_size = offset + count;
3781 if (rw == WRITE && final_size <= inode->i_size) {
3783 * We could direct write to holes and fallocate.
3785 * Allocated blocks to fill the hole are marked as uninitialized
3786 * to prevent paralel buffered read to expose the stale data
3787 * before DIO complete the data IO.
3789 * As to previously fallocated extents, ext4 get_block
3790 * will just simply mark the buffer mapped but still
3791 * keep the extents uninitialized.
3793 * for non AIO case, we will convert those unwritten extents
3794 * to written after return back from blockdev_direct_IO.
3796 * for async DIO, the conversion needs to be defered when
3797 * the IO is completed. The ext4 end_io callback function
3798 * will be called to take care of the conversion work.
3799 * Here for async case, we allocate an io_end structure to
3800 * hook to the iocb.
3802 iocb->private = NULL;
3803 EXT4_I(inode)->cur_aio_dio = NULL;
3804 if (!is_sync_kiocb(iocb)) {
3805 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3806 if (!iocb->private)
3807 return -ENOMEM;
3809 * we save the io structure for current async
3810 * direct IO, so that later ext4_map_blocks()
3811 * could flag the io structure whether there
3812 * is a unwritten extents needs to be converted
3813 * when IO is completed.
3815 EXT4_I(inode)->cur_aio_dio = iocb->private;
3818 ret = blockdev_direct_IO(rw, iocb, inode,
3819 inode->i_sb->s_bdev, iov,
3820 offset, nr_segs,
3821 ext4_get_block_write,
3822 ext4_end_io_dio);
3823 if (iocb->private)
3824 EXT4_I(inode)->cur_aio_dio = NULL;
3826 * The io_end structure takes a reference to the inode,
3827 * that structure needs to be destroyed and the
3828 * reference to the inode need to be dropped, when IO is
3829 * complete, even with 0 byte write, or failed.
3831 * In the successful AIO DIO case, the io_end structure will be
3832 * desctroyed and the reference to the inode will be dropped
3833 * after the end_io call back function is called.
3835 * In the case there is 0 byte write, or error case, since
3836 * VFS direct IO won't invoke the end_io call back function,
3837 * we need to free the end_io structure here.
3839 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3840 ext4_free_io_end(iocb->private);
3841 iocb->private = NULL;
3842 } else if (ret > 0 && ext4_test_inode_state(inode,
3843 EXT4_STATE_DIO_UNWRITTEN)) {
3844 int err;
3846 * for non AIO case, since the IO is already
3847 * completed, we could do the convertion right here
3849 err = ext4_convert_unwritten_extents(inode,
3850 offset, ret);
3851 if (err < 0)
3852 ret = err;
3853 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3855 return ret;
3858 /* for write the the end of file case, we fall back to old way */
3859 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3862 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3863 const struct iovec *iov, loff_t offset,
3864 unsigned long nr_segs)
3866 struct file *file = iocb->ki_filp;
3867 struct inode *inode = file->f_mapping->host;
3869 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3870 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3872 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3876 * Pages can be marked dirty completely asynchronously from ext4's journalling
3877 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3878 * much here because ->set_page_dirty is called under VFS locks. The page is
3879 * not necessarily locked.
3881 * We cannot just dirty the page and leave attached buffers clean, because the
3882 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3883 * or jbddirty because all the journalling code will explode.
3885 * So what we do is to mark the page "pending dirty" and next time writepage
3886 * is called, propagate that into the buffers appropriately.
3888 static int ext4_journalled_set_page_dirty(struct page *page)
3890 SetPageChecked(page);
3891 return __set_page_dirty_nobuffers(page);
3894 static const struct address_space_operations ext4_ordered_aops = {
3895 .readpage = ext4_readpage,
3896 .readpages = ext4_readpages,
3897 .writepage = ext4_writepage,
3898 .sync_page = block_sync_page,
3899 .write_begin = ext4_write_begin,
3900 .write_end = ext4_ordered_write_end,
3901 .bmap = ext4_bmap,
3902 .invalidatepage = ext4_invalidatepage,
3903 .releasepage = ext4_releasepage,
3904 .direct_IO = ext4_direct_IO,
3905 .migratepage = buffer_migrate_page,
3906 .is_partially_uptodate = block_is_partially_uptodate,
3907 .error_remove_page = generic_error_remove_page,
3910 static const struct address_space_operations ext4_writeback_aops = {
3911 .readpage = ext4_readpage,
3912 .readpages = ext4_readpages,
3913 .writepage = ext4_writepage,
3914 .sync_page = block_sync_page,
3915 .write_begin = ext4_write_begin,
3916 .write_end = ext4_writeback_write_end,
3917 .bmap = ext4_bmap,
3918 .invalidatepage = ext4_invalidatepage,
3919 .releasepage = ext4_releasepage,
3920 .direct_IO = ext4_direct_IO,
3921 .migratepage = buffer_migrate_page,
3922 .is_partially_uptodate = block_is_partially_uptodate,
3923 .error_remove_page = generic_error_remove_page,
3926 static const struct address_space_operations ext4_journalled_aops = {
3927 .readpage = ext4_readpage,
3928 .readpages = ext4_readpages,
3929 .writepage = ext4_writepage,
3930 .sync_page = block_sync_page,
3931 .write_begin = ext4_write_begin,
3932 .write_end = ext4_journalled_write_end,
3933 .set_page_dirty = ext4_journalled_set_page_dirty,
3934 .bmap = ext4_bmap,
3935 .invalidatepage = ext4_invalidatepage,
3936 .releasepage = ext4_releasepage,
3937 .is_partially_uptodate = block_is_partially_uptodate,
3938 .error_remove_page = generic_error_remove_page,
3941 static const struct address_space_operations ext4_da_aops = {
3942 .readpage = ext4_readpage,
3943 .readpages = ext4_readpages,
3944 .writepage = ext4_writepage,
3945 .writepages = ext4_da_writepages,
3946 .sync_page = block_sync_page,
3947 .write_begin = ext4_da_write_begin,
3948 .write_end = ext4_da_write_end,
3949 .bmap = ext4_bmap,
3950 .invalidatepage = ext4_da_invalidatepage,
3951 .releasepage = ext4_releasepage,
3952 .direct_IO = ext4_direct_IO,
3953 .migratepage = buffer_migrate_page,
3954 .is_partially_uptodate = block_is_partially_uptodate,
3955 .error_remove_page = generic_error_remove_page,
3958 void ext4_set_aops(struct inode *inode)
3960 if (ext4_should_order_data(inode) &&
3961 test_opt(inode->i_sb, DELALLOC))
3962 inode->i_mapping->a_ops = &ext4_da_aops;
3963 else if (ext4_should_order_data(inode))
3964 inode->i_mapping->a_ops = &ext4_ordered_aops;
3965 else if (ext4_should_writeback_data(inode) &&
3966 test_opt(inode->i_sb, DELALLOC))
3967 inode->i_mapping->a_ops = &ext4_da_aops;
3968 else if (ext4_should_writeback_data(inode))
3969 inode->i_mapping->a_ops = &ext4_writeback_aops;
3970 else
3971 inode->i_mapping->a_ops = &ext4_journalled_aops;
3975 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3976 * up to the end of the block which corresponds to `from'.
3977 * This required during truncate. We need to physically zero the tail end
3978 * of that block so it doesn't yield old data if the file is later grown.
3980 int ext4_block_truncate_page(handle_t *handle,
3981 struct address_space *mapping, loff_t from)
3983 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3984 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3985 unsigned blocksize, length, pos;
3986 ext4_lblk_t iblock;
3987 struct inode *inode = mapping->host;
3988 struct buffer_head *bh;
3989 struct page *page;
3990 int err = 0;
3992 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3993 mapping_gfp_mask(mapping) & ~__GFP_FS);
3994 if (!page)
3995 return -EINVAL;
3997 blocksize = inode->i_sb->s_blocksize;
3998 length = blocksize - (offset & (blocksize - 1));
3999 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4001 if (!page_has_buffers(page))
4002 create_empty_buffers(page, blocksize, 0);
4004 /* Find the buffer that contains "offset" */
4005 bh = page_buffers(page);
4006 pos = blocksize;
4007 while (offset >= pos) {
4008 bh = bh->b_this_page;
4009 iblock++;
4010 pos += blocksize;
4013 err = 0;
4014 if (buffer_freed(bh)) {
4015 BUFFER_TRACE(bh, "freed: skip");
4016 goto unlock;
4019 if (!buffer_mapped(bh)) {
4020 BUFFER_TRACE(bh, "unmapped");
4021 ext4_get_block(inode, iblock, bh, 0);
4022 /* unmapped? It's a hole - nothing to do */
4023 if (!buffer_mapped(bh)) {
4024 BUFFER_TRACE(bh, "still unmapped");
4025 goto unlock;
4029 /* Ok, it's mapped. Make sure it's up-to-date */
4030 if (PageUptodate(page))
4031 set_buffer_uptodate(bh);
4033 if (!buffer_uptodate(bh)) {
4034 err = -EIO;
4035 ll_rw_block(READ, 1, &bh);
4036 wait_on_buffer(bh);
4037 /* Uhhuh. Read error. Complain and punt. */
4038 if (!buffer_uptodate(bh))
4039 goto unlock;
4042 if (ext4_should_journal_data(inode)) {
4043 BUFFER_TRACE(bh, "get write access");
4044 err = ext4_journal_get_write_access(handle, bh);
4045 if (err)
4046 goto unlock;
4049 zero_user(page, offset, length);
4051 BUFFER_TRACE(bh, "zeroed end of block");
4053 err = 0;
4054 if (ext4_should_journal_data(inode)) {
4055 err = ext4_handle_dirty_metadata(handle, inode, bh);
4056 } else {
4057 if (ext4_should_order_data(inode))
4058 err = ext4_jbd2_file_inode(handle, inode);
4059 mark_buffer_dirty(bh);
4062 unlock:
4063 unlock_page(page);
4064 page_cache_release(page);
4065 return err;
4069 * Probably it should be a library function... search for first non-zero word
4070 * or memcmp with zero_page, whatever is better for particular architecture.
4071 * Linus?
4073 static inline int all_zeroes(__le32 *p, __le32 *q)
4075 while (p < q)
4076 if (*p++)
4077 return 0;
4078 return 1;
4082 * ext4_find_shared - find the indirect blocks for partial truncation.
4083 * @inode: inode in question
4084 * @depth: depth of the affected branch
4085 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4086 * @chain: place to store the pointers to partial indirect blocks
4087 * @top: place to the (detached) top of branch
4089 * This is a helper function used by ext4_truncate().
4091 * When we do truncate() we may have to clean the ends of several
4092 * indirect blocks but leave the blocks themselves alive. Block is
4093 * partially truncated if some data below the new i_size is refered
4094 * from it (and it is on the path to the first completely truncated
4095 * data block, indeed). We have to free the top of that path along
4096 * with everything to the right of the path. Since no allocation
4097 * past the truncation point is possible until ext4_truncate()
4098 * finishes, we may safely do the latter, but top of branch may
4099 * require special attention - pageout below the truncation point
4100 * might try to populate it.
4102 * We atomically detach the top of branch from the tree, store the
4103 * block number of its root in *@top, pointers to buffer_heads of
4104 * partially truncated blocks - in @chain[].bh and pointers to
4105 * their last elements that should not be removed - in
4106 * @chain[].p. Return value is the pointer to last filled element
4107 * of @chain.
4109 * The work left to caller to do the actual freeing of subtrees:
4110 * a) free the subtree starting from *@top
4111 * b) free the subtrees whose roots are stored in
4112 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4113 * c) free the subtrees growing from the inode past the @chain[0].
4114 * (no partially truncated stuff there). */
4116 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4117 ext4_lblk_t offsets[4], Indirect chain[4],
4118 __le32 *top)
4120 Indirect *partial, *p;
4121 int k, err;
4123 *top = 0;
4124 /* Make k index the deepest non-null offset + 1 */
4125 for (k = depth; k > 1 && !offsets[k-1]; k--)
4127 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4128 /* Writer: pointers */
4129 if (!partial)
4130 partial = chain + k-1;
4132 * If the branch acquired continuation since we've looked at it -
4133 * fine, it should all survive and (new) top doesn't belong to us.
4135 if (!partial->key && *partial->p)
4136 /* Writer: end */
4137 goto no_top;
4138 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4141 * OK, we've found the last block that must survive. The rest of our
4142 * branch should be detached before unlocking. However, if that rest
4143 * of branch is all ours and does not grow immediately from the inode
4144 * it's easier to cheat and just decrement partial->p.
4146 if (p == chain + k - 1 && p > chain) {
4147 p->p--;
4148 } else {
4149 *top = *p->p;
4150 /* Nope, don't do this in ext4. Must leave the tree intact */
4151 #if 0
4152 *p->p = 0;
4153 #endif
4155 /* Writer: end */
4157 while (partial > p) {
4158 brelse(partial->bh);
4159 partial--;
4161 no_top:
4162 return partial;
4166 * Zero a number of block pointers in either an inode or an indirect block.
4167 * If we restart the transaction we must again get write access to the
4168 * indirect block for further modification.
4170 * We release `count' blocks on disk, but (last - first) may be greater
4171 * than `count' because there can be holes in there.
4173 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4174 struct buffer_head *bh,
4175 ext4_fsblk_t block_to_free,
4176 unsigned long count, __le32 *first,
4177 __le32 *last)
4179 __le32 *p;
4180 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4182 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4183 flags |= EXT4_FREE_BLOCKS_METADATA;
4185 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4186 count)) {
4187 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4188 "blocks %llu len %lu",
4189 (unsigned long long) block_to_free, count);
4190 return 1;
4193 if (try_to_extend_transaction(handle, inode)) {
4194 if (bh) {
4195 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4196 ext4_handle_dirty_metadata(handle, inode, bh);
4198 ext4_mark_inode_dirty(handle, inode);
4199 ext4_truncate_restart_trans(handle, inode,
4200 blocks_for_truncate(inode));
4201 if (bh) {
4202 BUFFER_TRACE(bh, "retaking write access");
4203 ext4_journal_get_write_access(handle, bh);
4207 for (p = first; p < last; p++)
4208 *p = 0;
4210 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4211 return 0;
4215 * ext4_free_data - free a list of data blocks
4216 * @handle: handle for this transaction
4217 * @inode: inode we are dealing with
4218 * @this_bh: indirect buffer_head which contains *@first and *@last
4219 * @first: array of block numbers
4220 * @last: points immediately past the end of array
4222 * We are freeing all blocks refered from that array (numbers are stored as
4223 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4225 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4226 * blocks are contiguous then releasing them at one time will only affect one
4227 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4228 * actually use a lot of journal space.
4230 * @this_bh will be %NULL if @first and @last point into the inode's direct
4231 * block pointers.
4233 static void ext4_free_data(handle_t *handle, struct inode *inode,
4234 struct buffer_head *this_bh,
4235 __le32 *first, __le32 *last)
4237 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4238 unsigned long count = 0; /* Number of blocks in the run */
4239 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4240 corresponding to
4241 block_to_free */
4242 ext4_fsblk_t nr; /* Current block # */
4243 __le32 *p; /* Pointer into inode/ind
4244 for current block */
4245 int err;
4247 if (this_bh) { /* For indirect block */
4248 BUFFER_TRACE(this_bh, "get_write_access");
4249 err = ext4_journal_get_write_access(handle, this_bh);
4250 /* Important: if we can't update the indirect pointers
4251 * to the blocks, we can't free them. */
4252 if (err)
4253 return;
4256 for (p = first; p < last; p++) {
4257 nr = le32_to_cpu(*p);
4258 if (nr) {
4259 /* accumulate blocks to free if they're contiguous */
4260 if (count == 0) {
4261 block_to_free = nr;
4262 block_to_free_p = p;
4263 count = 1;
4264 } else if (nr == block_to_free + count) {
4265 count++;
4266 } else {
4267 if (ext4_clear_blocks(handle, inode, this_bh,
4268 block_to_free, count,
4269 block_to_free_p, p))
4270 break;
4271 block_to_free = nr;
4272 block_to_free_p = p;
4273 count = 1;
4278 if (count > 0)
4279 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4280 count, block_to_free_p, p);
4282 if (this_bh) {
4283 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4286 * The buffer head should have an attached journal head at this
4287 * point. However, if the data is corrupted and an indirect
4288 * block pointed to itself, it would have been detached when
4289 * the block was cleared. Check for this instead of OOPSing.
4291 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4292 ext4_handle_dirty_metadata(handle, inode, this_bh);
4293 else
4294 EXT4_ERROR_INODE(inode,
4295 "circular indirect block detected at "
4296 "block %llu",
4297 (unsigned long long) this_bh->b_blocknr);
4302 * ext4_free_branches - free an array of branches
4303 * @handle: JBD handle for this transaction
4304 * @inode: inode we are dealing with
4305 * @parent_bh: the buffer_head which contains *@first and *@last
4306 * @first: array of block numbers
4307 * @last: pointer immediately past the end of array
4308 * @depth: depth of the branches to free
4310 * We are freeing all blocks refered from these branches (numbers are
4311 * stored as little-endian 32-bit) and updating @inode->i_blocks
4312 * appropriately.
4314 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4315 struct buffer_head *parent_bh,
4316 __le32 *first, __le32 *last, int depth)
4318 ext4_fsblk_t nr;
4319 __le32 *p;
4321 if (ext4_handle_is_aborted(handle))
4322 return;
4324 if (depth--) {
4325 struct buffer_head *bh;
4326 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4327 p = last;
4328 while (--p >= first) {
4329 nr = le32_to_cpu(*p);
4330 if (!nr)
4331 continue; /* A hole */
4333 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4334 nr, 1)) {
4335 EXT4_ERROR_INODE(inode,
4336 "invalid indirect mapped "
4337 "block %lu (level %d)",
4338 (unsigned long) nr, depth);
4339 break;
4342 /* Go read the buffer for the next level down */
4343 bh = sb_bread(inode->i_sb, nr);
4346 * A read failure? Report error and clear slot
4347 * (should be rare).
4349 if (!bh) {
4350 EXT4_ERROR_INODE_BLOCK(inode, nr,
4351 "Read failure");
4352 continue;
4355 /* This zaps the entire block. Bottom up. */
4356 BUFFER_TRACE(bh, "free child branches");
4357 ext4_free_branches(handle, inode, bh,
4358 (__le32 *) bh->b_data,
4359 (__le32 *) bh->b_data + addr_per_block,
4360 depth);
4363 * Everything below this this pointer has been
4364 * released. Now let this top-of-subtree go.
4366 * We want the freeing of this indirect block to be
4367 * atomic in the journal with the updating of the
4368 * bitmap block which owns it. So make some room in
4369 * the journal.
4371 * We zero the parent pointer *after* freeing its
4372 * pointee in the bitmaps, so if extend_transaction()
4373 * for some reason fails to put the bitmap changes and
4374 * the release into the same transaction, recovery
4375 * will merely complain about releasing a free block,
4376 * rather than leaking blocks.
4378 if (ext4_handle_is_aborted(handle))
4379 return;
4380 if (try_to_extend_transaction(handle, inode)) {
4381 ext4_mark_inode_dirty(handle, inode);
4382 ext4_truncate_restart_trans(handle, inode,
4383 blocks_for_truncate(inode));
4387 * The forget flag here is critical because if
4388 * we are journaling (and not doing data
4389 * journaling), we have to make sure a revoke
4390 * record is written to prevent the journal
4391 * replay from overwriting the (former)
4392 * indirect block if it gets reallocated as a
4393 * data block. This must happen in the same
4394 * transaction where the data blocks are
4395 * actually freed.
4397 ext4_free_blocks(handle, inode, 0, nr, 1,
4398 EXT4_FREE_BLOCKS_METADATA|
4399 EXT4_FREE_BLOCKS_FORGET);
4401 if (parent_bh) {
4403 * The block which we have just freed is
4404 * pointed to by an indirect block: journal it
4406 BUFFER_TRACE(parent_bh, "get_write_access");
4407 if (!ext4_journal_get_write_access(handle,
4408 parent_bh)){
4409 *p = 0;
4410 BUFFER_TRACE(parent_bh,
4411 "call ext4_handle_dirty_metadata");
4412 ext4_handle_dirty_metadata(handle,
4413 inode,
4414 parent_bh);
4418 } else {
4419 /* We have reached the bottom of the tree. */
4420 BUFFER_TRACE(parent_bh, "free data blocks");
4421 ext4_free_data(handle, inode, parent_bh, first, last);
4425 int ext4_can_truncate(struct inode *inode)
4427 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4428 return 0;
4429 if (S_ISREG(inode->i_mode))
4430 return 1;
4431 if (S_ISDIR(inode->i_mode))
4432 return 1;
4433 if (S_ISLNK(inode->i_mode))
4434 return !ext4_inode_is_fast_symlink(inode);
4435 return 0;
4439 * ext4_truncate()
4441 * We block out ext4_get_block() block instantiations across the entire
4442 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4443 * simultaneously on behalf of the same inode.
4445 * As we work through the truncate and commmit bits of it to the journal there
4446 * is one core, guiding principle: the file's tree must always be consistent on
4447 * disk. We must be able to restart the truncate after a crash.
4449 * The file's tree may be transiently inconsistent in memory (although it
4450 * probably isn't), but whenever we close off and commit a journal transaction,
4451 * the contents of (the filesystem + the journal) must be consistent and
4452 * restartable. It's pretty simple, really: bottom up, right to left (although
4453 * left-to-right works OK too).
4455 * Note that at recovery time, journal replay occurs *before* the restart of
4456 * truncate against the orphan inode list.
4458 * The committed inode has the new, desired i_size (which is the same as
4459 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4460 * that this inode's truncate did not complete and it will again call
4461 * ext4_truncate() to have another go. So there will be instantiated blocks
4462 * to the right of the truncation point in a crashed ext4 filesystem. But
4463 * that's fine - as long as they are linked from the inode, the post-crash
4464 * ext4_truncate() run will find them and release them.
4466 void ext4_truncate(struct inode *inode)
4468 handle_t *handle;
4469 struct ext4_inode_info *ei = EXT4_I(inode);
4470 __le32 *i_data = ei->i_data;
4471 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472 struct address_space *mapping = inode->i_mapping;
4473 ext4_lblk_t offsets[4];
4474 Indirect chain[4];
4475 Indirect *partial;
4476 __le32 nr = 0;
4477 int n;
4478 ext4_lblk_t last_block;
4479 unsigned blocksize = inode->i_sb->s_blocksize;
4481 if (!ext4_can_truncate(inode))
4482 return;
4484 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4486 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4487 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4489 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4490 ext4_ext_truncate(inode);
4491 return;
4494 handle = start_transaction(inode);
4495 if (IS_ERR(handle))
4496 return; /* AKPM: return what? */
4498 last_block = (inode->i_size + blocksize-1)
4499 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4501 if (inode->i_size & (blocksize - 1))
4502 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4503 goto out_stop;
4505 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4506 if (n == 0)
4507 goto out_stop; /* error */
4510 * OK. This truncate is going to happen. We add the inode to the
4511 * orphan list, so that if this truncate spans multiple transactions,
4512 * and we crash, we will resume the truncate when the filesystem
4513 * recovers. It also marks the inode dirty, to catch the new size.
4515 * Implication: the file must always be in a sane, consistent
4516 * truncatable state while each transaction commits.
4518 if (ext4_orphan_add(handle, inode))
4519 goto out_stop;
4522 * From here we block out all ext4_get_block() callers who want to
4523 * modify the block allocation tree.
4525 down_write(&ei->i_data_sem);
4527 ext4_discard_preallocations(inode);
4530 * The orphan list entry will now protect us from any crash which
4531 * occurs before the truncate completes, so it is now safe to propagate
4532 * the new, shorter inode size (held for now in i_size) into the
4533 * on-disk inode. We do this via i_disksize, which is the value which
4534 * ext4 *really* writes onto the disk inode.
4536 ei->i_disksize = inode->i_size;
4538 if (n == 1) { /* direct blocks */
4539 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4540 i_data + EXT4_NDIR_BLOCKS);
4541 goto do_indirects;
4544 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4545 /* Kill the top of shared branch (not detached) */
4546 if (nr) {
4547 if (partial == chain) {
4548 /* Shared branch grows from the inode */
4549 ext4_free_branches(handle, inode, NULL,
4550 &nr, &nr+1, (chain+n-1) - partial);
4551 *partial->p = 0;
4553 * We mark the inode dirty prior to restart,
4554 * and prior to stop. No need for it here.
4556 } else {
4557 /* Shared branch grows from an indirect block */
4558 BUFFER_TRACE(partial->bh, "get_write_access");
4559 ext4_free_branches(handle, inode, partial->bh,
4560 partial->p,
4561 partial->p+1, (chain+n-1) - partial);
4564 /* Clear the ends of indirect blocks on the shared branch */
4565 while (partial > chain) {
4566 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4567 (__le32*)partial->bh->b_data+addr_per_block,
4568 (chain+n-1) - partial);
4569 BUFFER_TRACE(partial->bh, "call brelse");
4570 brelse(partial->bh);
4571 partial--;
4573 do_indirects:
4574 /* Kill the remaining (whole) subtrees */
4575 switch (offsets[0]) {
4576 default:
4577 nr = i_data[EXT4_IND_BLOCK];
4578 if (nr) {
4579 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4580 i_data[EXT4_IND_BLOCK] = 0;
4582 case EXT4_IND_BLOCK:
4583 nr = i_data[EXT4_DIND_BLOCK];
4584 if (nr) {
4585 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4586 i_data[EXT4_DIND_BLOCK] = 0;
4588 case EXT4_DIND_BLOCK:
4589 nr = i_data[EXT4_TIND_BLOCK];
4590 if (nr) {
4591 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4592 i_data[EXT4_TIND_BLOCK] = 0;
4594 case EXT4_TIND_BLOCK:
4598 up_write(&ei->i_data_sem);
4599 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4600 ext4_mark_inode_dirty(handle, inode);
4603 * In a multi-transaction truncate, we only make the final transaction
4604 * synchronous
4606 if (IS_SYNC(inode))
4607 ext4_handle_sync(handle);
4608 out_stop:
4610 * If this was a simple ftruncate(), and the file will remain alive
4611 * then we need to clear up the orphan record which we created above.
4612 * However, if this was a real unlink then we were called by
4613 * ext4_delete_inode(), and we allow that function to clean up the
4614 * orphan info for us.
4616 if (inode->i_nlink)
4617 ext4_orphan_del(handle, inode);
4619 ext4_journal_stop(handle);
4623 * ext4_get_inode_loc returns with an extra refcount against the inode's
4624 * underlying buffer_head on success. If 'in_mem' is true, we have all
4625 * data in memory that is needed to recreate the on-disk version of this
4626 * inode.
4628 static int __ext4_get_inode_loc(struct inode *inode,
4629 struct ext4_iloc *iloc, int in_mem)
4631 struct ext4_group_desc *gdp;
4632 struct buffer_head *bh;
4633 struct super_block *sb = inode->i_sb;
4634 ext4_fsblk_t block;
4635 int inodes_per_block, inode_offset;
4637 iloc->bh = NULL;
4638 if (!ext4_valid_inum(sb, inode->i_ino))
4639 return -EIO;
4641 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4642 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4643 if (!gdp)
4644 return -EIO;
4647 * Figure out the offset within the block group inode table
4649 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4650 inode_offset = ((inode->i_ino - 1) %
4651 EXT4_INODES_PER_GROUP(sb));
4652 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4653 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4655 bh = sb_getblk(sb, block);
4656 if (!bh) {
4657 EXT4_ERROR_INODE_BLOCK(inode, block,
4658 "unable to read itable block");
4659 return -EIO;
4661 if (!buffer_uptodate(bh)) {
4662 lock_buffer(bh);
4665 * If the buffer has the write error flag, we have failed
4666 * to write out another inode in the same block. In this
4667 * case, we don't have to read the block because we may
4668 * read the old inode data successfully.
4670 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4671 set_buffer_uptodate(bh);
4673 if (buffer_uptodate(bh)) {
4674 /* someone brought it uptodate while we waited */
4675 unlock_buffer(bh);
4676 goto has_buffer;
4680 * If we have all information of the inode in memory and this
4681 * is the only valid inode in the block, we need not read the
4682 * block.
4684 if (in_mem) {
4685 struct buffer_head *bitmap_bh;
4686 int i, start;
4688 start = inode_offset & ~(inodes_per_block - 1);
4690 /* Is the inode bitmap in cache? */
4691 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4692 if (!bitmap_bh)
4693 goto make_io;
4696 * If the inode bitmap isn't in cache then the
4697 * optimisation may end up performing two reads instead
4698 * of one, so skip it.
4700 if (!buffer_uptodate(bitmap_bh)) {
4701 brelse(bitmap_bh);
4702 goto make_io;
4704 for (i = start; i < start + inodes_per_block; i++) {
4705 if (i == inode_offset)
4706 continue;
4707 if (ext4_test_bit(i, bitmap_bh->b_data))
4708 break;
4710 brelse(bitmap_bh);
4711 if (i == start + inodes_per_block) {
4712 /* all other inodes are free, so skip I/O */
4713 memset(bh->b_data, 0, bh->b_size);
4714 set_buffer_uptodate(bh);
4715 unlock_buffer(bh);
4716 goto has_buffer;
4720 make_io:
4722 * If we need to do any I/O, try to pre-readahead extra
4723 * blocks from the inode table.
4725 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4726 ext4_fsblk_t b, end, table;
4727 unsigned num;
4729 table = ext4_inode_table(sb, gdp);
4730 /* s_inode_readahead_blks is always a power of 2 */
4731 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4732 if (table > b)
4733 b = table;
4734 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4735 num = EXT4_INODES_PER_GROUP(sb);
4736 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4737 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4738 num -= ext4_itable_unused_count(sb, gdp);
4739 table += num / inodes_per_block;
4740 if (end > table)
4741 end = table;
4742 while (b <= end)
4743 sb_breadahead(sb, b++);
4747 * There are other valid inodes in the buffer, this inode
4748 * has in-inode xattrs, or we don't have this inode in memory.
4749 * Read the block from disk.
4751 get_bh(bh);
4752 bh->b_end_io = end_buffer_read_sync;
4753 submit_bh(READ_META, bh);
4754 wait_on_buffer(bh);
4755 if (!buffer_uptodate(bh)) {
4756 EXT4_ERROR_INODE_BLOCK(inode, block,
4757 "unable to read itable block");
4758 brelse(bh);
4759 return -EIO;
4762 has_buffer:
4763 iloc->bh = bh;
4764 return 0;
4767 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4769 /* We have all inode data except xattrs in memory here. */
4770 return __ext4_get_inode_loc(inode, iloc,
4771 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4774 void ext4_set_inode_flags(struct inode *inode)
4776 unsigned int flags = EXT4_I(inode)->i_flags;
4778 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4779 if (flags & EXT4_SYNC_FL)
4780 inode->i_flags |= S_SYNC;
4781 if (flags & EXT4_APPEND_FL)
4782 inode->i_flags |= S_APPEND;
4783 if (flags & EXT4_IMMUTABLE_FL)
4784 inode->i_flags |= S_IMMUTABLE;
4785 if (flags & EXT4_NOATIME_FL)
4786 inode->i_flags |= S_NOATIME;
4787 if (flags & EXT4_DIRSYNC_FL)
4788 inode->i_flags |= S_DIRSYNC;
4791 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4792 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4794 unsigned int vfs_fl;
4795 unsigned long old_fl, new_fl;
4797 do {
4798 vfs_fl = ei->vfs_inode.i_flags;
4799 old_fl = ei->i_flags;
4800 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4801 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4802 EXT4_DIRSYNC_FL);
4803 if (vfs_fl & S_SYNC)
4804 new_fl |= EXT4_SYNC_FL;
4805 if (vfs_fl & S_APPEND)
4806 new_fl |= EXT4_APPEND_FL;
4807 if (vfs_fl & S_IMMUTABLE)
4808 new_fl |= EXT4_IMMUTABLE_FL;
4809 if (vfs_fl & S_NOATIME)
4810 new_fl |= EXT4_NOATIME_FL;
4811 if (vfs_fl & S_DIRSYNC)
4812 new_fl |= EXT4_DIRSYNC_FL;
4813 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4816 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4817 struct ext4_inode_info *ei)
4819 blkcnt_t i_blocks ;
4820 struct inode *inode = &(ei->vfs_inode);
4821 struct super_block *sb = inode->i_sb;
4823 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4824 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4825 /* we are using combined 48 bit field */
4826 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4827 le32_to_cpu(raw_inode->i_blocks_lo);
4828 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4829 /* i_blocks represent file system block size */
4830 return i_blocks << (inode->i_blkbits - 9);
4831 } else {
4832 return i_blocks;
4834 } else {
4835 return le32_to_cpu(raw_inode->i_blocks_lo);
4839 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4841 struct ext4_iloc iloc;
4842 struct ext4_inode *raw_inode;
4843 struct ext4_inode_info *ei;
4844 struct inode *inode;
4845 journal_t *journal = EXT4_SB(sb)->s_journal;
4846 long ret;
4847 int block;
4849 inode = iget_locked(sb, ino);
4850 if (!inode)
4851 return ERR_PTR(-ENOMEM);
4852 if (!(inode->i_state & I_NEW))
4853 return inode;
4855 ei = EXT4_I(inode);
4856 iloc.bh = 0;
4858 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4859 if (ret < 0)
4860 goto bad_inode;
4861 raw_inode = ext4_raw_inode(&iloc);
4862 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4863 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4864 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4865 if (!(test_opt(inode->i_sb, NO_UID32))) {
4866 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4867 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4869 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4871 ei->i_state_flags = 0;
4872 ei->i_dir_start_lookup = 0;
4873 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4874 /* We now have enough fields to check if the inode was active or not.
4875 * This is needed because nfsd might try to access dead inodes
4876 * the test is that same one that e2fsck uses
4877 * NeilBrown 1999oct15
4879 if (inode->i_nlink == 0) {
4880 if (inode->i_mode == 0 ||
4881 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4882 /* this inode is deleted */
4883 ret = -ESTALE;
4884 goto bad_inode;
4886 /* The only unlinked inodes we let through here have
4887 * valid i_mode and are being read by the orphan
4888 * recovery code: that's fine, we're about to complete
4889 * the process of deleting those. */
4891 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4892 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4893 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4894 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4895 ei->i_file_acl |=
4896 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4897 inode->i_size = ext4_isize(raw_inode);
4898 ei->i_disksize = inode->i_size;
4899 #ifdef CONFIG_QUOTA
4900 ei->i_reserved_quota = 0;
4901 #endif
4902 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4903 ei->i_block_group = iloc.block_group;
4904 ei->i_last_alloc_group = ~0;
4906 * NOTE! The in-memory inode i_data array is in little-endian order
4907 * even on big-endian machines: we do NOT byteswap the block numbers!
4909 for (block = 0; block < EXT4_N_BLOCKS; block++)
4910 ei->i_data[block] = raw_inode->i_block[block];
4911 INIT_LIST_HEAD(&ei->i_orphan);
4914 * Set transaction id's of transactions that have to be committed
4915 * to finish f[data]sync. We set them to currently running transaction
4916 * as we cannot be sure that the inode or some of its metadata isn't
4917 * part of the transaction - the inode could have been reclaimed and
4918 * now it is reread from disk.
4920 if (journal) {
4921 transaction_t *transaction;
4922 tid_t tid;
4924 read_lock(&journal->j_state_lock);
4925 if (journal->j_running_transaction)
4926 transaction = journal->j_running_transaction;
4927 else
4928 transaction = journal->j_committing_transaction;
4929 if (transaction)
4930 tid = transaction->t_tid;
4931 else
4932 tid = journal->j_commit_sequence;
4933 read_unlock(&journal->j_state_lock);
4934 ei->i_sync_tid = tid;
4935 ei->i_datasync_tid = tid;
4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4940 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4941 EXT4_INODE_SIZE(inode->i_sb)) {
4942 ret = -EIO;
4943 goto bad_inode;
4945 if (ei->i_extra_isize == 0) {
4946 /* The extra space is currently unused. Use it. */
4947 ei->i_extra_isize = sizeof(struct ext4_inode) -
4948 EXT4_GOOD_OLD_INODE_SIZE;
4949 } else {
4950 __le32 *magic = (void *)raw_inode +
4951 EXT4_GOOD_OLD_INODE_SIZE +
4952 ei->i_extra_isize;
4953 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4954 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4956 } else
4957 ei->i_extra_isize = 0;
4959 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4960 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4961 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4962 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4964 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4965 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4966 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4967 inode->i_version |=
4968 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4971 ret = 0;
4972 if (ei->i_file_acl &&
4973 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4974 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4975 ei->i_file_acl);
4976 ret = -EIO;
4977 goto bad_inode;
4978 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4979 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4980 (S_ISLNK(inode->i_mode) &&
4981 !ext4_inode_is_fast_symlink(inode)))
4982 /* Validate extent which is part of inode */
4983 ret = ext4_ext_check_inode(inode);
4984 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4985 (S_ISLNK(inode->i_mode) &&
4986 !ext4_inode_is_fast_symlink(inode))) {
4987 /* Validate block references which are part of inode */
4988 ret = ext4_check_inode_blockref(inode);
4990 if (ret)
4991 goto bad_inode;
4993 if (S_ISREG(inode->i_mode)) {
4994 inode->i_op = &ext4_file_inode_operations;
4995 inode->i_fop = &ext4_file_operations;
4996 ext4_set_aops(inode);
4997 } else if (S_ISDIR(inode->i_mode)) {
4998 inode->i_op = &ext4_dir_inode_operations;
4999 inode->i_fop = &ext4_dir_operations;
5000 } else if (S_ISLNK(inode->i_mode)) {
5001 if (ext4_inode_is_fast_symlink(inode)) {
5002 inode->i_op = &ext4_fast_symlink_inode_operations;
5003 nd_terminate_link(ei->i_data, inode->i_size,
5004 sizeof(ei->i_data) - 1);
5005 } else {
5006 inode->i_op = &ext4_symlink_inode_operations;
5007 ext4_set_aops(inode);
5009 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5010 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5011 inode->i_op = &ext4_special_inode_operations;
5012 if (raw_inode->i_block[0])
5013 init_special_inode(inode, inode->i_mode,
5014 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5015 else
5016 init_special_inode(inode, inode->i_mode,
5017 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5018 } else {
5019 ret = -EIO;
5020 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5021 goto bad_inode;
5023 brelse(iloc.bh);
5024 ext4_set_inode_flags(inode);
5025 unlock_new_inode(inode);
5026 return inode;
5028 bad_inode:
5029 brelse(iloc.bh);
5030 iget_failed(inode);
5031 return ERR_PTR(ret);
5034 static int ext4_inode_blocks_set(handle_t *handle,
5035 struct ext4_inode *raw_inode,
5036 struct ext4_inode_info *ei)
5038 struct inode *inode = &(ei->vfs_inode);
5039 u64 i_blocks = inode->i_blocks;
5040 struct super_block *sb = inode->i_sb;
5042 if (i_blocks <= ~0U) {
5044 * i_blocks can be represnted in a 32 bit variable
5045 * as multiple of 512 bytes
5047 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5048 raw_inode->i_blocks_high = 0;
5049 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5050 return 0;
5052 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5053 return -EFBIG;
5055 if (i_blocks <= 0xffffffffffffULL) {
5057 * i_blocks can be represented in a 48 bit variable
5058 * as multiple of 512 bytes
5060 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5061 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5062 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5063 } else {
5064 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5065 /* i_block is stored in file system block size */
5066 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5067 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5068 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5070 return 0;
5074 * Post the struct inode info into an on-disk inode location in the
5075 * buffer-cache. This gobbles the caller's reference to the
5076 * buffer_head in the inode location struct.
5078 * The caller must have write access to iloc->bh.
5080 static int ext4_do_update_inode(handle_t *handle,
5081 struct inode *inode,
5082 struct ext4_iloc *iloc)
5084 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5085 struct ext4_inode_info *ei = EXT4_I(inode);
5086 struct buffer_head *bh = iloc->bh;
5087 int err = 0, rc, block;
5089 /* For fields not not tracking in the in-memory inode,
5090 * initialise them to zero for new inodes. */
5091 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5092 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5094 ext4_get_inode_flags(ei);
5095 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5096 if (!(test_opt(inode->i_sb, NO_UID32))) {
5097 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5098 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5100 * Fix up interoperability with old kernels. Otherwise, old inodes get
5101 * re-used with the upper 16 bits of the uid/gid intact
5103 if (!ei->i_dtime) {
5104 raw_inode->i_uid_high =
5105 cpu_to_le16(high_16_bits(inode->i_uid));
5106 raw_inode->i_gid_high =
5107 cpu_to_le16(high_16_bits(inode->i_gid));
5108 } else {
5109 raw_inode->i_uid_high = 0;
5110 raw_inode->i_gid_high = 0;
5112 } else {
5113 raw_inode->i_uid_low =
5114 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5115 raw_inode->i_gid_low =
5116 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5117 raw_inode->i_uid_high = 0;
5118 raw_inode->i_gid_high = 0;
5120 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5122 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5123 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5124 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5125 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5127 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5128 goto out_brelse;
5129 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5130 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5131 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5132 cpu_to_le32(EXT4_OS_HURD))
5133 raw_inode->i_file_acl_high =
5134 cpu_to_le16(ei->i_file_acl >> 32);
5135 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5136 ext4_isize_set(raw_inode, ei->i_disksize);
5137 if (ei->i_disksize > 0x7fffffffULL) {
5138 struct super_block *sb = inode->i_sb;
5139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5140 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5141 EXT4_SB(sb)->s_es->s_rev_level ==
5142 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5143 /* If this is the first large file
5144 * created, add a flag to the superblock.
5146 err = ext4_journal_get_write_access(handle,
5147 EXT4_SB(sb)->s_sbh);
5148 if (err)
5149 goto out_brelse;
5150 ext4_update_dynamic_rev(sb);
5151 EXT4_SET_RO_COMPAT_FEATURE(sb,
5152 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5153 sb->s_dirt = 1;
5154 ext4_handle_sync(handle);
5155 err = ext4_handle_dirty_metadata(handle, NULL,
5156 EXT4_SB(sb)->s_sbh);
5159 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5160 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5161 if (old_valid_dev(inode->i_rdev)) {
5162 raw_inode->i_block[0] =
5163 cpu_to_le32(old_encode_dev(inode->i_rdev));
5164 raw_inode->i_block[1] = 0;
5165 } else {
5166 raw_inode->i_block[0] = 0;
5167 raw_inode->i_block[1] =
5168 cpu_to_le32(new_encode_dev(inode->i_rdev));
5169 raw_inode->i_block[2] = 0;
5171 } else
5172 for (block = 0; block < EXT4_N_BLOCKS; block++)
5173 raw_inode->i_block[block] = ei->i_data[block];
5175 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5176 if (ei->i_extra_isize) {
5177 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5178 raw_inode->i_version_hi =
5179 cpu_to_le32(inode->i_version >> 32);
5180 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5183 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5184 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5185 if (!err)
5186 err = rc;
5187 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5189 ext4_update_inode_fsync_trans(handle, inode, 0);
5190 out_brelse:
5191 brelse(bh);
5192 ext4_std_error(inode->i_sb, err);
5193 return err;
5197 * ext4_write_inode()
5199 * We are called from a few places:
5201 * - Within generic_file_write() for O_SYNC files.
5202 * Here, there will be no transaction running. We wait for any running
5203 * trasnaction to commit.
5205 * - Within sys_sync(), kupdate and such.
5206 * We wait on commit, if tol to.
5208 * - Within prune_icache() (PF_MEMALLOC == true)
5209 * Here we simply return. We can't afford to block kswapd on the
5210 * journal commit.
5212 * In all cases it is actually safe for us to return without doing anything,
5213 * because the inode has been copied into a raw inode buffer in
5214 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5215 * knfsd.
5217 * Note that we are absolutely dependent upon all inode dirtiers doing the
5218 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5219 * which we are interested.
5221 * It would be a bug for them to not do this. The code:
5223 * mark_inode_dirty(inode)
5224 * stuff();
5225 * inode->i_size = expr;
5227 * is in error because a kswapd-driven write_inode() could occur while
5228 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5229 * will no longer be on the superblock's dirty inode list.
5231 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5233 int err;
5235 if (current->flags & PF_MEMALLOC)
5236 return 0;
5238 if (EXT4_SB(inode->i_sb)->s_journal) {
5239 if (ext4_journal_current_handle()) {
5240 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5241 dump_stack();
5242 return -EIO;
5245 if (wbc->sync_mode != WB_SYNC_ALL)
5246 return 0;
5248 err = ext4_force_commit(inode->i_sb);
5249 } else {
5250 struct ext4_iloc iloc;
5252 err = __ext4_get_inode_loc(inode, &iloc, 0);
5253 if (err)
5254 return err;
5255 if (wbc->sync_mode == WB_SYNC_ALL)
5256 sync_dirty_buffer(iloc.bh);
5257 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5258 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5259 "IO error syncing inode");
5260 err = -EIO;
5262 brelse(iloc.bh);
5264 return err;
5268 * ext4_setattr()
5270 * Called from notify_change.
5272 * We want to trap VFS attempts to truncate the file as soon as
5273 * possible. In particular, we want to make sure that when the VFS
5274 * shrinks i_size, we put the inode on the orphan list and modify
5275 * i_disksize immediately, so that during the subsequent flushing of
5276 * dirty pages and freeing of disk blocks, we can guarantee that any
5277 * commit will leave the blocks being flushed in an unused state on
5278 * disk. (On recovery, the inode will get truncated and the blocks will
5279 * be freed, so we have a strong guarantee that no future commit will
5280 * leave these blocks visible to the user.)
5282 * Another thing we have to assure is that if we are in ordered mode
5283 * and inode is still attached to the committing transaction, we must
5284 * we start writeout of all the dirty pages which are being truncated.
5285 * This way we are sure that all the data written in the previous
5286 * transaction are already on disk (truncate waits for pages under
5287 * writeback).
5289 * Called with inode->i_mutex down.
5291 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5293 struct inode *inode = dentry->d_inode;
5294 int error, rc = 0;
5295 int orphan = 0;
5296 const unsigned int ia_valid = attr->ia_valid;
5298 error = inode_change_ok(inode, attr);
5299 if (error)
5300 return error;
5302 if (is_quota_modification(inode, attr))
5303 dquot_initialize(inode);
5304 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5305 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5306 handle_t *handle;
5308 /* (user+group)*(old+new) structure, inode write (sb,
5309 * inode block, ? - but truncate inode update has it) */
5310 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5311 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5312 if (IS_ERR(handle)) {
5313 error = PTR_ERR(handle);
5314 goto err_out;
5316 error = dquot_transfer(inode, attr);
5317 if (error) {
5318 ext4_journal_stop(handle);
5319 return error;
5321 /* Update corresponding info in inode so that everything is in
5322 * one transaction */
5323 if (attr->ia_valid & ATTR_UID)
5324 inode->i_uid = attr->ia_uid;
5325 if (attr->ia_valid & ATTR_GID)
5326 inode->i_gid = attr->ia_gid;
5327 error = ext4_mark_inode_dirty(handle, inode);
5328 ext4_journal_stop(handle);
5331 if (attr->ia_valid & ATTR_SIZE) {
5332 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5333 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5335 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5336 return -EFBIG;
5340 if (S_ISREG(inode->i_mode) &&
5341 attr->ia_valid & ATTR_SIZE &&
5342 (attr->ia_size < inode->i_size ||
5343 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5344 handle_t *handle;
5346 handle = ext4_journal_start(inode, 3);
5347 if (IS_ERR(handle)) {
5348 error = PTR_ERR(handle);
5349 goto err_out;
5351 if (ext4_handle_valid(handle)) {
5352 error = ext4_orphan_add(handle, inode);
5353 orphan = 1;
5355 EXT4_I(inode)->i_disksize = attr->ia_size;
5356 rc = ext4_mark_inode_dirty(handle, inode);
5357 if (!error)
5358 error = rc;
5359 ext4_journal_stop(handle);
5361 if (ext4_should_order_data(inode)) {
5362 error = ext4_begin_ordered_truncate(inode,
5363 attr->ia_size);
5364 if (error) {
5365 /* Do as much error cleanup as possible */
5366 handle = ext4_journal_start(inode, 3);
5367 if (IS_ERR(handle)) {
5368 ext4_orphan_del(NULL, inode);
5369 goto err_out;
5371 ext4_orphan_del(handle, inode);
5372 orphan = 0;
5373 ext4_journal_stop(handle);
5374 goto err_out;
5377 /* ext4_truncate will clear the flag */
5378 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5379 ext4_truncate(inode);
5382 if ((attr->ia_valid & ATTR_SIZE) &&
5383 attr->ia_size != i_size_read(inode))
5384 rc = vmtruncate(inode, attr->ia_size);
5386 if (!rc) {
5387 setattr_copy(inode, attr);
5388 mark_inode_dirty(inode);
5392 * If the call to ext4_truncate failed to get a transaction handle at
5393 * all, we need to clean up the in-core orphan list manually.
5395 if (orphan && inode->i_nlink)
5396 ext4_orphan_del(NULL, inode);
5398 if (!rc && (ia_valid & ATTR_MODE))
5399 rc = ext4_acl_chmod(inode);
5401 err_out:
5402 ext4_std_error(inode->i_sb, error);
5403 if (!error)
5404 error = rc;
5405 return error;
5408 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5409 struct kstat *stat)
5411 struct inode *inode;
5412 unsigned long delalloc_blocks;
5414 inode = dentry->d_inode;
5415 generic_fillattr(inode, stat);
5418 * We can't update i_blocks if the block allocation is delayed
5419 * otherwise in the case of system crash before the real block
5420 * allocation is done, we will have i_blocks inconsistent with
5421 * on-disk file blocks.
5422 * We always keep i_blocks updated together with real
5423 * allocation. But to not confuse with user, stat
5424 * will return the blocks that include the delayed allocation
5425 * blocks for this file.
5427 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5429 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5430 return 0;
5433 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5434 int chunk)
5436 int indirects;
5438 /* if nrblocks are contiguous */
5439 if (chunk) {
5441 * With N contiguous data blocks, it need at most
5442 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5443 * 2 dindirect blocks
5444 * 1 tindirect block
5446 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5447 return indirects + 3;
5450 * if nrblocks are not contiguous, worse case, each block touch
5451 * a indirect block, and each indirect block touch a double indirect
5452 * block, plus a triple indirect block
5454 indirects = nrblocks * 2 + 1;
5455 return indirects;
5458 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5460 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5461 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5462 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5466 * Account for index blocks, block groups bitmaps and block group
5467 * descriptor blocks if modify datablocks and index blocks
5468 * worse case, the indexs blocks spread over different block groups
5470 * If datablocks are discontiguous, they are possible to spread over
5471 * different block groups too. If they are contiuguous, with flexbg,
5472 * they could still across block group boundary.
5474 * Also account for superblock, inode, quota and xattr blocks
5476 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5478 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5479 int gdpblocks;
5480 int idxblocks;
5481 int ret = 0;
5484 * How many index blocks need to touch to modify nrblocks?
5485 * The "Chunk" flag indicating whether the nrblocks is
5486 * physically contiguous on disk
5488 * For Direct IO and fallocate, they calls get_block to allocate
5489 * one single extent at a time, so they could set the "Chunk" flag
5491 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5493 ret = idxblocks;
5496 * Now let's see how many group bitmaps and group descriptors need
5497 * to account
5499 groups = idxblocks;
5500 if (chunk)
5501 groups += 1;
5502 else
5503 groups += nrblocks;
5505 gdpblocks = groups;
5506 if (groups > ngroups)
5507 groups = ngroups;
5508 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5509 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5511 /* bitmaps and block group descriptor blocks */
5512 ret += groups + gdpblocks;
5514 /* Blocks for super block, inode, quota and xattr blocks */
5515 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5517 return ret;
5521 * Calulate the total number of credits to reserve to fit
5522 * the modification of a single pages into a single transaction,
5523 * which may include multiple chunks of block allocations.
5525 * This could be called via ext4_write_begin()
5527 * We need to consider the worse case, when
5528 * one new block per extent.
5530 int ext4_writepage_trans_blocks(struct inode *inode)
5532 int bpp = ext4_journal_blocks_per_page(inode);
5533 int ret;
5535 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5537 /* Account for data blocks for journalled mode */
5538 if (ext4_should_journal_data(inode))
5539 ret += bpp;
5540 return ret;
5544 * Calculate the journal credits for a chunk of data modification.
5546 * This is called from DIO, fallocate or whoever calling
5547 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5549 * journal buffers for data blocks are not included here, as DIO
5550 * and fallocate do no need to journal data buffers.
5552 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5554 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5558 * The caller must have previously called ext4_reserve_inode_write().
5559 * Give this, we know that the caller already has write access to iloc->bh.
5561 int ext4_mark_iloc_dirty(handle_t *handle,
5562 struct inode *inode, struct ext4_iloc *iloc)
5564 int err = 0;
5566 if (test_opt(inode->i_sb, I_VERSION))
5567 inode_inc_iversion(inode);
5569 /* the do_update_inode consumes one bh->b_count */
5570 get_bh(iloc->bh);
5572 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5573 err = ext4_do_update_inode(handle, inode, iloc);
5574 put_bh(iloc->bh);
5575 return err;
5579 * On success, We end up with an outstanding reference count against
5580 * iloc->bh. This _must_ be cleaned up later.
5584 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5585 struct ext4_iloc *iloc)
5587 int err;
5589 err = ext4_get_inode_loc(inode, iloc);
5590 if (!err) {
5591 BUFFER_TRACE(iloc->bh, "get_write_access");
5592 err = ext4_journal_get_write_access(handle, iloc->bh);
5593 if (err) {
5594 brelse(iloc->bh);
5595 iloc->bh = NULL;
5598 ext4_std_error(inode->i_sb, err);
5599 return err;
5603 * Expand an inode by new_extra_isize bytes.
5604 * Returns 0 on success or negative error number on failure.
5606 static int ext4_expand_extra_isize(struct inode *inode,
5607 unsigned int new_extra_isize,
5608 struct ext4_iloc iloc,
5609 handle_t *handle)
5611 struct ext4_inode *raw_inode;
5612 struct ext4_xattr_ibody_header *header;
5614 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5615 return 0;
5617 raw_inode = ext4_raw_inode(&iloc);
5619 header = IHDR(inode, raw_inode);
5621 /* No extended attributes present */
5622 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5623 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5624 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5625 new_extra_isize);
5626 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5627 return 0;
5630 /* try to expand with EAs present */
5631 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5632 raw_inode, handle);
5636 * What we do here is to mark the in-core inode as clean with respect to inode
5637 * dirtiness (it may still be data-dirty).
5638 * This means that the in-core inode may be reaped by prune_icache
5639 * without having to perform any I/O. This is a very good thing,
5640 * because *any* task may call prune_icache - even ones which
5641 * have a transaction open against a different journal.
5643 * Is this cheating? Not really. Sure, we haven't written the
5644 * inode out, but prune_icache isn't a user-visible syncing function.
5645 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5646 * we start and wait on commits.
5648 * Is this efficient/effective? Well, we're being nice to the system
5649 * by cleaning up our inodes proactively so they can be reaped
5650 * without I/O. But we are potentially leaving up to five seconds'
5651 * worth of inodes floating about which prune_icache wants us to
5652 * write out. One way to fix that would be to get prune_icache()
5653 * to do a write_super() to free up some memory. It has the desired
5654 * effect.
5656 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5658 struct ext4_iloc iloc;
5659 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5660 static unsigned int mnt_count;
5661 int err, ret;
5663 might_sleep();
5664 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5665 err = ext4_reserve_inode_write(handle, inode, &iloc);
5666 if (ext4_handle_valid(handle) &&
5667 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5668 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5670 * We need extra buffer credits since we may write into EA block
5671 * with this same handle. If journal_extend fails, then it will
5672 * only result in a minor loss of functionality for that inode.
5673 * If this is felt to be critical, then e2fsck should be run to
5674 * force a large enough s_min_extra_isize.
5676 if ((jbd2_journal_extend(handle,
5677 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5678 ret = ext4_expand_extra_isize(inode,
5679 sbi->s_want_extra_isize,
5680 iloc, handle);
5681 if (ret) {
5682 ext4_set_inode_state(inode,
5683 EXT4_STATE_NO_EXPAND);
5684 if (mnt_count !=
5685 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5686 ext4_warning(inode->i_sb,
5687 "Unable to expand inode %lu. Delete"
5688 " some EAs or run e2fsck.",
5689 inode->i_ino);
5690 mnt_count =
5691 le16_to_cpu(sbi->s_es->s_mnt_count);
5696 if (!err)
5697 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5698 return err;
5702 * ext4_dirty_inode() is called from __mark_inode_dirty()
5704 * We're really interested in the case where a file is being extended.
5705 * i_size has been changed by generic_commit_write() and we thus need
5706 * to include the updated inode in the current transaction.
5708 * Also, dquot_alloc_block() will always dirty the inode when blocks
5709 * are allocated to the file.
5711 * If the inode is marked synchronous, we don't honour that here - doing
5712 * so would cause a commit on atime updates, which we don't bother doing.
5713 * We handle synchronous inodes at the highest possible level.
5715 void ext4_dirty_inode(struct inode *inode)
5717 handle_t *handle;
5719 handle = ext4_journal_start(inode, 2);
5720 if (IS_ERR(handle))
5721 goto out;
5723 ext4_mark_inode_dirty(handle, inode);
5725 ext4_journal_stop(handle);
5726 out:
5727 return;
5730 #if 0
5732 * Bind an inode's backing buffer_head into this transaction, to prevent
5733 * it from being flushed to disk early. Unlike
5734 * ext4_reserve_inode_write, this leaves behind no bh reference and
5735 * returns no iloc structure, so the caller needs to repeat the iloc
5736 * lookup to mark the inode dirty later.
5738 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5740 struct ext4_iloc iloc;
5742 int err = 0;
5743 if (handle) {
5744 err = ext4_get_inode_loc(inode, &iloc);
5745 if (!err) {
5746 BUFFER_TRACE(iloc.bh, "get_write_access");
5747 err = jbd2_journal_get_write_access(handle, iloc.bh);
5748 if (!err)
5749 err = ext4_handle_dirty_metadata(handle,
5750 NULL,
5751 iloc.bh);
5752 brelse(iloc.bh);
5755 ext4_std_error(inode->i_sb, err);
5756 return err;
5758 #endif
5760 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5762 journal_t *journal;
5763 handle_t *handle;
5764 int err;
5767 * We have to be very careful here: changing a data block's
5768 * journaling status dynamically is dangerous. If we write a
5769 * data block to the journal, change the status and then delete
5770 * that block, we risk forgetting to revoke the old log record
5771 * from the journal and so a subsequent replay can corrupt data.
5772 * So, first we make sure that the journal is empty and that
5773 * nobody is changing anything.
5776 journal = EXT4_JOURNAL(inode);
5777 if (!journal)
5778 return 0;
5779 if (is_journal_aborted(journal))
5780 return -EROFS;
5782 jbd2_journal_lock_updates(journal);
5783 jbd2_journal_flush(journal);
5786 * OK, there are no updates running now, and all cached data is
5787 * synced to disk. We are now in a completely consistent state
5788 * which doesn't have anything in the journal, and we know that
5789 * no filesystem updates are running, so it is safe to modify
5790 * the inode's in-core data-journaling state flag now.
5793 if (val)
5794 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5795 else
5796 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5797 ext4_set_aops(inode);
5799 jbd2_journal_unlock_updates(journal);
5801 /* Finally we can mark the inode as dirty. */
5803 handle = ext4_journal_start(inode, 1);
5804 if (IS_ERR(handle))
5805 return PTR_ERR(handle);
5807 err = ext4_mark_inode_dirty(handle, inode);
5808 ext4_handle_sync(handle);
5809 ext4_journal_stop(handle);
5810 ext4_std_error(inode->i_sb, err);
5812 return err;
5815 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5817 return !buffer_mapped(bh);
5820 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5822 struct page *page = vmf->page;
5823 loff_t size;
5824 unsigned long len;
5825 int ret = -EINVAL;
5826 void *fsdata;
5827 struct file *file = vma->vm_file;
5828 struct inode *inode = file->f_path.dentry->d_inode;
5829 struct address_space *mapping = inode->i_mapping;
5832 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5833 * get i_mutex because we are already holding mmap_sem.
5835 down_read(&inode->i_alloc_sem);
5836 size = i_size_read(inode);
5837 if (page->mapping != mapping || size <= page_offset(page)
5838 || !PageUptodate(page)) {
5839 /* page got truncated from under us? */
5840 goto out_unlock;
5842 ret = 0;
5843 if (PageMappedToDisk(page))
5844 goto out_unlock;
5846 if (page->index == size >> PAGE_CACHE_SHIFT)
5847 len = size & ~PAGE_CACHE_MASK;
5848 else
5849 len = PAGE_CACHE_SIZE;
5851 lock_page(page);
5853 * return if we have all the buffers mapped. This avoid
5854 * the need to call write_begin/write_end which does a
5855 * journal_start/journal_stop which can block and take
5856 * long time
5858 if (page_has_buffers(page)) {
5859 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5860 ext4_bh_unmapped)) {
5861 unlock_page(page);
5862 goto out_unlock;
5865 unlock_page(page);
5867 * OK, we need to fill the hole... Do write_begin write_end
5868 * to do block allocation/reservation.We are not holding
5869 * inode.i__mutex here. That allow * parallel write_begin,
5870 * write_end call. lock_page prevent this from happening
5871 * on the same page though
5873 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5874 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5875 if (ret < 0)
5876 goto out_unlock;
5877 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5878 len, len, page, fsdata);
5879 if (ret < 0)
5880 goto out_unlock;
5881 ret = 0;
5882 out_unlock:
5883 if (ret)
5884 ret = VM_FAULT_SIGBUS;
5885 up_read(&inode->i_alloc_sem);
5886 return ret;