2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
56 trace_ext4_begin_ordered_truncate(inode
, new_size
);
57 return jbd2_journal_begin_ordered_truncate(
58 EXT4_SB(inode
->i_sb
)->s_journal
,
59 &EXT4_I(inode
)->jinode
,
63 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
64 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
65 struct buffer_head
*bh_result
, int create
);
66 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
67 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
68 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
69 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
72 * Test whether an inode is a fast symlink.
74 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
76 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
77 (inode
->i_sb
->s_blocksize
>> 9) : 0;
79 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
83 * Work out how many blocks we need to proceed with the next chunk of a
84 * truncate transaction.
86 static unsigned long blocks_for_truncate(struct inode
*inode
)
90 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
92 /* Give ourselves just enough room to cope with inodes in which
93 * i_blocks is corrupt: we've seen disk corruptions in the past
94 * which resulted in random data in an inode which looked enough
95 * like a regular file for ext4 to try to delete it. Things
96 * will go a bit crazy if that happens, but at least we should
97 * try not to panic the whole kernel. */
101 /* But we need to bound the transaction so we don't overflow the
103 if (needed
> EXT4_MAX_TRANS_DATA
)
104 needed
= EXT4_MAX_TRANS_DATA
;
106 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
110 * Truncate transactions can be complex and absolutely huge. So we need to
111 * be able to restart the transaction at a conventient checkpoint to make
112 * sure we don't overflow the journal.
114 * start_transaction gets us a new handle for a truncate transaction,
115 * and extend_transaction tries to extend the existing one a bit. If
116 * extend fails, we need to propagate the failure up and restart the
117 * transaction in the top-level truncate loop. --sct
119 static handle_t
*start_transaction(struct inode
*inode
)
123 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
127 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
132 * Try to extend this transaction for the purposes of truncation.
134 * Returns 0 if we managed to create more room. If we can't create more
135 * room, and the transaction must be restarted we return 1.
137 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
139 if (!ext4_handle_valid(handle
))
141 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
143 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
149 * Restart the transaction associated with *handle. This does a commit,
150 * so before we call here everything must be consistently dirtied against
153 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
159 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
160 * moment, get_block can be called only for blocks inside i_size since
161 * page cache has been already dropped and writes are blocked by
162 * i_mutex. So we can safely drop the i_data_sem here.
164 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
165 jbd_debug(2, "restarting handle %p\n", handle
);
166 up_write(&EXT4_I(inode
)->i_data_sem
);
167 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
168 down_write(&EXT4_I(inode
)->i_data_sem
);
169 ext4_discard_preallocations(inode
);
175 * Called at the last iput() if i_nlink is zero.
177 void ext4_evict_inode(struct inode
*inode
)
182 trace_ext4_evict_inode(inode
);
183 if (inode
->i_nlink
) {
184 truncate_inode_pages(&inode
->i_data
, 0);
188 if (!is_bad_inode(inode
))
189 dquot_initialize(inode
);
191 if (ext4_should_order_data(inode
))
192 ext4_begin_ordered_truncate(inode
, 0);
193 truncate_inode_pages(&inode
->i_data
, 0);
195 if (is_bad_inode(inode
))
198 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
199 if (IS_ERR(handle
)) {
200 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
202 * If we're going to skip the normal cleanup, we still need to
203 * make sure that the in-core orphan linked list is properly
206 ext4_orphan_del(NULL
, inode
);
211 ext4_handle_sync(handle
);
213 err
= ext4_mark_inode_dirty(handle
, inode
);
215 ext4_warning(inode
->i_sb
,
216 "couldn't mark inode dirty (err %d)", err
);
220 ext4_truncate(inode
);
223 * ext4_ext_truncate() doesn't reserve any slop when it
224 * restarts journal transactions; therefore there may not be
225 * enough credits left in the handle to remove the inode from
226 * the orphan list and set the dtime field.
228 if (!ext4_handle_has_enough_credits(handle
, 3)) {
229 err
= ext4_journal_extend(handle
, 3);
231 err
= ext4_journal_restart(handle
, 3);
233 ext4_warning(inode
->i_sb
,
234 "couldn't extend journal (err %d)", err
);
236 ext4_journal_stop(handle
);
237 ext4_orphan_del(NULL
, inode
);
243 * Kill off the orphan record which ext4_truncate created.
244 * AKPM: I think this can be inside the above `if'.
245 * Note that ext4_orphan_del() has to be able to cope with the
246 * deletion of a non-existent orphan - this is because we don't
247 * know if ext4_truncate() actually created an orphan record.
248 * (Well, we could do this if we need to, but heck - it works)
250 ext4_orphan_del(handle
, inode
);
251 EXT4_I(inode
)->i_dtime
= get_seconds();
254 * One subtle ordering requirement: if anything has gone wrong
255 * (transaction abort, IO errors, whatever), then we can still
256 * do these next steps (the fs will already have been marked as
257 * having errors), but we can't free the inode if the mark_dirty
260 if (ext4_mark_inode_dirty(handle
, inode
))
261 /* If that failed, just do the required in-core inode clear. */
262 ext4_clear_inode(inode
);
264 ext4_free_inode(handle
, inode
);
265 ext4_journal_stop(handle
);
268 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
274 struct buffer_head
*bh
;
277 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
279 p
->key
= *(p
->p
= v
);
284 * ext4_block_to_path - parse the block number into array of offsets
285 * @inode: inode in question (we are only interested in its superblock)
286 * @i_block: block number to be parsed
287 * @offsets: array to store the offsets in
288 * @boundary: set this non-zero if the referred-to block is likely to be
289 * followed (on disk) by an indirect block.
291 * To store the locations of file's data ext4 uses a data structure common
292 * for UNIX filesystems - tree of pointers anchored in the inode, with
293 * data blocks at leaves and indirect blocks in intermediate nodes.
294 * This function translates the block number into path in that tree -
295 * return value is the path length and @offsets[n] is the offset of
296 * pointer to (n+1)th node in the nth one. If @block is out of range
297 * (negative or too large) warning is printed and zero returned.
299 * Note: function doesn't find node addresses, so no IO is needed. All
300 * we need to know is the capacity of indirect blocks (taken from the
305 * Portability note: the last comparison (check that we fit into triple
306 * indirect block) is spelled differently, because otherwise on an
307 * architecture with 32-bit longs and 8Kb pages we might get into trouble
308 * if our filesystem had 8Kb blocks. We might use long long, but that would
309 * kill us on x86. Oh, well, at least the sign propagation does not matter -
310 * i_block would have to be negative in the very beginning, so we would not
314 static int ext4_block_to_path(struct inode
*inode
,
316 ext4_lblk_t offsets
[4], int *boundary
)
318 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
319 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
320 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
321 indirect_blocks
= ptrs
,
322 double_blocks
= (1 << (ptrs_bits
* 2));
326 if (i_block
< direct_blocks
) {
327 offsets
[n
++] = i_block
;
328 final
= direct_blocks
;
329 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
330 offsets
[n
++] = EXT4_IND_BLOCK
;
331 offsets
[n
++] = i_block
;
333 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
334 offsets
[n
++] = EXT4_DIND_BLOCK
;
335 offsets
[n
++] = i_block
>> ptrs_bits
;
336 offsets
[n
++] = i_block
& (ptrs
- 1);
338 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
339 offsets
[n
++] = EXT4_TIND_BLOCK
;
340 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
341 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
342 offsets
[n
++] = i_block
& (ptrs
- 1);
345 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
346 i_block
+ direct_blocks
+
347 indirect_blocks
+ double_blocks
, inode
->i_ino
);
350 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
354 static int __ext4_check_blockref(const char *function
, unsigned int line
,
356 __le32
*p
, unsigned int max
)
358 struct ext4_super_block
*es
= EXT4_SB(inode
->i_sb
)->s_es
;
362 while (bref
< p
+max
) {
363 blk
= le32_to_cpu(*bref
++);
365 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
367 es
->s_last_error_block
= cpu_to_le64(blk
);
368 ext4_error_inode(inode
, function
, line
, blk
,
377 #define ext4_check_indirect_blockref(inode, bh) \
378 __ext4_check_blockref(__func__, __LINE__, inode, \
379 (__le32 *)(bh)->b_data, \
380 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
382 #define ext4_check_inode_blockref(inode) \
383 __ext4_check_blockref(__func__, __LINE__, inode, \
384 EXT4_I(inode)->i_data, \
388 * ext4_get_branch - read the chain of indirect blocks leading to data
389 * @inode: inode in question
390 * @depth: depth of the chain (1 - direct pointer, etc.)
391 * @offsets: offsets of pointers in inode/indirect blocks
392 * @chain: place to store the result
393 * @err: here we store the error value
395 * Function fills the array of triples <key, p, bh> and returns %NULL
396 * if everything went OK or the pointer to the last filled triple
397 * (incomplete one) otherwise. Upon the return chain[i].key contains
398 * the number of (i+1)-th block in the chain (as it is stored in memory,
399 * i.e. little-endian 32-bit), chain[i].p contains the address of that
400 * number (it points into struct inode for i==0 and into the bh->b_data
401 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
402 * block for i>0 and NULL for i==0. In other words, it holds the block
403 * numbers of the chain, addresses they were taken from (and where we can
404 * verify that chain did not change) and buffer_heads hosting these
407 * Function stops when it stumbles upon zero pointer (absent block)
408 * (pointer to last triple returned, *@err == 0)
409 * or when it gets an IO error reading an indirect block
410 * (ditto, *@err == -EIO)
411 * or when it reads all @depth-1 indirect blocks successfully and finds
412 * the whole chain, all way to the data (returns %NULL, *err == 0).
414 * Need to be called with
415 * down_read(&EXT4_I(inode)->i_data_sem)
417 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
418 ext4_lblk_t
*offsets
,
419 Indirect chain
[4], int *err
)
421 struct super_block
*sb
= inode
->i_sb
;
423 struct buffer_head
*bh
;
426 /* i_data is not going away, no lock needed */
427 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
431 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
435 if (!bh_uptodate_or_lock(bh
)) {
436 if (bh_submit_read(bh
) < 0) {
440 /* validate block references */
441 if (ext4_check_indirect_blockref(inode
, bh
)) {
447 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
461 * ext4_find_near - find a place for allocation with sufficient locality
463 * @ind: descriptor of indirect block.
465 * This function returns the preferred place for block allocation.
466 * It is used when heuristic for sequential allocation fails.
468 * + if there is a block to the left of our position - allocate near it.
469 * + if pointer will live in indirect block - allocate near that block.
470 * + if pointer will live in inode - allocate in the same
473 * In the latter case we colour the starting block by the callers PID to
474 * prevent it from clashing with concurrent allocations for a different inode
475 * in the same block group. The PID is used here so that functionally related
476 * files will be close-by on-disk.
478 * Caller must make sure that @ind is valid and will stay that way.
480 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
482 struct ext4_inode_info
*ei
= EXT4_I(inode
);
483 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
485 ext4_fsblk_t bg_start
;
486 ext4_fsblk_t last_block
;
487 ext4_grpblk_t colour
;
488 ext4_group_t block_group
;
489 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
491 /* Try to find previous block */
492 for (p
= ind
->p
- 1; p
>= start
; p
--) {
494 return le32_to_cpu(*p
);
497 /* No such thing, so let's try location of indirect block */
499 return ind
->bh
->b_blocknr
;
502 * It is going to be referred to from the inode itself? OK, just put it
503 * into the same cylinder group then.
505 block_group
= ei
->i_block_group
;
506 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
507 block_group
&= ~(flex_size
-1);
508 if (S_ISREG(inode
->i_mode
))
511 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
512 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
515 * If we are doing delayed allocation, we don't need take
516 * colour into account.
518 if (test_opt(inode
->i_sb
, DELALLOC
))
521 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
522 colour
= (current
->pid
% 16) *
523 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
525 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
526 return bg_start
+ colour
;
530 * ext4_find_goal - find a preferred place for allocation.
532 * @block: block we want
533 * @partial: pointer to the last triple within a chain
535 * Normally this function find the preferred place for block allocation,
537 * Because this is only used for non-extent files, we limit the block nr
540 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
546 * XXX need to get goal block from mballoc's data structures
549 goal
= ext4_find_near(inode
, partial
);
550 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
555 * ext4_blks_to_allocate - Look up the block map and count the number
556 * of direct blocks need to be allocated for the given branch.
558 * @branch: chain of indirect blocks
559 * @k: number of blocks need for indirect blocks
560 * @blks: number of data blocks to be mapped.
561 * @blocks_to_boundary: the offset in the indirect block
563 * return the total number of blocks to be allocate, including the
564 * direct and indirect blocks.
566 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
567 int blocks_to_boundary
)
569 unsigned int count
= 0;
572 * Simple case, [t,d]Indirect block(s) has not allocated yet
573 * then it's clear blocks on that path have not allocated
576 /* right now we don't handle cross boundary allocation */
577 if (blks
< blocks_to_boundary
+ 1)
580 count
+= blocks_to_boundary
+ 1;
585 while (count
< blks
&& count
<= blocks_to_boundary
&&
586 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
593 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
594 * @handle: handle for this transaction
595 * @inode: inode which needs allocated blocks
596 * @iblock: the logical block to start allocated at
597 * @goal: preferred physical block of allocation
598 * @indirect_blks: the number of blocks need to allocate for indirect
600 * @blks: number of desired blocks
601 * @new_blocks: on return it will store the new block numbers for
602 * the indirect blocks(if needed) and the first direct block,
603 * @err: on return it will store the error code
605 * This function will return the number of blocks allocated as
606 * requested by the passed-in parameters.
608 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
609 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
610 int indirect_blks
, int blks
,
611 ext4_fsblk_t new_blocks
[4], int *err
)
613 struct ext4_allocation_request ar
;
615 unsigned long count
= 0, blk_allocated
= 0;
617 ext4_fsblk_t current_block
= 0;
621 * Here we try to allocate the requested multiple blocks at once,
622 * on a best-effort basis.
623 * To build a branch, we should allocate blocks for
624 * the indirect blocks(if not allocated yet), and at least
625 * the first direct block of this branch. That's the
626 * minimum number of blocks need to allocate(required)
628 /* first we try to allocate the indirect blocks */
629 target
= indirect_blks
;
632 /* allocating blocks for indirect blocks and direct blocks */
633 current_block
= ext4_new_meta_blocks(handle
, inode
,
638 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
639 EXT4_ERROR_INODE(inode
,
640 "current_block %llu + count %lu > %d!",
641 current_block
, count
,
642 EXT4_MAX_BLOCK_FILE_PHYS
);
648 /* allocate blocks for indirect blocks */
649 while (index
< indirect_blks
&& count
) {
650 new_blocks
[index
++] = current_block
++;
655 * save the new block number
656 * for the first direct block
658 new_blocks
[index
] = current_block
;
659 printk(KERN_INFO
"%s returned more blocks than "
660 "requested\n", __func__
);
666 target
= blks
- count
;
667 blk_allocated
= count
;
670 /* Now allocate data blocks */
671 memset(&ar
, 0, sizeof(ar
));
676 if (S_ISREG(inode
->i_mode
))
677 /* enable in-core preallocation only for regular files */
678 ar
.flags
= EXT4_MB_HINT_DATA
;
680 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
681 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
682 EXT4_ERROR_INODE(inode
,
683 "current_block %llu + ar.len %d > %d!",
684 current_block
, ar
.len
,
685 EXT4_MAX_BLOCK_FILE_PHYS
);
690 if (*err
&& (target
== blks
)) {
692 * if the allocation failed and we didn't allocate
698 if (target
== blks
) {
700 * save the new block number
701 * for the first direct block
703 new_blocks
[index
] = current_block
;
705 blk_allocated
+= ar
.len
;
708 /* total number of blocks allocated for direct blocks */
713 for (i
= 0; i
< index
; i
++)
714 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
719 * ext4_alloc_branch - allocate and set up a chain of blocks.
720 * @handle: handle for this transaction
722 * @indirect_blks: number of allocated indirect blocks
723 * @blks: number of allocated direct blocks
724 * @goal: preferred place for allocation
725 * @offsets: offsets (in the blocks) to store the pointers to next.
726 * @branch: place to store the chain in.
728 * This function allocates blocks, zeroes out all but the last one,
729 * links them into chain and (if we are synchronous) writes them to disk.
730 * In other words, it prepares a branch that can be spliced onto the
731 * inode. It stores the information about that chain in the branch[], in
732 * the same format as ext4_get_branch() would do. We are calling it after
733 * we had read the existing part of chain and partial points to the last
734 * triple of that (one with zero ->key). Upon the exit we have the same
735 * picture as after the successful ext4_get_block(), except that in one
736 * place chain is disconnected - *branch->p is still zero (we did not
737 * set the last link), but branch->key contains the number that should
738 * be placed into *branch->p to fill that gap.
740 * If allocation fails we free all blocks we've allocated (and forget
741 * their buffer_heads) and return the error value the from failed
742 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
743 * as described above and return 0.
745 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
746 ext4_lblk_t iblock
, int indirect_blks
,
747 int *blks
, ext4_fsblk_t goal
,
748 ext4_lblk_t
*offsets
, Indirect
*branch
)
750 int blocksize
= inode
->i_sb
->s_blocksize
;
753 struct buffer_head
*bh
;
755 ext4_fsblk_t new_blocks
[4];
756 ext4_fsblk_t current_block
;
758 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
759 *blks
, new_blocks
, &err
);
763 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
765 * metadata blocks and data blocks are allocated.
767 for (n
= 1; n
<= indirect_blks
; n
++) {
769 * Get buffer_head for parent block, zero it out
770 * and set the pointer to new one, then send
773 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
781 BUFFER_TRACE(bh
, "call get_create_access");
782 err
= ext4_journal_get_create_access(handle
, bh
);
784 /* Don't brelse(bh) here; it's done in
785 * ext4_journal_forget() below */
790 memset(bh
->b_data
, 0, blocksize
);
791 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
792 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
793 *branch
[n
].p
= branch
[n
].key
;
794 if (n
== indirect_blks
) {
795 current_block
= new_blocks
[n
];
797 * End of chain, update the last new metablock of
798 * the chain to point to the new allocated
799 * data blocks numbers
801 for (i
= 1; i
< num
; i
++)
802 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
804 BUFFER_TRACE(bh
, "marking uptodate");
805 set_buffer_uptodate(bh
);
808 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
809 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
816 /* Allocation failed, free what we already allocated */
817 ext4_free_blocks(handle
, inode
, 0, new_blocks
[0], 1, 0);
818 for (i
= 1; i
<= n
; i
++) {
820 * branch[i].bh is newly allocated, so there is no
821 * need to revoke the block, which is why we don't
822 * need to set EXT4_FREE_BLOCKS_METADATA.
824 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1,
825 EXT4_FREE_BLOCKS_FORGET
);
827 for (i
= n
+1; i
< indirect_blks
; i
++)
828 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
830 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], num
, 0);
836 * ext4_splice_branch - splice the allocated branch onto inode.
837 * @handle: handle for this transaction
839 * @block: (logical) number of block we are adding
840 * @chain: chain of indirect blocks (with a missing link - see
842 * @where: location of missing link
843 * @num: number of indirect blocks we are adding
844 * @blks: number of direct blocks we are adding
846 * This function fills the missing link and does all housekeeping needed in
847 * inode (->i_blocks, etc.). In case of success we end up with the full
848 * chain to new block and return 0.
850 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
851 ext4_lblk_t block
, Indirect
*where
, int num
,
856 ext4_fsblk_t current_block
;
859 * If we're splicing into a [td]indirect block (as opposed to the
860 * inode) then we need to get write access to the [td]indirect block
864 BUFFER_TRACE(where
->bh
, "get_write_access");
865 err
= ext4_journal_get_write_access(handle
, where
->bh
);
871 *where
->p
= where
->key
;
874 * Update the host buffer_head or inode to point to more just allocated
875 * direct blocks blocks
877 if (num
== 0 && blks
> 1) {
878 current_block
= le32_to_cpu(where
->key
) + 1;
879 for (i
= 1; i
< blks
; i
++)
880 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
883 /* We are done with atomic stuff, now do the rest of housekeeping */
884 /* had we spliced it onto indirect block? */
887 * If we spliced it onto an indirect block, we haven't
888 * altered the inode. Note however that if it is being spliced
889 * onto an indirect block at the very end of the file (the
890 * file is growing) then we *will* alter the inode to reflect
891 * the new i_size. But that is not done here - it is done in
892 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
894 jbd_debug(5, "splicing indirect only\n");
895 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
896 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
901 * OK, we spliced it into the inode itself on a direct block.
903 ext4_mark_inode_dirty(handle
, inode
);
904 jbd_debug(5, "splicing direct\n");
909 for (i
= 1; i
<= num
; i
++) {
911 * branch[i].bh is newly allocated, so there is no
912 * need to revoke the block, which is why we don't
913 * need to set EXT4_FREE_BLOCKS_METADATA.
915 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
916 EXT4_FREE_BLOCKS_FORGET
);
918 ext4_free_blocks(handle
, inode
, 0, le32_to_cpu(where
[num
].key
),
925 * The ext4_ind_map_blocks() function handles non-extents inodes
926 * (i.e., using the traditional indirect/double-indirect i_blocks
927 * scheme) for ext4_map_blocks().
929 * Allocation strategy is simple: if we have to allocate something, we will
930 * have to go the whole way to leaf. So let's do it before attaching anything
931 * to tree, set linkage between the newborn blocks, write them if sync is
932 * required, recheck the path, free and repeat if check fails, otherwise
933 * set the last missing link (that will protect us from any truncate-generated
934 * removals - all blocks on the path are immune now) and possibly force the
935 * write on the parent block.
936 * That has a nice additional property: no special recovery from the failed
937 * allocations is needed - we simply release blocks and do not touch anything
938 * reachable from inode.
940 * `handle' can be NULL if create == 0.
942 * return > 0, # of blocks mapped or allocated.
943 * return = 0, if plain lookup failed.
944 * return < 0, error case.
946 * The ext4_ind_get_blocks() function should be called with
947 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
948 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
949 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
952 static int ext4_ind_map_blocks(handle_t
*handle
, struct inode
*inode
,
953 struct ext4_map_blocks
*map
,
957 ext4_lblk_t offsets
[4];
962 int blocks_to_boundary
= 0;
965 ext4_fsblk_t first_block
= 0;
967 J_ASSERT(!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)));
968 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
969 depth
= ext4_block_to_path(inode
, map
->m_lblk
, offsets
,
970 &blocks_to_boundary
);
975 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
977 /* Simplest case - block found, no allocation needed */
979 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
982 while (count
< map
->m_len
&& count
<= blocks_to_boundary
) {
985 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
987 if (blk
== first_block
+ count
)
995 /* Next simple case - plain lookup or failed read of indirect block */
996 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
1000 * Okay, we need to do block allocation.
1002 goal
= ext4_find_goal(inode
, map
->m_lblk
, partial
);
1004 /* the number of blocks need to allocate for [d,t]indirect blocks */
1005 indirect_blks
= (chain
+ depth
) - partial
- 1;
1008 * Next look up the indirect map to count the totoal number of
1009 * direct blocks to allocate for this branch.
1011 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1012 map
->m_len
, blocks_to_boundary
);
1014 * Block out ext4_truncate while we alter the tree
1016 err
= ext4_alloc_branch(handle
, inode
, map
->m_lblk
, indirect_blks
,
1018 offsets
+ (partial
- chain
), partial
);
1021 * The ext4_splice_branch call will free and forget any buffers
1022 * on the new chain if there is a failure, but that risks using
1023 * up transaction credits, especially for bitmaps where the
1024 * credits cannot be returned. Can we handle this somehow? We
1025 * may need to return -EAGAIN upwards in the worst case. --sct
1028 err
= ext4_splice_branch(handle
, inode
, map
->m_lblk
,
1029 partial
, indirect_blks
, count
);
1033 map
->m_flags
|= EXT4_MAP_NEW
;
1035 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1037 map
->m_flags
|= EXT4_MAP_MAPPED
;
1038 map
->m_pblk
= le32_to_cpu(chain
[depth
-1].key
);
1040 if (count
> blocks_to_boundary
)
1041 map
->m_flags
|= EXT4_MAP_BOUNDARY
;
1043 /* Clean up and exit */
1044 partial
= chain
+ depth
- 1; /* the whole chain */
1046 while (partial
> chain
) {
1047 BUFFER_TRACE(partial
->bh
, "call brelse");
1048 brelse(partial
->bh
);
1056 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1058 return &EXT4_I(inode
)->i_reserved_quota
;
1063 * Calculate the number of metadata blocks need to reserve
1064 * to allocate a new block at @lblocks for non extent file based file
1066 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1069 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1070 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1073 if (lblock
< EXT4_NDIR_BLOCKS
)
1076 lblock
-= EXT4_NDIR_BLOCKS
;
1078 if (ei
->i_da_metadata_calc_len
&&
1079 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1080 ei
->i_da_metadata_calc_len
++;
1083 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1084 ei
->i_da_metadata_calc_len
= 1;
1085 blk_bits
= order_base_2(lblock
);
1086 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1090 * Calculate the number of metadata blocks need to reserve
1091 * to allocate a block located at @lblock
1093 static int ext4_calc_metadata_amount(struct inode
*inode
, sector_t lblock
)
1095 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1096 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1098 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1102 * Called with i_data_sem down, which is important since we can call
1103 * ext4_discard_preallocations() from here.
1105 void ext4_da_update_reserve_space(struct inode
*inode
,
1106 int used
, int quota_claim
)
1108 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1109 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1111 spin_lock(&ei
->i_block_reservation_lock
);
1112 trace_ext4_da_update_reserve_space(inode
, used
);
1113 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1114 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1115 "with only %d reserved data blocks\n",
1116 __func__
, inode
->i_ino
, used
,
1117 ei
->i_reserved_data_blocks
);
1119 used
= ei
->i_reserved_data_blocks
;
1122 /* Update per-inode reservations */
1123 ei
->i_reserved_data_blocks
-= used
;
1124 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1125 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1126 used
+ ei
->i_allocated_meta_blocks
);
1127 ei
->i_allocated_meta_blocks
= 0;
1129 if (ei
->i_reserved_data_blocks
== 0) {
1131 * We can release all of the reserved metadata blocks
1132 * only when we have written all of the delayed
1133 * allocation blocks.
1135 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1136 ei
->i_reserved_meta_blocks
);
1137 ei
->i_reserved_meta_blocks
= 0;
1138 ei
->i_da_metadata_calc_len
= 0;
1140 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1142 /* Update quota subsystem for data blocks */
1144 dquot_claim_block(inode
, used
);
1147 * We did fallocate with an offset that is already delayed
1148 * allocated. So on delayed allocated writeback we should
1149 * not re-claim the quota for fallocated blocks.
1151 dquot_release_reservation_block(inode
, used
);
1155 * If we have done all the pending block allocations and if
1156 * there aren't any writers on the inode, we can discard the
1157 * inode's preallocations.
1159 if ((ei
->i_reserved_data_blocks
== 0) &&
1160 (atomic_read(&inode
->i_writecount
) == 0))
1161 ext4_discard_preallocations(inode
);
1164 static int __check_block_validity(struct inode
*inode
, const char *func
,
1166 struct ext4_map_blocks
*map
)
1168 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
1170 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
1171 "lblock %lu mapped to illegal pblock "
1172 "(length %d)", (unsigned long) map
->m_lblk
,
1179 #define check_block_validity(inode, map) \
1180 __check_block_validity((inode), __func__, __LINE__, (map))
1183 * Return the number of contiguous dirty pages in a given inode
1184 * starting at page frame idx.
1186 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1187 unsigned int max_pages
)
1189 struct address_space
*mapping
= inode
->i_mapping
;
1191 struct pagevec pvec
;
1193 int i
, nr_pages
, done
= 0;
1197 pagevec_init(&pvec
, 0);
1200 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1201 PAGECACHE_TAG_DIRTY
,
1202 (pgoff_t
)PAGEVEC_SIZE
);
1205 for (i
= 0; i
< nr_pages
; i
++) {
1206 struct page
*page
= pvec
.pages
[i
];
1207 struct buffer_head
*bh
, *head
;
1210 if (unlikely(page
->mapping
!= mapping
) ||
1212 PageWriteback(page
) ||
1213 page
->index
!= idx
) {
1218 if (page_has_buffers(page
)) {
1219 bh
= head
= page_buffers(page
);
1221 if (!buffer_delay(bh
) &&
1222 !buffer_unwritten(bh
))
1224 bh
= bh
->b_this_page
;
1225 } while (!done
&& (bh
!= head
));
1232 if (num
>= max_pages
) {
1237 pagevec_release(&pvec
);
1243 * The ext4_map_blocks() function tries to look up the requested blocks,
1244 * and returns if the blocks are already mapped.
1246 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1247 * and store the allocated blocks in the result buffer head and mark it
1250 * If file type is extents based, it will call ext4_ext_map_blocks(),
1251 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1254 * On success, it returns the number of blocks being mapped or allocate.
1255 * if create==0 and the blocks are pre-allocated and uninitialized block,
1256 * the result buffer head is unmapped. If the create ==1, it will make sure
1257 * the buffer head is mapped.
1259 * It returns 0 if plain look up failed (blocks have not been allocated), in
1260 * that casem, buffer head is unmapped
1262 * It returns the error in case of allocation failure.
1264 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
1265 struct ext4_map_blocks
*map
, int flags
)
1270 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1271 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
1272 (unsigned long) map
->m_lblk
);
1274 * Try to see if we can get the block without requesting a new
1275 * file system block.
1277 down_read((&EXT4_I(inode
)->i_data_sem
));
1278 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1279 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
1281 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
1283 up_read((&EXT4_I(inode
)->i_data_sem
));
1285 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1286 int ret
= check_block_validity(inode
, map
);
1291 /* If it is only a block(s) look up */
1292 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1296 * Returns if the blocks have already allocated
1298 * Note that if blocks have been preallocated
1299 * ext4_ext_get_block() returns th create = 0
1300 * with buffer head unmapped.
1302 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
1306 * When we call get_blocks without the create flag, the
1307 * BH_Unwritten flag could have gotten set if the blocks
1308 * requested were part of a uninitialized extent. We need to
1309 * clear this flag now that we are committed to convert all or
1310 * part of the uninitialized extent to be an initialized
1311 * extent. This is because we need to avoid the combination
1312 * of BH_Unwritten and BH_Mapped flags being simultaneously
1313 * set on the buffer_head.
1315 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
1318 * New blocks allocate and/or writing to uninitialized extent
1319 * will possibly result in updating i_data, so we take
1320 * the write lock of i_data_sem, and call get_blocks()
1321 * with create == 1 flag.
1323 down_write((&EXT4_I(inode
)->i_data_sem
));
1326 * if the caller is from delayed allocation writeout path
1327 * we have already reserved fs blocks for allocation
1328 * let the underlying get_block() function know to
1329 * avoid double accounting
1331 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1332 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1334 * We need to check for EXT4 here because migrate
1335 * could have changed the inode type in between
1337 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1338 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
1340 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
1342 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
1344 * We allocated new blocks which will result in
1345 * i_data's format changing. Force the migrate
1346 * to fail by clearing migrate flags
1348 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1352 * Update reserved blocks/metadata blocks after successful
1353 * block allocation which had been deferred till now. We don't
1354 * support fallocate for non extent files. So we can update
1355 * reserve space here.
1358 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1359 ext4_da_update_reserve_space(inode
, retval
, 1);
1361 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1362 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1364 up_write((&EXT4_I(inode
)->i_data_sem
));
1365 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1366 int ret
= check_block_validity(inode
, map
);
1373 /* Maximum number of blocks we map for direct IO at once. */
1374 #define DIO_MAX_BLOCKS 4096
1376 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
1377 struct buffer_head
*bh
, int flags
)
1379 handle_t
*handle
= ext4_journal_current_handle();
1380 struct ext4_map_blocks map
;
1381 int ret
= 0, started
= 0;
1384 map
.m_lblk
= iblock
;
1385 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1387 if (flags
&& !handle
) {
1388 /* Direct IO write... */
1389 if (map
.m_len
> DIO_MAX_BLOCKS
)
1390 map
.m_len
= DIO_MAX_BLOCKS
;
1391 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
1392 handle
= ext4_journal_start(inode
, dio_credits
);
1393 if (IS_ERR(handle
)) {
1394 ret
= PTR_ERR(handle
);
1400 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
1402 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1403 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1404 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
1408 ext4_journal_stop(handle
);
1412 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1413 struct buffer_head
*bh
, int create
)
1415 return _ext4_get_block(inode
, iblock
, bh
,
1416 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1420 * `handle' can be NULL if create is zero
1422 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1423 ext4_lblk_t block
, int create
, int *errp
)
1425 struct ext4_map_blocks map
;
1426 struct buffer_head
*bh
;
1429 J_ASSERT(handle
!= NULL
|| create
== 0);
1433 err
= ext4_map_blocks(handle
, inode
, &map
,
1434 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1442 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
1447 if (map
.m_flags
& EXT4_MAP_NEW
) {
1448 J_ASSERT(create
!= 0);
1449 J_ASSERT(handle
!= NULL
);
1452 * Now that we do not always journal data, we should
1453 * keep in mind whether this should always journal the
1454 * new buffer as metadata. For now, regular file
1455 * writes use ext4_get_block instead, so it's not a
1459 BUFFER_TRACE(bh
, "call get_create_access");
1460 fatal
= ext4_journal_get_create_access(handle
, bh
);
1461 if (!fatal
&& !buffer_uptodate(bh
)) {
1462 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1463 set_buffer_uptodate(bh
);
1466 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1467 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1471 BUFFER_TRACE(bh
, "not a new buffer");
1481 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1482 ext4_lblk_t block
, int create
, int *err
)
1484 struct buffer_head
*bh
;
1486 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1489 if (buffer_uptodate(bh
))
1491 ll_rw_block(READ_META
, 1, &bh
);
1493 if (buffer_uptodate(bh
))
1500 static int walk_page_buffers(handle_t
*handle
,
1501 struct buffer_head
*head
,
1505 int (*fn
)(handle_t
*handle
,
1506 struct buffer_head
*bh
))
1508 struct buffer_head
*bh
;
1509 unsigned block_start
, block_end
;
1510 unsigned blocksize
= head
->b_size
;
1512 struct buffer_head
*next
;
1514 for (bh
= head
, block_start
= 0;
1515 ret
== 0 && (bh
!= head
|| !block_start
);
1516 block_start
= block_end
, bh
= next
) {
1517 next
= bh
->b_this_page
;
1518 block_end
= block_start
+ blocksize
;
1519 if (block_end
<= from
|| block_start
>= to
) {
1520 if (partial
&& !buffer_uptodate(bh
))
1524 err
= (*fn
)(handle
, bh
);
1532 * To preserve ordering, it is essential that the hole instantiation and
1533 * the data write be encapsulated in a single transaction. We cannot
1534 * close off a transaction and start a new one between the ext4_get_block()
1535 * and the commit_write(). So doing the jbd2_journal_start at the start of
1536 * prepare_write() is the right place.
1538 * Also, this function can nest inside ext4_writepage() ->
1539 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1540 * has generated enough buffer credits to do the whole page. So we won't
1541 * block on the journal in that case, which is good, because the caller may
1544 * By accident, ext4 can be reentered when a transaction is open via
1545 * quota file writes. If we were to commit the transaction while thus
1546 * reentered, there can be a deadlock - we would be holding a quota
1547 * lock, and the commit would never complete if another thread had a
1548 * transaction open and was blocking on the quota lock - a ranking
1551 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1552 * will _not_ run commit under these circumstances because handle->h_ref
1553 * is elevated. We'll still have enough credits for the tiny quotafile
1556 static int do_journal_get_write_access(handle_t
*handle
,
1557 struct buffer_head
*bh
)
1559 int dirty
= buffer_dirty(bh
);
1562 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1565 * __block_write_begin() could have dirtied some buffers. Clean
1566 * the dirty bit as jbd2_journal_get_write_access() could complain
1567 * otherwise about fs integrity issues. Setting of the dirty bit
1568 * by __block_write_begin() isn't a real problem here as we clear
1569 * the bit before releasing a page lock and thus writeback cannot
1570 * ever write the buffer.
1573 clear_buffer_dirty(bh
);
1574 ret
= ext4_journal_get_write_access(handle
, bh
);
1576 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1581 * Truncate blocks that were not used by write. We have to truncate the
1582 * pagecache as well so that corresponding buffers get properly unmapped.
1584 static void ext4_truncate_failed_write(struct inode
*inode
)
1586 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1587 ext4_truncate(inode
);
1590 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1591 struct buffer_head
*bh_result
, int create
);
1592 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1593 loff_t pos
, unsigned len
, unsigned flags
,
1594 struct page
**pagep
, void **fsdata
)
1596 struct inode
*inode
= mapping
->host
;
1597 int ret
, needed_blocks
;
1604 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1606 * Reserve one block more for addition to orphan list in case
1607 * we allocate blocks but write fails for some reason
1609 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1610 index
= pos
>> PAGE_CACHE_SHIFT
;
1611 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1615 handle
= ext4_journal_start(inode
, needed_blocks
);
1616 if (IS_ERR(handle
)) {
1617 ret
= PTR_ERR(handle
);
1621 /* We cannot recurse into the filesystem as the transaction is already
1623 flags
|= AOP_FLAG_NOFS
;
1625 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1627 ext4_journal_stop(handle
);
1633 if (ext4_should_dioread_nolock(inode
))
1634 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1636 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1638 if (!ret
&& ext4_should_journal_data(inode
)) {
1639 ret
= walk_page_buffers(handle
, page_buffers(page
),
1640 from
, to
, NULL
, do_journal_get_write_access
);
1645 page_cache_release(page
);
1647 * __block_write_begin may have instantiated a few blocks
1648 * outside i_size. Trim these off again. Don't need
1649 * i_size_read because we hold i_mutex.
1651 * Add inode to orphan list in case we crash before
1654 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1655 ext4_orphan_add(handle
, inode
);
1657 ext4_journal_stop(handle
);
1658 if (pos
+ len
> inode
->i_size
) {
1659 ext4_truncate_failed_write(inode
);
1661 * If truncate failed early the inode might
1662 * still be on the orphan list; we need to
1663 * make sure the inode is removed from the
1664 * orphan list in that case.
1667 ext4_orphan_del(NULL
, inode
);
1671 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1677 /* For write_end() in data=journal mode */
1678 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1680 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1682 set_buffer_uptodate(bh
);
1683 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1686 static int ext4_generic_write_end(struct file
*file
,
1687 struct address_space
*mapping
,
1688 loff_t pos
, unsigned len
, unsigned copied
,
1689 struct page
*page
, void *fsdata
)
1691 int i_size_changed
= 0;
1692 struct inode
*inode
= mapping
->host
;
1693 handle_t
*handle
= ext4_journal_current_handle();
1695 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1698 * No need to use i_size_read() here, the i_size
1699 * cannot change under us because we hold i_mutex.
1701 * But it's important to update i_size while still holding page lock:
1702 * page writeout could otherwise come in and zero beyond i_size.
1704 if (pos
+ copied
> inode
->i_size
) {
1705 i_size_write(inode
, pos
+ copied
);
1709 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1710 /* We need to mark inode dirty even if
1711 * new_i_size is less that inode->i_size
1712 * bu greater than i_disksize.(hint delalloc)
1714 ext4_update_i_disksize(inode
, (pos
+ copied
));
1718 page_cache_release(page
);
1721 * Don't mark the inode dirty under page lock. First, it unnecessarily
1722 * makes the holding time of page lock longer. Second, it forces lock
1723 * ordering of page lock and transaction start for journaling
1727 ext4_mark_inode_dirty(handle
, inode
);
1733 * We need to pick up the new inode size which generic_commit_write gave us
1734 * `file' can be NULL - eg, when called from page_symlink().
1736 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1737 * buffers are managed internally.
1739 static int ext4_ordered_write_end(struct file
*file
,
1740 struct address_space
*mapping
,
1741 loff_t pos
, unsigned len
, unsigned copied
,
1742 struct page
*page
, void *fsdata
)
1744 handle_t
*handle
= ext4_journal_current_handle();
1745 struct inode
*inode
= mapping
->host
;
1748 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1749 ret
= ext4_jbd2_file_inode(handle
, inode
);
1752 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1755 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1756 /* if we have allocated more blocks and copied
1757 * less. We will have blocks allocated outside
1758 * inode->i_size. So truncate them
1760 ext4_orphan_add(handle
, inode
);
1764 ret2
= ext4_journal_stop(handle
);
1768 if (pos
+ len
> inode
->i_size
) {
1769 ext4_truncate_failed_write(inode
);
1771 * If truncate failed early the inode might still be
1772 * on the orphan list; we need to make sure the inode
1773 * is removed from the orphan list in that case.
1776 ext4_orphan_del(NULL
, inode
);
1780 return ret
? ret
: copied
;
1783 static int ext4_writeback_write_end(struct file
*file
,
1784 struct address_space
*mapping
,
1785 loff_t pos
, unsigned len
, unsigned copied
,
1786 struct page
*page
, void *fsdata
)
1788 handle_t
*handle
= ext4_journal_current_handle();
1789 struct inode
*inode
= mapping
->host
;
1792 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1793 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1796 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1797 /* if we have allocated more blocks and copied
1798 * less. We will have blocks allocated outside
1799 * inode->i_size. So truncate them
1801 ext4_orphan_add(handle
, inode
);
1806 ret2
= ext4_journal_stop(handle
);
1810 if (pos
+ len
> inode
->i_size
) {
1811 ext4_truncate_failed_write(inode
);
1813 * If truncate failed early the inode might still be
1814 * on the orphan list; we need to make sure the inode
1815 * is removed from the orphan list in that case.
1818 ext4_orphan_del(NULL
, inode
);
1821 return ret
? ret
: copied
;
1824 static int ext4_journalled_write_end(struct file
*file
,
1825 struct address_space
*mapping
,
1826 loff_t pos
, unsigned len
, unsigned copied
,
1827 struct page
*page
, void *fsdata
)
1829 handle_t
*handle
= ext4_journal_current_handle();
1830 struct inode
*inode
= mapping
->host
;
1836 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1837 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1841 if (!PageUptodate(page
))
1843 page_zero_new_buffers(page
, from
+copied
, to
);
1846 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1847 to
, &partial
, write_end_fn
);
1849 SetPageUptodate(page
);
1850 new_i_size
= pos
+ copied
;
1851 if (new_i_size
> inode
->i_size
)
1852 i_size_write(inode
, pos
+copied
);
1853 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1854 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1855 ext4_update_i_disksize(inode
, new_i_size
);
1856 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1862 page_cache_release(page
);
1863 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1864 /* if we have allocated more blocks and copied
1865 * less. We will have blocks allocated outside
1866 * inode->i_size. So truncate them
1868 ext4_orphan_add(handle
, inode
);
1870 ret2
= ext4_journal_stop(handle
);
1873 if (pos
+ len
> inode
->i_size
) {
1874 ext4_truncate_failed_write(inode
);
1876 * If truncate failed early the inode might still be
1877 * on the orphan list; we need to make sure the inode
1878 * is removed from the orphan list in that case.
1881 ext4_orphan_del(NULL
, inode
);
1884 return ret
? ret
: copied
;
1888 * Reserve a single block located at lblock
1890 static int ext4_da_reserve_space(struct inode
*inode
, sector_t lblock
)
1893 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1894 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1895 unsigned long md_needed
;
1899 * recalculate the amount of metadata blocks to reserve
1900 * in order to allocate nrblocks
1901 * worse case is one extent per block
1904 spin_lock(&ei
->i_block_reservation_lock
);
1905 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1906 trace_ext4_da_reserve_space(inode
, md_needed
);
1907 spin_unlock(&ei
->i_block_reservation_lock
);
1910 * We will charge metadata quota at writeout time; this saves
1911 * us from metadata over-estimation, though we may go over by
1912 * a small amount in the end. Here we just reserve for data.
1914 ret
= dquot_reserve_block(inode
, 1);
1918 * We do still charge estimated metadata to the sb though;
1919 * we cannot afford to run out of free blocks.
1921 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1)) {
1922 dquot_release_reservation_block(inode
, 1);
1923 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1929 spin_lock(&ei
->i_block_reservation_lock
);
1930 ei
->i_reserved_data_blocks
++;
1931 ei
->i_reserved_meta_blocks
+= md_needed
;
1932 spin_unlock(&ei
->i_block_reservation_lock
);
1934 return 0; /* success */
1937 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1939 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1940 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1943 return; /* Nothing to release, exit */
1945 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1947 trace_ext4_da_release_space(inode
, to_free
);
1948 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1950 * if there aren't enough reserved blocks, then the
1951 * counter is messed up somewhere. Since this
1952 * function is called from invalidate page, it's
1953 * harmless to return without any action.
1955 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1956 "ino %lu, to_free %d with only %d reserved "
1957 "data blocks\n", inode
->i_ino
, to_free
,
1958 ei
->i_reserved_data_blocks
);
1960 to_free
= ei
->i_reserved_data_blocks
;
1962 ei
->i_reserved_data_blocks
-= to_free
;
1964 if (ei
->i_reserved_data_blocks
== 0) {
1966 * We can release all of the reserved metadata blocks
1967 * only when we have written all of the delayed
1968 * allocation blocks.
1970 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1971 ei
->i_reserved_meta_blocks
);
1972 ei
->i_reserved_meta_blocks
= 0;
1973 ei
->i_da_metadata_calc_len
= 0;
1976 /* update fs dirty data blocks counter */
1977 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1979 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1981 dquot_release_reservation_block(inode
, to_free
);
1984 static void ext4_da_page_release_reservation(struct page
*page
,
1985 unsigned long offset
)
1988 struct buffer_head
*head
, *bh
;
1989 unsigned int curr_off
= 0;
1991 head
= page_buffers(page
);
1994 unsigned int next_off
= curr_off
+ bh
->b_size
;
1996 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1998 clear_buffer_delay(bh
);
2000 curr_off
= next_off
;
2001 } while ((bh
= bh
->b_this_page
) != head
);
2002 ext4_da_release_space(page
->mapping
->host
, to_release
);
2006 * Delayed allocation stuff
2010 * mpage_da_submit_io - walks through extent of pages and try to write
2011 * them with writepage() call back
2013 * @mpd->inode: inode
2014 * @mpd->first_page: first page of the extent
2015 * @mpd->next_page: page after the last page of the extent
2017 * By the time mpage_da_submit_io() is called we expect all blocks
2018 * to be allocated. this may be wrong if allocation failed.
2020 * As pages are already locked by write_cache_pages(), we can't use it
2022 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
2023 struct ext4_map_blocks
*map
)
2025 struct pagevec pvec
;
2026 unsigned long index
, end
;
2027 int ret
= 0, err
, nr_pages
, i
;
2028 struct inode
*inode
= mpd
->inode
;
2029 struct address_space
*mapping
= inode
->i_mapping
;
2030 loff_t size
= i_size_read(inode
);
2031 unsigned int len
, block_start
;
2032 struct buffer_head
*bh
, *page_bufs
= NULL
;
2033 int journal_data
= ext4_should_journal_data(inode
);
2034 sector_t pblock
= 0, cur_logical
= 0;
2035 struct ext4_io_submit io_submit
;
2037 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
2038 memset(&io_submit
, 0, sizeof(io_submit
));
2040 * We need to start from the first_page to the next_page - 1
2041 * to make sure we also write the mapped dirty buffer_heads.
2042 * If we look at mpd->b_blocknr we would only be looking
2043 * at the currently mapped buffer_heads.
2045 index
= mpd
->first_page
;
2046 end
= mpd
->next_page
- 1;
2048 pagevec_init(&pvec
, 0);
2049 while (index
<= end
) {
2050 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2053 for (i
= 0; i
< nr_pages
; i
++) {
2054 int commit_write
= 0, redirty_page
= 0;
2055 struct page
*page
= pvec
.pages
[i
];
2057 index
= page
->index
;
2061 if (index
== size
>> PAGE_CACHE_SHIFT
)
2062 len
= size
& ~PAGE_CACHE_MASK
;
2064 len
= PAGE_CACHE_SIZE
;
2066 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
2068 pblock
= map
->m_pblk
+ (cur_logical
-
2073 BUG_ON(!PageLocked(page
));
2074 BUG_ON(PageWriteback(page
));
2077 * If the page does not have buffers (for
2078 * whatever reason), try to create them using
2079 * __block_write_begin. If this fails,
2080 * redirty the page and move on.
2082 if (!page_has_buffers(page
)) {
2083 if (__block_write_begin(page
, 0, len
,
2084 noalloc_get_block_write
)) {
2086 redirty_page_for_writepage(mpd
->wbc
,
2094 bh
= page_bufs
= page_buffers(page
);
2099 if (map
&& (cur_logical
>= map
->m_lblk
) &&
2100 (cur_logical
<= (map
->m_lblk
+
2101 (map
->m_len
- 1)))) {
2102 if (buffer_delay(bh
)) {
2103 clear_buffer_delay(bh
);
2104 bh
->b_blocknr
= pblock
;
2106 if (buffer_unwritten(bh
) ||
2108 BUG_ON(bh
->b_blocknr
!= pblock
);
2109 if (map
->m_flags
& EXT4_MAP_UNINIT
)
2110 set_buffer_uninit(bh
);
2111 clear_buffer_unwritten(bh
);
2114 /* redirty page if block allocation undone */
2115 if (buffer_delay(bh
) || buffer_unwritten(bh
))
2117 bh
= bh
->b_this_page
;
2118 block_start
+= bh
->b_size
;
2121 } while (bh
!= page_bufs
);
2127 /* mark the buffer_heads as dirty & uptodate */
2128 block_commit_write(page
, 0, len
);
2131 * Delalloc doesn't support data journalling,
2132 * but eventually maybe we'll lift this
2135 if (unlikely(journal_data
&& PageChecked(page
)))
2136 err
= __ext4_journalled_writepage(page
, len
);
2137 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
2138 err
= ext4_bio_write_page(&io_submit
, page
,
2141 err
= block_write_full_page(page
,
2142 noalloc_get_block_write
, mpd
->wbc
);
2145 mpd
->pages_written
++;
2147 * In error case, we have to continue because
2148 * remaining pages are still locked
2153 pagevec_release(&pvec
);
2155 ext4_io_submit(&io_submit
);
2159 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2160 sector_t logical
, long blk_cnt
)
2164 struct pagevec pvec
;
2165 struct inode
*inode
= mpd
->inode
;
2166 struct address_space
*mapping
= inode
->i_mapping
;
2168 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2169 end
= (logical
+ blk_cnt
- 1) >>
2170 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2171 while (index
<= end
) {
2172 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2175 for (i
= 0; i
< nr_pages
; i
++) {
2176 struct page
*page
= pvec
.pages
[i
];
2177 if (page
->index
> end
)
2179 BUG_ON(!PageLocked(page
));
2180 BUG_ON(PageWriteback(page
));
2181 block_invalidatepage(page
, 0);
2182 ClearPageUptodate(page
);
2185 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2186 pagevec_release(&pvec
);
2191 static void ext4_print_free_blocks(struct inode
*inode
)
2193 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2194 printk(KERN_CRIT
"Total free blocks count %lld\n",
2195 ext4_count_free_blocks(inode
->i_sb
));
2196 printk(KERN_CRIT
"Free/Dirty block details\n");
2197 printk(KERN_CRIT
"free_blocks=%lld\n",
2198 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2199 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2200 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2201 printk(KERN_CRIT
"Block reservation details\n");
2202 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2203 EXT4_I(inode
)->i_reserved_data_blocks
);
2204 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2205 EXT4_I(inode
)->i_reserved_meta_blocks
);
2210 * mpage_da_map_and_submit - go through given space, map them
2211 * if necessary, and then submit them for I/O
2213 * @mpd - bh describing space
2215 * The function skips space we know is already mapped to disk blocks.
2218 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
2220 int err
, blks
, get_blocks_flags
;
2221 struct ext4_map_blocks map
, *mapp
= NULL
;
2222 sector_t next
= mpd
->b_blocknr
;
2223 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2224 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2225 handle_t
*handle
= NULL
;
2228 * If the blocks are mapped already, or we couldn't accumulate
2229 * any blocks, then proceed immediately to the submission stage.
2231 if ((mpd
->b_size
== 0) ||
2232 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2233 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2234 !(mpd
->b_state
& (1 << BH_Unwritten
))))
2237 handle
= ext4_journal_current_handle();
2241 * Call ext4_map_blocks() to allocate any delayed allocation
2242 * blocks, or to convert an uninitialized extent to be
2243 * initialized (in the case where we have written into
2244 * one or more preallocated blocks).
2246 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2247 * indicate that we are on the delayed allocation path. This
2248 * affects functions in many different parts of the allocation
2249 * call path. This flag exists primarily because we don't
2250 * want to change *many* call functions, so ext4_map_blocks()
2251 * will set the magic i_delalloc_reserved_flag once the
2252 * inode's allocation semaphore is taken.
2254 * If the blocks in questions were delalloc blocks, set
2255 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2256 * variables are updated after the blocks have been allocated.
2259 map
.m_len
= max_blocks
;
2260 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2261 if (ext4_should_dioread_nolock(mpd
->inode
))
2262 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2263 if (mpd
->b_state
& (1 << BH_Delay
))
2264 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2266 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
2268 struct super_block
*sb
= mpd
->inode
->i_sb
;
2272 * If get block returns EAGAIN or ENOSPC and there
2273 * appears to be free blocks we will call
2274 * ext4_writepage() for all of the pages which will
2275 * just redirty the pages.
2280 if (err
== -ENOSPC
&&
2281 ext4_count_free_blocks(sb
)) {
2287 * get block failure will cause us to loop in
2288 * writepages, because a_ops->writepage won't be able
2289 * to make progress. The page will be redirtied by
2290 * writepage and writepages will again try to write
2293 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2294 ext4_msg(sb
, KERN_CRIT
,
2295 "delayed block allocation failed for inode %lu "
2296 "at logical offset %llu with max blocks %zd "
2297 "with error %d", mpd
->inode
->i_ino
,
2298 (unsigned long long) next
,
2299 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2300 ext4_msg(sb
, KERN_CRIT
,
2301 "This should not happen!! Data will be lost\n");
2303 ext4_print_free_blocks(mpd
->inode
);
2305 /* invalidate all the pages */
2306 ext4_da_block_invalidatepages(mpd
, next
,
2307 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2313 if (map
.m_flags
& EXT4_MAP_NEW
) {
2314 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
2317 for (i
= 0; i
< map
.m_len
; i
++)
2318 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
2321 if (ext4_should_order_data(mpd
->inode
)) {
2322 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2324 /* This only happens if the journal is aborted */
2329 * Update on-disk size along with block allocation.
2331 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2332 if (disksize
> i_size_read(mpd
->inode
))
2333 disksize
= i_size_read(mpd
->inode
);
2334 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2335 ext4_update_i_disksize(mpd
->inode
, disksize
);
2336 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
2338 ext4_error(mpd
->inode
->i_sb
,
2339 "Failed to mark inode %lu dirty",
2344 mpage_da_submit_io(mpd
, mapp
);
2348 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2349 (1 << BH_Delay) | (1 << BH_Unwritten))
2352 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2354 * @mpd->lbh - extent of blocks
2355 * @logical - logical number of the block in the file
2356 * @bh - bh of the block (used to access block's state)
2358 * the function is used to collect contig. blocks in same state
2360 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2361 sector_t logical
, size_t b_size
,
2362 unsigned long b_state
)
2365 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2368 * XXX Don't go larger than mballoc is willing to allocate
2369 * This is a stopgap solution. We eventually need to fold
2370 * mpage_da_submit_io() into this function and then call
2371 * ext4_map_blocks() multiple times in a loop
2373 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
2376 /* check if thereserved journal credits might overflow */
2377 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
2378 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2380 * With non-extent format we are limited by the journal
2381 * credit available. Total credit needed to insert
2382 * nrblocks contiguous blocks is dependent on the
2383 * nrblocks. So limit nrblocks.
2386 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2387 EXT4_MAX_TRANS_DATA
) {
2389 * Adding the new buffer_head would make it cross the
2390 * allowed limit for which we have journal credit
2391 * reserved. So limit the new bh->b_size
2393 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2394 mpd
->inode
->i_blkbits
;
2395 /* we will do mpage_da_submit_io in the next loop */
2399 * First block in the extent
2401 if (mpd
->b_size
== 0) {
2402 mpd
->b_blocknr
= logical
;
2403 mpd
->b_size
= b_size
;
2404 mpd
->b_state
= b_state
& BH_FLAGS
;
2408 next
= mpd
->b_blocknr
+ nrblocks
;
2410 * Can we merge the block to our big extent?
2412 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2413 mpd
->b_size
+= b_size
;
2419 * We couldn't merge the block to our extent, so we
2420 * need to flush current extent and start new one
2422 mpage_da_map_and_submit(mpd
);
2426 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2428 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2432 * __mpage_da_writepage - finds extent of pages and blocks
2434 * @page: page to consider
2435 * @wbc: not used, we just follow rules
2438 * The function finds extents of pages and scan them for all blocks.
2440 static int __mpage_da_writepage(struct page
*page
,
2441 struct writeback_control
*wbc
,
2442 struct mpage_da_data
*mpd
)
2444 struct inode
*inode
= mpd
->inode
;
2445 struct buffer_head
*bh
, *head
;
2449 * Can we merge this page to current extent?
2451 if (mpd
->next_page
!= page
->index
) {
2453 * Nope, we can't. So, we map non-allocated blocks
2454 * and start IO on them
2456 if (mpd
->next_page
!= mpd
->first_page
) {
2457 mpage_da_map_and_submit(mpd
);
2459 * skip rest of the page in the page_vec
2461 redirty_page_for_writepage(wbc
, page
);
2463 return MPAGE_DA_EXTENT_TAIL
;
2467 * Start next extent of pages ...
2469 mpd
->first_page
= page
->index
;
2479 mpd
->next_page
= page
->index
+ 1;
2480 logical
= (sector_t
) page
->index
<<
2481 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2483 if (!page_has_buffers(page
)) {
2484 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2485 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2487 return MPAGE_DA_EXTENT_TAIL
;
2490 * Page with regular buffer heads, just add all dirty ones
2492 head
= page_buffers(page
);
2495 BUG_ON(buffer_locked(bh
));
2497 * We need to try to allocate
2498 * unmapped blocks in the same page.
2499 * Otherwise we won't make progress
2500 * with the page in ext4_writepage
2502 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2503 mpage_add_bh_to_extent(mpd
, logical
,
2507 return MPAGE_DA_EXTENT_TAIL
;
2508 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2510 * mapped dirty buffer. We need to update
2511 * the b_state because we look at
2512 * b_state in mpage_da_map_blocks. We don't
2513 * update b_size because if we find an
2514 * unmapped buffer_head later we need to
2515 * use the b_state flag of that buffer_head.
2517 if (mpd
->b_size
== 0)
2518 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2521 } while ((bh
= bh
->b_this_page
) != head
);
2528 * This is a special get_blocks_t callback which is used by
2529 * ext4_da_write_begin(). It will either return mapped block or
2530 * reserve space for a single block.
2532 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2533 * We also have b_blocknr = -1 and b_bdev initialized properly
2535 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2536 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2537 * initialized properly.
2539 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2540 struct buffer_head
*bh
, int create
)
2542 struct ext4_map_blocks map
;
2544 sector_t invalid_block
= ~((sector_t
) 0xffff);
2546 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2549 BUG_ON(create
== 0);
2550 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2552 map
.m_lblk
= iblock
;
2556 * first, we need to know whether the block is allocated already
2557 * preallocated blocks are unmapped but should treated
2558 * the same as allocated blocks.
2560 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
2564 if (buffer_delay(bh
))
2565 return 0; /* Not sure this could or should happen */
2567 * XXX: __block_write_begin() unmaps passed block, is it OK?
2569 ret
= ext4_da_reserve_space(inode
, iblock
);
2571 /* not enough space to reserve */
2574 map_bh(bh
, inode
->i_sb
, invalid_block
);
2576 set_buffer_delay(bh
);
2580 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2581 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2583 if (buffer_unwritten(bh
)) {
2584 /* A delayed write to unwritten bh should be marked
2585 * new and mapped. Mapped ensures that we don't do
2586 * get_block multiple times when we write to the same
2587 * offset and new ensures that we do proper zero out
2588 * for partial write.
2591 set_buffer_mapped(bh
);
2597 * This function is used as a standard get_block_t calback function
2598 * when there is no desire to allocate any blocks. It is used as a
2599 * callback function for block_write_begin() and block_write_full_page().
2600 * These functions should only try to map a single block at a time.
2602 * Since this function doesn't do block allocations even if the caller
2603 * requests it by passing in create=1, it is critically important that
2604 * any caller checks to make sure that any buffer heads are returned
2605 * by this function are either all already mapped or marked for
2606 * delayed allocation before calling block_write_full_page(). Otherwise,
2607 * b_blocknr could be left unitialized, and the page write functions will
2608 * be taken by surprise.
2610 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2611 struct buffer_head
*bh_result
, int create
)
2613 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2614 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
2617 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2623 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2629 static int __ext4_journalled_writepage(struct page
*page
,
2632 struct address_space
*mapping
= page
->mapping
;
2633 struct inode
*inode
= mapping
->host
;
2634 struct buffer_head
*page_bufs
;
2635 handle_t
*handle
= NULL
;
2639 ClearPageChecked(page
);
2640 page_bufs
= page_buffers(page
);
2642 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2643 /* As soon as we unlock the page, it can go away, but we have
2644 * references to buffers so we are safe */
2647 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2648 if (IS_ERR(handle
)) {
2649 ret
= PTR_ERR(handle
);
2653 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2654 do_journal_get_write_access
);
2656 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2660 err
= ext4_journal_stop(handle
);
2664 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2665 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2670 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2671 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2674 * Note that we don't need to start a transaction unless we're journaling data
2675 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2676 * need to file the inode to the transaction's list in ordered mode because if
2677 * we are writing back data added by write(), the inode is already there and if
2678 * we are writing back data modified via mmap(), noone guarantees in which
2679 * transaction the data will hit the disk. In case we are journaling data, we
2680 * cannot start transaction directly because transaction start ranks above page
2681 * lock so we have to do some magic.
2683 * This function can get called via...
2684 * - ext4_da_writepages after taking page lock (have journal handle)
2685 * - journal_submit_inode_data_buffers (no journal handle)
2686 * - shrink_page_list via pdflush (no journal handle)
2687 * - grab_page_cache when doing write_begin (have journal handle)
2689 * We don't do any block allocation in this function. If we have page with
2690 * multiple blocks we need to write those buffer_heads that are mapped. This
2691 * is important for mmaped based write. So if we do with blocksize 1K
2692 * truncate(f, 1024);
2693 * a = mmap(f, 0, 4096);
2695 * truncate(f, 4096);
2696 * we have in the page first buffer_head mapped via page_mkwrite call back
2697 * but other bufer_heads would be unmapped but dirty(dirty done via the
2698 * do_wp_page). So writepage should write the first block. If we modify
2699 * the mmap area beyond 1024 we will again get a page_fault and the
2700 * page_mkwrite callback will do the block allocation and mark the
2701 * buffer_heads mapped.
2703 * We redirty the page if we have any buffer_heads that is either delay or
2704 * unwritten in the page.
2706 * We can get recursively called as show below.
2708 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2711 * But since we don't do any block allocation we should not deadlock.
2712 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2714 static int ext4_writepage(struct page
*page
,
2715 struct writeback_control
*wbc
)
2717 int ret
= 0, commit_write
= 0;
2720 struct buffer_head
*page_bufs
= NULL
;
2721 struct inode
*inode
= page
->mapping
->host
;
2723 trace_ext4_writepage(inode
, page
);
2724 size
= i_size_read(inode
);
2725 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2726 len
= size
& ~PAGE_CACHE_MASK
;
2728 len
= PAGE_CACHE_SIZE
;
2731 * If the page does not have buffers (for whatever reason),
2732 * try to create them using __block_write_begin. If this
2733 * fails, redirty the page and move on.
2735 if (!page_has_buffers(page
)) {
2736 if (__block_write_begin(page
, 0, len
,
2737 noalloc_get_block_write
)) {
2739 redirty_page_for_writepage(wbc
, page
);
2745 page_bufs
= page_buffers(page
);
2746 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2747 ext4_bh_delay_or_unwritten
)) {
2749 * We don't want to do block allocation, so redirty
2750 * the page and return. We may reach here when we do
2751 * a journal commit via journal_submit_inode_data_buffers.
2752 * We can also reach here via shrink_page_list
2757 /* now mark the buffer_heads as dirty and uptodate */
2758 block_commit_write(page
, 0, len
);
2760 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2762 * It's mmapped pagecache. Add buffers and journal it. There
2763 * doesn't seem much point in redirtying the page here.
2765 return __ext4_journalled_writepage(page
, len
);
2767 if (buffer_uninit(page_bufs
)) {
2768 ext4_set_bh_endio(page_bufs
, inode
);
2769 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2770 wbc
, ext4_end_io_buffer_write
);
2772 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2779 * This is called via ext4_da_writepages() to
2780 * calulate the total number of credits to reserve to fit
2781 * a single extent allocation into a single transaction,
2782 * ext4_da_writpeages() will loop calling this before
2783 * the block allocation.
2786 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2788 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2791 * With non-extent format the journal credit needed to
2792 * insert nrblocks contiguous block is dependent on
2793 * number of contiguous block. So we will limit
2794 * number of contiguous block to a sane value
2796 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2797 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2798 max_blocks
= EXT4_MAX_TRANS_DATA
;
2800 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2804 * write_cache_pages_da - walk the list of dirty pages of the given
2805 * address space and call the callback function (which usually writes
2808 * This is a forked version of write_cache_pages(). Differences:
2809 * Range cyclic is ignored.
2810 * no_nrwrite_index_update is always presumed true
2812 static int write_cache_pages_da(struct address_space
*mapping
,
2813 struct writeback_control
*wbc
,
2814 struct mpage_da_data
*mpd
,
2815 pgoff_t
*done_index
)
2819 struct pagevec pvec
;
2822 pgoff_t end
; /* Inclusive */
2823 long nr_to_write
= wbc
->nr_to_write
;
2826 pagevec_init(&pvec
, 0);
2827 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2828 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2830 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2831 tag
= PAGECACHE_TAG_TOWRITE
;
2833 tag
= PAGECACHE_TAG_DIRTY
;
2835 *done_index
= index
;
2836 while (!done
&& (index
<= end
)) {
2839 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2840 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2844 for (i
= 0; i
< nr_pages
; i
++) {
2845 struct page
*page
= pvec
.pages
[i
];
2848 * At this point, the page may be truncated or
2849 * invalidated (changing page->mapping to NULL), or
2850 * even swizzled back from swapper_space to tmpfs file
2851 * mapping. However, page->index will not change
2852 * because we have a reference on the page.
2854 if (page
->index
> end
) {
2859 *done_index
= page
->index
+ 1;
2864 * Page truncated or invalidated. We can freely skip it
2865 * then, even for data integrity operations: the page
2866 * has disappeared concurrently, so there could be no
2867 * real expectation of this data interity operation
2868 * even if there is now a new, dirty page at the same
2869 * pagecache address.
2871 if (unlikely(page
->mapping
!= mapping
)) {
2877 if (!PageDirty(page
)) {
2878 /* someone wrote it for us */
2879 goto continue_unlock
;
2882 if (PageWriteback(page
)) {
2883 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
2884 wait_on_page_writeback(page
);
2886 goto continue_unlock
;
2889 BUG_ON(PageWriteback(page
));
2890 if (!clear_page_dirty_for_io(page
))
2891 goto continue_unlock
;
2893 ret
= __mpage_da_writepage(page
, wbc
, mpd
);
2894 if (unlikely(ret
)) {
2895 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
2904 if (nr_to_write
> 0) {
2906 if (nr_to_write
== 0 &&
2907 wbc
->sync_mode
== WB_SYNC_NONE
) {
2909 * We stop writing back only if we are
2910 * not doing integrity sync. In case of
2911 * integrity sync we have to keep going
2912 * because someone may be concurrently
2913 * dirtying pages, and we might have
2914 * synced a lot of newly appeared dirty
2915 * pages, but have not synced all of the
2923 pagevec_release(&pvec
);
2930 static int ext4_da_writepages(struct address_space
*mapping
,
2931 struct writeback_control
*wbc
)
2934 int range_whole
= 0;
2935 handle_t
*handle
= NULL
;
2936 struct mpage_da_data mpd
;
2937 struct inode
*inode
= mapping
->host
;
2938 int pages_written
= 0;
2940 unsigned int max_pages
;
2941 int range_cyclic
, cycled
= 1, io_done
= 0;
2942 int needed_blocks
, ret
= 0;
2943 long desired_nr_to_write
, nr_to_writebump
= 0;
2944 loff_t range_start
= wbc
->range_start
;
2945 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2946 pgoff_t done_index
= 0;
2949 trace_ext4_da_writepages(inode
, wbc
);
2952 * No pages to write? This is mainly a kludge to avoid starting
2953 * a transaction for special inodes like journal inode on last iput()
2954 * because that could violate lock ordering on umount
2956 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2960 * If the filesystem has aborted, it is read-only, so return
2961 * right away instead of dumping stack traces later on that
2962 * will obscure the real source of the problem. We test
2963 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2964 * the latter could be true if the filesystem is mounted
2965 * read-only, and in that case, ext4_da_writepages should
2966 * *never* be called, so if that ever happens, we would want
2969 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2972 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2975 range_cyclic
= wbc
->range_cyclic
;
2976 if (wbc
->range_cyclic
) {
2977 index
= mapping
->writeback_index
;
2980 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2981 wbc
->range_end
= LLONG_MAX
;
2982 wbc
->range_cyclic
= 0;
2985 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2986 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2990 * This works around two forms of stupidity. The first is in
2991 * the writeback code, which caps the maximum number of pages
2992 * written to be 1024 pages. This is wrong on multiple
2993 * levels; different architectues have a different page size,
2994 * which changes the maximum amount of data which gets
2995 * written. Secondly, 4 megabytes is way too small. XFS
2996 * forces this value to be 16 megabytes by multiplying
2997 * nr_to_write parameter by four, and then relies on its
2998 * allocator to allocate larger extents to make them
2999 * contiguous. Unfortunately this brings us to the second
3000 * stupidity, which is that ext4's mballoc code only allocates
3001 * at most 2048 blocks. So we force contiguous writes up to
3002 * the number of dirty blocks in the inode, or
3003 * sbi->max_writeback_mb_bump whichever is smaller.
3005 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
3006 if (!range_cyclic
&& range_whole
) {
3007 if (wbc
->nr_to_write
== LONG_MAX
)
3008 desired_nr_to_write
= wbc
->nr_to_write
;
3010 desired_nr_to_write
= wbc
->nr_to_write
* 8;
3012 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
3014 if (desired_nr_to_write
> max_pages
)
3015 desired_nr_to_write
= max_pages
;
3017 if (wbc
->nr_to_write
< desired_nr_to_write
) {
3018 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
3019 wbc
->nr_to_write
= desired_nr_to_write
;
3023 mpd
.inode
= mapping
->host
;
3025 pages_skipped
= wbc
->pages_skipped
;
3028 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3029 tag_pages_for_writeback(mapping
, index
, end
);
3031 while (!ret
&& wbc
->nr_to_write
> 0) {
3034 * we insert one extent at a time. So we need
3035 * credit needed for single extent allocation.
3036 * journalled mode is currently not supported
3039 BUG_ON(ext4_should_journal_data(inode
));
3040 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
3042 /* start a new transaction*/
3043 handle
= ext4_journal_start(inode
, needed_blocks
);
3044 if (IS_ERR(handle
)) {
3045 ret
= PTR_ERR(handle
);
3046 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
3047 "%ld pages, ino %lu; err %d", __func__
,
3048 wbc
->nr_to_write
, inode
->i_ino
, ret
);
3049 goto out_writepages
;
3053 * Now call __mpage_da_writepage to find the next
3054 * contiguous region of logical blocks that need
3055 * blocks to be allocated by ext4. We don't actually
3056 * submit the blocks for I/O here, even though
3057 * write_cache_pages thinks it will, and will set the
3058 * pages as clean for write before calling
3059 * __mpage_da_writepage().
3067 mpd
.pages_written
= 0;
3069 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
3071 * If we have a contiguous extent of pages and we
3072 * haven't done the I/O yet, map the blocks and submit
3075 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
3076 mpage_da_map_and_submit(&mpd
);
3077 ret
= MPAGE_DA_EXTENT_TAIL
;
3079 trace_ext4_da_write_pages(inode
, &mpd
);
3080 wbc
->nr_to_write
-= mpd
.pages_written
;
3082 ext4_journal_stop(handle
);
3084 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
3085 /* commit the transaction which would
3086 * free blocks released in the transaction
3089 jbd2_journal_force_commit_nested(sbi
->s_journal
);
3090 wbc
->pages_skipped
= pages_skipped
;
3092 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
3094 * got one extent now try with
3097 pages_written
+= mpd
.pages_written
;
3098 wbc
->pages_skipped
= pages_skipped
;
3101 } else if (wbc
->nr_to_write
)
3103 * There is no more writeout needed
3104 * or we requested for a noblocking writeout
3105 * and we found the device congested
3109 if (!io_done
&& !cycled
) {
3112 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3113 wbc
->range_end
= mapping
->writeback_index
- 1;
3116 if (pages_skipped
!= wbc
->pages_skipped
)
3117 ext4_msg(inode
->i_sb
, KERN_CRIT
,
3118 "This should not happen leaving %s "
3119 "with nr_to_write = %ld ret = %d",
3120 __func__
, wbc
->nr_to_write
, ret
);
3123 wbc
->range_cyclic
= range_cyclic
;
3124 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3126 * set the writeback_index so that range_cyclic
3127 * mode will write it back later
3129 mapping
->writeback_index
= done_index
;
3132 wbc
->nr_to_write
-= nr_to_writebump
;
3133 wbc
->range_start
= range_start
;
3134 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3138 #define FALL_BACK_TO_NONDELALLOC 1
3139 static int ext4_nonda_switch(struct super_block
*sb
)
3141 s64 free_blocks
, dirty_blocks
;
3142 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3145 * switch to non delalloc mode if we are running low
3146 * on free block. The free block accounting via percpu
3147 * counters can get slightly wrong with percpu_counter_batch getting
3148 * accumulated on each CPU without updating global counters
3149 * Delalloc need an accurate free block accounting. So switch
3150 * to non delalloc when we are near to error range.
3152 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3153 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3154 if (2 * free_blocks
< 3 * dirty_blocks
||
3155 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3157 * free block count is less than 150% of dirty blocks
3158 * or free blocks is less than watermark
3163 * Even if we don't switch but are nearing capacity,
3164 * start pushing delalloc when 1/2 of free blocks are dirty.
3166 if (free_blocks
< 2 * dirty_blocks
)
3167 writeback_inodes_sb_if_idle(sb
);
3172 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3173 loff_t pos
, unsigned len
, unsigned flags
,
3174 struct page
**pagep
, void **fsdata
)
3176 int ret
, retries
= 0;
3179 struct inode
*inode
= mapping
->host
;
3182 index
= pos
>> PAGE_CACHE_SHIFT
;
3184 if (ext4_nonda_switch(inode
->i_sb
)) {
3185 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3186 return ext4_write_begin(file
, mapping
, pos
,
3187 len
, flags
, pagep
, fsdata
);
3189 *fsdata
= (void *)0;
3190 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3193 * With delayed allocation, we don't log the i_disksize update
3194 * if there is delayed block allocation. But we still need
3195 * to journalling the i_disksize update if writes to the end
3196 * of file which has an already mapped buffer.
3198 handle
= ext4_journal_start(inode
, 1);
3199 if (IS_ERR(handle
)) {
3200 ret
= PTR_ERR(handle
);
3203 /* We cannot recurse into the filesystem as the transaction is already
3205 flags
|= AOP_FLAG_NOFS
;
3207 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3209 ext4_journal_stop(handle
);
3215 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3218 ext4_journal_stop(handle
);
3219 page_cache_release(page
);
3221 * block_write_begin may have instantiated a few blocks
3222 * outside i_size. Trim these off again. Don't need
3223 * i_size_read because we hold i_mutex.
3225 if (pos
+ len
> inode
->i_size
)
3226 ext4_truncate_failed_write(inode
);
3229 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3236 * Check if we should update i_disksize
3237 * when write to the end of file but not require block allocation
3239 static int ext4_da_should_update_i_disksize(struct page
*page
,
3240 unsigned long offset
)
3242 struct buffer_head
*bh
;
3243 struct inode
*inode
= page
->mapping
->host
;
3247 bh
= page_buffers(page
);
3248 idx
= offset
>> inode
->i_blkbits
;
3250 for (i
= 0; i
< idx
; i
++)
3251 bh
= bh
->b_this_page
;
3253 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3258 static int ext4_da_write_end(struct file
*file
,
3259 struct address_space
*mapping
,
3260 loff_t pos
, unsigned len
, unsigned copied
,
3261 struct page
*page
, void *fsdata
)
3263 struct inode
*inode
= mapping
->host
;
3265 handle_t
*handle
= ext4_journal_current_handle();
3267 unsigned long start
, end
;
3268 int write_mode
= (int)(unsigned long)fsdata
;
3270 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3271 if (ext4_should_order_data(inode
)) {
3272 return ext4_ordered_write_end(file
, mapping
, pos
,
3273 len
, copied
, page
, fsdata
);
3274 } else if (ext4_should_writeback_data(inode
)) {
3275 return ext4_writeback_write_end(file
, mapping
, pos
,
3276 len
, copied
, page
, fsdata
);
3282 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3283 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3284 end
= start
+ copied
- 1;
3287 * generic_write_end() will run mark_inode_dirty() if i_size
3288 * changes. So let's piggyback the i_disksize mark_inode_dirty
3292 new_i_size
= pos
+ copied
;
3293 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3294 if (ext4_da_should_update_i_disksize(page
, end
)) {
3295 down_write(&EXT4_I(inode
)->i_data_sem
);
3296 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3298 * Updating i_disksize when extending file
3299 * without needing block allocation
3301 if (ext4_should_order_data(inode
))
3302 ret
= ext4_jbd2_file_inode(handle
,
3305 EXT4_I(inode
)->i_disksize
= new_i_size
;
3307 up_write(&EXT4_I(inode
)->i_data_sem
);
3308 /* We need to mark inode dirty even if
3309 * new_i_size is less that inode->i_size
3310 * bu greater than i_disksize.(hint delalloc)
3312 ext4_mark_inode_dirty(handle
, inode
);
3315 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3320 ret2
= ext4_journal_stop(handle
);
3324 return ret
? ret
: copied
;
3327 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3330 * Drop reserved blocks
3332 BUG_ON(!PageLocked(page
));
3333 if (!page_has_buffers(page
))
3336 ext4_da_page_release_reservation(page
, offset
);
3339 ext4_invalidatepage(page
, offset
);
3345 * Force all delayed allocation blocks to be allocated for a given inode.
3347 int ext4_alloc_da_blocks(struct inode
*inode
)
3349 trace_ext4_alloc_da_blocks(inode
);
3351 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3352 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3356 * We do something simple for now. The filemap_flush() will
3357 * also start triggering a write of the data blocks, which is
3358 * not strictly speaking necessary (and for users of
3359 * laptop_mode, not even desirable). However, to do otherwise
3360 * would require replicating code paths in:
3362 * ext4_da_writepages() ->
3363 * write_cache_pages() ---> (via passed in callback function)
3364 * __mpage_da_writepage() -->
3365 * mpage_add_bh_to_extent()
3366 * mpage_da_map_blocks()
3368 * The problem is that write_cache_pages(), located in
3369 * mm/page-writeback.c, marks pages clean in preparation for
3370 * doing I/O, which is not desirable if we're not planning on
3373 * We could call write_cache_pages(), and then redirty all of
3374 * the pages by calling redirty_page_for_writeback() but that
3375 * would be ugly in the extreme. So instead we would need to
3376 * replicate parts of the code in the above functions,
3377 * simplifying them becuase we wouldn't actually intend to
3378 * write out the pages, but rather only collect contiguous
3379 * logical block extents, call the multi-block allocator, and
3380 * then update the buffer heads with the block allocations.
3382 * For now, though, we'll cheat by calling filemap_flush(),
3383 * which will map the blocks, and start the I/O, but not
3384 * actually wait for the I/O to complete.
3386 return filemap_flush(inode
->i_mapping
);
3390 * bmap() is special. It gets used by applications such as lilo and by
3391 * the swapper to find the on-disk block of a specific piece of data.
3393 * Naturally, this is dangerous if the block concerned is still in the
3394 * journal. If somebody makes a swapfile on an ext4 data-journaling
3395 * filesystem and enables swap, then they may get a nasty shock when the
3396 * data getting swapped to that swapfile suddenly gets overwritten by
3397 * the original zero's written out previously to the journal and
3398 * awaiting writeback in the kernel's buffer cache.
3400 * So, if we see any bmap calls here on a modified, data-journaled file,
3401 * take extra steps to flush any blocks which might be in the cache.
3403 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3405 struct inode
*inode
= mapping
->host
;
3409 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3410 test_opt(inode
->i_sb
, DELALLOC
)) {
3412 * With delalloc we want to sync the file
3413 * so that we can make sure we allocate
3416 filemap_write_and_wait(mapping
);
3419 if (EXT4_JOURNAL(inode
) &&
3420 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3422 * This is a REALLY heavyweight approach, but the use of
3423 * bmap on dirty files is expected to be extremely rare:
3424 * only if we run lilo or swapon on a freshly made file
3425 * do we expect this to happen.
3427 * (bmap requires CAP_SYS_RAWIO so this does not
3428 * represent an unprivileged user DOS attack --- we'd be
3429 * in trouble if mortal users could trigger this path at
3432 * NB. EXT4_STATE_JDATA is not set on files other than
3433 * regular files. If somebody wants to bmap a directory
3434 * or symlink and gets confused because the buffer
3435 * hasn't yet been flushed to disk, they deserve
3436 * everything they get.
3439 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3440 journal
= EXT4_JOURNAL(inode
);
3441 jbd2_journal_lock_updates(journal
);
3442 err
= jbd2_journal_flush(journal
);
3443 jbd2_journal_unlock_updates(journal
);
3449 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3452 static int ext4_readpage(struct file
*file
, struct page
*page
)
3454 return mpage_readpage(page
, ext4_get_block
);
3458 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3459 struct list_head
*pages
, unsigned nr_pages
)
3461 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3464 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3466 struct buffer_head
*head
, *bh
;
3467 unsigned int curr_off
= 0;
3469 if (!page_has_buffers(page
))
3471 head
= bh
= page_buffers(page
);
3473 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3475 ext4_free_io_end(bh
->b_private
);
3476 bh
->b_private
= NULL
;
3477 bh
->b_end_io
= NULL
;
3479 curr_off
= curr_off
+ bh
->b_size
;
3480 bh
= bh
->b_this_page
;
3481 } while (bh
!= head
);
3484 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3486 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3489 * free any io_end structure allocated for buffers to be discarded
3491 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3492 ext4_invalidatepage_free_endio(page
, offset
);
3494 * If it's a full truncate we just forget about the pending dirtying
3497 ClearPageChecked(page
);
3500 jbd2_journal_invalidatepage(journal
, page
, offset
);
3502 block_invalidatepage(page
, offset
);
3505 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3507 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3509 WARN_ON(PageChecked(page
));
3510 if (!page_has_buffers(page
))
3513 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3515 return try_to_free_buffers(page
);
3519 * O_DIRECT for ext3 (or indirect map) based files
3521 * If the O_DIRECT write will extend the file then add this inode to the
3522 * orphan list. So recovery will truncate it back to the original size
3523 * if the machine crashes during the write.
3525 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3526 * crashes then stale disk data _may_ be exposed inside the file. But current
3527 * VFS code falls back into buffered path in that case so we are safe.
3529 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3530 const struct iovec
*iov
, loff_t offset
,
3531 unsigned long nr_segs
)
3533 struct file
*file
= iocb
->ki_filp
;
3534 struct inode
*inode
= file
->f_mapping
->host
;
3535 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3539 size_t count
= iov_length(iov
, nr_segs
);
3543 loff_t final_size
= offset
+ count
;
3545 if (final_size
> inode
->i_size
) {
3546 /* Credits for sb + inode write */
3547 handle
= ext4_journal_start(inode
, 2);
3548 if (IS_ERR(handle
)) {
3549 ret
= PTR_ERR(handle
);
3552 ret
= ext4_orphan_add(handle
, inode
);
3554 ext4_journal_stop(handle
);
3558 ei
->i_disksize
= inode
->i_size
;
3559 ext4_journal_stop(handle
);
3564 if (rw
== READ
&& ext4_should_dioread_nolock(inode
))
3565 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3566 inode
->i_sb
->s_bdev
, iov
,
3568 ext4_get_block
, NULL
, NULL
, 0);
3570 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3571 inode
->i_sb
->s_bdev
, iov
,
3573 ext4_get_block
, NULL
);
3575 if (unlikely((rw
& WRITE
) && ret
< 0)) {
3576 loff_t isize
= i_size_read(inode
);
3577 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
3580 vmtruncate(inode
, isize
);
3583 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3589 /* Credits for sb + inode write */
3590 handle
= ext4_journal_start(inode
, 2);
3591 if (IS_ERR(handle
)) {
3592 /* This is really bad luck. We've written the data
3593 * but cannot extend i_size. Bail out and pretend
3594 * the write failed... */
3595 ret
= PTR_ERR(handle
);
3597 ext4_orphan_del(NULL
, inode
);
3602 ext4_orphan_del(handle
, inode
);
3604 loff_t end
= offset
+ ret
;
3605 if (end
> inode
->i_size
) {
3606 ei
->i_disksize
= end
;
3607 i_size_write(inode
, end
);
3609 * We're going to return a positive `ret'
3610 * here due to non-zero-length I/O, so there's
3611 * no way of reporting error returns from
3612 * ext4_mark_inode_dirty() to userspace. So
3615 ext4_mark_inode_dirty(handle
, inode
);
3618 err
= ext4_journal_stop(handle
);
3627 * ext4_get_block used when preparing for a DIO write or buffer write.
3628 * We allocate an uinitialized extent if blocks haven't been allocated.
3629 * The extent will be converted to initialized after the IO is complete.
3631 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3632 struct buffer_head
*bh_result
, int create
)
3634 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3635 inode
->i_ino
, create
);
3636 return _ext4_get_block(inode
, iblock
, bh_result
,
3637 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3640 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3641 ssize_t size
, void *private, int ret
,
3644 ext4_io_end_t
*io_end
= iocb
->private;
3645 struct workqueue_struct
*wq
;
3646 unsigned long flags
;
3647 struct ext4_inode_info
*ei
;
3649 /* if not async direct IO or dio with 0 bytes write, just return */
3650 if (!io_end
|| !size
)
3653 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3654 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3655 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3658 /* if not aio dio with unwritten extents, just free io and return */
3659 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3660 ext4_free_io_end(io_end
);
3661 iocb
->private = NULL
;
3664 aio_complete(iocb
, ret
, 0);
3668 io_end
->offset
= offset
;
3669 io_end
->size
= size
;
3671 io_end
->iocb
= iocb
;
3672 io_end
->result
= ret
;
3674 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3676 /* Add the io_end to per-inode completed aio dio list*/
3677 ei
= EXT4_I(io_end
->inode
);
3678 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3679 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3680 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3682 /* queue the work to convert unwritten extents to written */
3683 queue_work(wq
, &io_end
->work
);
3684 iocb
->private = NULL
;
3687 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3689 ext4_io_end_t
*io_end
= bh
->b_private
;
3690 struct workqueue_struct
*wq
;
3691 struct inode
*inode
;
3692 unsigned long flags
;
3694 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3697 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3698 printk("sb umounted, discard end_io request for inode %lu\n",
3699 io_end
->inode
->i_ino
);
3700 ext4_free_io_end(io_end
);
3704 io_end
->flag
= EXT4_IO_END_UNWRITTEN
;
3705 inode
= io_end
->inode
;
3707 /* Add the io_end to per-inode completed io list*/
3708 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3709 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3710 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3712 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3713 /* queue the work to convert unwritten extents to written */
3714 queue_work(wq
, &io_end
->work
);
3716 bh
->b_private
= NULL
;
3717 bh
->b_end_io
= NULL
;
3718 clear_buffer_uninit(bh
);
3719 end_buffer_async_write(bh
, uptodate
);
3722 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3724 ext4_io_end_t
*io_end
;
3725 struct page
*page
= bh
->b_page
;
3726 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3727 size_t size
= bh
->b_size
;
3730 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3732 if (printk_ratelimit())
3733 printk(KERN_WARNING
"%s: allocation fail\n", __func__
);
3737 io_end
->offset
= offset
;
3738 io_end
->size
= size
;
3740 * We need to hold a reference to the page to make sure it
3741 * doesn't get evicted before ext4_end_io_work() has a chance
3742 * to convert the extent from written to unwritten.
3744 io_end
->page
= page
;
3745 get_page(io_end
->page
);
3747 bh
->b_private
= io_end
;
3748 bh
->b_end_io
= ext4_end_io_buffer_write
;
3753 * For ext4 extent files, ext4 will do direct-io write to holes,
3754 * preallocated extents, and those write extend the file, no need to
3755 * fall back to buffered IO.
3757 * For holes, we fallocate those blocks, mark them as unintialized
3758 * If those blocks were preallocated, we mark sure they are splited, but
3759 * still keep the range to write as unintialized.
3761 * The unwrritten extents will be converted to written when DIO is completed.
3762 * For async direct IO, since the IO may still pending when return, we
3763 * set up an end_io call back function, which will do the convertion
3764 * when async direct IO completed.
3766 * If the O_DIRECT write will extend the file then add this inode to the
3767 * orphan list. So recovery will truncate it back to the original size
3768 * if the machine crashes during the write.
3771 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3772 const struct iovec
*iov
, loff_t offset
,
3773 unsigned long nr_segs
)
3775 struct file
*file
= iocb
->ki_filp
;
3776 struct inode
*inode
= file
->f_mapping
->host
;
3778 size_t count
= iov_length(iov
, nr_segs
);
3780 loff_t final_size
= offset
+ count
;
3781 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3783 * We could direct write to holes and fallocate.
3785 * Allocated blocks to fill the hole are marked as uninitialized
3786 * to prevent paralel buffered read to expose the stale data
3787 * before DIO complete the data IO.
3789 * As to previously fallocated extents, ext4 get_block
3790 * will just simply mark the buffer mapped but still
3791 * keep the extents uninitialized.
3793 * for non AIO case, we will convert those unwritten extents
3794 * to written after return back from blockdev_direct_IO.
3796 * for async DIO, the conversion needs to be defered when
3797 * the IO is completed. The ext4 end_io callback function
3798 * will be called to take care of the conversion work.
3799 * Here for async case, we allocate an io_end structure to
3802 iocb
->private = NULL
;
3803 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3804 if (!is_sync_kiocb(iocb
)) {
3805 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3809 * we save the io structure for current async
3810 * direct IO, so that later ext4_map_blocks()
3811 * could flag the io structure whether there
3812 * is a unwritten extents needs to be converted
3813 * when IO is completed.
3815 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3818 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3819 inode
->i_sb
->s_bdev
, iov
,
3821 ext4_get_block_write
,
3824 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3826 * The io_end structure takes a reference to the inode,
3827 * that structure needs to be destroyed and the
3828 * reference to the inode need to be dropped, when IO is
3829 * complete, even with 0 byte write, or failed.
3831 * In the successful AIO DIO case, the io_end structure will be
3832 * desctroyed and the reference to the inode will be dropped
3833 * after the end_io call back function is called.
3835 * In the case there is 0 byte write, or error case, since
3836 * VFS direct IO won't invoke the end_io call back function,
3837 * we need to free the end_io structure here.
3839 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3840 ext4_free_io_end(iocb
->private);
3841 iocb
->private = NULL
;
3842 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3843 EXT4_STATE_DIO_UNWRITTEN
)) {
3846 * for non AIO case, since the IO is already
3847 * completed, we could do the convertion right here
3849 err
= ext4_convert_unwritten_extents(inode
,
3853 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3858 /* for write the the end of file case, we fall back to old way */
3859 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3862 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3863 const struct iovec
*iov
, loff_t offset
,
3864 unsigned long nr_segs
)
3866 struct file
*file
= iocb
->ki_filp
;
3867 struct inode
*inode
= file
->f_mapping
->host
;
3869 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3870 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3872 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3876 * Pages can be marked dirty completely asynchronously from ext4's journalling
3877 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3878 * much here because ->set_page_dirty is called under VFS locks. The page is
3879 * not necessarily locked.
3881 * We cannot just dirty the page and leave attached buffers clean, because the
3882 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3883 * or jbddirty because all the journalling code will explode.
3885 * So what we do is to mark the page "pending dirty" and next time writepage
3886 * is called, propagate that into the buffers appropriately.
3888 static int ext4_journalled_set_page_dirty(struct page
*page
)
3890 SetPageChecked(page
);
3891 return __set_page_dirty_nobuffers(page
);
3894 static const struct address_space_operations ext4_ordered_aops
= {
3895 .readpage
= ext4_readpage
,
3896 .readpages
= ext4_readpages
,
3897 .writepage
= ext4_writepage
,
3898 .sync_page
= block_sync_page
,
3899 .write_begin
= ext4_write_begin
,
3900 .write_end
= ext4_ordered_write_end
,
3902 .invalidatepage
= ext4_invalidatepage
,
3903 .releasepage
= ext4_releasepage
,
3904 .direct_IO
= ext4_direct_IO
,
3905 .migratepage
= buffer_migrate_page
,
3906 .is_partially_uptodate
= block_is_partially_uptodate
,
3907 .error_remove_page
= generic_error_remove_page
,
3910 static const struct address_space_operations ext4_writeback_aops
= {
3911 .readpage
= ext4_readpage
,
3912 .readpages
= ext4_readpages
,
3913 .writepage
= ext4_writepage
,
3914 .sync_page
= block_sync_page
,
3915 .write_begin
= ext4_write_begin
,
3916 .write_end
= ext4_writeback_write_end
,
3918 .invalidatepage
= ext4_invalidatepage
,
3919 .releasepage
= ext4_releasepage
,
3920 .direct_IO
= ext4_direct_IO
,
3921 .migratepage
= buffer_migrate_page
,
3922 .is_partially_uptodate
= block_is_partially_uptodate
,
3923 .error_remove_page
= generic_error_remove_page
,
3926 static const struct address_space_operations ext4_journalled_aops
= {
3927 .readpage
= ext4_readpage
,
3928 .readpages
= ext4_readpages
,
3929 .writepage
= ext4_writepage
,
3930 .sync_page
= block_sync_page
,
3931 .write_begin
= ext4_write_begin
,
3932 .write_end
= ext4_journalled_write_end
,
3933 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3935 .invalidatepage
= ext4_invalidatepage
,
3936 .releasepage
= ext4_releasepage
,
3937 .is_partially_uptodate
= block_is_partially_uptodate
,
3938 .error_remove_page
= generic_error_remove_page
,
3941 static const struct address_space_operations ext4_da_aops
= {
3942 .readpage
= ext4_readpage
,
3943 .readpages
= ext4_readpages
,
3944 .writepage
= ext4_writepage
,
3945 .writepages
= ext4_da_writepages
,
3946 .sync_page
= block_sync_page
,
3947 .write_begin
= ext4_da_write_begin
,
3948 .write_end
= ext4_da_write_end
,
3950 .invalidatepage
= ext4_da_invalidatepage
,
3951 .releasepage
= ext4_releasepage
,
3952 .direct_IO
= ext4_direct_IO
,
3953 .migratepage
= buffer_migrate_page
,
3954 .is_partially_uptodate
= block_is_partially_uptodate
,
3955 .error_remove_page
= generic_error_remove_page
,
3958 void ext4_set_aops(struct inode
*inode
)
3960 if (ext4_should_order_data(inode
) &&
3961 test_opt(inode
->i_sb
, DELALLOC
))
3962 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3963 else if (ext4_should_order_data(inode
))
3964 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3965 else if (ext4_should_writeback_data(inode
) &&
3966 test_opt(inode
->i_sb
, DELALLOC
))
3967 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3968 else if (ext4_should_writeback_data(inode
))
3969 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3971 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3975 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3976 * up to the end of the block which corresponds to `from'.
3977 * This required during truncate. We need to physically zero the tail end
3978 * of that block so it doesn't yield old data if the file is later grown.
3980 int ext4_block_truncate_page(handle_t
*handle
,
3981 struct address_space
*mapping
, loff_t from
)
3983 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3984 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3985 unsigned blocksize
, length
, pos
;
3987 struct inode
*inode
= mapping
->host
;
3988 struct buffer_head
*bh
;
3992 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3993 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3997 blocksize
= inode
->i_sb
->s_blocksize
;
3998 length
= blocksize
- (offset
& (blocksize
- 1));
3999 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
4001 if (!page_has_buffers(page
))
4002 create_empty_buffers(page
, blocksize
, 0);
4004 /* Find the buffer that contains "offset" */
4005 bh
= page_buffers(page
);
4007 while (offset
>= pos
) {
4008 bh
= bh
->b_this_page
;
4014 if (buffer_freed(bh
)) {
4015 BUFFER_TRACE(bh
, "freed: skip");
4019 if (!buffer_mapped(bh
)) {
4020 BUFFER_TRACE(bh
, "unmapped");
4021 ext4_get_block(inode
, iblock
, bh
, 0);
4022 /* unmapped? It's a hole - nothing to do */
4023 if (!buffer_mapped(bh
)) {
4024 BUFFER_TRACE(bh
, "still unmapped");
4029 /* Ok, it's mapped. Make sure it's up-to-date */
4030 if (PageUptodate(page
))
4031 set_buffer_uptodate(bh
);
4033 if (!buffer_uptodate(bh
)) {
4035 ll_rw_block(READ
, 1, &bh
);
4037 /* Uhhuh. Read error. Complain and punt. */
4038 if (!buffer_uptodate(bh
))
4042 if (ext4_should_journal_data(inode
)) {
4043 BUFFER_TRACE(bh
, "get write access");
4044 err
= ext4_journal_get_write_access(handle
, bh
);
4049 zero_user(page
, offset
, length
);
4051 BUFFER_TRACE(bh
, "zeroed end of block");
4054 if (ext4_should_journal_data(inode
)) {
4055 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4057 if (ext4_should_order_data(inode
))
4058 err
= ext4_jbd2_file_inode(handle
, inode
);
4059 mark_buffer_dirty(bh
);
4064 page_cache_release(page
);
4069 * Probably it should be a library function... search for first non-zero word
4070 * or memcmp with zero_page, whatever is better for particular architecture.
4073 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4082 * ext4_find_shared - find the indirect blocks for partial truncation.
4083 * @inode: inode in question
4084 * @depth: depth of the affected branch
4085 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4086 * @chain: place to store the pointers to partial indirect blocks
4087 * @top: place to the (detached) top of branch
4089 * This is a helper function used by ext4_truncate().
4091 * When we do truncate() we may have to clean the ends of several
4092 * indirect blocks but leave the blocks themselves alive. Block is
4093 * partially truncated if some data below the new i_size is refered
4094 * from it (and it is on the path to the first completely truncated
4095 * data block, indeed). We have to free the top of that path along
4096 * with everything to the right of the path. Since no allocation
4097 * past the truncation point is possible until ext4_truncate()
4098 * finishes, we may safely do the latter, but top of branch may
4099 * require special attention - pageout below the truncation point
4100 * might try to populate it.
4102 * We atomically detach the top of branch from the tree, store the
4103 * block number of its root in *@top, pointers to buffer_heads of
4104 * partially truncated blocks - in @chain[].bh and pointers to
4105 * their last elements that should not be removed - in
4106 * @chain[].p. Return value is the pointer to last filled element
4109 * The work left to caller to do the actual freeing of subtrees:
4110 * a) free the subtree starting from *@top
4111 * b) free the subtrees whose roots are stored in
4112 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4113 * c) free the subtrees growing from the inode past the @chain[0].
4114 * (no partially truncated stuff there). */
4116 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4117 ext4_lblk_t offsets
[4], Indirect chain
[4],
4120 Indirect
*partial
, *p
;
4124 /* Make k index the deepest non-null offset + 1 */
4125 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4127 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4128 /* Writer: pointers */
4130 partial
= chain
+ k
-1;
4132 * If the branch acquired continuation since we've looked at it -
4133 * fine, it should all survive and (new) top doesn't belong to us.
4135 if (!partial
->key
&& *partial
->p
)
4138 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4141 * OK, we've found the last block that must survive. The rest of our
4142 * branch should be detached before unlocking. However, if that rest
4143 * of branch is all ours and does not grow immediately from the inode
4144 * it's easier to cheat and just decrement partial->p.
4146 if (p
== chain
+ k
- 1 && p
> chain
) {
4150 /* Nope, don't do this in ext4. Must leave the tree intact */
4157 while (partial
> p
) {
4158 brelse(partial
->bh
);
4166 * Zero a number of block pointers in either an inode or an indirect block.
4167 * If we restart the transaction we must again get write access to the
4168 * indirect block for further modification.
4170 * We release `count' blocks on disk, but (last - first) may be greater
4171 * than `count' because there can be holes in there.
4173 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4174 struct buffer_head
*bh
,
4175 ext4_fsblk_t block_to_free
,
4176 unsigned long count
, __le32
*first
,
4180 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4182 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4183 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4185 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4187 EXT4_ERROR_INODE(inode
, "attempt to clear invalid "
4188 "blocks %llu len %lu",
4189 (unsigned long long) block_to_free
, count
);
4193 if (try_to_extend_transaction(handle
, inode
)) {
4195 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4196 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4198 ext4_mark_inode_dirty(handle
, inode
);
4199 ext4_truncate_restart_trans(handle
, inode
,
4200 blocks_for_truncate(inode
));
4202 BUFFER_TRACE(bh
, "retaking write access");
4203 ext4_journal_get_write_access(handle
, bh
);
4207 for (p
= first
; p
< last
; p
++)
4210 ext4_free_blocks(handle
, inode
, 0, block_to_free
, count
, flags
);
4215 * ext4_free_data - free a list of data blocks
4216 * @handle: handle for this transaction
4217 * @inode: inode we are dealing with
4218 * @this_bh: indirect buffer_head which contains *@first and *@last
4219 * @first: array of block numbers
4220 * @last: points immediately past the end of array
4222 * We are freeing all blocks refered from that array (numbers are stored as
4223 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4225 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4226 * blocks are contiguous then releasing them at one time will only affect one
4227 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4228 * actually use a lot of journal space.
4230 * @this_bh will be %NULL if @first and @last point into the inode's direct
4233 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4234 struct buffer_head
*this_bh
,
4235 __le32
*first
, __le32
*last
)
4237 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4238 unsigned long count
= 0; /* Number of blocks in the run */
4239 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4242 ext4_fsblk_t nr
; /* Current block # */
4243 __le32
*p
; /* Pointer into inode/ind
4244 for current block */
4247 if (this_bh
) { /* For indirect block */
4248 BUFFER_TRACE(this_bh
, "get_write_access");
4249 err
= ext4_journal_get_write_access(handle
, this_bh
);
4250 /* Important: if we can't update the indirect pointers
4251 * to the blocks, we can't free them. */
4256 for (p
= first
; p
< last
; p
++) {
4257 nr
= le32_to_cpu(*p
);
4259 /* accumulate blocks to free if they're contiguous */
4262 block_to_free_p
= p
;
4264 } else if (nr
== block_to_free
+ count
) {
4267 if (ext4_clear_blocks(handle
, inode
, this_bh
,
4268 block_to_free
, count
,
4269 block_to_free_p
, p
))
4272 block_to_free_p
= p
;
4279 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4280 count
, block_to_free_p
, p
);
4283 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4286 * The buffer head should have an attached journal head at this
4287 * point. However, if the data is corrupted and an indirect
4288 * block pointed to itself, it would have been detached when
4289 * the block was cleared. Check for this instead of OOPSing.
4291 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4292 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4294 EXT4_ERROR_INODE(inode
,
4295 "circular indirect block detected at "
4297 (unsigned long long) this_bh
->b_blocknr
);
4302 * ext4_free_branches - free an array of branches
4303 * @handle: JBD handle for this transaction
4304 * @inode: inode we are dealing with
4305 * @parent_bh: the buffer_head which contains *@first and *@last
4306 * @first: array of block numbers
4307 * @last: pointer immediately past the end of array
4308 * @depth: depth of the branches to free
4310 * We are freeing all blocks refered from these branches (numbers are
4311 * stored as little-endian 32-bit) and updating @inode->i_blocks
4314 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4315 struct buffer_head
*parent_bh
,
4316 __le32
*first
, __le32
*last
, int depth
)
4321 if (ext4_handle_is_aborted(handle
))
4325 struct buffer_head
*bh
;
4326 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4328 while (--p
>= first
) {
4329 nr
= le32_to_cpu(*p
);
4331 continue; /* A hole */
4333 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4335 EXT4_ERROR_INODE(inode
,
4336 "invalid indirect mapped "
4337 "block %lu (level %d)",
4338 (unsigned long) nr
, depth
);
4342 /* Go read the buffer for the next level down */
4343 bh
= sb_bread(inode
->i_sb
, nr
);
4346 * A read failure? Report error and clear slot
4350 EXT4_ERROR_INODE_BLOCK(inode
, nr
,
4355 /* This zaps the entire block. Bottom up. */
4356 BUFFER_TRACE(bh
, "free child branches");
4357 ext4_free_branches(handle
, inode
, bh
,
4358 (__le32
*) bh
->b_data
,
4359 (__le32
*) bh
->b_data
+ addr_per_block
,
4363 * Everything below this this pointer has been
4364 * released. Now let this top-of-subtree go.
4366 * We want the freeing of this indirect block to be
4367 * atomic in the journal with the updating of the
4368 * bitmap block which owns it. So make some room in
4371 * We zero the parent pointer *after* freeing its
4372 * pointee in the bitmaps, so if extend_transaction()
4373 * for some reason fails to put the bitmap changes and
4374 * the release into the same transaction, recovery
4375 * will merely complain about releasing a free block,
4376 * rather than leaking blocks.
4378 if (ext4_handle_is_aborted(handle
))
4380 if (try_to_extend_transaction(handle
, inode
)) {
4381 ext4_mark_inode_dirty(handle
, inode
);
4382 ext4_truncate_restart_trans(handle
, inode
,
4383 blocks_for_truncate(inode
));
4387 * The forget flag here is critical because if
4388 * we are journaling (and not doing data
4389 * journaling), we have to make sure a revoke
4390 * record is written to prevent the journal
4391 * replay from overwriting the (former)
4392 * indirect block if it gets reallocated as a
4393 * data block. This must happen in the same
4394 * transaction where the data blocks are
4397 ext4_free_blocks(handle
, inode
, 0, nr
, 1,
4398 EXT4_FREE_BLOCKS_METADATA
|
4399 EXT4_FREE_BLOCKS_FORGET
);
4403 * The block which we have just freed is
4404 * pointed to by an indirect block: journal it
4406 BUFFER_TRACE(parent_bh
, "get_write_access");
4407 if (!ext4_journal_get_write_access(handle
,
4410 BUFFER_TRACE(parent_bh
,
4411 "call ext4_handle_dirty_metadata");
4412 ext4_handle_dirty_metadata(handle
,
4419 /* We have reached the bottom of the tree. */
4420 BUFFER_TRACE(parent_bh
, "free data blocks");
4421 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4425 int ext4_can_truncate(struct inode
*inode
)
4427 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4429 if (S_ISREG(inode
->i_mode
))
4431 if (S_ISDIR(inode
->i_mode
))
4433 if (S_ISLNK(inode
->i_mode
))
4434 return !ext4_inode_is_fast_symlink(inode
);
4441 * We block out ext4_get_block() block instantiations across the entire
4442 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4443 * simultaneously on behalf of the same inode.
4445 * As we work through the truncate and commmit bits of it to the journal there
4446 * is one core, guiding principle: the file's tree must always be consistent on
4447 * disk. We must be able to restart the truncate after a crash.
4449 * The file's tree may be transiently inconsistent in memory (although it
4450 * probably isn't), but whenever we close off and commit a journal transaction,
4451 * the contents of (the filesystem + the journal) must be consistent and
4452 * restartable. It's pretty simple, really: bottom up, right to left (although
4453 * left-to-right works OK too).
4455 * Note that at recovery time, journal replay occurs *before* the restart of
4456 * truncate against the orphan inode list.
4458 * The committed inode has the new, desired i_size (which is the same as
4459 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4460 * that this inode's truncate did not complete and it will again call
4461 * ext4_truncate() to have another go. So there will be instantiated blocks
4462 * to the right of the truncation point in a crashed ext4 filesystem. But
4463 * that's fine - as long as they are linked from the inode, the post-crash
4464 * ext4_truncate() run will find them and release them.
4466 void ext4_truncate(struct inode
*inode
)
4469 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4470 __le32
*i_data
= ei
->i_data
;
4471 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4472 struct address_space
*mapping
= inode
->i_mapping
;
4473 ext4_lblk_t offsets
[4];
4478 ext4_lblk_t last_block
;
4479 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4481 if (!ext4_can_truncate(inode
))
4484 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4486 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4487 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4489 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4490 ext4_ext_truncate(inode
);
4494 handle
= start_transaction(inode
);
4496 return; /* AKPM: return what? */
4498 last_block
= (inode
->i_size
+ blocksize
-1)
4499 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4501 if (inode
->i_size
& (blocksize
- 1))
4502 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4505 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4507 goto out_stop
; /* error */
4510 * OK. This truncate is going to happen. We add the inode to the
4511 * orphan list, so that if this truncate spans multiple transactions,
4512 * and we crash, we will resume the truncate when the filesystem
4513 * recovers. It also marks the inode dirty, to catch the new size.
4515 * Implication: the file must always be in a sane, consistent
4516 * truncatable state while each transaction commits.
4518 if (ext4_orphan_add(handle
, inode
))
4522 * From here we block out all ext4_get_block() callers who want to
4523 * modify the block allocation tree.
4525 down_write(&ei
->i_data_sem
);
4527 ext4_discard_preallocations(inode
);
4530 * The orphan list entry will now protect us from any crash which
4531 * occurs before the truncate completes, so it is now safe to propagate
4532 * the new, shorter inode size (held for now in i_size) into the
4533 * on-disk inode. We do this via i_disksize, which is the value which
4534 * ext4 *really* writes onto the disk inode.
4536 ei
->i_disksize
= inode
->i_size
;
4538 if (n
== 1) { /* direct blocks */
4539 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4540 i_data
+ EXT4_NDIR_BLOCKS
);
4544 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4545 /* Kill the top of shared branch (not detached) */
4547 if (partial
== chain
) {
4548 /* Shared branch grows from the inode */
4549 ext4_free_branches(handle
, inode
, NULL
,
4550 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4553 * We mark the inode dirty prior to restart,
4554 * and prior to stop. No need for it here.
4557 /* Shared branch grows from an indirect block */
4558 BUFFER_TRACE(partial
->bh
, "get_write_access");
4559 ext4_free_branches(handle
, inode
, partial
->bh
,
4561 partial
->p
+1, (chain
+n
-1) - partial
);
4564 /* Clear the ends of indirect blocks on the shared branch */
4565 while (partial
> chain
) {
4566 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4567 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4568 (chain
+n
-1) - partial
);
4569 BUFFER_TRACE(partial
->bh
, "call brelse");
4570 brelse(partial
->bh
);
4574 /* Kill the remaining (whole) subtrees */
4575 switch (offsets
[0]) {
4577 nr
= i_data
[EXT4_IND_BLOCK
];
4579 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4580 i_data
[EXT4_IND_BLOCK
] = 0;
4582 case EXT4_IND_BLOCK
:
4583 nr
= i_data
[EXT4_DIND_BLOCK
];
4585 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4586 i_data
[EXT4_DIND_BLOCK
] = 0;
4588 case EXT4_DIND_BLOCK
:
4589 nr
= i_data
[EXT4_TIND_BLOCK
];
4591 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4592 i_data
[EXT4_TIND_BLOCK
] = 0;
4594 case EXT4_TIND_BLOCK
:
4598 up_write(&ei
->i_data_sem
);
4599 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4600 ext4_mark_inode_dirty(handle
, inode
);
4603 * In a multi-transaction truncate, we only make the final transaction
4607 ext4_handle_sync(handle
);
4610 * If this was a simple ftruncate(), and the file will remain alive
4611 * then we need to clear up the orphan record which we created above.
4612 * However, if this was a real unlink then we were called by
4613 * ext4_delete_inode(), and we allow that function to clean up the
4614 * orphan info for us.
4617 ext4_orphan_del(handle
, inode
);
4619 ext4_journal_stop(handle
);
4623 * ext4_get_inode_loc returns with an extra refcount against the inode's
4624 * underlying buffer_head on success. If 'in_mem' is true, we have all
4625 * data in memory that is needed to recreate the on-disk version of this
4628 static int __ext4_get_inode_loc(struct inode
*inode
,
4629 struct ext4_iloc
*iloc
, int in_mem
)
4631 struct ext4_group_desc
*gdp
;
4632 struct buffer_head
*bh
;
4633 struct super_block
*sb
= inode
->i_sb
;
4635 int inodes_per_block
, inode_offset
;
4638 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4641 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4642 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4647 * Figure out the offset within the block group inode table
4649 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4650 inode_offset
= ((inode
->i_ino
- 1) %
4651 EXT4_INODES_PER_GROUP(sb
));
4652 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4653 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4655 bh
= sb_getblk(sb
, block
);
4657 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4658 "unable to read itable block");
4661 if (!buffer_uptodate(bh
)) {
4665 * If the buffer has the write error flag, we have failed
4666 * to write out another inode in the same block. In this
4667 * case, we don't have to read the block because we may
4668 * read the old inode data successfully.
4670 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4671 set_buffer_uptodate(bh
);
4673 if (buffer_uptodate(bh
)) {
4674 /* someone brought it uptodate while we waited */
4680 * If we have all information of the inode in memory and this
4681 * is the only valid inode in the block, we need not read the
4685 struct buffer_head
*bitmap_bh
;
4688 start
= inode_offset
& ~(inodes_per_block
- 1);
4690 /* Is the inode bitmap in cache? */
4691 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4696 * If the inode bitmap isn't in cache then the
4697 * optimisation may end up performing two reads instead
4698 * of one, so skip it.
4700 if (!buffer_uptodate(bitmap_bh
)) {
4704 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4705 if (i
== inode_offset
)
4707 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4711 if (i
== start
+ inodes_per_block
) {
4712 /* all other inodes are free, so skip I/O */
4713 memset(bh
->b_data
, 0, bh
->b_size
);
4714 set_buffer_uptodate(bh
);
4722 * If we need to do any I/O, try to pre-readahead extra
4723 * blocks from the inode table.
4725 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4726 ext4_fsblk_t b
, end
, table
;
4729 table
= ext4_inode_table(sb
, gdp
);
4730 /* s_inode_readahead_blks is always a power of 2 */
4731 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4734 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4735 num
= EXT4_INODES_PER_GROUP(sb
);
4736 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4737 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4738 num
-= ext4_itable_unused_count(sb
, gdp
);
4739 table
+= num
/ inodes_per_block
;
4743 sb_breadahead(sb
, b
++);
4747 * There are other valid inodes in the buffer, this inode
4748 * has in-inode xattrs, or we don't have this inode in memory.
4749 * Read the block from disk.
4752 bh
->b_end_io
= end_buffer_read_sync
;
4753 submit_bh(READ_META
, bh
);
4755 if (!buffer_uptodate(bh
)) {
4756 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4757 "unable to read itable block");
4767 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4769 /* We have all inode data except xattrs in memory here. */
4770 return __ext4_get_inode_loc(inode
, iloc
,
4771 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4774 void ext4_set_inode_flags(struct inode
*inode
)
4776 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4778 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4779 if (flags
& EXT4_SYNC_FL
)
4780 inode
->i_flags
|= S_SYNC
;
4781 if (flags
& EXT4_APPEND_FL
)
4782 inode
->i_flags
|= S_APPEND
;
4783 if (flags
& EXT4_IMMUTABLE_FL
)
4784 inode
->i_flags
|= S_IMMUTABLE
;
4785 if (flags
& EXT4_NOATIME_FL
)
4786 inode
->i_flags
|= S_NOATIME
;
4787 if (flags
& EXT4_DIRSYNC_FL
)
4788 inode
->i_flags
|= S_DIRSYNC
;
4791 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4792 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4794 unsigned int vfs_fl
;
4795 unsigned long old_fl
, new_fl
;
4798 vfs_fl
= ei
->vfs_inode
.i_flags
;
4799 old_fl
= ei
->i_flags
;
4800 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4801 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4803 if (vfs_fl
& S_SYNC
)
4804 new_fl
|= EXT4_SYNC_FL
;
4805 if (vfs_fl
& S_APPEND
)
4806 new_fl
|= EXT4_APPEND_FL
;
4807 if (vfs_fl
& S_IMMUTABLE
)
4808 new_fl
|= EXT4_IMMUTABLE_FL
;
4809 if (vfs_fl
& S_NOATIME
)
4810 new_fl
|= EXT4_NOATIME_FL
;
4811 if (vfs_fl
& S_DIRSYNC
)
4812 new_fl
|= EXT4_DIRSYNC_FL
;
4813 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4816 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4817 struct ext4_inode_info
*ei
)
4820 struct inode
*inode
= &(ei
->vfs_inode
);
4821 struct super_block
*sb
= inode
->i_sb
;
4823 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4824 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4825 /* we are using combined 48 bit field */
4826 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4827 le32_to_cpu(raw_inode
->i_blocks_lo
);
4828 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4829 /* i_blocks represent file system block size */
4830 return i_blocks
<< (inode
->i_blkbits
- 9);
4835 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4839 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4841 struct ext4_iloc iloc
;
4842 struct ext4_inode
*raw_inode
;
4843 struct ext4_inode_info
*ei
;
4844 struct inode
*inode
;
4845 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4849 inode
= iget_locked(sb
, ino
);
4851 return ERR_PTR(-ENOMEM
);
4852 if (!(inode
->i_state
& I_NEW
))
4858 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4861 raw_inode
= ext4_raw_inode(&iloc
);
4862 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4863 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4864 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4865 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4866 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4867 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4869 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4871 ei
->i_state_flags
= 0;
4872 ei
->i_dir_start_lookup
= 0;
4873 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4874 /* We now have enough fields to check if the inode was active or not.
4875 * This is needed because nfsd might try to access dead inodes
4876 * the test is that same one that e2fsck uses
4877 * NeilBrown 1999oct15
4879 if (inode
->i_nlink
== 0) {
4880 if (inode
->i_mode
== 0 ||
4881 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4882 /* this inode is deleted */
4886 /* The only unlinked inodes we let through here have
4887 * valid i_mode and are being read by the orphan
4888 * recovery code: that's fine, we're about to complete
4889 * the process of deleting those. */
4891 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4892 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4893 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4894 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4896 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4897 inode
->i_size
= ext4_isize(raw_inode
);
4898 ei
->i_disksize
= inode
->i_size
;
4900 ei
->i_reserved_quota
= 0;
4902 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4903 ei
->i_block_group
= iloc
.block_group
;
4904 ei
->i_last_alloc_group
= ~0;
4906 * NOTE! The in-memory inode i_data array is in little-endian order
4907 * even on big-endian machines: we do NOT byteswap the block numbers!
4909 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4910 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4911 INIT_LIST_HEAD(&ei
->i_orphan
);
4914 * Set transaction id's of transactions that have to be committed
4915 * to finish f[data]sync. We set them to currently running transaction
4916 * as we cannot be sure that the inode or some of its metadata isn't
4917 * part of the transaction - the inode could have been reclaimed and
4918 * now it is reread from disk.
4921 transaction_t
*transaction
;
4924 read_lock(&journal
->j_state_lock
);
4925 if (journal
->j_running_transaction
)
4926 transaction
= journal
->j_running_transaction
;
4928 transaction
= journal
->j_committing_transaction
;
4930 tid
= transaction
->t_tid
;
4932 tid
= journal
->j_commit_sequence
;
4933 read_unlock(&journal
->j_state_lock
);
4934 ei
->i_sync_tid
= tid
;
4935 ei
->i_datasync_tid
= tid
;
4938 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4939 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4940 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4941 EXT4_INODE_SIZE(inode
->i_sb
)) {
4945 if (ei
->i_extra_isize
== 0) {
4946 /* The extra space is currently unused. Use it. */
4947 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4948 EXT4_GOOD_OLD_INODE_SIZE
;
4950 __le32
*magic
= (void *)raw_inode
+
4951 EXT4_GOOD_OLD_INODE_SIZE
+
4953 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4954 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4957 ei
->i_extra_isize
= 0;
4959 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4960 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4961 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4962 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4964 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4965 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4966 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4968 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4972 if (ei
->i_file_acl
&&
4973 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4974 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4978 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4979 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4980 (S_ISLNK(inode
->i_mode
) &&
4981 !ext4_inode_is_fast_symlink(inode
)))
4982 /* Validate extent which is part of inode */
4983 ret
= ext4_ext_check_inode(inode
);
4984 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4985 (S_ISLNK(inode
->i_mode
) &&
4986 !ext4_inode_is_fast_symlink(inode
))) {
4987 /* Validate block references which are part of inode */
4988 ret
= ext4_check_inode_blockref(inode
);
4993 if (S_ISREG(inode
->i_mode
)) {
4994 inode
->i_op
= &ext4_file_inode_operations
;
4995 inode
->i_fop
= &ext4_file_operations
;
4996 ext4_set_aops(inode
);
4997 } else if (S_ISDIR(inode
->i_mode
)) {
4998 inode
->i_op
= &ext4_dir_inode_operations
;
4999 inode
->i_fop
= &ext4_dir_operations
;
5000 } else if (S_ISLNK(inode
->i_mode
)) {
5001 if (ext4_inode_is_fast_symlink(inode
)) {
5002 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5003 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5004 sizeof(ei
->i_data
) - 1);
5006 inode
->i_op
= &ext4_symlink_inode_operations
;
5007 ext4_set_aops(inode
);
5009 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5010 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5011 inode
->i_op
= &ext4_special_inode_operations
;
5012 if (raw_inode
->i_block
[0])
5013 init_special_inode(inode
, inode
->i_mode
,
5014 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5016 init_special_inode(inode
, inode
->i_mode
,
5017 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5020 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
5024 ext4_set_inode_flags(inode
);
5025 unlock_new_inode(inode
);
5031 return ERR_PTR(ret
);
5034 static int ext4_inode_blocks_set(handle_t
*handle
,
5035 struct ext4_inode
*raw_inode
,
5036 struct ext4_inode_info
*ei
)
5038 struct inode
*inode
= &(ei
->vfs_inode
);
5039 u64 i_blocks
= inode
->i_blocks
;
5040 struct super_block
*sb
= inode
->i_sb
;
5042 if (i_blocks
<= ~0U) {
5044 * i_blocks can be represnted in a 32 bit variable
5045 * as multiple of 512 bytes
5047 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5048 raw_inode
->i_blocks_high
= 0;
5049 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5052 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5055 if (i_blocks
<= 0xffffffffffffULL
) {
5057 * i_blocks can be represented in a 48 bit variable
5058 * as multiple of 512 bytes
5060 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5061 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5062 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5064 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5065 /* i_block is stored in file system block size */
5066 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5067 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5068 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5074 * Post the struct inode info into an on-disk inode location in the
5075 * buffer-cache. This gobbles the caller's reference to the
5076 * buffer_head in the inode location struct.
5078 * The caller must have write access to iloc->bh.
5080 static int ext4_do_update_inode(handle_t
*handle
,
5081 struct inode
*inode
,
5082 struct ext4_iloc
*iloc
)
5084 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5085 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5086 struct buffer_head
*bh
= iloc
->bh
;
5087 int err
= 0, rc
, block
;
5089 /* For fields not not tracking in the in-memory inode,
5090 * initialise them to zero for new inodes. */
5091 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5092 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5094 ext4_get_inode_flags(ei
);
5095 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5096 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5097 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5098 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5100 * Fix up interoperability with old kernels. Otherwise, old inodes get
5101 * re-used with the upper 16 bits of the uid/gid intact
5104 raw_inode
->i_uid_high
=
5105 cpu_to_le16(high_16_bits(inode
->i_uid
));
5106 raw_inode
->i_gid_high
=
5107 cpu_to_le16(high_16_bits(inode
->i_gid
));
5109 raw_inode
->i_uid_high
= 0;
5110 raw_inode
->i_gid_high
= 0;
5113 raw_inode
->i_uid_low
=
5114 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5115 raw_inode
->i_gid_low
=
5116 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5117 raw_inode
->i_uid_high
= 0;
5118 raw_inode
->i_gid_high
= 0;
5120 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5122 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5123 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5124 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5125 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5127 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5129 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5130 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5131 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5132 cpu_to_le32(EXT4_OS_HURD
))
5133 raw_inode
->i_file_acl_high
=
5134 cpu_to_le16(ei
->i_file_acl
>> 32);
5135 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5136 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5137 if (ei
->i_disksize
> 0x7fffffffULL
) {
5138 struct super_block
*sb
= inode
->i_sb
;
5139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5140 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5141 EXT4_SB(sb
)->s_es
->s_rev_level
==
5142 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5143 /* If this is the first large file
5144 * created, add a flag to the superblock.
5146 err
= ext4_journal_get_write_access(handle
,
5147 EXT4_SB(sb
)->s_sbh
);
5150 ext4_update_dynamic_rev(sb
);
5151 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5152 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5154 ext4_handle_sync(handle
);
5155 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5156 EXT4_SB(sb
)->s_sbh
);
5159 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5160 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5161 if (old_valid_dev(inode
->i_rdev
)) {
5162 raw_inode
->i_block
[0] =
5163 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5164 raw_inode
->i_block
[1] = 0;
5166 raw_inode
->i_block
[0] = 0;
5167 raw_inode
->i_block
[1] =
5168 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5169 raw_inode
->i_block
[2] = 0;
5172 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5173 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5175 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5176 if (ei
->i_extra_isize
) {
5177 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5178 raw_inode
->i_version_hi
=
5179 cpu_to_le32(inode
->i_version
>> 32);
5180 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5183 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5184 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5187 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5189 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5192 ext4_std_error(inode
->i_sb
, err
);
5197 * ext4_write_inode()
5199 * We are called from a few places:
5201 * - Within generic_file_write() for O_SYNC files.
5202 * Here, there will be no transaction running. We wait for any running
5203 * trasnaction to commit.
5205 * - Within sys_sync(), kupdate and such.
5206 * We wait on commit, if tol to.
5208 * - Within prune_icache() (PF_MEMALLOC == true)
5209 * Here we simply return. We can't afford to block kswapd on the
5212 * In all cases it is actually safe for us to return without doing anything,
5213 * because the inode has been copied into a raw inode buffer in
5214 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5217 * Note that we are absolutely dependent upon all inode dirtiers doing the
5218 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5219 * which we are interested.
5221 * It would be a bug for them to not do this. The code:
5223 * mark_inode_dirty(inode)
5225 * inode->i_size = expr;
5227 * is in error because a kswapd-driven write_inode() could occur while
5228 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5229 * will no longer be on the superblock's dirty inode list.
5231 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5235 if (current
->flags
& PF_MEMALLOC
)
5238 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5239 if (ext4_journal_current_handle()) {
5240 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5245 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5248 err
= ext4_force_commit(inode
->i_sb
);
5250 struct ext4_iloc iloc
;
5252 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5255 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5256 sync_dirty_buffer(iloc
.bh
);
5257 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5258 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5259 "IO error syncing inode");
5270 * Called from notify_change.
5272 * We want to trap VFS attempts to truncate the file as soon as
5273 * possible. In particular, we want to make sure that when the VFS
5274 * shrinks i_size, we put the inode on the orphan list and modify
5275 * i_disksize immediately, so that during the subsequent flushing of
5276 * dirty pages and freeing of disk blocks, we can guarantee that any
5277 * commit will leave the blocks being flushed in an unused state on
5278 * disk. (On recovery, the inode will get truncated and the blocks will
5279 * be freed, so we have a strong guarantee that no future commit will
5280 * leave these blocks visible to the user.)
5282 * Another thing we have to assure is that if we are in ordered mode
5283 * and inode is still attached to the committing transaction, we must
5284 * we start writeout of all the dirty pages which are being truncated.
5285 * This way we are sure that all the data written in the previous
5286 * transaction are already on disk (truncate waits for pages under
5289 * Called with inode->i_mutex down.
5291 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5293 struct inode
*inode
= dentry
->d_inode
;
5296 const unsigned int ia_valid
= attr
->ia_valid
;
5298 error
= inode_change_ok(inode
, attr
);
5302 if (is_quota_modification(inode
, attr
))
5303 dquot_initialize(inode
);
5304 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5305 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5308 /* (user+group)*(old+new) structure, inode write (sb,
5309 * inode block, ? - but truncate inode update has it) */
5310 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5311 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5312 if (IS_ERR(handle
)) {
5313 error
= PTR_ERR(handle
);
5316 error
= dquot_transfer(inode
, attr
);
5318 ext4_journal_stop(handle
);
5321 /* Update corresponding info in inode so that everything is in
5322 * one transaction */
5323 if (attr
->ia_valid
& ATTR_UID
)
5324 inode
->i_uid
= attr
->ia_uid
;
5325 if (attr
->ia_valid
& ATTR_GID
)
5326 inode
->i_gid
= attr
->ia_gid
;
5327 error
= ext4_mark_inode_dirty(handle
, inode
);
5328 ext4_journal_stop(handle
);
5331 if (attr
->ia_valid
& ATTR_SIZE
) {
5332 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5333 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5335 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5340 if (S_ISREG(inode
->i_mode
) &&
5341 attr
->ia_valid
& ATTR_SIZE
&&
5342 (attr
->ia_size
< inode
->i_size
||
5343 (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))) {
5346 handle
= ext4_journal_start(inode
, 3);
5347 if (IS_ERR(handle
)) {
5348 error
= PTR_ERR(handle
);
5351 if (ext4_handle_valid(handle
)) {
5352 error
= ext4_orphan_add(handle
, inode
);
5355 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5356 rc
= ext4_mark_inode_dirty(handle
, inode
);
5359 ext4_journal_stop(handle
);
5361 if (ext4_should_order_data(inode
)) {
5362 error
= ext4_begin_ordered_truncate(inode
,
5365 /* Do as much error cleanup as possible */
5366 handle
= ext4_journal_start(inode
, 3);
5367 if (IS_ERR(handle
)) {
5368 ext4_orphan_del(NULL
, inode
);
5371 ext4_orphan_del(handle
, inode
);
5373 ext4_journal_stop(handle
);
5377 /* ext4_truncate will clear the flag */
5378 if ((ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))
5379 ext4_truncate(inode
);
5382 if ((attr
->ia_valid
& ATTR_SIZE
) &&
5383 attr
->ia_size
!= i_size_read(inode
))
5384 rc
= vmtruncate(inode
, attr
->ia_size
);
5387 setattr_copy(inode
, attr
);
5388 mark_inode_dirty(inode
);
5392 * If the call to ext4_truncate failed to get a transaction handle at
5393 * all, we need to clean up the in-core orphan list manually.
5395 if (orphan
&& inode
->i_nlink
)
5396 ext4_orphan_del(NULL
, inode
);
5398 if (!rc
&& (ia_valid
& ATTR_MODE
))
5399 rc
= ext4_acl_chmod(inode
);
5402 ext4_std_error(inode
->i_sb
, error
);
5408 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5411 struct inode
*inode
;
5412 unsigned long delalloc_blocks
;
5414 inode
= dentry
->d_inode
;
5415 generic_fillattr(inode
, stat
);
5418 * We can't update i_blocks if the block allocation is delayed
5419 * otherwise in the case of system crash before the real block
5420 * allocation is done, we will have i_blocks inconsistent with
5421 * on-disk file blocks.
5422 * We always keep i_blocks updated together with real
5423 * allocation. But to not confuse with user, stat
5424 * will return the blocks that include the delayed allocation
5425 * blocks for this file.
5427 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5429 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5433 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5438 /* if nrblocks are contiguous */
5441 * With N contiguous data blocks, it need at most
5442 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5443 * 2 dindirect blocks
5446 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5447 return indirects
+ 3;
5450 * if nrblocks are not contiguous, worse case, each block touch
5451 * a indirect block, and each indirect block touch a double indirect
5452 * block, plus a triple indirect block
5454 indirects
= nrblocks
* 2 + 1;
5458 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5460 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5461 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5462 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5466 * Account for index blocks, block groups bitmaps and block group
5467 * descriptor blocks if modify datablocks and index blocks
5468 * worse case, the indexs blocks spread over different block groups
5470 * If datablocks are discontiguous, they are possible to spread over
5471 * different block groups too. If they are contiuguous, with flexbg,
5472 * they could still across block group boundary.
5474 * Also account for superblock, inode, quota and xattr blocks
5476 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5478 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5484 * How many index blocks need to touch to modify nrblocks?
5485 * The "Chunk" flag indicating whether the nrblocks is
5486 * physically contiguous on disk
5488 * For Direct IO and fallocate, they calls get_block to allocate
5489 * one single extent at a time, so they could set the "Chunk" flag
5491 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5496 * Now let's see how many group bitmaps and group descriptors need
5506 if (groups
> ngroups
)
5508 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5509 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5511 /* bitmaps and block group descriptor blocks */
5512 ret
+= groups
+ gdpblocks
;
5514 /* Blocks for super block, inode, quota and xattr blocks */
5515 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5521 * Calulate the total number of credits to reserve to fit
5522 * the modification of a single pages into a single transaction,
5523 * which may include multiple chunks of block allocations.
5525 * This could be called via ext4_write_begin()
5527 * We need to consider the worse case, when
5528 * one new block per extent.
5530 int ext4_writepage_trans_blocks(struct inode
*inode
)
5532 int bpp
= ext4_journal_blocks_per_page(inode
);
5535 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5537 /* Account for data blocks for journalled mode */
5538 if (ext4_should_journal_data(inode
))
5544 * Calculate the journal credits for a chunk of data modification.
5546 * This is called from DIO, fallocate or whoever calling
5547 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5549 * journal buffers for data blocks are not included here, as DIO
5550 * and fallocate do no need to journal data buffers.
5552 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5554 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5558 * The caller must have previously called ext4_reserve_inode_write().
5559 * Give this, we know that the caller already has write access to iloc->bh.
5561 int ext4_mark_iloc_dirty(handle_t
*handle
,
5562 struct inode
*inode
, struct ext4_iloc
*iloc
)
5566 if (test_opt(inode
->i_sb
, I_VERSION
))
5567 inode_inc_iversion(inode
);
5569 /* the do_update_inode consumes one bh->b_count */
5572 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5573 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5579 * On success, We end up with an outstanding reference count against
5580 * iloc->bh. This _must_ be cleaned up later.
5584 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5585 struct ext4_iloc
*iloc
)
5589 err
= ext4_get_inode_loc(inode
, iloc
);
5591 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5592 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5598 ext4_std_error(inode
->i_sb
, err
);
5603 * Expand an inode by new_extra_isize bytes.
5604 * Returns 0 on success or negative error number on failure.
5606 static int ext4_expand_extra_isize(struct inode
*inode
,
5607 unsigned int new_extra_isize
,
5608 struct ext4_iloc iloc
,
5611 struct ext4_inode
*raw_inode
;
5612 struct ext4_xattr_ibody_header
*header
;
5614 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5617 raw_inode
= ext4_raw_inode(&iloc
);
5619 header
= IHDR(inode
, raw_inode
);
5621 /* No extended attributes present */
5622 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5623 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5624 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5626 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5630 /* try to expand with EAs present */
5631 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5636 * What we do here is to mark the in-core inode as clean with respect to inode
5637 * dirtiness (it may still be data-dirty).
5638 * This means that the in-core inode may be reaped by prune_icache
5639 * without having to perform any I/O. This is a very good thing,
5640 * because *any* task may call prune_icache - even ones which
5641 * have a transaction open against a different journal.
5643 * Is this cheating? Not really. Sure, we haven't written the
5644 * inode out, but prune_icache isn't a user-visible syncing function.
5645 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5646 * we start and wait on commits.
5648 * Is this efficient/effective? Well, we're being nice to the system
5649 * by cleaning up our inodes proactively so they can be reaped
5650 * without I/O. But we are potentially leaving up to five seconds'
5651 * worth of inodes floating about which prune_icache wants us to
5652 * write out. One way to fix that would be to get prune_icache()
5653 * to do a write_super() to free up some memory. It has the desired
5656 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5658 struct ext4_iloc iloc
;
5659 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5660 static unsigned int mnt_count
;
5664 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5665 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5666 if (ext4_handle_valid(handle
) &&
5667 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5668 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5670 * We need extra buffer credits since we may write into EA block
5671 * with this same handle. If journal_extend fails, then it will
5672 * only result in a minor loss of functionality for that inode.
5673 * If this is felt to be critical, then e2fsck should be run to
5674 * force a large enough s_min_extra_isize.
5676 if ((jbd2_journal_extend(handle
,
5677 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5678 ret
= ext4_expand_extra_isize(inode
,
5679 sbi
->s_want_extra_isize
,
5682 ext4_set_inode_state(inode
,
5683 EXT4_STATE_NO_EXPAND
);
5685 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5686 ext4_warning(inode
->i_sb
,
5687 "Unable to expand inode %lu. Delete"
5688 " some EAs or run e2fsck.",
5691 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5697 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5702 * ext4_dirty_inode() is called from __mark_inode_dirty()
5704 * We're really interested in the case where a file is being extended.
5705 * i_size has been changed by generic_commit_write() and we thus need
5706 * to include the updated inode in the current transaction.
5708 * Also, dquot_alloc_block() will always dirty the inode when blocks
5709 * are allocated to the file.
5711 * If the inode is marked synchronous, we don't honour that here - doing
5712 * so would cause a commit on atime updates, which we don't bother doing.
5713 * We handle synchronous inodes at the highest possible level.
5715 void ext4_dirty_inode(struct inode
*inode
)
5719 handle
= ext4_journal_start(inode
, 2);
5723 ext4_mark_inode_dirty(handle
, inode
);
5725 ext4_journal_stop(handle
);
5732 * Bind an inode's backing buffer_head into this transaction, to prevent
5733 * it from being flushed to disk early. Unlike
5734 * ext4_reserve_inode_write, this leaves behind no bh reference and
5735 * returns no iloc structure, so the caller needs to repeat the iloc
5736 * lookup to mark the inode dirty later.
5738 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5740 struct ext4_iloc iloc
;
5744 err
= ext4_get_inode_loc(inode
, &iloc
);
5746 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5747 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5749 err
= ext4_handle_dirty_metadata(handle
,
5755 ext4_std_error(inode
->i_sb
, err
);
5760 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5767 * We have to be very careful here: changing a data block's
5768 * journaling status dynamically is dangerous. If we write a
5769 * data block to the journal, change the status and then delete
5770 * that block, we risk forgetting to revoke the old log record
5771 * from the journal and so a subsequent replay can corrupt data.
5772 * So, first we make sure that the journal is empty and that
5773 * nobody is changing anything.
5776 journal
= EXT4_JOURNAL(inode
);
5779 if (is_journal_aborted(journal
))
5782 jbd2_journal_lock_updates(journal
);
5783 jbd2_journal_flush(journal
);
5786 * OK, there are no updates running now, and all cached data is
5787 * synced to disk. We are now in a completely consistent state
5788 * which doesn't have anything in the journal, and we know that
5789 * no filesystem updates are running, so it is safe to modify
5790 * the inode's in-core data-journaling state flag now.
5794 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5796 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5797 ext4_set_aops(inode
);
5799 jbd2_journal_unlock_updates(journal
);
5801 /* Finally we can mark the inode as dirty. */
5803 handle
= ext4_journal_start(inode
, 1);
5805 return PTR_ERR(handle
);
5807 err
= ext4_mark_inode_dirty(handle
, inode
);
5808 ext4_handle_sync(handle
);
5809 ext4_journal_stop(handle
);
5810 ext4_std_error(inode
->i_sb
, err
);
5815 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5817 return !buffer_mapped(bh
);
5820 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5822 struct page
*page
= vmf
->page
;
5827 struct file
*file
= vma
->vm_file
;
5828 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5829 struct address_space
*mapping
= inode
->i_mapping
;
5832 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5833 * get i_mutex because we are already holding mmap_sem.
5835 down_read(&inode
->i_alloc_sem
);
5836 size
= i_size_read(inode
);
5837 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5838 || !PageUptodate(page
)) {
5839 /* page got truncated from under us? */
5843 if (PageMappedToDisk(page
))
5846 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5847 len
= size
& ~PAGE_CACHE_MASK
;
5849 len
= PAGE_CACHE_SIZE
;
5853 * return if we have all the buffers mapped. This avoid
5854 * the need to call write_begin/write_end which does a
5855 * journal_start/journal_stop which can block and take
5858 if (page_has_buffers(page
)) {
5859 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5860 ext4_bh_unmapped
)) {
5867 * OK, we need to fill the hole... Do write_begin write_end
5868 * to do block allocation/reservation.We are not holding
5869 * inode.i__mutex here. That allow * parallel write_begin,
5870 * write_end call. lock_page prevent this from happening
5871 * on the same page though
5873 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5874 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5877 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5878 len
, len
, page
, fsdata
);
5884 ret
= VM_FAULT_SIGBUS
;
5885 up_read(&inode
->i_alloc_sem
);