2 How To Write Linux PCI Drivers
4 by Martin Mares <mj@ucw.cz> on 07-Feb-2000
5 updated by Grant Grundler <grundler@parisc-linux.org> on 23-Dec-2006
7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 The world of PCI is vast and full of (mostly unpleasant) surprises.
9 Since each CPU architecture implements different chip-sets and PCI devices
10 have different requirements (erm, "features"), the result is the PCI support
11 in the Linux kernel is not as trivial as one would wish. This short paper
12 tries to introduce all potential driver authors to Linux APIs for
15 A more complete resource is the third edition of "Linux Device Drivers"
16 by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
17 LDD3 is available for free (under Creative Commons License) from:
19 http://lwn.net/Kernel/LDD3/
21 However, keep in mind that all documents are subject to "bit rot".
22 Refer to the source code if things are not working as described here.
24 Please send questions/comments/patches about Linux PCI API to the
25 "Linux PCI" <linux-pci@atrey.karlin.mff.cuni.cz> mailing list.
29 0. Structure of PCI drivers
30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 PCI drivers "discover" PCI devices in a system via pci_register_driver().
32 Actually, it's the other way around. When the PCI generic code discovers
33 a new device, the driver with a matching "description" will be notified.
34 Details on this below.
36 pci_register_driver() leaves most of the probing for devices to
37 the PCI layer and supports online insertion/removal of devices [thus
38 supporting hot-pluggable PCI, CardBus, and Express-Card in a single driver].
39 pci_register_driver() call requires passing in a table of function
40 pointers and thus dictates the high level structure of a driver.
42 Once the driver knows about a PCI device and takes ownership, the
43 driver generally needs to perform the following initialization:
46 Request MMIO/IOP resources
47 Set the DMA mask size (for both coherent and streaming DMA)
48 Allocate and initialize shared control data (pci_allocate_coherent())
49 Access device configuration space (if needed)
50 Register IRQ handler (request_irq())
51 Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
52 Enable DMA/processing engines
54 When done using the device, and perhaps the module needs to be unloaded,
55 the driver needs to take the follow steps:
56 Disable the device from generating IRQs
57 Release the IRQ (free_irq())
59 Release DMA buffers (both streaming and coherent)
60 Unregister from other subsystems (e.g. scsi or netdev)
61 Release MMIO/IOP resources
64 Most of these topics are covered in the following sections.
65 For the rest look at LDD3 or <linux/pci.h> .
67 If the PCI subsystem is not configured (CONFIG_PCI is not set), most of
68 the PCI functions described below are defined as inline functions either
69 completely empty or just returning an appropriate error codes to avoid
70 lots of ifdefs in the drivers.
74 1. pci_register_driver() call
75 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
77 PCI device drivers call pci_register_driver() during their
78 initialization with a pointer to a structure describing the driver
81 field name Description
82 ---------- ------------------------------------------------------
83 id_table Pointer to table of device ID's the driver is
84 interested in. Most drivers should export this
85 table using MODULE_DEVICE_TABLE(pci,...).
87 probe This probing function gets called (during execution
88 of pci_register_driver() for already existing
89 devices or later if a new device gets inserted) for
90 all PCI devices which match the ID table and are not
91 "owned" by the other drivers yet. This function gets
92 passed a "struct pci_dev *" for each device whose
93 entry in the ID table matches the device. The probe
94 function returns zero when the driver chooses to
95 take "ownership" of the device or an error code
96 (negative number) otherwise.
97 The probe function always gets called from process
98 context, so it can sleep.
100 remove The remove() function gets called whenever a device
101 being handled by this driver is removed (either during
102 deregistration of the driver or when it's manually
103 pulled out of a hot-pluggable slot).
104 The remove function always gets called from process
105 context, so it can sleep.
107 suspend Put device into low power state.
108 suspend_late Put device into low power state.
110 resume_early Wake device from low power state.
111 resume Wake device from low power state.
113 (Please see Documentation/power/pci.txt for descriptions
114 of PCI Power Management and the related functions.)
116 enable_wake Enable device to generate wake events from a low power
119 shutdown Hook into reboot_notifier_list (kernel/sys.c).
120 Intended to stop any idling DMA operations.
121 Useful for enabling wake-on-lan (NIC) or changing
122 the power state of a device before reboot.
123 e.g. drivers/net/e100.c.
125 err_handler See Documentation/pci-error-recovery.txt
127 multithread_probe Enable multi-threaded probe/scan. Driver must
128 provide its own locking/syncronization for init
129 operations if this is enabled.
132 The ID table is an array of struct pci_device_id entries ending with an
133 all-zero entry. Each entry consists of:
135 vendor,device Vendor and device ID to match (or PCI_ANY_ID)
137 subvendor, Subsystem vendor and device ID to match (or PCI_ANY_ID)
140 class Device class, subclass, and "interface" to match.
141 See Appendix D of the PCI Local Bus Spec or
142 include/linux/pci_ids.h for a full list of classes.
143 Most drivers do not need to specify class/class_mask
144 as vendor/device is normally sufficient.
146 class_mask limit which sub-fields of the class field are compared.
147 See drivers/scsi/sym53c8xx_2/ for example of usage.
149 driver_data Data private to the driver.
150 Most drivers don't need to use driver_data field.
151 Best practice is to use driver_data as an index
152 into a static list of equivalent device types,
153 instead of using it as a pointer.
156 Most drivers only need PCI_DEVICE() or PCI_DEVICE_CLASS() to set up
157 a pci_device_id table.
159 New PCI IDs may be added to a device driver pci_ids table at runtime
162 echo "vendor device subvendor subdevice class class_mask driver_data" > \
163 /sys/bus/pci/drivers/{driver}/new_id
165 All fields are passed in as hexadecimal values (no leading 0x).
166 Users need pass only as many fields as necessary:
167 o vendor, device, subvendor, and subdevice fields default
168 to PCI_ANY_ID (FFFFFFFF),
169 o class and classmask fields default to 0
170 o driver_data defaults to 0UL.
172 Once added, the driver probe routine will be invoked for any unclaimed
173 PCI devices listed in its (newly updated) pci_ids list.
175 When the driver exits, it just calls pci_unregister_driver() and the PCI layer
176 automatically calls the remove hook for all devices handled by the driver.
179 1.1 "Attributes" for driver functions/data
181 Please mark the initialization and cleanup functions where appropriate
182 (the corresponding macros are defined in <linux/init.h>):
184 __init Initialization code. Thrown away after the driver
186 __exit Exit code. Ignored for non-modular drivers.
189 __devinit Device initialization code.
190 Identical to __init if the kernel is not compiled
191 with CONFIG_HOTPLUG, normal function otherwise.
192 __devexit The same for __exit.
194 Tips on when/where to use the above attributes:
195 o The module_init()/module_exit() functions (and all
196 initialization functions called _only_ from these)
197 should be marked __init/__exit.
199 o Do not mark the struct pci_driver.
201 o The ID table array should be marked __devinitdata.
203 o The probe() and remove() functions should be marked __devinit
204 and __devexit respectively. All initialization functions
205 exclusively called by the probe() routine, can be marked __devinit.
206 Ditto for remove() and __devexit.
208 o If mydriver_remove() is marked with __devexit(), then all address
209 references to mydriver_remove must use __devexit_p(mydriver_remove)
210 (in the struct pci_driver declaration for example).
211 __devexit_p() will generate the function name _or_ NULL if the
212 function will be discarded. For an example, see drivers/net/tg3.c.
214 o Do NOT mark a function if you are not sure which mark to use.
215 Better to not mark the function than mark the function wrong.
219 2. How to find PCI devices manually
220 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
222 PCI drivers should have a really good reason for not using the
223 pci_register_driver() interface to search for PCI devices.
224 The main reason PCI devices are controlled by multiple drivers
225 is because one PCI device implements several different HW services.
226 E.g. combined serial/parallel port/floppy controller.
228 A manual search may be performed using the following constructs:
230 Searching by vendor and device ID:
232 struct pci_dev *dev = NULL;
233 while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev))
234 configure_device(dev);
236 Searching by class ID (iterate in a similar way):
238 pci_get_class(CLASS_ID, dev)
240 Searching by both vendor/device and subsystem vendor/device ID:
242 pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev).
244 You can use the constant PCI_ANY_ID as a wildcard replacement for
245 VENDOR_ID or DEVICE_ID. This allows searching for any device from a
246 specific vendor, for example.
248 These functions are hotplug-safe. They increment the reference count on
249 the pci_dev that they return. You must eventually (possibly at module unload)
250 decrement the reference count on these devices by calling pci_dev_put().
254 3. Device Initialization Steps
255 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
257 As noted in the introduction, most PCI drivers need the following steps
258 for device initialization:
261 Request MMIO/IOP resources
262 Set the DMA mask size (for both coherent and streaming DMA)
263 Allocate and initialize shared control data (pci_allocate_coherent())
264 Access device configuration space (if needed)
265 Register IRQ handler (request_irq())
266 Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
267 Enable DMA/processing engines.
269 The driver can access PCI config space registers at any time.
270 (Well, almost. When running BIST, config space can go away...but
271 that will just result in a PCI Bus Master Abort and config reads
272 will return garbage).
275 3.1 Enable the PCI device
276 ~~~~~~~~~~~~~~~~~~~~~~~~~
277 Before touching any device registers, the driver needs to enable
278 the PCI device by calling pci_enable_device(). This will:
279 o wake up the device if it was in suspended state,
280 o allocate I/O and memory regions of the device (if BIOS did not),
281 o allocate an IRQ (if BIOS did not).
283 NOTE: pci_enable_device() can fail! Check the return value.
284 NOTE2: Also see pci_enable_device_bars() below. Drivers can
285 attempt to enable only a subset of BARs they need.
287 [ OS BUG: we don't check resource allocations before enabling those
288 resources. The sequence would make more sense if we called
289 pci_request_resources() before calling pci_enable_device().
290 Currently, the device drivers can't detect the bug when when two
291 devices have been allocated the same range. This is not a common
292 problem and unlikely to get fixed soon.
294 This has been discussed before but not changed as of 2.6.19:
295 http://lkml.org/lkml/2006/3/2/194
298 pci_set_master() will enable DMA by setting the bus master bit
299 in the PCI_COMMAND register. It also fixes the latency timer value if
300 it's set to something bogus by the BIOS.
302 If the PCI device can use the PCI Memory-Write-Invalidate transaction,
303 call pci_set_mwi(). This enables the PCI_COMMAND bit for Mem-Wr-Inval
304 and also ensures that the cache line size register is set correctly.
305 Check the return value of pci_set_mwi() as not all architectures
306 or chip-sets may support Memory-Write-Invalidate.
309 3.2 Request MMIO/IOP resources
310 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
311 Memory (MMIO), and I/O port addresses should NOT be read directly
312 from the PCI device config space. Use the values in the pci_dev structure
313 as the PCI "bus address" might have been remapped to a "host physical"
314 address by the arch/chip-set specific kernel support.
316 See Documentation/IO-mapping.txt for how to access device registers
319 The device driver needs to call pci_request_region() to verify
320 no other device is already using the same address resource.
321 Conversely, drivers should call pci_release_region() AFTER
322 calling pci_disable_device().
323 The idea is to prevent two devices colliding on the same address range.
325 [ See OS BUG comment above. Currently (2.6.19), The driver can only
326 determine MMIO and IO Port resource availability _after_ calling
327 pci_enable_device(). ]
329 Generic flavors of pci_request_region() are request_mem_region()
330 (for MMIO ranges) and request_region() (for IO Port ranges).
331 Use these for address resources that are not described by "normal" PCI
334 Also see pci_request_selected_regions() below.
337 3.3 Set the DMA mask size
338 ~~~~~~~~~~~~~~~~~~~~~~~~~
339 [ If anything below doesn't make sense, please refer to
340 Documentation/DMA-API.txt. This section is just a reminder that
341 drivers need to indicate DMA capabilities of the device and is not
342 an authoritative source for DMA interfaces. ]
344 While all drivers should explicitly indicate the DMA capability
345 (e.g. 32 or 64 bit) of the PCI bus master, devices with more than
346 32-bit bus master capability for streaming data need the driver
347 to "register" this capability by calling pci_set_dma_mask() with
348 appropriate parameters. In general this allows more efficient DMA
349 on systems where System RAM exists above 4G _physical_ address.
351 Drivers for all PCI-X and PCIe compliant devices must call
352 pci_set_dma_mask() as they are 64-bit DMA devices.
354 Similarly, drivers must also "register" this capability if the device
355 can directly address "consistent memory" in System RAM above 4G physical
356 address by calling pci_set_consistent_dma_mask().
357 Again, this includes drivers for all PCI-X and PCIe compliant devices.
358 Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are
359 64-bit DMA capable for payload ("streaming") data but not control
363 3.4 Setup shared control data
364 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
365 Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared)
366 memory. See Documentation/DMA-API.txt for a full description of
367 the DMA APIs. This section is just a reminder that it needs to be done
368 before enabling DMA on the device.
371 3.5 Initialize device registers
372 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
373 Some drivers will need specific "capability" fields programmed
374 or other "vendor specific" register initialized or reset.
375 E.g. clearing pending interrupts.
378 3.6 Register IRQ handler
379 ~~~~~~~~~~~~~~~~~~~~~~~~
380 While calling request_irq() is the the last step described here,
381 this is often just another intermediate step to initialize a device.
382 This step can often be deferred until the device is opened for use.
384 All interrupt handlers for IRQ lines should be registered with IRQF_SHARED
385 and use the devid to map IRQs to devices (remember that all PCI IRQ lines
388 request_irq() will associate an interrupt handler and device handle
389 with an interrupt number. Historically interrupt numbers represent
390 IRQ lines which run from the PCI device to the Interrupt controller.
391 With MSI and MSI-X (more below) the interrupt number is a CPU "vector".
393 request_irq() also enables the interrupt. Make sure the device is
394 quiesced and does not have any interrupts pending before registering
395 the interrupt handler.
397 MSI and MSI-X are PCI capabilities. Both are "Message Signaled Interrupts"
398 which deliver interrupts to the CPU via a DMA write to a Local APIC.
399 The fundamental difference between MSI and MSI-X is how multiple
400 "vectors" get allocated. MSI requires contiguous blocks of vectors
401 while MSI-X can allocate several individual ones.
403 MSI capability can be enabled by calling pci_enable_msi() or
404 pci_enable_msix() before calling request_irq(). This causes
405 the PCI support to program CPU vector data into the PCI device
406 capability registers.
408 If your PCI device supports both, try to enable MSI-X first.
409 Only one can be enabled at a time. Many architectures, chip-sets,
410 or BIOSes do NOT support MSI or MSI-X and the call to pci_enable_msi/msix
411 will fail. This is important to note since many drivers have
412 two (or more) interrupt handlers: one for MSI/MSI-X and another for IRQs.
413 They choose which handler to register with request_irq() based on the
414 return value from pci_enable_msi/msix().
416 There are (at least) two really good reasons for using MSI:
417 1) MSI is an exclusive interrupt vector by definition.
418 This means the interrupt handler doesn't have to verify
419 its device caused the interrupt.
421 2) MSI avoids DMA/IRQ race conditions. DMA to host memory is guaranteed
422 to be visible to the host CPU(s) when the MSI is delivered. This
423 is important for both data coherency and avoiding stale control data.
424 This guarantee allows the driver to omit MMIO reads to flush
427 See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples
432 4. PCI device shutdown
433 ~~~~~~~~~~~~~~~~~~~~~~~
435 When a PCI device driver is being unloaded, most of the following
436 steps need to be performed:
438 Disable the device from generating IRQs
439 Release the IRQ (free_irq())
440 Stop all DMA activity
441 Release DMA buffers (both streaming and consistent)
442 Unregister from other subsystems (e.g. scsi or netdev)
443 Disable device from responding to MMIO/IO Port addresses
444 Release MMIO/IO Port resource(s)
447 4.1 Stop IRQs on the device
448 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
449 How to do this is chip/device specific. If it's not done, it opens
450 the possibility of a "screaming interrupt" if (and only if)
451 the IRQ is shared with another device.
453 When the shared IRQ handler is "unhooked", the remaining devices
454 using the same IRQ line will still need the IRQ enabled. Thus if the
455 "unhooked" device asserts IRQ line, the system will respond assuming
456 it was one of the remaining devices asserted the IRQ line. Since none
457 of the other devices will handle the IRQ, the system will "hang" until
458 it decides the IRQ isn't going to get handled and masks the IRQ (100,000
459 iterations later). Once the shared IRQ is masked, the remaining devices
460 will stop functioning properly. Not a nice situation.
462 This is another reason to use MSI or MSI-X if it's available.
463 MSI and MSI-X are defined to be exclusive interrupts and thus
464 are not susceptible to the "screaming interrupt" problem.
469 Once the device is quiesced (no more IRQs), one can call free_irq().
470 This function will return control once any pending IRQs are handled,
471 "unhook" the drivers IRQ handler from that IRQ, and finally release
472 the IRQ if no one else is using it.
475 4.3 Stop all DMA activity
476 ~~~~~~~~~~~~~~~~~~~~~~~~~
477 It's extremely important to stop all DMA operations BEFORE attempting
478 to deallocate DMA control data. Failure to do so can result in memory
479 corruption, hangs, and on some chip-sets a hard crash.
481 Stopping DMA after stopping the IRQs can avoid races where the
482 IRQ handler might restart DMA engines.
484 While this step sounds obvious and trivial, several "mature" drivers
485 didn't get this step right in the past.
488 4.4 Release DMA buffers
489 ~~~~~~~~~~~~~~~~~~~~~~~
490 Once DMA is stopped, clean up streaming DMA first.
491 I.e. unmap data buffers and return buffers to "upstream"
492 owners if there is one.
494 Then clean up "consistent" buffers which contain the control data.
496 See Documentation/DMA-API.txt for details on unmapping interfaces.
499 4.5 Unregister from other subsystems
500 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
501 Most low level PCI device drivers support some other subsystem
502 like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your
503 driver isn't losing resources from that other subsystem.
504 If this happens, typically the symptom is an Oops (panic) when
505 the subsystem attempts to call into a driver that has been unloaded.
508 4.6 Disable Device from responding to MMIO/IO Port addresses
509 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
510 io_unmap() MMIO or IO Port resources and then call pci_disable_device().
511 This is the symmetric opposite of pci_enable_device().
512 Do not access device registers after calling pci_disable_device().
515 4.7 Release MMIO/IO Port Resource(s)
516 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
517 Call pci_release_region() to mark the MMIO or IO Port range as available.
518 Failure to do so usually results in the inability to reload the driver.
522 5. How to access PCI config space
523 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
525 You can use pci_(read|write)_config_(byte|word|dword) to access the config
526 space of a device represented by struct pci_dev *. All these functions return 0
527 when successful or an error code (PCIBIOS_...) which can be translated to a text
528 string by pcibios_strerror. Most drivers expect that accesses to valid PCI
531 If you don't have a struct pci_dev available, you can call
532 pci_bus_(read|write)_config_(byte|word|dword) to access a given device
533 and function on that bus.
535 If you access fields in the standard portion of the config header, please
536 use symbolic names of locations and bits declared in <linux/pci.h>.
538 If you need to access Extended PCI Capability registers, just call
539 pci_find_capability() for the particular capability and it will find the
540 corresponding register block for you.
544 6. Other interesting functions
545 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
547 pci_find_slot() Find pci_dev corresponding to given bus and
549 pci_set_power_state() Set PCI Power Management state (0=D0 ... 3=D3)
550 pci_find_capability() Find specified capability in device's capability
552 pci_module_init() Inline helper function for ensuring correct
553 pci_driver initialization and error handling.
554 pci_resource_start() Returns bus start address for a given PCI region
555 pci_resource_end() Returns bus end address for a given PCI region
556 pci_resource_len() Returns the byte length of a PCI region
557 pci_set_drvdata() Set private driver data pointer for a pci_dev
558 pci_get_drvdata() Return private driver data pointer for a pci_dev
559 pci_set_mwi() Enable Memory-Write-Invalidate transactions.
560 pci_clear_mwi() Disable Memory-Write-Invalidate transactions.
564 7. Miscellaneous hints
565 ~~~~~~~~~~~~~~~~~~~~~~
567 When displaying PCI device names to the user (for example when a driver wants
568 to tell the user what card has it found), please use pci_name(pci_dev).
570 Always refer to the PCI devices by a pointer to the pci_dev structure.
571 All PCI layer functions use this identification and it's the only
572 reasonable one. Don't use bus/slot/function numbers except for very
573 special purposes -- on systems with multiple primary buses their semantics
574 can be pretty complex.
576 Don't try to turn on Fast Back to Back writes in your driver. All devices
577 on the bus need to be capable of doing it, so this is something which needs
578 to be handled by platform and generic code, not individual drivers.
582 8. Vendor and device identifications
583 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
585 One is not not required to add new device ids to include/linux/pci_ids.h.
586 Please add PCI_VENDOR_ID_xxx for vendors and a hex constant for device ids.
588 PCI_VENDOR_ID_xxx constants are re-used. The device ids are arbitrary
589 hex numbers (vendor controlled) and normally used only in a single
590 location, the pci_device_id table.
592 Please DO submit new vendor/device ids to pciids.sourceforge.net project.
596 9. Obsolete functions
597 ~~~~~~~~~~~~~~~~~~~~~
599 There are several functions which you might come across when trying to
600 port an old driver to the new PCI interface. They are no longer present
601 in the kernel as they aren't compatible with hotplug or PCI domains or
604 pci_find_device() Superseded by pci_get_device()
605 pci_find_subsys() Superseded by pci_get_subsys()
606 pci_find_slot() Superseded by pci_get_slot()
609 The alternative is the traditional PCI device driver that walks PCI
610 device lists. This is still possible but discouraged.
614 10. pci_enable_device_bars() and Legacy I/O Port space
615 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
617 Large servers may not be able to provide I/O port resources to all PCI
618 devices. I/O Port space is only 64KB on Intel Architecture[1] and is
619 likely also fragmented since the I/O base register of PCI-to-PCI
620 bridge will usually be aligned to a 4KB boundary[2]. On such systems,
621 pci_enable_device() and pci_request_region() will fail when
622 attempting to enable I/O Port regions that don't have I/O Port
625 Fortunately, many PCI devices which request I/O Port resources also
626 provide access to the same registers via MMIO BARs. These devices can
627 be handled without using I/O port space and the drivers typically
628 offer a CONFIG_ option to only use MMIO regions
629 (e.g. CONFIG_TULIP_MMIO). PCI devices typically provide I/O port
630 interface for legacy OSes and will work when I/O port resources are not
631 assigned. The "PCI Local Bus Specification Revision 3.0" discusses
632 this on p.44, "IMPLEMENTATION NOTE".
634 If your PCI device driver doesn't need I/O port resources assigned to
635 I/O Port BARs, you should use pci_enable_device_bars() instead of
636 pci_enable_device() in order not to enable I/O port regions for the
637 corresponding devices. In addition, you should use
638 pci_request_selected_regions() and pci_release_selected_regions()
639 instead of pci_request_regions()/pci_release_regions() in order not to
640 request/release I/O port regions for the corresponding devices.
642 [1] Some systems support 64KB I/O port space per PCI segment.
643 [2] Some PCI-to-PCI bridges support optional 1KB aligned I/O base.
647 11. MMIO Space and "Write Posting"
648 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
650 Converting a driver from using I/O Port space to using MMIO space
651 often requires some additional changes. Specifically, "write posting"
652 needs to be handled. Many drivers (e.g. tg3, acenic, sym53c8xx_2)
653 already do this. I/O Port space guarantees write transactions reach the PCI
654 device before the CPU can continue. Writes to MMIO space allow the CPU
655 to continue before the transaction reaches the PCI device. HW weenies
656 call this "Write Posting" because the write completion is "posted" to
657 the CPU before the transaction has reached its destination.
659 Thus, timing sensitive code should add readl() where the CPU is
660 expected to wait before doing other work. The classic "bit banging"
661 sequence works fine for I/O Port space:
663 for (i = 8; --i; val >>= 1) {
664 outb(val & 1, ioport_reg); /* write bit */
668 The same sequence for MMIO space should be:
670 for (i = 8; --i; val >>= 1) {
671 writeb(val & 1, mmio_reg); /* write bit */
672 readb(safe_mmio_reg); /* flush posted write */
676 It is important that "safe_mmio_reg" not have any side effects that
677 interferes with the correct operation of the device.
679 Another case to watch out for is when resetting a PCI device. Use PCI
680 Configuration space reads to flush the writel(). This will gracefully
681 handle the PCI master abort on all platforms if the PCI device is
682 expected to not respond to a readl(). Most x86 platforms will allow
683 MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage
684 (e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail").