2 * arch/microblaze/mm/fault.c
4 * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
6 * Derived from "arch/ppc/mm/fault.c"
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Modified by Cort Dougan and Paul Mackerras.
14 * This file is subject to the terms and conditions of the GNU General
15 * Public License. See the file COPYING in the main directory of this
16 * archive for more details.
20 #include <linux/module.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
30 #include <linux/interrupt.h>
33 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36 #include <asm/system.h>
37 #include <linux/uaccess.h>
38 #include <asm/exceptions.h>
40 #if defined(CONFIG_KGDB)
41 int debugger_kernel_faults
= 1;
44 static unsigned long pte_misses
; /* updated by do_page_fault() */
45 static unsigned long pte_errors
; /* updated by do_page_fault() */
48 * Check whether the instruction at regs->pc is a store using
49 * an update addressing form which will update r1.
51 static int store_updates_sp(struct pt_regs
*regs
)
55 if (get_user(inst
, (unsigned int *)regs
->pc
))
57 /* check for 1 in the rD field */
58 if (((inst
>> 21) & 0x1f) != 1)
60 /* check for store opcodes */
61 if ((inst
& 0xd0000000) == 0xd0000000)
68 * bad_page_fault is called when we have a bad access from the kernel.
69 * It is called from do_page_fault above and from some of the procedures
72 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
74 const struct exception_table_entry
*fixup
;
76 /* Are we prepared to handle this fault? */
77 fixup
= search_exception_tables(regs
->pc
);
79 regs
->pc
= fixup
->fixup
;
83 /* kernel has accessed a bad area */
84 #if defined(CONFIG_KGDB)
85 if (debugger_kernel_faults
)
88 die("kernel access of bad area", regs
, sig
);
92 * The error_code parameter is ESR for a data fault,
93 * 0 for an instruction fault.
95 void do_page_fault(struct pt_regs
*regs
, unsigned long address
,
96 unsigned long error_code
)
98 struct vm_area_struct
*vma
;
99 struct mm_struct
*mm
= current
->mm
;
101 int code
= SEGV_MAPERR
;
102 int is_write
= error_code
& ESR_S
;
106 regs
->esr
= error_code
;
108 /* On a kernel SLB miss we can only check for a valid exception entry */
109 if (unlikely(kernel_mode(regs
) && (address
>= TASK_SIZE
))) {
110 printk(KERN_WARNING
"kernel task_size exceed");
111 _exception(SIGSEGV
, regs
, code
, address
);
114 /* for instr TLB miss and instr storage exception ESR_S is undefined */
115 if ((error_code
& 0x13) == 0x13 || (error_code
& 0x11) == 0x11)
118 #if defined(CONFIG_KGDB)
119 if (debugger_fault_handler
&& regs
->trap
== 0x300) {
120 debugger_fault_handler(regs
);
123 #endif /* CONFIG_KGDB */
125 if (unlikely(in_atomic() || !mm
)) {
126 if (kernel_mode(regs
))
127 goto bad_area_nosemaphore
;
129 /* in_atomic() in user mode is really bad,
130 as is current->mm == NULL. */
131 printk(KERN_EMERG
"Page fault in user mode with "
132 "in_atomic(), mm = %p\n", mm
);
133 printk(KERN_EMERG
"r15 = %lx MSR = %lx\n",
134 regs
->r15
, regs
->msr
);
135 die("Weird page fault", regs
, SIGSEGV
);
138 /* When running in the kernel we expect faults to occur only to
139 * addresses in user space. All other faults represent errors in the
140 * kernel and should generate an OOPS. Unfortunately, in the case of an
141 * erroneous fault occurring in a code path which already holds mmap_sem
142 * we will deadlock attempting to validate the fault against the
143 * address space. Luckily the kernel only validly references user
144 * space from well defined areas of code, which are listed in the
147 * As the vast majority of faults will be valid we will only perform
148 * the source reference check when there is a possibility of a deadlock.
149 * Attempt to lock the address space, if we cannot we then validate the
150 * source. If this is invalid we can skip the address space check,
151 * thus avoiding the deadlock.
153 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
154 if (kernel_mode(regs
) && !search_exception_tables(regs
->pc
))
155 goto bad_area_nosemaphore
;
157 down_read(&mm
->mmap_sem
);
160 vma
= find_vma(mm
, address
);
164 if (vma
->vm_start
<= address
)
167 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
)))
170 if (unlikely(!is_write
))
174 * N.B. The ABI allows programs to access up to
175 * a few hundred bytes below the stack pointer (TBD).
176 * The kernel signal delivery code writes up to about 1.5kB
177 * below the stack pointer (r1) before decrementing it.
178 * The exec code can write slightly over 640kB to the stack
179 * before setting the user r1. Thus we allow the stack to
180 * expand to 1MB without further checks.
182 if (unlikely(address
+ 0x100000 < vma
->vm_end
)) {
184 /* get user regs even if this fault is in kernel mode */
185 struct pt_regs
*uregs
= current
->thread
.regs
;
190 * A user-mode access to an address a long way below
191 * the stack pointer is only valid if the instruction
192 * is one which would update the stack pointer to the
193 * address accessed if the instruction completed,
194 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
195 * (or the byte, halfword, float or double forms).
197 * If we don't check this then any write to the area
198 * between the last mapped region and the stack will
199 * expand the stack rather than segfaulting.
201 if (address
+ 2048 < uregs
->r1
202 && (kernel_mode(regs
) || !store_updates_sp(regs
)))
205 if (expand_stack(vma
, address
))
212 if (unlikely(is_write
)) {
213 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
217 /* protection fault */
218 if (unlikely(error_code
& 0x08000000))
220 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
))))
225 * If for any reason at all we couldn't handle the fault,
226 * make sure we exit gracefully rather than endlessly redo
230 fault
= handle_mm_fault(mm
, vma
, address
, is_write
? FAULT_FLAG_WRITE
: 0);
231 if (unlikely(fault
& VM_FAULT_ERROR
)) {
232 if (fault
& VM_FAULT_OOM
)
234 else if (fault
& VM_FAULT_SIGBUS
)
238 if (unlikely(fault
& VM_FAULT_MAJOR
))
242 up_read(&mm
->mmap_sem
);
244 * keep track of tlb+htab misses that are good addrs but
245 * just need pte's created via handle_mm_fault()
252 up_read(&mm
->mmap_sem
);
254 bad_area_nosemaphore
:
257 /* User mode accesses cause a SIGSEGV */
258 if (user_mode(regs
)) {
259 _exception(SIGSEGV
, regs
, code
, address
);
260 /* info.si_signo = SIGSEGV;
263 info.si_addr = (void *) address;
264 force_sig_info(SIGSEGV, &info, current);*/
268 bad_page_fault(regs
, address
, SIGSEGV
);
272 * We ran out of memory, or some other thing happened to us that made
273 * us unable to handle the page fault gracefully.
276 up_read(&mm
->mmap_sem
);
277 if (!user_mode(regs
))
278 bad_page_fault(regs
, address
, SIGKILL
);
280 pagefault_out_of_memory();
284 up_read(&mm
->mmap_sem
);
285 if (user_mode(regs
)) {
286 info
.si_signo
= SIGBUS
;
288 info
.si_code
= BUS_ADRERR
;
289 info
.si_addr
= (void __user
*)address
;
290 force_sig_info(SIGBUS
, &info
, current
);
293 bad_page_fault(regs
, address
, SIGBUS
);