net: Rename skb_has_frags to skb_has_frag_list
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob859e30ff044a0d4b656933743d6627fc49733a6e
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 static inline void rps_lock(struct softnet_data *sd)
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
216 static inline void rps_unlock(struct softnet_data *sd)
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
226 struct net *net = dev_net(dev);
228 ASSERT_RTNL();
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
239 /* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
242 static void unlist_netdevice(struct net_device *dev)
244 ASSERT_RTNL();
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
255 * Our notifier list
258 static RAW_NOTIFIER_HEAD(netdev_chain);
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
268 #ifdef CONFIG_LOCKDEP
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
273 static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 ARPHRD_VOID, ARPHRD_NONE};
291 static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 "_xmit_VOID", "_xmit_NONE"};
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 int i;
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
326 int i;
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 int i;
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 #endif
352 /*******************************************************************************
354 Protocol management and registration routines
356 *******************************************************************************/
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
387 void dev_add_pack(struct packet_type *pt)
389 int hash;
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
398 spin_unlock_bh(&ptype_lock);
400 EXPORT_SYMBOL(dev_add_pack);
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
415 void __dev_remove_pack(struct packet_type *pt)
417 struct list_head *head;
418 struct packet_type *pt1;
420 spin_lock_bh(&ptype_lock);
422 if (pt->type == htons(ETH_P_ALL))
423 head = &ptype_all;
424 else
425 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
434 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435 out:
436 spin_unlock_bh(&ptype_lock);
438 EXPORT_SYMBOL(__dev_remove_pack);
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
452 void dev_remove_pack(struct packet_type *pt)
454 __dev_remove_pack(pt);
456 synchronize_net();
458 EXPORT_SYMBOL(dev_remove_pack);
460 /******************************************************************************
462 Device Boot-time Settings Routines
464 *******************************************************************************/
466 /* Boot time configuration table */
467 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470 * netdev_boot_setup_add - add new setup entry
471 * @name: name of the device
472 * @map: configured settings for the device
474 * Adds new setup entry to the dev_boot_setup list. The function
475 * returns 0 on error and 1 on success. This is a generic routine to
476 * all netdevices.
478 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 struct netdev_boot_setup *s;
481 int i;
483 s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 memset(s[i].name, 0, sizeof(s[i].name));
487 strlcpy(s[i].name, name, IFNAMSIZ);
488 memcpy(&s[i].map, map, sizeof(s[i].map));
489 break;
493 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
497 * netdev_boot_setup_check - check boot time settings
498 * @dev: the netdevice
500 * Check boot time settings for the device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found, 1 if they are.
505 int netdev_boot_setup_check(struct net_device *dev)
507 struct netdev_boot_setup *s = dev_boot_setup;
508 int i;
510 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 !strcmp(dev->name, s[i].name)) {
513 dev->irq = s[i].map.irq;
514 dev->base_addr = s[i].map.base_addr;
515 dev->mem_start = s[i].map.mem_start;
516 dev->mem_end = s[i].map.mem_end;
517 return 1;
520 return 0;
522 EXPORT_SYMBOL(netdev_boot_setup_check);
526 * netdev_boot_base - get address from boot time settings
527 * @prefix: prefix for network device
528 * @unit: id for network device
530 * Check boot time settings for the base address of device.
531 * The found settings are set for the device to be used
532 * later in the device probing.
533 * Returns 0 if no settings found.
535 unsigned long netdev_boot_base(const char *prefix, int unit)
537 const struct netdev_boot_setup *s = dev_boot_setup;
538 char name[IFNAMSIZ];
539 int i;
541 sprintf(name, "%s%d", prefix, unit);
544 * If device already registered then return base of 1
545 * to indicate not to probe for this interface
547 if (__dev_get_by_name(&init_net, name))
548 return 1;
550 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 if (!strcmp(name, s[i].name))
552 return s[i].map.base_addr;
553 return 0;
557 * Saves at boot time configured settings for any netdevice.
559 int __init netdev_boot_setup(char *str)
561 int ints[5];
562 struct ifmap map;
564 str = get_options(str, ARRAY_SIZE(ints), ints);
565 if (!str || !*str)
566 return 0;
568 /* Save settings */
569 memset(&map, 0, sizeof(map));
570 if (ints[0] > 0)
571 map.irq = ints[1];
572 if (ints[0] > 1)
573 map.base_addr = ints[2];
574 if (ints[0] > 2)
575 map.mem_start = ints[3];
576 if (ints[0] > 3)
577 map.mem_end = ints[4];
579 /* Add new entry to the list */
580 return netdev_boot_setup_add(str, &map);
583 __setup("netdev=", netdev_boot_setup);
585 /*******************************************************************************
587 Device Interface Subroutines
589 *******************************************************************************/
592 * __dev_get_by_name - find a device by its name
593 * @net: the applicable net namespace
594 * @name: name to find
596 * Find an interface by name. Must be called under RTNL semaphore
597 * or @dev_base_lock. If the name is found a pointer to the device
598 * is returned. If the name is not found then %NULL is returned. The
599 * reference counters are not incremented so the caller must be
600 * careful with locks.
603 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 struct hlist_node *p;
606 struct net_device *dev;
607 struct hlist_head *head = dev_name_hash(net, name);
609 hlist_for_each_entry(dev, p, head, name_hlist)
610 if (!strncmp(dev->name, name, IFNAMSIZ))
611 return dev;
613 return NULL;
615 EXPORT_SYMBOL(__dev_get_by_name);
618 * dev_get_by_name_rcu - find a device by its name
619 * @net: the applicable net namespace
620 * @name: name to find
622 * Find an interface by name.
623 * If the name is found a pointer to the device is returned.
624 * If the name is not found then %NULL is returned.
625 * The reference counters are not incremented so the caller must be
626 * careful with locks. The caller must hold RCU lock.
629 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 struct hlist_node *p;
632 struct net_device *dev;
633 struct hlist_head *head = dev_name_hash(net, name);
635 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 if (!strncmp(dev->name, name, IFNAMSIZ))
637 return dev;
639 return NULL;
641 EXPORT_SYMBOL(dev_get_by_name_rcu);
644 * dev_get_by_name - find a device by its name
645 * @net: the applicable net namespace
646 * @name: name to find
648 * Find an interface by name. This can be called from any
649 * context and does its own locking. The returned handle has
650 * the usage count incremented and the caller must use dev_put() to
651 * release it when it is no longer needed. %NULL is returned if no
652 * matching device is found.
655 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 struct net_device *dev;
659 rcu_read_lock();
660 dev = dev_get_by_name_rcu(net, name);
661 if (dev)
662 dev_hold(dev);
663 rcu_read_unlock();
664 return dev;
666 EXPORT_SYMBOL(dev_get_by_name);
669 * __dev_get_by_index - find a device by its ifindex
670 * @net: the applicable net namespace
671 * @ifindex: index of device
673 * Search for an interface by index. Returns %NULL if the device
674 * is not found or a pointer to the device. The device has not
675 * had its reference counter increased so the caller must be careful
676 * about locking. The caller must hold either the RTNL semaphore
677 * or @dev_base_lock.
680 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 struct hlist_node *p;
683 struct net_device *dev;
684 struct hlist_head *head = dev_index_hash(net, ifindex);
686 hlist_for_each_entry(dev, p, head, index_hlist)
687 if (dev->ifindex == ifindex)
688 return dev;
690 return NULL;
692 EXPORT_SYMBOL(__dev_get_by_index);
695 * dev_get_by_index_rcu - find a device by its ifindex
696 * @net: the applicable net namespace
697 * @ifindex: index of device
699 * Search for an interface by index. Returns %NULL if the device
700 * is not found or a pointer to the device. The device has not
701 * had its reference counter increased so the caller must be careful
702 * about locking. The caller must hold RCU lock.
705 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 struct hlist_node *p;
708 struct net_device *dev;
709 struct hlist_head *head = dev_index_hash(net, ifindex);
711 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 if (dev->ifindex == ifindex)
713 return dev;
715 return NULL;
717 EXPORT_SYMBOL(dev_get_by_index_rcu);
721 * dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
725 * Search for an interface by index. Returns NULL if the device
726 * is not found or a pointer to the device. The device returned has
727 * had a reference added and the pointer is safe until the user calls
728 * dev_put to indicate they have finished with it.
731 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 struct net_device *dev;
735 rcu_read_lock();
736 dev = dev_get_by_index_rcu(net, ifindex);
737 if (dev)
738 dev_hold(dev);
739 rcu_read_unlock();
740 return dev;
742 EXPORT_SYMBOL(dev_get_by_index);
745 * dev_getbyhwaddr - find a device by its hardware address
746 * @net: the applicable net namespace
747 * @type: media type of device
748 * @ha: hardware address
750 * Search for an interface by MAC address. Returns NULL if the device
751 * is not found or a pointer to the device. The caller must hold the
752 * rtnl semaphore. The returned device has not had its ref count increased
753 * and the caller must therefore be careful about locking
755 * BUGS:
756 * If the API was consistent this would be __dev_get_by_hwaddr
759 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 struct net_device *dev;
763 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
770 return NULL;
772 EXPORT_SYMBOL(dev_getbyhwaddr);
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 struct net_device *dev;
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
783 return NULL;
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 struct net_device *dev, *ret = NULL;
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
798 rcu_read_unlock();
799 return ret;
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
817 struct net_device *dev, *ret;
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
826 return ret;
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
838 int dev_valid_name(const char *name)
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
852 return 1;
854 EXPORT_SYMBOL(dev_valid_name);
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
919 return -ENFILE;
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
936 int dev_alloc_name(struct net_device *dev, const char *name)
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
949 EXPORT_SYMBOL(dev_alloc_name);
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 struct net *net;
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
958 if (!dev_valid_name(name))
959 return -EINVAL;
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
968 return 0;
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
979 int dev_change_name(struct net_device *dev, const char *newname)
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
996 memcpy(oldname, dev->name, IFNAMSIZ);
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1013 synchronize_rcu();
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1035 return err;
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1044 * Set ifalias for a device,
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 ASSERT_RTNL();
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1058 return 0;
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1074 * Called to indicate a device has changed features.
1076 void netdev_features_change(struct net_device *dev)
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 EXPORT_SYMBOL(netdev_features_change);
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1090 void netdev_state_change(struct net_device *dev)
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1097 EXPORT_SYMBOL(netdev_state_change);
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 return call_netdevice_notifiers(event, dev);
1103 EXPORT_SYMBOL(netdev_bonding_change);
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1115 void dev_load(struct net *net, const char *name)
1117 struct net_device *dev;
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1126 EXPORT_SYMBOL(dev_load);
1128 static int __dev_open(struct net_device *dev)
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1133 ASSERT_RTNL();
1136 * Is it even present?
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1147 * Call device private open method
1149 set_bit(__LINK_STATE_START, &dev->state);
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1158 * If it went open OK then:
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1165 * Set the flags.
1167 dev->flags |= IFF_UP;
1170 * Enable NET_DMA
1172 net_dmaengine_get();
1175 * Initialize multicasting status
1177 dev_set_rx_mode(dev);
1180 * Wakeup transmit queue engine
1182 dev_activate(dev);
1185 return ret;
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1200 int dev_open(struct net_device *dev)
1202 int ret;
1205 * Is it already up?
1207 if (dev->flags & IFF_UP)
1208 return 0;
1211 * Open device
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1218 * ... and announce new interface.
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1223 return ret;
1225 EXPORT_SYMBOL(dev_open);
1227 static int __dev_close(struct net_device *dev)
1229 const struct net_device_ops *ops = dev->netdev_ops;
1231 ASSERT_RTNL();
1232 might_sleep();
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240 clear_bit(__LINK_STATE_START, &dev->state);
1242 /* Synchronize to scheduled poll. We cannot touch poll list,
1243 * it can be even on different cpu. So just clear netif_running().
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 dev_deactivate(dev);
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1263 * Device is now down.
1266 dev->flags &= ~IFF_UP;
1269 * Shutdown NET_DMA
1271 net_dmaengine_put();
1273 return 0;
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1285 int dev_close(struct net_device *dev)
1287 if (!(dev->flags & IFF_UP))
1288 return 0;
1290 __dev_close(dev);
1293 * Tell people we are down
1295 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298 return 0;
1300 EXPORT_SYMBOL(dev_close);
1304 * dev_disable_lro - disable Large Receive Offload on a device
1305 * @dev: device
1307 * Disable Large Receive Offload (LRO) on a net device. Must be
1308 * called under RTNL. This is needed if received packets may be
1309 * forwarded to another interface.
1311 void dev_disable_lro(struct net_device *dev)
1313 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 dev->ethtool_ops->set_flags) {
1315 u32 flags = dev->ethtool_ops->get_flags(dev);
1316 if (flags & ETH_FLAG_LRO) {
1317 flags &= ~ETH_FLAG_LRO;
1318 dev->ethtool_ops->set_flags(dev, flags);
1321 WARN_ON(dev->features & NETIF_F_LRO);
1323 EXPORT_SYMBOL(dev_disable_lro);
1326 static int dev_boot_phase = 1;
1329 * Device change register/unregister. These are not inline or static
1330 * as we export them to the world.
1334 * register_netdevice_notifier - register a network notifier block
1335 * @nb: notifier
1337 * Register a notifier to be called when network device events occur.
1338 * The notifier passed is linked into the kernel structures and must
1339 * not be reused until it has been unregistered. A negative errno code
1340 * is returned on a failure.
1342 * When registered all registration and up events are replayed
1343 * to the new notifier to allow device to have a race free
1344 * view of the network device list.
1347 int register_netdevice_notifier(struct notifier_block *nb)
1349 struct net_device *dev;
1350 struct net_device *last;
1351 struct net *net;
1352 int err;
1354 rtnl_lock();
1355 err = raw_notifier_chain_register(&netdev_chain, nb);
1356 if (err)
1357 goto unlock;
1358 if (dev_boot_phase)
1359 goto unlock;
1360 for_each_net(net) {
1361 for_each_netdev(net, dev) {
1362 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 err = notifier_to_errno(err);
1364 if (err)
1365 goto rollback;
1367 if (!(dev->flags & IFF_UP))
1368 continue;
1370 nb->notifier_call(nb, NETDEV_UP, dev);
1374 unlock:
1375 rtnl_unlock();
1376 return err;
1378 rollback:
1379 last = dev;
1380 for_each_net(net) {
1381 for_each_netdev(net, dev) {
1382 if (dev == last)
1383 break;
1385 if (dev->flags & IFF_UP) {
1386 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 raw_notifier_chain_unregister(&netdev_chain, nb);
1395 goto unlock;
1397 EXPORT_SYMBOL(register_netdevice_notifier);
1400 * unregister_netdevice_notifier - unregister a network notifier block
1401 * @nb: notifier
1403 * Unregister a notifier previously registered by
1404 * register_netdevice_notifier(). The notifier is unlinked into the
1405 * kernel structures and may then be reused. A negative errno code
1406 * is returned on a failure.
1409 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 int err;
1413 rtnl_lock();
1414 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 rtnl_unlock();
1416 return err;
1418 EXPORT_SYMBOL(unregister_netdevice_notifier);
1421 * call_netdevice_notifiers - call all network notifier blocks
1422 * @val: value passed unmodified to notifier function
1423 * @dev: net_device pointer passed unmodified to notifier function
1425 * Call all network notifier blocks. Parameters and return value
1426 * are as for raw_notifier_call_chain().
1429 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 ASSERT_RTNL();
1432 return raw_notifier_call_chain(&netdev_chain, val, dev);
1435 /* When > 0 there are consumers of rx skb time stamps */
1436 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438 void net_enable_timestamp(void)
1440 atomic_inc(&netstamp_needed);
1442 EXPORT_SYMBOL(net_enable_timestamp);
1444 void net_disable_timestamp(void)
1446 atomic_dec(&netstamp_needed);
1448 EXPORT_SYMBOL(net_disable_timestamp);
1450 static inline void net_timestamp_set(struct sk_buff *skb)
1452 if (atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 else
1455 skb->tstamp.tv64 = 0;
1458 static inline void net_timestamp_check(struct sk_buff *skb)
1460 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 __net_timestamp(skb);
1465 * dev_forward_skb - loopback an skb to another netif
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped, but freed)
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1482 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 skb_orphan(skb);
1485 nf_reset(skb);
1487 if (!(dev->flags & IFF_UP) ||
1488 (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 struct packet_type *ptype;
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512 #else
1513 net_timestamp_set(skb);
1514 #endif
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1532 skb_reset_mac_header(skb2);
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 rcu_read_unlock();
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1556 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1558 unsigned int real_num = dev->real_num_tx_queues;
1560 if (unlikely(txq > dev->num_tx_queues))
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1569 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1571 static inline void __netif_reschedule(struct Qdisc *q)
1573 struct softnet_data *sd;
1574 unsigned long flags;
1576 local_irq_save(flags);
1577 sd = &__get_cpu_var(softnet_data);
1578 q->next_sched = NULL;
1579 *sd->output_queue_tailp = q;
1580 sd->output_queue_tailp = &q->next_sched;
1581 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 local_irq_restore(flags);
1585 void __netif_schedule(struct Qdisc *q)
1587 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 __netif_reschedule(q);
1590 EXPORT_SYMBOL(__netif_schedule);
1592 void dev_kfree_skb_irq(struct sk_buff *skb)
1594 if (atomic_dec_and_test(&skb->users)) {
1595 struct softnet_data *sd;
1596 unsigned long flags;
1598 local_irq_save(flags);
1599 sd = &__get_cpu_var(softnet_data);
1600 skb->next = sd->completion_queue;
1601 sd->completion_queue = skb;
1602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 local_irq_restore(flags);
1606 EXPORT_SYMBOL(dev_kfree_skb_irq);
1608 void dev_kfree_skb_any(struct sk_buff *skb)
1610 if (in_irq() || irqs_disabled())
1611 dev_kfree_skb_irq(skb);
1612 else
1613 dev_kfree_skb(skb);
1615 EXPORT_SYMBOL(dev_kfree_skb_any);
1619 * netif_device_detach - mark device as removed
1620 * @dev: network device
1622 * Mark device as removed from system and therefore no longer available.
1624 void netif_device_detach(struct net_device *dev)
1626 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_stop_all_queues(dev);
1631 EXPORT_SYMBOL(netif_device_detach);
1634 * netif_device_attach - mark device as attached
1635 * @dev: network device
1637 * Mark device as attached from system and restart if needed.
1639 void netif_device_attach(struct net_device *dev)
1641 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 netif_running(dev)) {
1643 netif_tx_wake_all_queues(dev);
1644 __netdev_watchdog_up(dev);
1647 EXPORT_SYMBOL(netif_device_attach);
1649 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1651 return ((features & NETIF_F_GEN_CSUM) ||
1652 ((features & NETIF_F_IP_CSUM) &&
1653 protocol == htons(ETH_P_IP)) ||
1654 ((features & NETIF_F_IPV6_CSUM) &&
1655 protocol == htons(ETH_P_IPV6)) ||
1656 ((features & NETIF_F_FCOE_CRC) &&
1657 protocol == htons(ETH_P_FCOE)));
1660 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1662 if (can_checksum_protocol(dev->features, skb->protocol))
1663 return true;
1665 if (skb->protocol == htons(ETH_P_8021Q)) {
1666 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 veh->h_vlan_encapsulated_proto))
1669 return true;
1672 return false;
1676 * skb_dev_set -- assign a new device to a buffer
1677 * @skb: buffer for the new device
1678 * @dev: network device
1680 * If an skb is owned by a device already, we have to reset
1681 * all data private to the namespace a device belongs to
1682 * before assigning it a new device.
1684 #ifdef CONFIG_NET_NS
1685 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1687 skb_dst_drop(skb);
1688 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 secpath_reset(skb);
1690 nf_reset(skb);
1691 skb_init_secmark(skb);
1692 skb->mark = 0;
1693 skb->priority = 0;
1694 skb->nf_trace = 0;
1695 skb->ipvs_property = 0;
1696 #ifdef CONFIG_NET_SCHED
1697 skb->tc_index = 0;
1698 #endif
1700 skb->dev = dev;
1702 EXPORT_SYMBOL(skb_set_dev);
1703 #endif /* CONFIG_NET_NS */
1706 * Invalidate hardware checksum when packet is to be mangled, and
1707 * complete checksum manually on outgoing path.
1709 int skb_checksum_help(struct sk_buff *skb)
1711 __wsum csum;
1712 int ret = 0, offset;
1714 if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 goto out_set_summed;
1717 if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 /* Let GSO fix up the checksum. */
1719 goto out_set_summed;
1722 offset = skb->csum_start - skb_headroom(skb);
1723 BUG_ON(offset >= skb_headlen(skb));
1724 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1726 offset += skb->csum_offset;
1727 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1729 if (skb_cloned(skb) &&
1730 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 if (ret)
1733 goto out;
1736 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737 out_set_summed:
1738 skb->ip_summed = CHECKSUM_NONE;
1739 out:
1740 return ret;
1742 EXPORT_SYMBOL(skb_checksum_help);
1745 * skb_gso_segment - Perform segmentation on skb.
1746 * @skb: buffer to segment
1747 * @features: features for the output path (see dev->features)
1749 * This function segments the given skb and returns a list of segments.
1751 * It may return NULL if the skb requires no segmentation. This is
1752 * only possible when GSO is used for verifying header integrity.
1754 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1756 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 struct packet_type *ptype;
1758 __be16 type = skb->protocol;
1759 int err;
1761 skb_reset_mac_header(skb);
1762 skb->mac_len = skb->network_header - skb->mac_header;
1763 __skb_pull(skb, skb->mac_len);
1765 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 struct net_device *dev = skb->dev;
1767 struct ethtool_drvinfo info = {};
1769 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 dev->ethtool_ops->get_drvinfo(dev, &info);
1772 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 "ip_summed=%d",
1774 info.driver, dev ? dev->features : 0L,
1775 skb->sk ? skb->sk->sk_route_caps : 0L,
1776 skb->len, skb->data_len, skb->ip_summed);
1778 if (skb_header_cloned(skb) &&
1779 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 return ERR_PTR(err);
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(ptype,
1785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 err = ptype->gso_send_check(skb);
1789 segs = ERR_PTR(err);
1790 if (err || skb_gso_ok(skb, features))
1791 break;
1792 __skb_push(skb, (skb->data -
1793 skb_network_header(skb)));
1795 segs = ptype->gso_segment(skb, features);
1796 break;
1799 rcu_read_unlock();
1801 __skb_push(skb, skb->data - skb_mac_header(skb));
1803 return segs;
1805 EXPORT_SYMBOL(skb_gso_segment);
1807 /* Take action when hardware reception checksum errors are detected. */
1808 #ifdef CONFIG_BUG
1809 void netdev_rx_csum_fault(struct net_device *dev)
1811 if (net_ratelimit()) {
1812 printk(KERN_ERR "%s: hw csum failure.\n",
1813 dev ? dev->name : "<unknown>");
1814 dump_stack();
1817 EXPORT_SYMBOL(netdev_rx_csum_fault);
1818 #endif
1820 /* Actually, we should eliminate this check as soon as we know, that:
1821 * 1. IOMMU is present and allows to map all the memory.
1822 * 2. No high memory really exists on this machine.
1825 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1827 #ifdef CONFIG_HIGHMEM
1828 int i;
1829 if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 return 1;
1835 if (PCI_DMA_BUS_IS_PHYS) {
1836 struct device *pdev = dev->dev.parent;
1838 if (!pdev)
1839 return 0;
1840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 return 1;
1846 #endif
1847 return 0;
1850 struct dev_gso_cb {
1851 void (*destructor)(struct sk_buff *skb);
1854 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1856 static void dev_gso_skb_destructor(struct sk_buff *skb)
1858 struct dev_gso_cb *cb;
1860 do {
1861 struct sk_buff *nskb = skb->next;
1863 skb->next = nskb->next;
1864 nskb->next = NULL;
1865 kfree_skb(nskb);
1866 } while (skb->next);
1868 cb = DEV_GSO_CB(skb);
1869 if (cb->destructor)
1870 cb->destructor(skb);
1874 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1875 * @skb: buffer to segment
1877 * This function segments the given skb and stores the list of segments
1878 * in skb->next.
1880 static int dev_gso_segment(struct sk_buff *skb)
1882 struct net_device *dev = skb->dev;
1883 struct sk_buff *segs;
1884 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 NETIF_F_SG : 0);
1887 segs = skb_gso_segment(skb, features);
1889 /* Verifying header integrity only. */
1890 if (!segs)
1891 return 0;
1893 if (IS_ERR(segs))
1894 return PTR_ERR(segs);
1896 skb->next = segs;
1897 DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 skb->destructor = dev_gso_skb_destructor;
1900 return 0;
1904 * Try to orphan skb early, right before transmission by the device.
1905 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1906 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1908 static inline void skb_orphan_try(struct sk_buff *skb)
1910 struct sock *sk = skb->sk;
1912 if (sk && !skb_shinfo(skb)->tx_flags) {
1913 /* skb_tx_hash() wont be able to get sk.
1914 * We copy sk_hash into skb->rxhash
1916 if (!skb->rxhash)
1917 skb->rxhash = sk->sk_hash;
1918 skb_orphan(skb);
1923 * Returns true if either:
1924 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1925 * 2. skb is fragmented and the device does not support SG, or if
1926 * at least one of fragments is in highmem and device does not
1927 * support DMA from it.
1929 static inline int skb_needs_linearize(struct sk_buff *skb,
1930 struct net_device *dev)
1932 return skb_is_nonlinear(skb) &&
1933 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 illegal_highdma(dev, skb))));
1938 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 struct netdev_queue *txq)
1941 const struct net_device_ops *ops = dev->netdev_ops;
1942 int rc = NETDEV_TX_OK;
1944 if (likely(!skb->next)) {
1945 if (!list_empty(&ptype_all))
1946 dev_queue_xmit_nit(skb, dev);
1949 * If device doesnt need skb->dst, release it right now while
1950 * its hot in this cpu cache
1952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 skb_dst_drop(skb);
1955 skb_orphan_try(skb);
1957 if (netif_needs_gso(dev, skb)) {
1958 if (unlikely(dev_gso_segment(skb)))
1959 goto out_kfree_skb;
1960 if (skb->next)
1961 goto gso;
1962 } else {
1963 if (skb_needs_linearize(skb, dev) &&
1964 __skb_linearize(skb))
1965 goto out_kfree_skb;
1967 /* If packet is not checksummed and device does not
1968 * support checksumming for this protocol, complete
1969 * checksumming here.
1971 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 skb_set_transport_header(skb, skb->csum_start -
1973 skb_headroom(skb));
1974 if (!dev_can_checksum(dev, skb) &&
1975 skb_checksum_help(skb))
1976 goto out_kfree_skb;
1980 rc = ops->ndo_start_xmit(skb, dev);
1981 if (rc == NETDEV_TX_OK)
1982 txq_trans_update(txq);
1983 return rc;
1986 gso:
1987 do {
1988 struct sk_buff *nskb = skb->next;
1990 skb->next = nskb->next;
1991 nskb->next = NULL;
1994 * If device doesnt need nskb->dst, release it right now while
1995 * its hot in this cpu cache
1997 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 skb_dst_drop(nskb);
2000 rc = ops->ndo_start_xmit(nskb, dev);
2001 if (unlikely(rc != NETDEV_TX_OK)) {
2002 if (rc & ~NETDEV_TX_MASK)
2003 goto out_kfree_gso_skb;
2004 nskb->next = skb->next;
2005 skb->next = nskb;
2006 return rc;
2008 txq_trans_update(txq);
2009 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 return NETDEV_TX_BUSY;
2011 } while (skb->next);
2013 out_kfree_gso_skb:
2014 if (likely(skb->next == NULL))
2015 skb->destructor = DEV_GSO_CB(skb)->destructor;
2016 out_kfree_skb:
2017 kfree_skb(skb);
2018 return rc;
2021 static u32 hashrnd __read_mostly;
2023 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2025 u32 hash;
2027 if (skb_rx_queue_recorded(skb)) {
2028 hash = skb_get_rx_queue(skb);
2029 while (unlikely(hash >= dev->real_num_tx_queues))
2030 hash -= dev->real_num_tx_queues;
2031 return hash;
2034 if (skb->sk && skb->sk->sk_hash)
2035 hash = skb->sk->sk_hash;
2036 else
2037 hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 hash = jhash_1word(hash, hashrnd);
2040 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2042 EXPORT_SYMBOL(skb_tx_hash);
2044 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2046 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 if (net_ratelimit()) {
2048 pr_warning("%s selects TX queue %d, but "
2049 "real number of TX queues is %d\n",
2050 dev->name, queue_index, dev->real_num_tx_queues);
2052 return 0;
2054 return queue_index;
2057 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 struct sk_buff *skb)
2060 int queue_index;
2061 struct sock *sk = skb->sk;
2063 queue_index = sk_tx_queue_get(sk);
2064 if (queue_index < 0) {
2065 const struct net_device_ops *ops = dev->netdev_ops;
2067 if (ops->ndo_select_queue) {
2068 queue_index = ops->ndo_select_queue(dev, skb);
2069 queue_index = dev_cap_txqueue(dev, queue_index);
2070 } else {
2071 queue_index = 0;
2072 if (dev->real_num_tx_queues > 1)
2073 queue_index = skb_tx_hash(dev, skb);
2075 if (sk) {
2076 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2078 if (dst && skb_dst(skb) == dst)
2079 sk_tx_queue_set(sk, queue_index);
2084 skb_set_queue_mapping(skb, queue_index);
2085 return netdev_get_tx_queue(dev, queue_index);
2088 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 struct net_device *dev,
2090 struct netdev_queue *txq)
2092 spinlock_t *root_lock = qdisc_lock(q);
2093 bool contended = qdisc_is_running(q);
2094 int rc;
2097 * Heuristic to force contended enqueues to serialize on a
2098 * separate lock before trying to get qdisc main lock.
2099 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 * and dequeue packets faster.
2102 if (unlikely(contended))
2103 spin_lock(&q->busylock);
2105 spin_lock(root_lock);
2106 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 kfree_skb(skb);
2108 rc = NET_XMIT_DROP;
2109 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 qdisc_run_begin(q)) {
2112 * This is a work-conserving queue; there are no old skbs
2113 * waiting to be sent out; and the qdisc is not running -
2114 * xmit the skb directly.
2116 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 skb_dst_force(skb);
2118 __qdisc_update_bstats(q, skb->len);
2119 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 if (unlikely(contended)) {
2121 spin_unlock(&q->busylock);
2122 contended = false;
2124 __qdisc_run(q);
2125 } else
2126 qdisc_run_end(q);
2128 rc = NET_XMIT_SUCCESS;
2129 } else {
2130 skb_dst_force(skb);
2131 rc = qdisc_enqueue_root(skb, q);
2132 if (qdisc_run_begin(q)) {
2133 if (unlikely(contended)) {
2134 spin_unlock(&q->busylock);
2135 contended = false;
2137 __qdisc_run(q);
2140 spin_unlock(root_lock);
2141 if (unlikely(contended))
2142 spin_unlock(&q->busylock);
2143 return rc;
2147 * dev_queue_xmit - transmit a buffer
2148 * @skb: buffer to transmit
2150 * Queue a buffer for transmission to a network device. The caller must
2151 * have set the device and priority and built the buffer before calling
2152 * this function. The function can be called from an interrupt.
2154 * A negative errno code is returned on a failure. A success does not
2155 * guarantee the frame will be transmitted as it may be dropped due
2156 * to congestion or traffic shaping.
2158 * -----------------------------------------------------------------------------------
2159 * I notice this method can also return errors from the queue disciplines,
2160 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2161 * be positive.
2163 * Regardless of the return value, the skb is consumed, so it is currently
2164 * difficult to retry a send to this method. (You can bump the ref count
2165 * before sending to hold a reference for retry if you are careful.)
2167 * When calling this method, interrupts MUST be enabled. This is because
2168 * the BH enable code must have IRQs enabled so that it will not deadlock.
2169 * --BLG
2171 int dev_queue_xmit(struct sk_buff *skb)
2173 struct net_device *dev = skb->dev;
2174 struct netdev_queue *txq;
2175 struct Qdisc *q;
2176 int rc = -ENOMEM;
2178 /* Disable soft irqs for various locks below. Also
2179 * stops preemption for RCU.
2181 rcu_read_lock_bh();
2183 txq = dev_pick_tx(dev, skb);
2184 q = rcu_dereference_bh(txq->qdisc);
2186 #ifdef CONFIG_NET_CLS_ACT
2187 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188 #endif
2189 if (q->enqueue) {
2190 rc = __dev_xmit_skb(skb, q, dev, txq);
2191 goto out;
2194 /* The device has no queue. Common case for software devices:
2195 loopback, all the sorts of tunnels...
2197 Really, it is unlikely that netif_tx_lock protection is necessary
2198 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2199 counters.)
2200 However, it is possible, that they rely on protection
2201 made by us here.
2203 Check this and shot the lock. It is not prone from deadlocks.
2204 Either shot noqueue qdisc, it is even simpler 8)
2206 if (dev->flags & IFF_UP) {
2207 int cpu = smp_processor_id(); /* ok because BHs are off */
2209 if (txq->xmit_lock_owner != cpu) {
2211 HARD_TX_LOCK(dev, txq, cpu);
2213 if (!netif_tx_queue_stopped(txq)) {
2214 rc = dev_hard_start_xmit(skb, dev, txq);
2215 if (dev_xmit_complete(rc)) {
2216 HARD_TX_UNLOCK(dev, txq);
2217 goto out;
2220 HARD_TX_UNLOCK(dev, txq);
2221 if (net_ratelimit())
2222 printk(KERN_CRIT "Virtual device %s asks to "
2223 "queue packet!\n", dev->name);
2224 } else {
2225 /* Recursion is detected! It is possible,
2226 * unfortunately */
2227 if (net_ratelimit())
2228 printk(KERN_CRIT "Dead loop on virtual device "
2229 "%s, fix it urgently!\n", dev->name);
2233 rc = -ENETDOWN;
2234 rcu_read_unlock_bh();
2236 kfree_skb(skb);
2237 return rc;
2238 out:
2239 rcu_read_unlock_bh();
2240 return rc;
2242 EXPORT_SYMBOL(dev_queue_xmit);
2245 /*=======================================================================
2246 Receiver routines
2247 =======================================================================*/
2249 int netdev_max_backlog __read_mostly = 1000;
2250 int netdev_tstamp_prequeue __read_mostly = 1;
2251 int netdev_budget __read_mostly = 300;
2252 int weight_p __read_mostly = 64; /* old backlog weight */
2254 /* Called with irq disabled */
2255 static inline void ____napi_schedule(struct softnet_data *sd,
2256 struct napi_struct *napi)
2258 list_add_tail(&napi->poll_list, &sd->poll_list);
2259 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2263 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2264 * and src/dst port numbers. Returns a non-zero hash number on success
2265 * and 0 on failure.
2267 __u32 __skb_get_rxhash(struct sk_buff *skb)
2269 int nhoff, hash = 0, poff;
2270 struct ipv6hdr *ip6;
2271 struct iphdr *ip;
2272 u8 ip_proto;
2273 u32 addr1, addr2, ihl;
2274 union {
2275 u32 v32;
2276 u16 v16[2];
2277 } ports;
2279 nhoff = skb_network_offset(skb);
2281 switch (skb->protocol) {
2282 case __constant_htons(ETH_P_IP):
2283 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2284 goto done;
2286 ip = (struct iphdr *) (skb->data + nhoff);
2287 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2288 ip_proto = 0;
2289 else
2290 ip_proto = ip->protocol;
2291 addr1 = (__force u32) ip->saddr;
2292 addr2 = (__force u32) ip->daddr;
2293 ihl = ip->ihl;
2294 break;
2295 case __constant_htons(ETH_P_IPV6):
2296 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2297 goto done;
2299 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2300 ip_proto = ip6->nexthdr;
2301 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2302 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2303 ihl = (40 >> 2);
2304 break;
2305 default:
2306 goto done;
2309 ports.v32 = 0;
2310 poff = proto_ports_offset(ip_proto);
2311 if (poff >= 0) {
2312 nhoff += ihl * 4 + poff;
2313 if (pskb_may_pull(skb, nhoff + 4)) {
2314 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2315 if (ports.v16[1] < ports.v16[0])
2316 swap(ports.v16[0], ports.v16[1]);
2320 /* get a consistent hash (same value on both flow directions) */
2321 if (addr2 < addr1)
2322 swap(addr1, addr2);
2324 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2325 if (!hash)
2326 hash = 1;
2328 done:
2329 return hash;
2331 EXPORT_SYMBOL(__skb_get_rxhash);
2333 #ifdef CONFIG_RPS
2335 /* One global table that all flow-based protocols share. */
2336 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2337 EXPORT_SYMBOL(rps_sock_flow_table);
2340 * get_rps_cpu is called from netif_receive_skb and returns the target
2341 * CPU from the RPS map of the receiving queue for a given skb.
2342 * rcu_read_lock must be held on entry.
2344 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2345 struct rps_dev_flow **rflowp)
2347 struct netdev_rx_queue *rxqueue;
2348 struct rps_map *map;
2349 struct rps_dev_flow_table *flow_table;
2350 struct rps_sock_flow_table *sock_flow_table;
2351 int cpu = -1;
2352 u16 tcpu;
2354 if (skb_rx_queue_recorded(skb)) {
2355 u16 index = skb_get_rx_queue(skb);
2356 if (unlikely(index >= dev->num_rx_queues)) {
2357 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2358 "on queue %u, but number of RX queues is %u\n",
2359 dev->name, index, dev->num_rx_queues);
2360 goto done;
2362 rxqueue = dev->_rx + index;
2363 } else
2364 rxqueue = dev->_rx;
2366 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2367 goto done;
2369 skb_reset_network_header(skb);
2370 if (!skb_get_rxhash(skb))
2371 goto done;
2373 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2374 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2375 if (flow_table && sock_flow_table) {
2376 u16 next_cpu;
2377 struct rps_dev_flow *rflow;
2379 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2380 tcpu = rflow->cpu;
2382 next_cpu = sock_flow_table->ents[skb->rxhash &
2383 sock_flow_table->mask];
2386 * If the desired CPU (where last recvmsg was done) is
2387 * different from current CPU (one in the rx-queue flow
2388 * table entry), switch if one of the following holds:
2389 * - Current CPU is unset (equal to RPS_NO_CPU).
2390 * - Current CPU is offline.
2391 * - The current CPU's queue tail has advanced beyond the
2392 * last packet that was enqueued using this table entry.
2393 * This guarantees that all previous packets for the flow
2394 * have been dequeued, thus preserving in order delivery.
2396 if (unlikely(tcpu != next_cpu) &&
2397 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2398 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2399 rflow->last_qtail)) >= 0)) {
2400 tcpu = rflow->cpu = next_cpu;
2401 if (tcpu != RPS_NO_CPU)
2402 rflow->last_qtail = per_cpu(softnet_data,
2403 tcpu).input_queue_head;
2405 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2406 *rflowp = rflow;
2407 cpu = tcpu;
2408 goto done;
2412 map = rcu_dereference(rxqueue->rps_map);
2413 if (map) {
2414 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2416 if (cpu_online(tcpu)) {
2417 cpu = tcpu;
2418 goto done;
2422 done:
2423 return cpu;
2426 /* Called from hardirq (IPI) context */
2427 static void rps_trigger_softirq(void *data)
2429 struct softnet_data *sd = data;
2431 ____napi_schedule(sd, &sd->backlog);
2432 sd->received_rps++;
2435 #endif /* CONFIG_RPS */
2438 * Check if this softnet_data structure is another cpu one
2439 * If yes, queue it to our IPI list and return 1
2440 * If no, return 0
2442 static int rps_ipi_queued(struct softnet_data *sd)
2444 #ifdef CONFIG_RPS
2445 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2447 if (sd != mysd) {
2448 sd->rps_ipi_next = mysd->rps_ipi_list;
2449 mysd->rps_ipi_list = sd;
2451 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2452 return 1;
2454 #endif /* CONFIG_RPS */
2455 return 0;
2459 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2460 * queue (may be a remote CPU queue).
2462 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2463 unsigned int *qtail)
2465 struct softnet_data *sd;
2466 unsigned long flags;
2468 sd = &per_cpu(softnet_data, cpu);
2470 local_irq_save(flags);
2472 rps_lock(sd);
2473 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2474 if (skb_queue_len(&sd->input_pkt_queue)) {
2475 enqueue:
2476 __skb_queue_tail(&sd->input_pkt_queue, skb);
2477 input_queue_tail_incr_save(sd, qtail);
2478 rps_unlock(sd);
2479 local_irq_restore(flags);
2480 return NET_RX_SUCCESS;
2483 /* Schedule NAPI for backlog device
2484 * We can use non atomic operation since we own the queue lock
2486 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2487 if (!rps_ipi_queued(sd))
2488 ____napi_schedule(sd, &sd->backlog);
2490 goto enqueue;
2493 sd->dropped++;
2494 rps_unlock(sd);
2496 local_irq_restore(flags);
2498 kfree_skb(skb);
2499 return NET_RX_DROP;
2503 * netif_rx - post buffer to the network code
2504 * @skb: buffer to post
2506 * This function receives a packet from a device driver and queues it for
2507 * the upper (protocol) levels to process. It always succeeds. The buffer
2508 * may be dropped during processing for congestion control or by the
2509 * protocol layers.
2511 * return values:
2512 * NET_RX_SUCCESS (no congestion)
2513 * NET_RX_DROP (packet was dropped)
2517 int netif_rx(struct sk_buff *skb)
2519 int ret;
2521 /* if netpoll wants it, pretend we never saw it */
2522 if (netpoll_rx(skb))
2523 return NET_RX_DROP;
2525 if (netdev_tstamp_prequeue)
2526 net_timestamp_check(skb);
2528 #ifdef CONFIG_RPS
2530 struct rps_dev_flow voidflow, *rflow = &voidflow;
2531 int cpu;
2533 preempt_disable();
2534 rcu_read_lock();
2536 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2537 if (cpu < 0)
2538 cpu = smp_processor_id();
2540 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2542 rcu_read_unlock();
2543 preempt_enable();
2545 #else
2547 unsigned int qtail;
2548 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2549 put_cpu();
2551 #endif
2552 return ret;
2554 EXPORT_SYMBOL(netif_rx);
2556 int netif_rx_ni(struct sk_buff *skb)
2558 int err;
2560 preempt_disable();
2561 err = netif_rx(skb);
2562 if (local_softirq_pending())
2563 do_softirq();
2564 preempt_enable();
2566 return err;
2568 EXPORT_SYMBOL(netif_rx_ni);
2570 static void net_tx_action(struct softirq_action *h)
2572 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2574 if (sd->completion_queue) {
2575 struct sk_buff *clist;
2577 local_irq_disable();
2578 clist = sd->completion_queue;
2579 sd->completion_queue = NULL;
2580 local_irq_enable();
2582 while (clist) {
2583 struct sk_buff *skb = clist;
2584 clist = clist->next;
2586 WARN_ON(atomic_read(&skb->users));
2587 __kfree_skb(skb);
2591 if (sd->output_queue) {
2592 struct Qdisc *head;
2594 local_irq_disable();
2595 head = sd->output_queue;
2596 sd->output_queue = NULL;
2597 sd->output_queue_tailp = &sd->output_queue;
2598 local_irq_enable();
2600 while (head) {
2601 struct Qdisc *q = head;
2602 spinlock_t *root_lock;
2604 head = head->next_sched;
2606 root_lock = qdisc_lock(q);
2607 if (spin_trylock(root_lock)) {
2608 smp_mb__before_clear_bit();
2609 clear_bit(__QDISC_STATE_SCHED,
2610 &q->state);
2611 qdisc_run(q);
2612 spin_unlock(root_lock);
2613 } else {
2614 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2615 &q->state)) {
2616 __netif_reschedule(q);
2617 } else {
2618 smp_mb__before_clear_bit();
2619 clear_bit(__QDISC_STATE_SCHED,
2620 &q->state);
2627 static inline int deliver_skb(struct sk_buff *skb,
2628 struct packet_type *pt_prev,
2629 struct net_device *orig_dev)
2631 atomic_inc(&skb->users);
2632 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2635 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2636 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2637 /* This hook is defined here for ATM LANE */
2638 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2639 unsigned char *addr) __read_mostly;
2640 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2641 #endif
2643 #ifdef CONFIG_NET_CLS_ACT
2644 /* TODO: Maybe we should just force sch_ingress to be compiled in
2645 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2646 * a compare and 2 stores extra right now if we dont have it on
2647 * but have CONFIG_NET_CLS_ACT
2648 * NOTE: This doesnt stop any functionality; if you dont have
2649 * the ingress scheduler, you just cant add policies on ingress.
2652 static int ing_filter(struct sk_buff *skb)
2654 struct net_device *dev = skb->dev;
2655 u32 ttl = G_TC_RTTL(skb->tc_verd);
2656 struct netdev_queue *rxq;
2657 int result = TC_ACT_OK;
2658 struct Qdisc *q;
2660 if (unlikely(MAX_RED_LOOP < ttl++)) {
2661 if (net_ratelimit())
2662 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2663 skb->skb_iif, dev->ifindex);
2664 return TC_ACT_SHOT;
2667 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2668 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2670 rxq = &dev->rx_queue;
2672 q = rxq->qdisc;
2673 if (q != &noop_qdisc) {
2674 spin_lock(qdisc_lock(q));
2675 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2676 result = qdisc_enqueue_root(skb, q);
2677 spin_unlock(qdisc_lock(q));
2680 return result;
2683 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2684 struct packet_type **pt_prev,
2685 int *ret, struct net_device *orig_dev)
2687 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2688 goto out;
2690 if (*pt_prev) {
2691 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2692 *pt_prev = NULL;
2695 switch (ing_filter(skb)) {
2696 case TC_ACT_SHOT:
2697 case TC_ACT_STOLEN:
2698 kfree_skb(skb);
2699 return NULL;
2702 out:
2703 skb->tc_verd = 0;
2704 return skb;
2706 #endif
2709 * netif_nit_deliver - deliver received packets to network taps
2710 * @skb: buffer
2712 * This function is used to deliver incoming packets to network
2713 * taps. It should be used when the normal netif_receive_skb path
2714 * is bypassed, for example because of VLAN acceleration.
2716 void netif_nit_deliver(struct sk_buff *skb)
2718 struct packet_type *ptype;
2720 if (list_empty(&ptype_all))
2721 return;
2723 skb_reset_network_header(skb);
2724 skb_reset_transport_header(skb);
2725 skb->mac_len = skb->network_header - skb->mac_header;
2727 rcu_read_lock();
2728 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2729 if (!ptype->dev || ptype->dev == skb->dev)
2730 deliver_skb(skb, ptype, skb->dev);
2732 rcu_read_unlock();
2736 * netdev_rx_handler_register - register receive handler
2737 * @dev: device to register a handler for
2738 * @rx_handler: receive handler to register
2739 * @rx_handler_data: data pointer that is used by rx handler
2741 * Register a receive hander for a device. This handler will then be
2742 * called from __netif_receive_skb. A negative errno code is returned
2743 * on a failure.
2745 * The caller must hold the rtnl_mutex.
2747 int netdev_rx_handler_register(struct net_device *dev,
2748 rx_handler_func_t *rx_handler,
2749 void *rx_handler_data)
2751 ASSERT_RTNL();
2753 if (dev->rx_handler)
2754 return -EBUSY;
2756 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2757 rcu_assign_pointer(dev->rx_handler, rx_handler);
2759 return 0;
2761 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2764 * netdev_rx_handler_unregister - unregister receive handler
2765 * @dev: device to unregister a handler from
2767 * Unregister a receive hander from a device.
2769 * The caller must hold the rtnl_mutex.
2771 void netdev_rx_handler_unregister(struct net_device *dev)
2774 ASSERT_RTNL();
2775 rcu_assign_pointer(dev->rx_handler, NULL);
2776 rcu_assign_pointer(dev->rx_handler_data, NULL);
2778 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2780 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2781 struct net_device *master)
2783 if (skb->pkt_type == PACKET_HOST) {
2784 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2786 memcpy(dest, master->dev_addr, ETH_ALEN);
2790 /* On bonding slaves other than the currently active slave, suppress
2791 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2792 * ARP on active-backup slaves with arp_validate enabled.
2794 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2796 struct net_device *dev = skb->dev;
2798 if (master->priv_flags & IFF_MASTER_ARPMON)
2799 dev->last_rx = jiffies;
2801 if ((master->priv_flags & IFF_MASTER_ALB) &&
2802 (master->priv_flags & IFF_BRIDGE_PORT)) {
2803 /* Do address unmangle. The local destination address
2804 * will be always the one master has. Provides the right
2805 * functionality in a bridge.
2807 skb_bond_set_mac_by_master(skb, master);
2810 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2811 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2812 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2813 return 0;
2815 if (master->priv_flags & IFF_MASTER_ALB) {
2816 if (skb->pkt_type != PACKET_BROADCAST &&
2817 skb->pkt_type != PACKET_MULTICAST)
2818 return 0;
2820 if (master->priv_flags & IFF_MASTER_8023AD &&
2821 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2822 return 0;
2824 return 1;
2826 return 0;
2828 EXPORT_SYMBOL(__skb_bond_should_drop);
2830 static int __netif_receive_skb(struct sk_buff *skb)
2832 struct packet_type *ptype, *pt_prev;
2833 rx_handler_func_t *rx_handler;
2834 struct net_device *orig_dev;
2835 struct net_device *master;
2836 struct net_device *null_or_orig;
2837 struct net_device *orig_or_bond;
2838 int ret = NET_RX_DROP;
2839 __be16 type;
2841 if (!netdev_tstamp_prequeue)
2842 net_timestamp_check(skb);
2844 if (vlan_tx_tag_present(skb))
2845 vlan_hwaccel_do_receive(skb);
2847 /* if we've gotten here through NAPI, check netpoll */
2848 if (netpoll_receive_skb(skb))
2849 return NET_RX_DROP;
2851 if (!skb->skb_iif)
2852 skb->skb_iif = skb->dev->ifindex;
2855 * bonding note: skbs received on inactive slaves should only
2856 * be delivered to pkt handlers that are exact matches. Also
2857 * the deliver_no_wcard flag will be set. If packet handlers
2858 * are sensitive to duplicate packets these skbs will need to
2859 * be dropped at the handler. The vlan accel path may have
2860 * already set the deliver_no_wcard flag.
2862 null_or_orig = NULL;
2863 orig_dev = skb->dev;
2864 master = ACCESS_ONCE(orig_dev->master);
2865 if (skb->deliver_no_wcard)
2866 null_or_orig = orig_dev;
2867 else if (master) {
2868 if (skb_bond_should_drop(skb, master)) {
2869 skb->deliver_no_wcard = 1;
2870 null_or_orig = orig_dev; /* deliver only exact match */
2871 } else
2872 skb->dev = master;
2875 __this_cpu_inc(softnet_data.processed);
2876 skb_reset_network_header(skb);
2877 skb_reset_transport_header(skb);
2878 skb->mac_len = skb->network_header - skb->mac_header;
2880 pt_prev = NULL;
2882 rcu_read_lock();
2884 #ifdef CONFIG_NET_CLS_ACT
2885 if (skb->tc_verd & TC_NCLS) {
2886 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2887 goto ncls;
2889 #endif
2891 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2892 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2893 ptype->dev == orig_dev) {
2894 if (pt_prev)
2895 ret = deliver_skb(skb, pt_prev, orig_dev);
2896 pt_prev = ptype;
2900 #ifdef CONFIG_NET_CLS_ACT
2901 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2902 if (!skb)
2903 goto out;
2904 ncls:
2905 #endif
2907 /* Handle special case of bridge or macvlan */
2908 rx_handler = rcu_dereference(skb->dev->rx_handler);
2909 if (rx_handler) {
2910 if (pt_prev) {
2911 ret = deliver_skb(skb, pt_prev, orig_dev);
2912 pt_prev = NULL;
2914 skb = rx_handler(skb);
2915 if (!skb)
2916 goto out;
2920 * Make sure frames received on VLAN interfaces stacked on
2921 * bonding interfaces still make their way to any base bonding
2922 * device that may have registered for a specific ptype. The
2923 * handler may have to adjust skb->dev and orig_dev.
2925 orig_or_bond = orig_dev;
2926 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2927 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2928 orig_or_bond = vlan_dev_real_dev(skb->dev);
2931 type = skb->protocol;
2932 list_for_each_entry_rcu(ptype,
2933 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2934 if (ptype->type == type && (ptype->dev == null_or_orig ||
2935 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2936 ptype->dev == orig_or_bond)) {
2937 if (pt_prev)
2938 ret = deliver_skb(skb, pt_prev, orig_dev);
2939 pt_prev = ptype;
2943 if (pt_prev) {
2944 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2945 } else {
2946 kfree_skb(skb);
2947 /* Jamal, now you will not able to escape explaining
2948 * me how you were going to use this. :-)
2950 ret = NET_RX_DROP;
2953 out:
2954 rcu_read_unlock();
2955 return ret;
2959 * netif_receive_skb - process receive buffer from network
2960 * @skb: buffer to process
2962 * netif_receive_skb() is the main receive data processing function.
2963 * It always succeeds. The buffer may be dropped during processing
2964 * for congestion control or by the protocol layers.
2966 * This function may only be called from softirq context and interrupts
2967 * should be enabled.
2969 * Return values (usually ignored):
2970 * NET_RX_SUCCESS: no congestion
2971 * NET_RX_DROP: packet was dropped
2973 int netif_receive_skb(struct sk_buff *skb)
2975 if (netdev_tstamp_prequeue)
2976 net_timestamp_check(skb);
2978 if (skb_defer_rx_timestamp(skb))
2979 return NET_RX_SUCCESS;
2981 #ifdef CONFIG_RPS
2983 struct rps_dev_flow voidflow, *rflow = &voidflow;
2984 int cpu, ret;
2986 rcu_read_lock();
2988 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2990 if (cpu >= 0) {
2991 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2992 rcu_read_unlock();
2993 } else {
2994 rcu_read_unlock();
2995 ret = __netif_receive_skb(skb);
2998 return ret;
3000 #else
3001 return __netif_receive_skb(skb);
3002 #endif
3004 EXPORT_SYMBOL(netif_receive_skb);
3006 /* Network device is going away, flush any packets still pending
3007 * Called with irqs disabled.
3009 static void flush_backlog(void *arg)
3011 struct net_device *dev = arg;
3012 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3013 struct sk_buff *skb, *tmp;
3015 rps_lock(sd);
3016 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3017 if (skb->dev == dev) {
3018 __skb_unlink(skb, &sd->input_pkt_queue);
3019 kfree_skb(skb);
3020 input_queue_head_incr(sd);
3023 rps_unlock(sd);
3025 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3026 if (skb->dev == dev) {
3027 __skb_unlink(skb, &sd->process_queue);
3028 kfree_skb(skb);
3029 input_queue_head_incr(sd);
3034 static int napi_gro_complete(struct sk_buff *skb)
3036 struct packet_type *ptype;
3037 __be16 type = skb->protocol;
3038 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3039 int err = -ENOENT;
3041 if (NAPI_GRO_CB(skb)->count == 1) {
3042 skb_shinfo(skb)->gso_size = 0;
3043 goto out;
3046 rcu_read_lock();
3047 list_for_each_entry_rcu(ptype, head, list) {
3048 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3049 continue;
3051 err = ptype->gro_complete(skb);
3052 break;
3054 rcu_read_unlock();
3056 if (err) {
3057 WARN_ON(&ptype->list == head);
3058 kfree_skb(skb);
3059 return NET_RX_SUCCESS;
3062 out:
3063 return netif_receive_skb(skb);
3066 static void napi_gro_flush(struct napi_struct *napi)
3068 struct sk_buff *skb, *next;
3070 for (skb = napi->gro_list; skb; skb = next) {
3071 next = skb->next;
3072 skb->next = NULL;
3073 napi_gro_complete(skb);
3076 napi->gro_count = 0;
3077 napi->gro_list = NULL;
3080 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3082 struct sk_buff **pp = NULL;
3083 struct packet_type *ptype;
3084 __be16 type = skb->protocol;
3085 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3086 int same_flow;
3087 int mac_len;
3088 enum gro_result ret;
3090 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3091 goto normal;
3093 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3094 goto normal;
3096 rcu_read_lock();
3097 list_for_each_entry_rcu(ptype, head, list) {
3098 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3099 continue;
3101 skb_set_network_header(skb, skb_gro_offset(skb));
3102 mac_len = skb->network_header - skb->mac_header;
3103 skb->mac_len = mac_len;
3104 NAPI_GRO_CB(skb)->same_flow = 0;
3105 NAPI_GRO_CB(skb)->flush = 0;
3106 NAPI_GRO_CB(skb)->free = 0;
3108 pp = ptype->gro_receive(&napi->gro_list, skb);
3109 break;
3111 rcu_read_unlock();
3113 if (&ptype->list == head)
3114 goto normal;
3116 same_flow = NAPI_GRO_CB(skb)->same_flow;
3117 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3119 if (pp) {
3120 struct sk_buff *nskb = *pp;
3122 *pp = nskb->next;
3123 nskb->next = NULL;
3124 napi_gro_complete(nskb);
3125 napi->gro_count--;
3128 if (same_flow)
3129 goto ok;
3131 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3132 goto normal;
3134 napi->gro_count++;
3135 NAPI_GRO_CB(skb)->count = 1;
3136 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3137 skb->next = napi->gro_list;
3138 napi->gro_list = skb;
3139 ret = GRO_HELD;
3141 pull:
3142 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3143 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3145 BUG_ON(skb->end - skb->tail < grow);
3147 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3149 skb->tail += grow;
3150 skb->data_len -= grow;
3152 skb_shinfo(skb)->frags[0].page_offset += grow;
3153 skb_shinfo(skb)->frags[0].size -= grow;
3155 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3156 put_page(skb_shinfo(skb)->frags[0].page);
3157 memmove(skb_shinfo(skb)->frags,
3158 skb_shinfo(skb)->frags + 1,
3159 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3164 return ret;
3166 normal:
3167 ret = GRO_NORMAL;
3168 goto pull;
3170 EXPORT_SYMBOL(dev_gro_receive);
3172 static gro_result_t
3173 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3175 struct sk_buff *p;
3177 for (p = napi->gro_list; p; p = p->next) {
3178 NAPI_GRO_CB(p)->same_flow =
3179 (p->dev == skb->dev) &&
3180 !compare_ether_header(skb_mac_header(p),
3181 skb_gro_mac_header(skb));
3182 NAPI_GRO_CB(p)->flush = 0;
3185 return dev_gro_receive(napi, skb);
3188 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3190 switch (ret) {
3191 case GRO_NORMAL:
3192 if (netif_receive_skb(skb))
3193 ret = GRO_DROP;
3194 break;
3196 case GRO_DROP:
3197 case GRO_MERGED_FREE:
3198 kfree_skb(skb);
3199 break;
3201 case GRO_HELD:
3202 case GRO_MERGED:
3203 break;
3206 return ret;
3208 EXPORT_SYMBOL(napi_skb_finish);
3210 void skb_gro_reset_offset(struct sk_buff *skb)
3212 NAPI_GRO_CB(skb)->data_offset = 0;
3213 NAPI_GRO_CB(skb)->frag0 = NULL;
3214 NAPI_GRO_CB(skb)->frag0_len = 0;
3216 if (skb->mac_header == skb->tail &&
3217 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3218 NAPI_GRO_CB(skb)->frag0 =
3219 page_address(skb_shinfo(skb)->frags[0].page) +
3220 skb_shinfo(skb)->frags[0].page_offset;
3221 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3224 EXPORT_SYMBOL(skb_gro_reset_offset);
3226 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3228 skb_gro_reset_offset(skb);
3230 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3232 EXPORT_SYMBOL(napi_gro_receive);
3234 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3236 __skb_pull(skb, skb_headlen(skb));
3237 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3239 napi->skb = skb;
3241 EXPORT_SYMBOL(napi_reuse_skb);
3243 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3245 struct sk_buff *skb = napi->skb;
3247 if (!skb) {
3248 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3249 if (skb)
3250 napi->skb = skb;
3252 return skb;
3254 EXPORT_SYMBOL(napi_get_frags);
3256 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3257 gro_result_t ret)
3259 switch (ret) {
3260 case GRO_NORMAL:
3261 case GRO_HELD:
3262 skb->protocol = eth_type_trans(skb, skb->dev);
3264 if (ret == GRO_HELD)
3265 skb_gro_pull(skb, -ETH_HLEN);
3266 else if (netif_receive_skb(skb))
3267 ret = GRO_DROP;
3268 break;
3270 case GRO_DROP:
3271 case GRO_MERGED_FREE:
3272 napi_reuse_skb(napi, skb);
3273 break;
3275 case GRO_MERGED:
3276 break;
3279 return ret;
3281 EXPORT_SYMBOL(napi_frags_finish);
3283 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3285 struct sk_buff *skb = napi->skb;
3286 struct ethhdr *eth;
3287 unsigned int hlen;
3288 unsigned int off;
3290 napi->skb = NULL;
3292 skb_reset_mac_header(skb);
3293 skb_gro_reset_offset(skb);
3295 off = skb_gro_offset(skb);
3296 hlen = off + sizeof(*eth);
3297 eth = skb_gro_header_fast(skb, off);
3298 if (skb_gro_header_hard(skb, hlen)) {
3299 eth = skb_gro_header_slow(skb, hlen, off);
3300 if (unlikely(!eth)) {
3301 napi_reuse_skb(napi, skb);
3302 skb = NULL;
3303 goto out;
3307 skb_gro_pull(skb, sizeof(*eth));
3310 * This works because the only protocols we care about don't require
3311 * special handling. We'll fix it up properly at the end.
3313 skb->protocol = eth->h_proto;
3315 out:
3316 return skb;
3318 EXPORT_SYMBOL(napi_frags_skb);
3320 gro_result_t napi_gro_frags(struct napi_struct *napi)
3322 struct sk_buff *skb = napi_frags_skb(napi);
3324 if (!skb)
3325 return GRO_DROP;
3327 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3329 EXPORT_SYMBOL(napi_gro_frags);
3332 * net_rps_action sends any pending IPI's for rps.
3333 * Note: called with local irq disabled, but exits with local irq enabled.
3335 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3337 #ifdef CONFIG_RPS
3338 struct softnet_data *remsd = sd->rps_ipi_list;
3340 if (remsd) {
3341 sd->rps_ipi_list = NULL;
3343 local_irq_enable();
3345 /* Send pending IPI's to kick RPS processing on remote cpus. */
3346 while (remsd) {
3347 struct softnet_data *next = remsd->rps_ipi_next;
3349 if (cpu_online(remsd->cpu))
3350 __smp_call_function_single(remsd->cpu,
3351 &remsd->csd, 0);
3352 remsd = next;
3354 } else
3355 #endif
3356 local_irq_enable();
3359 static int process_backlog(struct napi_struct *napi, int quota)
3361 int work = 0;
3362 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3364 #ifdef CONFIG_RPS
3365 /* Check if we have pending ipi, its better to send them now,
3366 * not waiting net_rx_action() end.
3368 if (sd->rps_ipi_list) {
3369 local_irq_disable();
3370 net_rps_action_and_irq_enable(sd);
3372 #endif
3373 napi->weight = weight_p;
3374 local_irq_disable();
3375 while (work < quota) {
3376 struct sk_buff *skb;
3377 unsigned int qlen;
3379 while ((skb = __skb_dequeue(&sd->process_queue))) {
3380 local_irq_enable();
3381 __netif_receive_skb(skb);
3382 local_irq_disable();
3383 input_queue_head_incr(sd);
3384 if (++work >= quota) {
3385 local_irq_enable();
3386 return work;
3390 rps_lock(sd);
3391 qlen = skb_queue_len(&sd->input_pkt_queue);
3392 if (qlen)
3393 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3394 &sd->process_queue);
3396 if (qlen < quota - work) {
3398 * Inline a custom version of __napi_complete().
3399 * only current cpu owns and manipulates this napi,
3400 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3401 * we can use a plain write instead of clear_bit(),
3402 * and we dont need an smp_mb() memory barrier.
3404 list_del(&napi->poll_list);
3405 napi->state = 0;
3407 quota = work + qlen;
3409 rps_unlock(sd);
3411 local_irq_enable();
3413 return work;
3417 * __napi_schedule - schedule for receive
3418 * @n: entry to schedule
3420 * The entry's receive function will be scheduled to run
3422 void __napi_schedule(struct napi_struct *n)
3424 unsigned long flags;
3426 local_irq_save(flags);
3427 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3428 local_irq_restore(flags);
3430 EXPORT_SYMBOL(__napi_schedule);
3432 void __napi_complete(struct napi_struct *n)
3434 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3435 BUG_ON(n->gro_list);
3437 list_del(&n->poll_list);
3438 smp_mb__before_clear_bit();
3439 clear_bit(NAPI_STATE_SCHED, &n->state);
3441 EXPORT_SYMBOL(__napi_complete);
3443 void napi_complete(struct napi_struct *n)
3445 unsigned long flags;
3448 * don't let napi dequeue from the cpu poll list
3449 * just in case its running on a different cpu
3451 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3452 return;
3454 napi_gro_flush(n);
3455 local_irq_save(flags);
3456 __napi_complete(n);
3457 local_irq_restore(flags);
3459 EXPORT_SYMBOL(napi_complete);
3461 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3462 int (*poll)(struct napi_struct *, int), int weight)
3464 INIT_LIST_HEAD(&napi->poll_list);
3465 napi->gro_count = 0;
3466 napi->gro_list = NULL;
3467 napi->skb = NULL;
3468 napi->poll = poll;
3469 napi->weight = weight;
3470 list_add(&napi->dev_list, &dev->napi_list);
3471 napi->dev = dev;
3472 #ifdef CONFIG_NETPOLL
3473 spin_lock_init(&napi->poll_lock);
3474 napi->poll_owner = -1;
3475 #endif
3476 set_bit(NAPI_STATE_SCHED, &napi->state);
3478 EXPORT_SYMBOL(netif_napi_add);
3480 void netif_napi_del(struct napi_struct *napi)
3482 struct sk_buff *skb, *next;
3484 list_del_init(&napi->dev_list);
3485 napi_free_frags(napi);
3487 for (skb = napi->gro_list; skb; skb = next) {
3488 next = skb->next;
3489 skb->next = NULL;
3490 kfree_skb(skb);
3493 napi->gro_list = NULL;
3494 napi->gro_count = 0;
3496 EXPORT_SYMBOL(netif_napi_del);
3498 static void net_rx_action(struct softirq_action *h)
3500 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3501 unsigned long time_limit = jiffies + 2;
3502 int budget = netdev_budget;
3503 void *have;
3505 local_irq_disable();
3507 while (!list_empty(&sd->poll_list)) {
3508 struct napi_struct *n;
3509 int work, weight;
3511 /* If softirq window is exhuasted then punt.
3512 * Allow this to run for 2 jiffies since which will allow
3513 * an average latency of 1.5/HZ.
3515 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3516 goto softnet_break;
3518 local_irq_enable();
3520 /* Even though interrupts have been re-enabled, this
3521 * access is safe because interrupts can only add new
3522 * entries to the tail of this list, and only ->poll()
3523 * calls can remove this head entry from the list.
3525 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3527 have = netpoll_poll_lock(n);
3529 weight = n->weight;
3531 /* This NAPI_STATE_SCHED test is for avoiding a race
3532 * with netpoll's poll_napi(). Only the entity which
3533 * obtains the lock and sees NAPI_STATE_SCHED set will
3534 * actually make the ->poll() call. Therefore we avoid
3535 * accidently calling ->poll() when NAPI is not scheduled.
3537 work = 0;
3538 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3539 work = n->poll(n, weight);
3540 trace_napi_poll(n);
3543 WARN_ON_ONCE(work > weight);
3545 budget -= work;
3547 local_irq_disable();
3549 /* Drivers must not modify the NAPI state if they
3550 * consume the entire weight. In such cases this code
3551 * still "owns" the NAPI instance and therefore can
3552 * move the instance around on the list at-will.
3554 if (unlikely(work == weight)) {
3555 if (unlikely(napi_disable_pending(n))) {
3556 local_irq_enable();
3557 napi_complete(n);
3558 local_irq_disable();
3559 } else
3560 list_move_tail(&n->poll_list, &sd->poll_list);
3563 netpoll_poll_unlock(have);
3565 out:
3566 net_rps_action_and_irq_enable(sd);
3568 #ifdef CONFIG_NET_DMA
3570 * There may not be any more sk_buffs coming right now, so push
3571 * any pending DMA copies to hardware
3573 dma_issue_pending_all();
3574 #endif
3576 return;
3578 softnet_break:
3579 sd->time_squeeze++;
3580 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3581 goto out;
3584 static gifconf_func_t *gifconf_list[NPROTO];
3587 * register_gifconf - register a SIOCGIF handler
3588 * @family: Address family
3589 * @gifconf: Function handler
3591 * Register protocol dependent address dumping routines. The handler
3592 * that is passed must not be freed or reused until it has been replaced
3593 * by another handler.
3595 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3597 if (family >= NPROTO)
3598 return -EINVAL;
3599 gifconf_list[family] = gifconf;
3600 return 0;
3602 EXPORT_SYMBOL(register_gifconf);
3606 * Map an interface index to its name (SIOCGIFNAME)
3610 * We need this ioctl for efficient implementation of the
3611 * if_indextoname() function required by the IPv6 API. Without
3612 * it, we would have to search all the interfaces to find a
3613 * match. --pb
3616 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3618 struct net_device *dev;
3619 struct ifreq ifr;
3622 * Fetch the caller's info block.
3625 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3626 return -EFAULT;
3628 rcu_read_lock();
3629 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3630 if (!dev) {
3631 rcu_read_unlock();
3632 return -ENODEV;
3635 strcpy(ifr.ifr_name, dev->name);
3636 rcu_read_unlock();
3638 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3639 return -EFAULT;
3640 return 0;
3644 * Perform a SIOCGIFCONF call. This structure will change
3645 * size eventually, and there is nothing I can do about it.
3646 * Thus we will need a 'compatibility mode'.
3649 static int dev_ifconf(struct net *net, char __user *arg)
3651 struct ifconf ifc;
3652 struct net_device *dev;
3653 char __user *pos;
3654 int len;
3655 int total;
3656 int i;
3659 * Fetch the caller's info block.
3662 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3663 return -EFAULT;
3665 pos = ifc.ifc_buf;
3666 len = ifc.ifc_len;
3669 * Loop over the interfaces, and write an info block for each.
3672 total = 0;
3673 for_each_netdev(net, dev) {
3674 for (i = 0; i < NPROTO; i++) {
3675 if (gifconf_list[i]) {
3676 int done;
3677 if (!pos)
3678 done = gifconf_list[i](dev, NULL, 0);
3679 else
3680 done = gifconf_list[i](dev, pos + total,
3681 len - total);
3682 if (done < 0)
3683 return -EFAULT;
3684 total += done;
3690 * All done. Write the updated control block back to the caller.
3692 ifc.ifc_len = total;
3695 * Both BSD and Solaris return 0 here, so we do too.
3697 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3700 #ifdef CONFIG_PROC_FS
3702 * This is invoked by the /proc filesystem handler to display a device
3703 * in detail.
3705 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3706 __acquires(RCU)
3708 struct net *net = seq_file_net(seq);
3709 loff_t off;
3710 struct net_device *dev;
3712 rcu_read_lock();
3713 if (!*pos)
3714 return SEQ_START_TOKEN;
3716 off = 1;
3717 for_each_netdev_rcu(net, dev)
3718 if (off++ == *pos)
3719 return dev;
3721 return NULL;
3724 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3726 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3727 first_net_device(seq_file_net(seq)) :
3728 next_net_device((struct net_device *)v);
3730 ++*pos;
3731 return rcu_dereference(dev);
3734 void dev_seq_stop(struct seq_file *seq, void *v)
3735 __releases(RCU)
3737 rcu_read_unlock();
3740 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3742 struct rtnl_link_stats64 temp;
3743 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3745 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3746 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3747 dev->name, stats->rx_bytes, stats->rx_packets,
3748 stats->rx_errors,
3749 stats->rx_dropped + stats->rx_missed_errors,
3750 stats->rx_fifo_errors,
3751 stats->rx_length_errors + stats->rx_over_errors +
3752 stats->rx_crc_errors + stats->rx_frame_errors,
3753 stats->rx_compressed, stats->multicast,
3754 stats->tx_bytes, stats->tx_packets,
3755 stats->tx_errors, stats->tx_dropped,
3756 stats->tx_fifo_errors, stats->collisions,
3757 stats->tx_carrier_errors +
3758 stats->tx_aborted_errors +
3759 stats->tx_window_errors +
3760 stats->tx_heartbeat_errors,
3761 stats->tx_compressed);
3765 * Called from the PROCfs module. This now uses the new arbitrary sized
3766 * /proc/net interface to create /proc/net/dev
3768 static int dev_seq_show(struct seq_file *seq, void *v)
3770 if (v == SEQ_START_TOKEN)
3771 seq_puts(seq, "Inter-| Receive "
3772 " | Transmit\n"
3773 " face |bytes packets errs drop fifo frame "
3774 "compressed multicast|bytes packets errs "
3775 "drop fifo colls carrier compressed\n");
3776 else
3777 dev_seq_printf_stats(seq, v);
3778 return 0;
3781 static struct softnet_data *softnet_get_online(loff_t *pos)
3783 struct softnet_data *sd = NULL;
3785 while (*pos < nr_cpu_ids)
3786 if (cpu_online(*pos)) {
3787 sd = &per_cpu(softnet_data, *pos);
3788 break;
3789 } else
3790 ++*pos;
3791 return sd;
3794 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3796 return softnet_get_online(pos);
3799 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3801 ++*pos;
3802 return softnet_get_online(pos);
3805 static void softnet_seq_stop(struct seq_file *seq, void *v)
3809 static int softnet_seq_show(struct seq_file *seq, void *v)
3811 struct softnet_data *sd = v;
3813 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3814 sd->processed, sd->dropped, sd->time_squeeze, 0,
3815 0, 0, 0, 0, /* was fastroute */
3816 sd->cpu_collision, sd->received_rps);
3817 return 0;
3820 static const struct seq_operations dev_seq_ops = {
3821 .start = dev_seq_start,
3822 .next = dev_seq_next,
3823 .stop = dev_seq_stop,
3824 .show = dev_seq_show,
3827 static int dev_seq_open(struct inode *inode, struct file *file)
3829 return seq_open_net(inode, file, &dev_seq_ops,
3830 sizeof(struct seq_net_private));
3833 static const struct file_operations dev_seq_fops = {
3834 .owner = THIS_MODULE,
3835 .open = dev_seq_open,
3836 .read = seq_read,
3837 .llseek = seq_lseek,
3838 .release = seq_release_net,
3841 static const struct seq_operations softnet_seq_ops = {
3842 .start = softnet_seq_start,
3843 .next = softnet_seq_next,
3844 .stop = softnet_seq_stop,
3845 .show = softnet_seq_show,
3848 static int softnet_seq_open(struct inode *inode, struct file *file)
3850 return seq_open(file, &softnet_seq_ops);
3853 static const struct file_operations softnet_seq_fops = {
3854 .owner = THIS_MODULE,
3855 .open = softnet_seq_open,
3856 .read = seq_read,
3857 .llseek = seq_lseek,
3858 .release = seq_release,
3861 static void *ptype_get_idx(loff_t pos)
3863 struct packet_type *pt = NULL;
3864 loff_t i = 0;
3865 int t;
3867 list_for_each_entry_rcu(pt, &ptype_all, list) {
3868 if (i == pos)
3869 return pt;
3870 ++i;
3873 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3874 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3875 if (i == pos)
3876 return pt;
3877 ++i;
3880 return NULL;
3883 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3884 __acquires(RCU)
3886 rcu_read_lock();
3887 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3890 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3892 struct packet_type *pt;
3893 struct list_head *nxt;
3894 int hash;
3896 ++*pos;
3897 if (v == SEQ_START_TOKEN)
3898 return ptype_get_idx(0);
3900 pt = v;
3901 nxt = pt->list.next;
3902 if (pt->type == htons(ETH_P_ALL)) {
3903 if (nxt != &ptype_all)
3904 goto found;
3905 hash = 0;
3906 nxt = ptype_base[0].next;
3907 } else
3908 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3910 while (nxt == &ptype_base[hash]) {
3911 if (++hash >= PTYPE_HASH_SIZE)
3912 return NULL;
3913 nxt = ptype_base[hash].next;
3915 found:
3916 return list_entry(nxt, struct packet_type, list);
3919 static void ptype_seq_stop(struct seq_file *seq, void *v)
3920 __releases(RCU)
3922 rcu_read_unlock();
3925 static int ptype_seq_show(struct seq_file *seq, void *v)
3927 struct packet_type *pt = v;
3929 if (v == SEQ_START_TOKEN)
3930 seq_puts(seq, "Type Device Function\n");
3931 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3932 if (pt->type == htons(ETH_P_ALL))
3933 seq_puts(seq, "ALL ");
3934 else
3935 seq_printf(seq, "%04x", ntohs(pt->type));
3937 seq_printf(seq, " %-8s %pF\n",
3938 pt->dev ? pt->dev->name : "", pt->func);
3941 return 0;
3944 static const struct seq_operations ptype_seq_ops = {
3945 .start = ptype_seq_start,
3946 .next = ptype_seq_next,
3947 .stop = ptype_seq_stop,
3948 .show = ptype_seq_show,
3951 static int ptype_seq_open(struct inode *inode, struct file *file)
3953 return seq_open_net(inode, file, &ptype_seq_ops,
3954 sizeof(struct seq_net_private));
3957 static const struct file_operations ptype_seq_fops = {
3958 .owner = THIS_MODULE,
3959 .open = ptype_seq_open,
3960 .read = seq_read,
3961 .llseek = seq_lseek,
3962 .release = seq_release_net,
3966 static int __net_init dev_proc_net_init(struct net *net)
3968 int rc = -ENOMEM;
3970 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3971 goto out;
3972 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3973 goto out_dev;
3974 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3975 goto out_softnet;
3977 if (wext_proc_init(net))
3978 goto out_ptype;
3979 rc = 0;
3980 out:
3981 return rc;
3982 out_ptype:
3983 proc_net_remove(net, "ptype");
3984 out_softnet:
3985 proc_net_remove(net, "softnet_stat");
3986 out_dev:
3987 proc_net_remove(net, "dev");
3988 goto out;
3991 static void __net_exit dev_proc_net_exit(struct net *net)
3993 wext_proc_exit(net);
3995 proc_net_remove(net, "ptype");
3996 proc_net_remove(net, "softnet_stat");
3997 proc_net_remove(net, "dev");
4000 static struct pernet_operations __net_initdata dev_proc_ops = {
4001 .init = dev_proc_net_init,
4002 .exit = dev_proc_net_exit,
4005 static int __init dev_proc_init(void)
4007 return register_pernet_subsys(&dev_proc_ops);
4009 #else
4010 #define dev_proc_init() 0
4011 #endif /* CONFIG_PROC_FS */
4015 * netdev_set_master - set up master/slave pair
4016 * @slave: slave device
4017 * @master: new master device
4019 * Changes the master device of the slave. Pass %NULL to break the
4020 * bonding. The caller must hold the RTNL semaphore. On a failure
4021 * a negative errno code is returned. On success the reference counts
4022 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4023 * function returns zero.
4025 int netdev_set_master(struct net_device *slave, struct net_device *master)
4027 struct net_device *old = slave->master;
4029 ASSERT_RTNL();
4031 if (master) {
4032 if (old)
4033 return -EBUSY;
4034 dev_hold(master);
4037 slave->master = master;
4039 if (old) {
4040 synchronize_net();
4041 dev_put(old);
4043 if (master)
4044 slave->flags |= IFF_SLAVE;
4045 else
4046 slave->flags &= ~IFF_SLAVE;
4048 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4049 return 0;
4051 EXPORT_SYMBOL(netdev_set_master);
4053 static void dev_change_rx_flags(struct net_device *dev, int flags)
4055 const struct net_device_ops *ops = dev->netdev_ops;
4057 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4058 ops->ndo_change_rx_flags(dev, flags);
4061 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4063 unsigned short old_flags = dev->flags;
4064 uid_t uid;
4065 gid_t gid;
4067 ASSERT_RTNL();
4069 dev->flags |= IFF_PROMISC;
4070 dev->promiscuity += inc;
4071 if (dev->promiscuity == 0) {
4073 * Avoid overflow.
4074 * If inc causes overflow, untouch promisc and return error.
4076 if (inc < 0)
4077 dev->flags &= ~IFF_PROMISC;
4078 else {
4079 dev->promiscuity -= inc;
4080 printk(KERN_WARNING "%s: promiscuity touches roof, "
4081 "set promiscuity failed, promiscuity feature "
4082 "of device might be broken.\n", dev->name);
4083 return -EOVERFLOW;
4086 if (dev->flags != old_flags) {
4087 printk(KERN_INFO "device %s %s promiscuous mode\n",
4088 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4089 "left");
4090 if (audit_enabled) {
4091 current_uid_gid(&uid, &gid);
4092 audit_log(current->audit_context, GFP_ATOMIC,
4093 AUDIT_ANOM_PROMISCUOUS,
4094 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4095 dev->name, (dev->flags & IFF_PROMISC),
4096 (old_flags & IFF_PROMISC),
4097 audit_get_loginuid(current),
4098 uid, gid,
4099 audit_get_sessionid(current));
4102 dev_change_rx_flags(dev, IFF_PROMISC);
4104 return 0;
4108 * dev_set_promiscuity - update promiscuity count on a device
4109 * @dev: device
4110 * @inc: modifier
4112 * Add or remove promiscuity from a device. While the count in the device
4113 * remains above zero the interface remains promiscuous. Once it hits zero
4114 * the device reverts back to normal filtering operation. A negative inc
4115 * value is used to drop promiscuity on the device.
4116 * Return 0 if successful or a negative errno code on error.
4118 int dev_set_promiscuity(struct net_device *dev, int inc)
4120 unsigned short old_flags = dev->flags;
4121 int err;
4123 err = __dev_set_promiscuity(dev, inc);
4124 if (err < 0)
4125 return err;
4126 if (dev->flags != old_flags)
4127 dev_set_rx_mode(dev);
4128 return err;
4130 EXPORT_SYMBOL(dev_set_promiscuity);
4133 * dev_set_allmulti - update allmulti count on a device
4134 * @dev: device
4135 * @inc: modifier
4137 * Add or remove reception of all multicast frames to a device. While the
4138 * count in the device remains above zero the interface remains listening
4139 * to all interfaces. Once it hits zero the device reverts back to normal
4140 * filtering operation. A negative @inc value is used to drop the counter
4141 * when releasing a resource needing all multicasts.
4142 * Return 0 if successful or a negative errno code on error.
4145 int dev_set_allmulti(struct net_device *dev, int inc)
4147 unsigned short old_flags = dev->flags;
4149 ASSERT_RTNL();
4151 dev->flags |= IFF_ALLMULTI;
4152 dev->allmulti += inc;
4153 if (dev->allmulti == 0) {
4155 * Avoid overflow.
4156 * If inc causes overflow, untouch allmulti and return error.
4158 if (inc < 0)
4159 dev->flags &= ~IFF_ALLMULTI;
4160 else {
4161 dev->allmulti -= inc;
4162 printk(KERN_WARNING "%s: allmulti touches roof, "
4163 "set allmulti failed, allmulti feature of "
4164 "device might be broken.\n", dev->name);
4165 return -EOVERFLOW;
4168 if (dev->flags ^ old_flags) {
4169 dev_change_rx_flags(dev, IFF_ALLMULTI);
4170 dev_set_rx_mode(dev);
4172 return 0;
4174 EXPORT_SYMBOL(dev_set_allmulti);
4177 * Upload unicast and multicast address lists to device and
4178 * configure RX filtering. When the device doesn't support unicast
4179 * filtering it is put in promiscuous mode while unicast addresses
4180 * are present.
4182 void __dev_set_rx_mode(struct net_device *dev)
4184 const struct net_device_ops *ops = dev->netdev_ops;
4186 /* dev_open will call this function so the list will stay sane. */
4187 if (!(dev->flags&IFF_UP))
4188 return;
4190 if (!netif_device_present(dev))
4191 return;
4193 if (ops->ndo_set_rx_mode)
4194 ops->ndo_set_rx_mode(dev);
4195 else {
4196 /* Unicast addresses changes may only happen under the rtnl,
4197 * therefore calling __dev_set_promiscuity here is safe.
4199 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4200 __dev_set_promiscuity(dev, 1);
4201 dev->uc_promisc = 1;
4202 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4203 __dev_set_promiscuity(dev, -1);
4204 dev->uc_promisc = 0;
4207 if (ops->ndo_set_multicast_list)
4208 ops->ndo_set_multicast_list(dev);
4212 void dev_set_rx_mode(struct net_device *dev)
4214 netif_addr_lock_bh(dev);
4215 __dev_set_rx_mode(dev);
4216 netif_addr_unlock_bh(dev);
4220 * dev_get_flags - get flags reported to userspace
4221 * @dev: device
4223 * Get the combination of flag bits exported through APIs to userspace.
4225 unsigned dev_get_flags(const struct net_device *dev)
4227 unsigned flags;
4229 flags = (dev->flags & ~(IFF_PROMISC |
4230 IFF_ALLMULTI |
4231 IFF_RUNNING |
4232 IFF_LOWER_UP |
4233 IFF_DORMANT)) |
4234 (dev->gflags & (IFF_PROMISC |
4235 IFF_ALLMULTI));
4237 if (netif_running(dev)) {
4238 if (netif_oper_up(dev))
4239 flags |= IFF_RUNNING;
4240 if (netif_carrier_ok(dev))
4241 flags |= IFF_LOWER_UP;
4242 if (netif_dormant(dev))
4243 flags |= IFF_DORMANT;
4246 return flags;
4248 EXPORT_SYMBOL(dev_get_flags);
4250 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4252 int old_flags = dev->flags;
4253 int ret;
4255 ASSERT_RTNL();
4258 * Set the flags on our device.
4261 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4262 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4263 IFF_AUTOMEDIA)) |
4264 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4265 IFF_ALLMULTI));
4268 * Load in the correct multicast list now the flags have changed.
4271 if ((old_flags ^ flags) & IFF_MULTICAST)
4272 dev_change_rx_flags(dev, IFF_MULTICAST);
4274 dev_set_rx_mode(dev);
4277 * Have we downed the interface. We handle IFF_UP ourselves
4278 * according to user attempts to set it, rather than blindly
4279 * setting it.
4282 ret = 0;
4283 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4284 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4286 if (!ret)
4287 dev_set_rx_mode(dev);
4290 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4291 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4293 dev->gflags ^= IFF_PROMISC;
4294 dev_set_promiscuity(dev, inc);
4297 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4298 is important. Some (broken) drivers set IFF_PROMISC, when
4299 IFF_ALLMULTI is requested not asking us and not reporting.
4301 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4302 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4304 dev->gflags ^= IFF_ALLMULTI;
4305 dev_set_allmulti(dev, inc);
4308 return ret;
4311 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4313 unsigned int changes = dev->flags ^ old_flags;
4315 if (changes & IFF_UP) {
4316 if (dev->flags & IFF_UP)
4317 call_netdevice_notifiers(NETDEV_UP, dev);
4318 else
4319 call_netdevice_notifiers(NETDEV_DOWN, dev);
4322 if (dev->flags & IFF_UP &&
4323 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4324 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4328 * dev_change_flags - change device settings
4329 * @dev: device
4330 * @flags: device state flags
4332 * Change settings on device based state flags. The flags are
4333 * in the userspace exported format.
4335 int dev_change_flags(struct net_device *dev, unsigned flags)
4337 int ret, changes;
4338 int old_flags = dev->flags;
4340 ret = __dev_change_flags(dev, flags);
4341 if (ret < 0)
4342 return ret;
4344 changes = old_flags ^ dev->flags;
4345 if (changes)
4346 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4348 __dev_notify_flags(dev, old_flags);
4349 return ret;
4351 EXPORT_SYMBOL(dev_change_flags);
4354 * dev_set_mtu - Change maximum transfer unit
4355 * @dev: device
4356 * @new_mtu: new transfer unit
4358 * Change the maximum transfer size of the network device.
4360 int dev_set_mtu(struct net_device *dev, int new_mtu)
4362 const struct net_device_ops *ops = dev->netdev_ops;
4363 int err;
4365 if (new_mtu == dev->mtu)
4366 return 0;
4368 /* MTU must be positive. */
4369 if (new_mtu < 0)
4370 return -EINVAL;
4372 if (!netif_device_present(dev))
4373 return -ENODEV;
4375 err = 0;
4376 if (ops->ndo_change_mtu)
4377 err = ops->ndo_change_mtu(dev, new_mtu);
4378 else
4379 dev->mtu = new_mtu;
4381 if (!err && dev->flags & IFF_UP)
4382 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4383 return err;
4385 EXPORT_SYMBOL(dev_set_mtu);
4388 * dev_set_mac_address - Change Media Access Control Address
4389 * @dev: device
4390 * @sa: new address
4392 * Change the hardware (MAC) address of the device
4394 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4396 const struct net_device_ops *ops = dev->netdev_ops;
4397 int err;
4399 if (!ops->ndo_set_mac_address)
4400 return -EOPNOTSUPP;
4401 if (sa->sa_family != dev->type)
4402 return -EINVAL;
4403 if (!netif_device_present(dev))
4404 return -ENODEV;
4405 err = ops->ndo_set_mac_address(dev, sa);
4406 if (!err)
4407 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4408 return err;
4410 EXPORT_SYMBOL(dev_set_mac_address);
4413 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4415 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4417 int err;
4418 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4420 if (!dev)
4421 return -ENODEV;
4423 switch (cmd) {
4424 case SIOCGIFFLAGS: /* Get interface flags */
4425 ifr->ifr_flags = (short) dev_get_flags(dev);
4426 return 0;
4428 case SIOCGIFMETRIC: /* Get the metric on the interface
4429 (currently unused) */
4430 ifr->ifr_metric = 0;
4431 return 0;
4433 case SIOCGIFMTU: /* Get the MTU of a device */
4434 ifr->ifr_mtu = dev->mtu;
4435 return 0;
4437 case SIOCGIFHWADDR:
4438 if (!dev->addr_len)
4439 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4440 else
4441 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4442 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4443 ifr->ifr_hwaddr.sa_family = dev->type;
4444 return 0;
4446 case SIOCGIFSLAVE:
4447 err = -EINVAL;
4448 break;
4450 case SIOCGIFMAP:
4451 ifr->ifr_map.mem_start = dev->mem_start;
4452 ifr->ifr_map.mem_end = dev->mem_end;
4453 ifr->ifr_map.base_addr = dev->base_addr;
4454 ifr->ifr_map.irq = dev->irq;
4455 ifr->ifr_map.dma = dev->dma;
4456 ifr->ifr_map.port = dev->if_port;
4457 return 0;
4459 case SIOCGIFINDEX:
4460 ifr->ifr_ifindex = dev->ifindex;
4461 return 0;
4463 case SIOCGIFTXQLEN:
4464 ifr->ifr_qlen = dev->tx_queue_len;
4465 return 0;
4467 default:
4468 /* dev_ioctl() should ensure this case
4469 * is never reached
4471 WARN_ON(1);
4472 err = -EINVAL;
4473 break;
4476 return err;
4480 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4482 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4484 int err;
4485 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4486 const struct net_device_ops *ops;
4488 if (!dev)
4489 return -ENODEV;
4491 ops = dev->netdev_ops;
4493 switch (cmd) {
4494 case SIOCSIFFLAGS: /* Set interface flags */
4495 return dev_change_flags(dev, ifr->ifr_flags);
4497 case SIOCSIFMETRIC: /* Set the metric on the interface
4498 (currently unused) */
4499 return -EOPNOTSUPP;
4501 case SIOCSIFMTU: /* Set the MTU of a device */
4502 return dev_set_mtu(dev, ifr->ifr_mtu);
4504 case SIOCSIFHWADDR:
4505 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4507 case SIOCSIFHWBROADCAST:
4508 if (ifr->ifr_hwaddr.sa_family != dev->type)
4509 return -EINVAL;
4510 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4511 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4512 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4513 return 0;
4515 case SIOCSIFMAP:
4516 if (ops->ndo_set_config) {
4517 if (!netif_device_present(dev))
4518 return -ENODEV;
4519 return ops->ndo_set_config(dev, &ifr->ifr_map);
4521 return -EOPNOTSUPP;
4523 case SIOCADDMULTI:
4524 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4525 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4526 return -EINVAL;
4527 if (!netif_device_present(dev))
4528 return -ENODEV;
4529 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4531 case SIOCDELMULTI:
4532 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4533 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4534 return -EINVAL;
4535 if (!netif_device_present(dev))
4536 return -ENODEV;
4537 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4539 case SIOCSIFTXQLEN:
4540 if (ifr->ifr_qlen < 0)
4541 return -EINVAL;
4542 dev->tx_queue_len = ifr->ifr_qlen;
4543 return 0;
4545 case SIOCSIFNAME:
4546 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4547 return dev_change_name(dev, ifr->ifr_newname);
4550 * Unknown or private ioctl
4552 default:
4553 if ((cmd >= SIOCDEVPRIVATE &&
4554 cmd <= SIOCDEVPRIVATE + 15) ||
4555 cmd == SIOCBONDENSLAVE ||
4556 cmd == SIOCBONDRELEASE ||
4557 cmd == SIOCBONDSETHWADDR ||
4558 cmd == SIOCBONDSLAVEINFOQUERY ||
4559 cmd == SIOCBONDINFOQUERY ||
4560 cmd == SIOCBONDCHANGEACTIVE ||
4561 cmd == SIOCGMIIPHY ||
4562 cmd == SIOCGMIIREG ||
4563 cmd == SIOCSMIIREG ||
4564 cmd == SIOCBRADDIF ||
4565 cmd == SIOCBRDELIF ||
4566 cmd == SIOCSHWTSTAMP ||
4567 cmd == SIOCWANDEV) {
4568 err = -EOPNOTSUPP;
4569 if (ops->ndo_do_ioctl) {
4570 if (netif_device_present(dev))
4571 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4572 else
4573 err = -ENODEV;
4575 } else
4576 err = -EINVAL;
4579 return err;
4583 * This function handles all "interface"-type I/O control requests. The actual
4584 * 'doing' part of this is dev_ifsioc above.
4588 * dev_ioctl - network device ioctl
4589 * @net: the applicable net namespace
4590 * @cmd: command to issue
4591 * @arg: pointer to a struct ifreq in user space
4593 * Issue ioctl functions to devices. This is normally called by the
4594 * user space syscall interfaces but can sometimes be useful for
4595 * other purposes. The return value is the return from the syscall if
4596 * positive or a negative errno code on error.
4599 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4601 struct ifreq ifr;
4602 int ret;
4603 char *colon;
4605 /* One special case: SIOCGIFCONF takes ifconf argument
4606 and requires shared lock, because it sleeps writing
4607 to user space.
4610 if (cmd == SIOCGIFCONF) {
4611 rtnl_lock();
4612 ret = dev_ifconf(net, (char __user *) arg);
4613 rtnl_unlock();
4614 return ret;
4616 if (cmd == SIOCGIFNAME)
4617 return dev_ifname(net, (struct ifreq __user *)arg);
4619 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4620 return -EFAULT;
4622 ifr.ifr_name[IFNAMSIZ-1] = 0;
4624 colon = strchr(ifr.ifr_name, ':');
4625 if (colon)
4626 *colon = 0;
4629 * See which interface the caller is talking about.
4632 switch (cmd) {
4634 * These ioctl calls:
4635 * - can be done by all.
4636 * - atomic and do not require locking.
4637 * - return a value
4639 case SIOCGIFFLAGS:
4640 case SIOCGIFMETRIC:
4641 case SIOCGIFMTU:
4642 case SIOCGIFHWADDR:
4643 case SIOCGIFSLAVE:
4644 case SIOCGIFMAP:
4645 case SIOCGIFINDEX:
4646 case SIOCGIFTXQLEN:
4647 dev_load(net, ifr.ifr_name);
4648 rcu_read_lock();
4649 ret = dev_ifsioc_locked(net, &ifr, cmd);
4650 rcu_read_unlock();
4651 if (!ret) {
4652 if (colon)
4653 *colon = ':';
4654 if (copy_to_user(arg, &ifr,
4655 sizeof(struct ifreq)))
4656 ret = -EFAULT;
4658 return ret;
4660 case SIOCETHTOOL:
4661 dev_load(net, ifr.ifr_name);
4662 rtnl_lock();
4663 ret = dev_ethtool(net, &ifr);
4664 rtnl_unlock();
4665 if (!ret) {
4666 if (colon)
4667 *colon = ':';
4668 if (copy_to_user(arg, &ifr,
4669 sizeof(struct ifreq)))
4670 ret = -EFAULT;
4672 return ret;
4675 * These ioctl calls:
4676 * - require superuser power.
4677 * - require strict serialization.
4678 * - return a value
4680 case SIOCGMIIPHY:
4681 case SIOCGMIIREG:
4682 case SIOCSIFNAME:
4683 if (!capable(CAP_NET_ADMIN))
4684 return -EPERM;
4685 dev_load(net, ifr.ifr_name);
4686 rtnl_lock();
4687 ret = dev_ifsioc(net, &ifr, cmd);
4688 rtnl_unlock();
4689 if (!ret) {
4690 if (colon)
4691 *colon = ':';
4692 if (copy_to_user(arg, &ifr,
4693 sizeof(struct ifreq)))
4694 ret = -EFAULT;
4696 return ret;
4699 * These ioctl calls:
4700 * - require superuser power.
4701 * - require strict serialization.
4702 * - do not return a value
4704 case SIOCSIFFLAGS:
4705 case SIOCSIFMETRIC:
4706 case SIOCSIFMTU:
4707 case SIOCSIFMAP:
4708 case SIOCSIFHWADDR:
4709 case SIOCSIFSLAVE:
4710 case SIOCADDMULTI:
4711 case SIOCDELMULTI:
4712 case SIOCSIFHWBROADCAST:
4713 case SIOCSIFTXQLEN:
4714 case SIOCSMIIREG:
4715 case SIOCBONDENSLAVE:
4716 case SIOCBONDRELEASE:
4717 case SIOCBONDSETHWADDR:
4718 case SIOCBONDCHANGEACTIVE:
4719 case SIOCBRADDIF:
4720 case SIOCBRDELIF:
4721 case SIOCSHWTSTAMP:
4722 if (!capable(CAP_NET_ADMIN))
4723 return -EPERM;
4724 /* fall through */
4725 case SIOCBONDSLAVEINFOQUERY:
4726 case SIOCBONDINFOQUERY:
4727 dev_load(net, ifr.ifr_name);
4728 rtnl_lock();
4729 ret = dev_ifsioc(net, &ifr, cmd);
4730 rtnl_unlock();
4731 return ret;
4733 case SIOCGIFMEM:
4734 /* Get the per device memory space. We can add this but
4735 * currently do not support it */
4736 case SIOCSIFMEM:
4737 /* Set the per device memory buffer space.
4738 * Not applicable in our case */
4739 case SIOCSIFLINK:
4740 return -EINVAL;
4743 * Unknown or private ioctl.
4745 default:
4746 if (cmd == SIOCWANDEV ||
4747 (cmd >= SIOCDEVPRIVATE &&
4748 cmd <= SIOCDEVPRIVATE + 15)) {
4749 dev_load(net, ifr.ifr_name);
4750 rtnl_lock();
4751 ret = dev_ifsioc(net, &ifr, cmd);
4752 rtnl_unlock();
4753 if (!ret && copy_to_user(arg, &ifr,
4754 sizeof(struct ifreq)))
4755 ret = -EFAULT;
4756 return ret;
4758 /* Take care of Wireless Extensions */
4759 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4760 return wext_handle_ioctl(net, &ifr, cmd, arg);
4761 return -EINVAL;
4767 * dev_new_index - allocate an ifindex
4768 * @net: the applicable net namespace
4770 * Returns a suitable unique value for a new device interface
4771 * number. The caller must hold the rtnl semaphore or the
4772 * dev_base_lock to be sure it remains unique.
4774 static int dev_new_index(struct net *net)
4776 static int ifindex;
4777 for (;;) {
4778 if (++ifindex <= 0)
4779 ifindex = 1;
4780 if (!__dev_get_by_index(net, ifindex))
4781 return ifindex;
4785 /* Delayed registration/unregisteration */
4786 static LIST_HEAD(net_todo_list);
4788 static void net_set_todo(struct net_device *dev)
4790 list_add_tail(&dev->todo_list, &net_todo_list);
4793 static void rollback_registered_many(struct list_head *head)
4795 struct net_device *dev, *tmp;
4797 BUG_ON(dev_boot_phase);
4798 ASSERT_RTNL();
4800 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4801 /* Some devices call without registering
4802 * for initialization unwind. Remove those
4803 * devices and proceed with the remaining.
4805 if (dev->reg_state == NETREG_UNINITIALIZED) {
4806 pr_debug("unregister_netdevice: device %s/%p never "
4807 "was registered\n", dev->name, dev);
4809 WARN_ON(1);
4810 list_del(&dev->unreg_list);
4811 continue;
4814 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4816 /* If device is running, close it first. */
4817 dev_close(dev);
4819 /* And unlink it from device chain. */
4820 unlist_netdevice(dev);
4822 dev->reg_state = NETREG_UNREGISTERING;
4825 synchronize_net();
4827 list_for_each_entry(dev, head, unreg_list) {
4828 /* Shutdown queueing discipline. */
4829 dev_shutdown(dev);
4832 /* Notify protocols, that we are about to destroy
4833 this device. They should clean all the things.
4835 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4837 if (!dev->rtnl_link_ops ||
4838 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4839 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4842 * Flush the unicast and multicast chains
4844 dev_uc_flush(dev);
4845 dev_mc_flush(dev);
4847 if (dev->netdev_ops->ndo_uninit)
4848 dev->netdev_ops->ndo_uninit(dev);
4850 /* Notifier chain MUST detach us from master device. */
4851 WARN_ON(dev->master);
4853 /* Remove entries from kobject tree */
4854 netdev_unregister_kobject(dev);
4857 /* Process any work delayed until the end of the batch */
4858 dev = list_first_entry(head, struct net_device, unreg_list);
4859 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4861 synchronize_net();
4863 list_for_each_entry(dev, head, unreg_list)
4864 dev_put(dev);
4867 static void rollback_registered(struct net_device *dev)
4869 LIST_HEAD(single);
4871 list_add(&dev->unreg_list, &single);
4872 rollback_registered_many(&single);
4875 static void __netdev_init_queue_locks_one(struct net_device *dev,
4876 struct netdev_queue *dev_queue,
4877 void *_unused)
4879 spin_lock_init(&dev_queue->_xmit_lock);
4880 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4881 dev_queue->xmit_lock_owner = -1;
4884 static void netdev_init_queue_locks(struct net_device *dev)
4886 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4887 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4890 unsigned long netdev_fix_features(unsigned long features, const char *name)
4892 /* Fix illegal SG+CSUM combinations. */
4893 if ((features & NETIF_F_SG) &&
4894 !(features & NETIF_F_ALL_CSUM)) {
4895 if (name)
4896 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4897 "checksum feature.\n", name);
4898 features &= ~NETIF_F_SG;
4901 /* TSO requires that SG is present as well. */
4902 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4903 if (name)
4904 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4905 "SG feature.\n", name);
4906 features &= ~NETIF_F_TSO;
4909 if (features & NETIF_F_UFO) {
4910 if (!(features & NETIF_F_GEN_CSUM)) {
4911 if (name)
4912 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4913 "since no NETIF_F_HW_CSUM feature.\n",
4914 name);
4915 features &= ~NETIF_F_UFO;
4918 if (!(features & NETIF_F_SG)) {
4919 if (name)
4920 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4921 "since no NETIF_F_SG feature.\n", name);
4922 features &= ~NETIF_F_UFO;
4926 return features;
4928 EXPORT_SYMBOL(netdev_fix_features);
4931 * netif_stacked_transfer_operstate - transfer operstate
4932 * @rootdev: the root or lower level device to transfer state from
4933 * @dev: the device to transfer operstate to
4935 * Transfer operational state from root to device. This is normally
4936 * called when a stacking relationship exists between the root
4937 * device and the device(a leaf device).
4939 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4940 struct net_device *dev)
4942 if (rootdev->operstate == IF_OPER_DORMANT)
4943 netif_dormant_on(dev);
4944 else
4945 netif_dormant_off(dev);
4947 if (netif_carrier_ok(rootdev)) {
4948 if (!netif_carrier_ok(dev))
4949 netif_carrier_on(dev);
4950 } else {
4951 if (netif_carrier_ok(dev))
4952 netif_carrier_off(dev);
4955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4958 * register_netdevice - register a network device
4959 * @dev: device to register
4961 * Take a completed network device structure and add it to the kernel
4962 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4963 * chain. 0 is returned on success. A negative errno code is returned
4964 * on a failure to set up the device, or if the name is a duplicate.
4966 * Callers must hold the rtnl semaphore. You may want
4967 * register_netdev() instead of this.
4969 * BUGS:
4970 * The locking appears insufficient to guarantee two parallel registers
4971 * will not get the same name.
4974 int register_netdevice(struct net_device *dev)
4976 int ret;
4977 struct net *net = dev_net(dev);
4979 BUG_ON(dev_boot_phase);
4980 ASSERT_RTNL();
4982 might_sleep();
4984 /* When net_device's are persistent, this will be fatal. */
4985 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4986 BUG_ON(!net);
4988 spin_lock_init(&dev->addr_list_lock);
4989 netdev_set_addr_lockdep_class(dev);
4990 netdev_init_queue_locks(dev);
4992 dev->iflink = -1;
4994 #ifdef CONFIG_RPS
4995 if (!dev->num_rx_queues) {
4997 * Allocate a single RX queue if driver never called
4998 * alloc_netdev_mq
5001 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5002 if (!dev->_rx) {
5003 ret = -ENOMEM;
5004 goto out;
5007 dev->_rx->first = dev->_rx;
5008 atomic_set(&dev->_rx->count, 1);
5009 dev->num_rx_queues = 1;
5011 #endif
5012 /* Init, if this function is available */
5013 if (dev->netdev_ops->ndo_init) {
5014 ret = dev->netdev_ops->ndo_init(dev);
5015 if (ret) {
5016 if (ret > 0)
5017 ret = -EIO;
5018 goto out;
5022 ret = dev_get_valid_name(dev, dev->name, 0);
5023 if (ret)
5024 goto err_uninit;
5026 dev->ifindex = dev_new_index(net);
5027 if (dev->iflink == -1)
5028 dev->iflink = dev->ifindex;
5030 /* Fix illegal checksum combinations */
5031 if ((dev->features & NETIF_F_HW_CSUM) &&
5032 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5033 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5034 dev->name);
5035 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5038 if ((dev->features & NETIF_F_NO_CSUM) &&
5039 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5040 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5041 dev->name);
5042 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5045 dev->features = netdev_fix_features(dev->features, dev->name);
5047 /* Enable software GSO if SG is supported. */
5048 if (dev->features & NETIF_F_SG)
5049 dev->features |= NETIF_F_GSO;
5051 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5052 ret = notifier_to_errno(ret);
5053 if (ret)
5054 goto err_uninit;
5056 ret = netdev_register_kobject(dev);
5057 if (ret)
5058 goto err_uninit;
5059 dev->reg_state = NETREG_REGISTERED;
5062 * Default initial state at registry is that the
5063 * device is present.
5066 set_bit(__LINK_STATE_PRESENT, &dev->state);
5068 dev_init_scheduler(dev);
5069 dev_hold(dev);
5070 list_netdevice(dev);
5072 /* Notify protocols, that a new device appeared. */
5073 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5074 ret = notifier_to_errno(ret);
5075 if (ret) {
5076 rollback_registered(dev);
5077 dev->reg_state = NETREG_UNREGISTERED;
5080 * Prevent userspace races by waiting until the network
5081 * device is fully setup before sending notifications.
5083 if (!dev->rtnl_link_ops ||
5084 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5085 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5087 out:
5088 return ret;
5090 err_uninit:
5091 if (dev->netdev_ops->ndo_uninit)
5092 dev->netdev_ops->ndo_uninit(dev);
5093 goto out;
5095 EXPORT_SYMBOL(register_netdevice);
5098 * init_dummy_netdev - init a dummy network device for NAPI
5099 * @dev: device to init
5101 * This takes a network device structure and initialize the minimum
5102 * amount of fields so it can be used to schedule NAPI polls without
5103 * registering a full blown interface. This is to be used by drivers
5104 * that need to tie several hardware interfaces to a single NAPI
5105 * poll scheduler due to HW limitations.
5107 int init_dummy_netdev(struct net_device *dev)
5109 /* Clear everything. Note we don't initialize spinlocks
5110 * are they aren't supposed to be taken by any of the
5111 * NAPI code and this dummy netdev is supposed to be
5112 * only ever used for NAPI polls
5114 memset(dev, 0, sizeof(struct net_device));
5116 /* make sure we BUG if trying to hit standard
5117 * register/unregister code path
5119 dev->reg_state = NETREG_DUMMY;
5121 /* initialize the ref count */
5122 atomic_set(&dev->refcnt, 1);
5124 /* NAPI wants this */
5125 INIT_LIST_HEAD(&dev->napi_list);
5127 /* a dummy interface is started by default */
5128 set_bit(__LINK_STATE_PRESENT, &dev->state);
5129 set_bit(__LINK_STATE_START, &dev->state);
5131 return 0;
5133 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5137 * register_netdev - register a network device
5138 * @dev: device to register
5140 * Take a completed network device structure and add it to the kernel
5141 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5142 * chain. 0 is returned on success. A negative errno code is returned
5143 * on a failure to set up the device, or if the name is a duplicate.
5145 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5146 * and expands the device name if you passed a format string to
5147 * alloc_netdev.
5149 int register_netdev(struct net_device *dev)
5151 int err;
5153 rtnl_lock();
5156 * If the name is a format string the caller wants us to do a
5157 * name allocation.
5159 if (strchr(dev->name, '%')) {
5160 err = dev_alloc_name(dev, dev->name);
5161 if (err < 0)
5162 goto out;
5165 err = register_netdevice(dev);
5166 out:
5167 rtnl_unlock();
5168 return err;
5170 EXPORT_SYMBOL(register_netdev);
5173 * netdev_wait_allrefs - wait until all references are gone.
5175 * This is called when unregistering network devices.
5177 * Any protocol or device that holds a reference should register
5178 * for netdevice notification, and cleanup and put back the
5179 * reference if they receive an UNREGISTER event.
5180 * We can get stuck here if buggy protocols don't correctly
5181 * call dev_put.
5183 static void netdev_wait_allrefs(struct net_device *dev)
5185 unsigned long rebroadcast_time, warning_time;
5187 linkwatch_forget_dev(dev);
5189 rebroadcast_time = warning_time = jiffies;
5190 while (atomic_read(&dev->refcnt) != 0) {
5191 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5192 rtnl_lock();
5194 /* Rebroadcast unregister notification */
5195 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5196 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5197 * should have already handle it the first time */
5199 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5200 &dev->state)) {
5201 /* We must not have linkwatch events
5202 * pending on unregister. If this
5203 * happens, we simply run the queue
5204 * unscheduled, resulting in a noop
5205 * for this device.
5207 linkwatch_run_queue();
5210 __rtnl_unlock();
5212 rebroadcast_time = jiffies;
5215 msleep(250);
5217 if (time_after(jiffies, warning_time + 10 * HZ)) {
5218 printk(KERN_EMERG "unregister_netdevice: "
5219 "waiting for %s to become free. Usage "
5220 "count = %d\n",
5221 dev->name, atomic_read(&dev->refcnt));
5222 warning_time = jiffies;
5227 /* The sequence is:
5229 * rtnl_lock();
5230 * ...
5231 * register_netdevice(x1);
5232 * register_netdevice(x2);
5233 * ...
5234 * unregister_netdevice(y1);
5235 * unregister_netdevice(y2);
5236 * ...
5237 * rtnl_unlock();
5238 * free_netdev(y1);
5239 * free_netdev(y2);
5241 * We are invoked by rtnl_unlock().
5242 * This allows us to deal with problems:
5243 * 1) We can delete sysfs objects which invoke hotplug
5244 * without deadlocking with linkwatch via keventd.
5245 * 2) Since we run with the RTNL semaphore not held, we can sleep
5246 * safely in order to wait for the netdev refcnt to drop to zero.
5248 * We must not return until all unregister events added during
5249 * the interval the lock was held have been completed.
5251 void netdev_run_todo(void)
5253 struct list_head list;
5255 /* Snapshot list, allow later requests */
5256 list_replace_init(&net_todo_list, &list);
5258 __rtnl_unlock();
5260 while (!list_empty(&list)) {
5261 struct net_device *dev
5262 = list_first_entry(&list, struct net_device, todo_list);
5263 list_del(&dev->todo_list);
5265 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5266 printk(KERN_ERR "network todo '%s' but state %d\n",
5267 dev->name, dev->reg_state);
5268 dump_stack();
5269 continue;
5272 dev->reg_state = NETREG_UNREGISTERED;
5274 on_each_cpu(flush_backlog, dev, 1);
5276 netdev_wait_allrefs(dev);
5278 /* paranoia */
5279 BUG_ON(atomic_read(&dev->refcnt));
5280 WARN_ON(dev->ip_ptr);
5281 WARN_ON(dev->ip6_ptr);
5282 WARN_ON(dev->dn_ptr);
5284 if (dev->destructor)
5285 dev->destructor(dev);
5287 /* Free network device */
5288 kobject_put(&dev->dev.kobj);
5293 * dev_txq_stats_fold - fold tx_queues stats
5294 * @dev: device to get statistics from
5295 * @stats: struct rtnl_link_stats64 to hold results
5297 void dev_txq_stats_fold(const struct net_device *dev,
5298 struct rtnl_link_stats64 *stats)
5300 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5301 unsigned int i;
5302 struct netdev_queue *txq;
5304 for (i = 0; i < dev->num_tx_queues; i++) {
5305 txq = netdev_get_tx_queue(dev, i);
5306 spin_lock_bh(&txq->_xmit_lock);
5307 tx_bytes += txq->tx_bytes;
5308 tx_packets += txq->tx_packets;
5309 tx_dropped += txq->tx_dropped;
5310 spin_unlock_bh(&txq->_xmit_lock);
5312 if (tx_bytes || tx_packets || tx_dropped) {
5313 stats->tx_bytes = tx_bytes;
5314 stats->tx_packets = tx_packets;
5315 stats->tx_dropped = tx_dropped;
5318 EXPORT_SYMBOL(dev_txq_stats_fold);
5320 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5321 * fields in the same order, with only the type differing.
5323 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5324 const struct net_device_stats *netdev_stats)
5326 #if BITS_PER_LONG == 64
5327 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5328 memcpy(stats64, netdev_stats, sizeof(*stats64));
5329 #else
5330 size_t i, n = sizeof(*stats64) / sizeof(u64);
5331 const unsigned long *src = (const unsigned long *)netdev_stats;
5332 u64 *dst = (u64 *)stats64;
5334 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5335 sizeof(*stats64) / sizeof(u64));
5336 for (i = 0; i < n; i++)
5337 dst[i] = src[i];
5338 #endif
5342 * dev_get_stats - get network device statistics
5343 * @dev: device to get statistics from
5344 * @storage: place to store stats
5346 * Get network statistics from device. Return @storage.
5347 * The device driver may provide its own method by setting
5348 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5349 * otherwise the internal statistics structure is used.
5351 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5352 struct rtnl_link_stats64 *storage)
5354 const struct net_device_ops *ops = dev->netdev_ops;
5356 if (ops->ndo_get_stats64) {
5357 memset(storage, 0, sizeof(*storage));
5358 return ops->ndo_get_stats64(dev, storage);
5360 if (ops->ndo_get_stats) {
5361 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5362 return storage;
5364 netdev_stats_to_stats64(storage, &dev->stats);
5365 dev_txq_stats_fold(dev, storage);
5366 return storage;
5368 EXPORT_SYMBOL(dev_get_stats);
5370 static void netdev_init_one_queue(struct net_device *dev,
5371 struct netdev_queue *queue,
5372 void *_unused)
5374 queue->dev = dev;
5377 static void netdev_init_queues(struct net_device *dev)
5379 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5380 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5381 spin_lock_init(&dev->tx_global_lock);
5385 * alloc_netdev_mq - allocate network device
5386 * @sizeof_priv: size of private data to allocate space for
5387 * @name: device name format string
5388 * @setup: callback to initialize device
5389 * @queue_count: the number of subqueues to allocate
5391 * Allocates a struct net_device with private data area for driver use
5392 * and performs basic initialization. Also allocates subquue structs
5393 * for each queue on the device at the end of the netdevice.
5395 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5396 void (*setup)(struct net_device *), unsigned int queue_count)
5398 struct netdev_queue *tx;
5399 struct net_device *dev;
5400 size_t alloc_size;
5401 struct net_device *p;
5402 #ifdef CONFIG_RPS
5403 struct netdev_rx_queue *rx;
5404 int i;
5405 #endif
5407 BUG_ON(strlen(name) >= sizeof(dev->name));
5409 alloc_size = sizeof(struct net_device);
5410 if (sizeof_priv) {
5411 /* ensure 32-byte alignment of private area */
5412 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5413 alloc_size += sizeof_priv;
5415 /* ensure 32-byte alignment of whole construct */
5416 alloc_size += NETDEV_ALIGN - 1;
5418 p = kzalloc(alloc_size, GFP_KERNEL);
5419 if (!p) {
5420 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5421 return NULL;
5424 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5425 if (!tx) {
5426 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5427 "tx qdiscs.\n");
5428 goto free_p;
5431 #ifdef CONFIG_RPS
5432 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5433 if (!rx) {
5434 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5435 "rx queues.\n");
5436 goto free_tx;
5439 atomic_set(&rx->count, queue_count);
5442 * Set a pointer to first element in the array which holds the
5443 * reference count.
5445 for (i = 0; i < queue_count; i++)
5446 rx[i].first = rx;
5447 #endif
5449 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5450 dev->padded = (char *)dev - (char *)p;
5452 if (dev_addr_init(dev))
5453 goto free_rx;
5455 dev_mc_init(dev);
5456 dev_uc_init(dev);
5458 dev_net_set(dev, &init_net);
5460 dev->_tx = tx;
5461 dev->num_tx_queues = queue_count;
5462 dev->real_num_tx_queues = queue_count;
5464 #ifdef CONFIG_RPS
5465 dev->_rx = rx;
5466 dev->num_rx_queues = queue_count;
5467 #endif
5469 dev->gso_max_size = GSO_MAX_SIZE;
5471 netdev_init_queues(dev);
5473 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5474 dev->ethtool_ntuple_list.count = 0;
5475 INIT_LIST_HEAD(&dev->napi_list);
5476 INIT_LIST_HEAD(&dev->unreg_list);
5477 INIT_LIST_HEAD(&dev->link_watch_list);
5478 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5479 setup(dev);
5480 strcpy(dev->name, name);
5481 return dev;
5483 free_rx:
5484 #ifdef CONFIG_RPS
5485 kfree(rx);
5486 free_tx:
5487 #endif
5488 kfree(tx);
5489 free_p:
5490 kfree(p);
5491 return NULL;
5493 EXPORT_SYMBOL(alloc_netdev_mq);
5496 * free_netdev - free network device
5497 * @dev: device
5499 * This function does the last stage of destroying an allocated device
5500 * interface. The reference to the device object is released.
5501 * If this is the last reference then it will be freed.
5503 void free_netdev(struct net_device *dev)
5505 struct napi_struct *p, *n;
5507 release_net(dev_net(dev));
5509 kfree(dev->_tx);
5511 /* Flush device addresses */
5512 dev_addr_flush(dev);
5514 /* Clear ethtool n-tuple list */
5515 ethtool_ntuple_flush(dev);
5517 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5518 netif_napi_del(p);
5520 /* Compatibility with error handling in drivers */
5521 if (dev->reg_state == NETREG_UNINITIALIZED) {
5522 kfree((char *)dev - dev->padded);
5523 return;
5526 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5527 dev->reg_state = NETREG_RELEASED;
5529 /* will free via device release */
5530 put_device(&dev->dev);
5532 EXPORT_SYMBOL(free_netdev);
5535 * synchronize_net - Synchronize with packet receive processing
5537 * Wait for packets currently being received to be done.
5538 * Does not block later packets from starting.
5540 void synchronize_net(void)
5542 might_sleep();
5543 synchronize_rcu();
5545 EXPORT_SYMBOL(synchronize_net);
5548 * unregister_netdevice_queue - remove device from the kernel
5549 * @dev: device
5550 * @head: list
5552 * This function shuts down a device interface and removes it
5553 * from the kernel tables.
5554 * If head not NULL, device is queued to be unregistered later.
5556 * Callers must hold the rtnl semaphore. You may want
5557 * unregister_netdev() instead of this.
5560 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5562 ASSERT_RTNL();
5564 if (head) {
5565 list_move_tail(&dev->unreg_list, head);
5566 } else {
5567 rollback_registered(dev);
5568 /* Finish processing unregister after unlock */
5569 net_set_todo(dev);
5572 EXPORT_SYMBOL(unregister_netdevice_queue);
5575 * unregister_netdevice_many - unregister many devices
5576 * @head: list of devices
5578 void unregister_netdevice_many(struct list_head *head)
5580 struct net_device *dev;
5582 if (!list_empty(head)) {
5583 rollback_registered_many(head);
5584 list_for_each_entry(dev, head, unreg_list)
5585 net_set_todo(dev);
5588 EXPORT_SYMBOL(unregister_netdevice_many);
5591 * unregister_netdev - remove device from the kernel
5592 * @dev: device
5594 * This function shuts down a device interface and removes it
5595 * from the kernel tables.
5597 * This is just a wrapper for unregister_netdevice that takes
5598 * the rtnl semaphore. In general you want to use this and not
5599 * unregister_netdevice.
5601 void unregister_netdev(struct net_device *dev)
5603 rtnl_lock();
5604 unregister_netdevice(dev);
5605 rtnl_unlock();
5607 EXPORT_SYMBOL(unregister_netdev);
5610 * dev_change_net_namespace - move device to different nethost namespace
5611 * @dev: device
5612 * @net: network namespace
5613 * @pat: If not NULL name pattern to try if the current device name
5614 * is already taken in the destination network namespace.
5616 * This function shuts down a device interface and moves it
5617 * to a new network namespace. On success 0 is returned, on
5618 * a failure a netagive errno code is returned.
5620 * Callers must hold the rtnl semaphore.
5623 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5625 int err;
5627 ASSERT_RTNL();
5629 /* Don't allow namespace local devices to be moved. */
5630 err = -EINVAL;
5631 if (dev->features & NETIF_F_NETNS_LOCAL)
5632 goto out;
5634 /* Ensure the device has been registrered */
5635 err = -EINVAL;
5636 if (dev->reg_state != NETREG_REGISTERED)
5637 goto out;
5639 /* Get out if there is nothing todo */
5640 err = 0;
5641 if (net_eq(dev_net(dev), net))
5642 goto out;
5644 /* Pick the destination device name, and ensure
5645 * we can use it in the destination network namespace.
5647 err = -EEXIST;
5648 if (__dev_get_by_name(net, dev->name)) {
5649 /* We get here if we can't use the current device name */
5650 if (!pat)
5651 goto out;
5652 if (dev_get_valid_name(dev, pat, 1))
5653 goto out;
5657 * And now a mini version of register_netdevice unregister_netdevice.
5660 /* If device is running close it first. */
5661 dev_close(dev);
5663 /* And unlink it from device chain */
5664 err = -ENODEV;
5665 unlist_netdevice(dev);
5667 synchronize_net();
5669 /* Shutdown queueing discipline. */
5670 dev_shutdown(dev);
5672 /* Notify protocols, that we are about to destroy
5673 this device. They should clean all the things.
5675 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5676 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5679 * Flush the unicast and multicast chains
5681 dev_uc_flush(dev);
5682 dev_mc_flush(dev);
5684 /* Actually switch the network namespace */
5685 dev_net_set(dev, net);
5687 /* If there is an ifindex conflict assign a new one */
5688 if (__dev_get_by_index(net, dev->ifindex)) {
5689 int iflink = (dev->iflink == dev->ifindex);
5690 dev->ifindex = dev_new_index(net);
5691 if (iflink)
5692 dev->iflink = dev->ifindex;
5695 /* Fixup kobjects */
5696 err = device_rename(&dev->dev, dev->name);
5697 WARN_ON(err);
5699 /* Add the device back in the hashes */
5700 list_netdevice(dev);
5702 /* Notify protocols, that a new device appeared. */
5703 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5706 * Prevent userspace races by waiting until the network
5707 * device is fully setup before sending notifications.
5709 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5711 synchronize_net();
5712 err = 0;
5713 out:
5714 return err;
5716 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5718 static int dev_cpu_callback(struct notifier_block *nfb,
5719 unsigned long action,
5720 void *ocpu)
5722 struct sk_buff **list_skb;
5723 struct sk_buff *skb;
5724 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5725 struct softnet_data *sd, *oldsd;
5727 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5728 return NOTIFY_OK;
5730 local_irq_disable();
5731 cpu = smp_processor_id();
5732 sd = &per_cpu(softnet_data, cpu);
5733 oldsd = &per_cpu(softnet_data, oldcpu);
5735 /* Find end of our completion_queue. */
5736 list_skb = &sd->completion_queue;
5737 while (*list_skb)
5738 list_skb = &(*list_skb)->next;
5739 /* Append completion queue from offline CPU. */
5740 *list_skb = oldsd->completion_queue;
5741 oldsd->completion_queue = NULL;
5743 /* Append output queue from offline CPU. */
5744 if (oldsd->output_queue) {
5745 *sd->output_queue_tailp = oldsd->output_queue;
5746 sd->output_queue_tailp = oldsd->output_queue_tailp;
5747 oldsd->output_queue = NULL;
5748 oldsd->output_queue_tailp = &oldsd->output_queue;
5751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5752 local_irq_enable();
5754 /* Process offline CPU's input_pkt_queue */
5755 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5756 netif_rx(skb);
5757 input_queue_head_incr(oldsd);
5759 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5760 netif_rx(skb);
5761 input_queue_head_incr(oldsd);
5764 return NOTIFY_OK;
5769 * netdev_increment_features - increment feature set by one
5770 * @all: current feature set
5771 * @one: new feature set
5772 * @mask: mask feature set
5774 * Computes a new feature set after adding a device with feature set
5775 * @one to the master device with current feature set @all. Will not
5776 * enable anything that is off in @mask. Returns the new feature set.
5778 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5779 unsigned long mask)
5781 /* If device needs checksumming, downgrade to it. */
5782 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5783 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5784 else if (mask & NETIF_F_ALL_CSUM) {
5785 /* If one device supports v4/v6 checksumming, set for all. */
5786 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5787 !(all & NETIF_F_GEN_CSUM)) {
5788 all &= ~NETIF_F_ALL_CSUM;
5789 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5792 /* If one device supports hw checksumming, set for all. */
5793 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5794 all &= ~NETIF_F_ALL_CSUM;
5795 all |= NETIF_F_HW_CSUM;
5799 one |= NETIF_F_ALL_CSUM;
5801 one |= all & NETIF_F_ONE_FOR_ALL;
5802 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5803 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5805 return all;
5807 EXPORT_SYMBOL(netdev_increment_features);
5809 static struct hlist_head *netdev_create_hash(void)
5811 int i;
5812 struct hlist_head *hash;
5814 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5815 if (hash != NULL)
5816 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5817 INIT_HLIST_HEAD(&hash[i]);
5819 return hash;
5822 /* Initialize per network namespace state */
5823 static int __net_init netdev_init(struct net *net)
5825 INIT_LIST_HEAD(&net->dev_base_head);
5827 net->dev_name_head = netdev_create_hash();
5828 if (net->dev_name_head == NULL)
5829 goto err_name;
5831 net->dev_index_head = netdev_create_hash();
5832 if (net->dev_index_head == NULL)
5833 goto err_idx;
5835 return 0;
5837 err_idx:
5838 kfree(net->dev_name_head);
5839 err_name:
5840 return -ENOMEM;
5844 * netdev_drivername - network driver for the device
5845 * @dev: network device
5846 * @buffer: buffer for resulting name
5847 * @len: size of buffer
5849 * Determine network driver for device.
5851 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5853 const struct device_driver *driver;
5854 const struct device *parent;
5856 if (len <= 0 || !buffer)
5857 return buffer;
5858 buffer[0] = 0;
5860 parent = dev->dev.parent;
5862 if (!parent)
5863 return buffer;
5865 driver = parent->driver;
5866 if (driver && driver->name)
5867 strlcpy(buffer, driver->name, len);
5868 return buffer;
5871 static int __netdev_printk(const char *level, const struct net_device *dev,
5872 struct va_format *vaf)
5874 int r;
5876 if (dev && dev->dev.parent)
5877 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5878 netdev_name(dev), vaf);
5879 else if (dev)
5880 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5881 else
5882 r = printk("%s(NULL net_device): %pV", level, vaf);
5884 return r;
5887 int netdev_printk(const char *level, const struct net_device *dev,
5888 const char *format, ...)
5890 struct va_format vaf;
5891 va_list args;
5892 int r;
5894 va_start(args, format);
5896 vaf.fmt = format;
5897 vaf.va = &args;
5899 r = __netdev_printk(level, dev, &vaf);
5900 va_end(args);
5902 return r;
5904 EXPORT_SYMBOL(netdev_printk);
5906 #define define_netdev_printk_level(func, level) \
5907 int func(const struct net_device *dev, const char *fmt, ...) \
5909 int r; \
5910 struct va_format vaf; \
5911 va_list args; \
5913 va_start(args, fmt); \
5915 vaf.fmt = fmt; \
5916 vaf.va = &args; \
5918 r = __netdev_printk(level, dev, &vaf); \
5919 va_end(args); \
5921 return r; \
5923 EXPORT_SYMBOL(func);
5925 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5926 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5927 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5928 define_netdev_printk_level(netdev_err, KERN_ERR);
5929 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5930 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5931 define_netdev_printk_level(netdev_info, KERN_INFO);
5933 static void __net_exit netdev_exit(struct net *net)
5935 kfree(net->dev_name_head);
5936 kfree(net->dev_index_head);
5939 static struct pernet_operations __net_initdata netdev_net_ops = {
5940 .init = netdev_init,
5941 .exit = netdev_exit,
5944 static void __net_exit default_device_exit(struct net *net)
5946 struct net_device *dev, *aux;
5948 * Push all migratable network devices back to the
5949 * initial network namespace
5951 rtnl_lock();
5952 for_each_netdev_safe(net, dev, aux) {
5953 int err;
5954 char fb_name[IFNAMSIZ];
5956 /* Ignore unmoveable devices (i.e. loopback) */
5957 if (dev->features & NETIF_F_NETNS_LOCAL)
5958 continue;
5960 /* Leave virtual devices for the generic cleanup */
5961 if (dev->rtnl_link_ops)
5962 continue;
5964 /* Push remaing network devices to init_net */
5965 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5966 err = dev_change_net_namespace(dev, &init_net, fb_name);
5967 if (err) {
5968 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5969 __func__, dev->name, err);
5970 BUG();
5973 rtnl_unlock();
5976 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5978 /* At exit all network devices most be removed from a network
5979 * namespace. Do this in the reverse order of registeration.
5980 * Do this across as many network namespaces as possible to
5981 * improve batching efficiency.
5983 struct net_device *dev;
5984 struct net *net;
5985 LIST_HEAD(dev_kill_list);
5987 rtnl_lock();
5988 list_for_each_entry(net, net_list, exit_list) {
5989 for_each_netdev_reverse(net, dev) {
5990 if (dev->rtnl_link_ops)
5991 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5992 else
5993 unregister_netdevice_queue(dev, &dev_kill_list);
5996 unregister_netdevice_many(&dev_kill_list);
5997 rtnl_unlock();
6000 static struct pernet_operations __net_initdata default_device_ops = {
6001 .exit = default_device_exit,
6002 .exit_batch = default_device_exit_batch,
6006 * Initialize the DEV module. At boot time this walks the device list and
6007 * unhooks any devices that fail to initialise (normally hardware not
6008 * present) and leaves us with a valid list of present and active devices.
6013 * This is called single threaded during boot, so no need
6014 * to take the rtnl semaphore.
6016 static int __init net_dev_init(void)
6018 int i, rc = -ENOMEM;
6020 BUG_ON(!dev_boot_phase);
6022 if (dev_proc_init())
6023 goto out;
6025 if (netdev_kobject_init())
6026 goto out;
6028 INIT_LIST_HEAD(&ptype_all);
6029 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6030 INIT_LIST_HEAD(&ptype_base[i]);
6032 if (register_pernet_subsys(&netdev_net_ops))
6033 goto out;
6036 * Initialise the packet receive queues.
6039 for_each_possible_cpu(i) {
6040 struct softnet_data *sd = &per_cpu(softnet_data, i);
6042 memset(sd, 0, sizeof(*sd));
6043 skb_queue_head_init(&sd->input_pkt_queue);
6044 skb_queue_head_init(&sd->process_queue);
6045 sd->completion_queue = NULL;
6046 INIT_LIST_HEAD(&sd->poll_list);
6047 sd->output_queue = NULL;
6048 sd->output_queue_tailp = &sd->output_queue;
6049 #ifdef CONFIG_RPS
6050 sd->csd.func = rps_trigger_softirq;
6051 sd->csd.info = sd;
6052 sd->csd.flags = 0;
6053 sd->cpu = i;
6054 #endif
6056 sd->backlog.poll = process_backlog;
6057 sd->backlog.weight = weight_p;
6058 sd->backlog.gro_list = NULL;
6059 sd->backlog.gro_count = 0;
6062 dev_boot_phase = 0;
6064 /* The loopback device is special if any other network devices
6065 * is present in a network namespace the loopback device must
6066 * be present. Since we now dynamically allocate and free the
6067 * loopback device ensure this invariant is maintained by
6068 * keeping the loopback device as the first device on the
6069 * list of network devices. Ensuring the loopback devices
6070 * is the first device that appears and the last network device
6071 * that disappears.
6073 if (register_pernet_device(&loopback_net_ops))
6074 goto out;
6076 if (register_pernet_device(&default_device_ops))
6077 goto out;
6079 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6080 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6082 hotcpu_notifier(dev_cpu_callback, 0);
6083 dst_init();
6084 dev_mcast_init();
6085 rc = 0;
6086 out:
6087 return rc;
6090 subsys_initcall(net_dev_init);
6092 static int __init initialize_hashrnd(void)
6094 get_random_bytes(&hashrnd, sizeof(hashrnd));
6095 return 0;
6098 late_initcall_sync(initialize_hashrnd);