2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
42 #include "free-space-cache.h"
44 static struct extent_io_ops btree_extent_io_ops
;
45 static void end_workqueue_fn(struct btrfs_work
*work
);
46 static void free_fs_root(struct btrfs_root
*root
);
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
57 struct btrfs_fs_info
*info
;
60 struct list_head list
;
61 struct btrfs_work work
;
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
69 struct async_submit_bio
{
72 struct list_head list
;
73 extent_submit_bio_hook_t
*submit_bio_start
;
74 extent_submit_bio_hook_t
*submit_bio_done
;
77 unsigned long bio_flags
;
79 * bio_offset is optional, can be used if the pages in the bio
80 * can't tell us where in the file the bio should go
83 struct btrfs_work work
;
86 /* These are used to set the lockdep class on the extent buffer locks.
87 * The class is set by the readpage_end_io_hook after the buffer has
88 * passed csum validation but before the pages are unlocked.
90 * The lockdep class is also set by btrfs_init_new_buffer on freshly
93 * The class is based on the level in the tree block, which allows lockdep
94 * to know that lower nodes nest inside the locks of higher nodes.
96 * We also add a check to make sure the highest level of the tree is
97 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
98 * code needs update as well.
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 # if BTRFS_MAX_LEVEL != 8
104 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
105 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
115 /* highest possible level */
121 * extents on the btree inode are pretty simple, there's one extent
122 * that covers the entire device
124 static struct extent_map
*btree_get_extent(struct inode
*inode
,
125 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
128 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
129 struct extent_map
*em
;
132 read_lock(&em_tree
->lock
);
133 em
= lookup_extent_mapping(em_tree
, start
, len
);
136 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
137 read_unlock(&em_tree
->lock
);
140 read_unlock(&em_tree
->lock
);
142 em
= alloc_extent_map(GFP_NOFS
);
144 em
= ERR_PTR(-ENOMEM
);
149 em
->block_len
= (u64
)-1;
151 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
153 write_lock(&em_tree
->lock
);
154 ret
= add_extent_mapping(em_tree
, em
);
155 if (ret
== -EEXIST
) {
156 u64 failed_start
= em
->start
;
157 u64 failed_len
= em
->len
;
160 em
= lookup_extent_mapping(em_tree
, start
, len
);
164 em
= lookup_extent_mapping(em_tree
, failed_start
,
172 write_unlock(&em_tree
->lock
);
180 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
182 return crc32c(seed
, data
, len
);
185 void btrfs_csum_final(u32 crc
, char *result
)
187 *(__le32
*)result
= ~cpu_to_le32(crc
);
191 * compute the csum for a btree block, and either verify it or write it
192 * into the csum field of the block.
194 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
198 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
201 unsigned long cur_len
;
202 unsigned long offset
= BTRFS_CSUM_SIZE
;
203 char *map_token
= NULL
;
205 unsigned long map_start
;
206 unsigned long map_len
;
209 unsigned long inline_result
;
211 len
= buf
->len
- offset
;
213 err
= map_private_extent_buffer(buf
, offset
, 32,
215 &map_start
, &map_len
, KM_USER0
);
218 cur_len
= min(len
, map_len
- (offset
- map_start
));
219 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
223 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
225 if (csum_size
> sizeof(inline_result
)) {
226 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
230 result
= (char *)&inline_result
;
233 btrfs_csum_final(crc
, result
);
236 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
239 memcpy(&found
, result
, csum_size
);
241 read_extent_buffer(buf
, &val
, 0, csum_size
);
242 if (printk_ratelimit()) {
243 printk(KERN_INFO
"btrfs: %s checksum verify "
244 "failed on %llu wanted %X found %X "
246 root
->fs_info
->sb
->s_id
,
247 (unsigned long long)buf
->start
, val
, found
,
248 btrfs_header_level(buf
));
250 if (result
!= (char *)&inline_result
)
255 write_extent_buffer(buf
, result
, 0, csum_size
);
257 if (result
!= (char *)&inline_result
)
263 * we can't consider a given block up to date unless the transid of the
264 * block matches the transid in the parent node's pointer. This is how we
265 * detect blocks that either didn't get written at all or got written
266 * in the wrong place.
268 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
269 struct extent_buffer
*eb
, u64 parent_transid
)
271 struct extent_state
*cached_state
= NULL
;
274 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
277 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
278 0, &cached_state
, GFP_NOFS
);
279 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
280 btrfs_header_generation(eb
) == parent_transid
) {
284 if (printk_ratelimit()) {
285 printk("parent transid verify failed on %llu wanted %llu "
287 (unsigned long long)eb
->start
,
288 (unsigned long long)parent_transid
,
289 (unsigned long long)btrfs_header_generation(eb
));
292 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
294 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
295 &cached_state
, GFP_NOFS
);
300 * helper to read a given tree block, doing retries as required when
301 * the checksums don't match and we have alternate mirrors to try.
303 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
304 struct extent_buffer
*eb
,
305 u64 start
, u64 parent_transid
)
307 struct extent_io_tree
*io_tree
;
312 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
314 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
315 btree_get_extent
, mirror_num
);
317 !verify_parent_transid(io_tree
, eb
, parent_transid
))
320 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
326 if (mirror_num
> num_copies
)
333 * checksum a dirty tree block before IO. This has extra checks to make sure
334 * we only fill in the checksum field in the first page of a multi-page block
337 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
339 struct extent_io_tree
*tree
;
340 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
343 struct extent_buffer
*eb
;
346 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
348 if (page
->private == EXTENT_PAGE_PRIVATE
)
352 len
= page
->private >> 2;
355 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
356 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
357 btrfs_header_generation(eb
));
359 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
361 found_start
= btrfs_header_bytenr(eb
);
362 if (found_start
!= start
) {
366 if (eb
->first_page
!= page
) {
370 if (!PageUptodate(page
)) {
374 csum_tree_block(root
, eb
, 0);
376 free_extent_buffer(eb
);
381 static int check_tree_block_fsid(struct btrfs_root
*root
,
382 struct extent_buffer
*eb
)
384 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
385 u8 fsid
[BTRFS_UUID_SIZE
];
388 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
391 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
395 fs_devices
= fs_devices
->seed
;
400 #ifdef CONFIG_DEBUG_LOCK_ALLOC
401 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
403 lockdep_set_class_and_name(&eb
->lock
,
404 &btrfs_eb_class
[level
],
405 btrfs_eb_name
[level
]);
409 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
410 struct extent_state
*state
)
412 struct extent_io_tree
*tree
;
416 struct extent_buffer
*eb
;
417 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
420 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
421 if (page
->private == EXTENT_PAGE_PRIVATE
)
426 len
= page
->private >> 2;
429 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
431 found_start
= btrfs_header_bytenr(eb
);
432 if (found_start
!= start
) {
433 if (printk_ratelimit()) {
434 printk(KERN_INFO
"btrfs bad tree block start "
436 (unsigned long long)found_start
,
437 (unsigned long long)eb
->start
);
442 if (eb
->first_page
!= page
) {
443 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
444 eb
->first_page
->index
, page
->index
);
449 if (check_tree_block_fsid(root
, eb
)) {
450 if (printk_ratelimit()) {
451 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
452 (unsigned long long)eb
->start
);
457 found_level
= btrfs_header_level(eb
);
459 btrfs_set_buffer_lockdep_class(eb
, found_level
);
461 ret
= csum_tree_block(root
, eb
, 1);
465 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
466 end
= eb
->start
+ end
- 1;
468 free_extent_buffer(eb
);
473 static void end_workqueue_bio(struct bio
*bio
, int err
)
475 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
476 struct btrfs_fs_info
*fs_info
;
478 fs_info
= end_io_wq
->info
;
479 end_io_wq
->error
= err
;
480 end_io_wq
->work
.func
= end_workqueue_fn
;
481 end_io_wq
->work
.flags
= 0;
483 if (bio
->bi_rw
& REQ_WRITE
) {
484 if (end_io_wq
->metadata
== 1)
485 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
487 else if (end_io_wq
->metadata
== 2)
488 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
491 btrfs_queue_worker(&fs_info
->endio_write_workers
,
494 if (end_io_wq
->metadata
)
495 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
498 btrfs_queue_worker(&fs_info
->endio_workers
,
504 * For the metadata arg you want
507 * 1 - if normal metadta
508 * 2 - if writing to the free space cache area
510 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
513 struct end_io_wq
*end_io_wq
;
514 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
518 end_io_wq
->private = bio
->bi_private
;
519 end_io_wq
->end_io
= bio
->bi_end_io
;
520 end_io_wq
->info
= info
;
521 end_io_wq
->error
= 0;
522 end_io_wq
->bio
= bio
;
523 end_io_wq
->metadata
= metadata
;
525 bio
->bi_private
= end_io_wq
;
526 bio
->bi_end_io
= end_workqueue_bio
;
530 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
532 unsigned long limit
= min_t(unsigned long,
533 info
->workers
.max_workers
,
534 info
->fs_devices
->open_devices
);
538 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
540 return atomic_read(&info
->nr_async_bios
) >
541 btrfs_async_submit_limit(info
);
544 static void run_one_async_start(struct btrfs_work
*work
)
546 struct async_submit_bio
*async
;
548 async
= container_of(work
, struct async_submit_bio
, work
);
549 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
550 async
->mirror_num
, async
->bio_flags
,
554 static void run_one_async_done(struct btrfs_work
*work
)
556 struct btrfs_fs_info
*fs_info
;
557 struct async_submit_bio
*async
;
560 async
= container_of(work
, struct async_submit_bio
, work
);
561 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
563 limit
= btrfs_async_submit_limit(fs_info
);
564 limit
= limit
* 2 / 3;
566 atomic_dec(&fs_info
->nr_async_submits
);
568 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
569 waitqueue_active(&fs_info
->async_submit_wait
))
570 wake_up(&fs_info
->async_submit_wait
);
572 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
573 async
->mirror_num
, async
->bio_flags
,
577 static void run_one_async_free(struct btrfs_work
*work
)
579 struct async_submit_bio
*async
;
581 async
= container_of(work
, struct async_submit_bio
, work
);
585 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
586 int rw
, struct bio
*bio
, int mirror_num
,
587 unsigned long bio_flags
,
589 extent_submit_bio_hook_t
*submit_bio_start
,
590 extent_submit_bio_hook_t
*submit_bio_done
)
592 struct async_submit_bio
*async
;
594 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
598 async
->inode
= inode
;
601 async
->mirror_num
= mirror_num
;
602 async
->submit_bio_start
= submit_bio_start
;
603 async
->submit_bio_done
= submit_bio_done
;
605 async
->work
.func
= run_one_async_start
;
606 async
->work
.ordered_func
= run_one_async_done
;
607 async
->work
.ordered_free
= run_one_async_free
;
609 async
->work
.flags
= 0;
610 async
->bio_flags
= bio_flags
;
611 async
->bio_offset
= bio_offset
;
613 atomic_inc(&fs_info
->nr_async_submits
);
616 btrfs_set_work_high_prio(&async
->work
);
618 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
620 while (atomic_read(&fs_info
->async_submit_draining
) &&
621 atomic_read(&fs_info
->nr_async_submits
)) {
622 wait_event(fs_info
->async_submit_wait
,
623 (atomic_read(&fs_info
->nr_async_submits
) == 0));
629 static int btree_csum_one_bio(struct bio
*bio
)
631 struct bio_vec
*bvec
= bio
->bi_io_vec
;
633 struct btrfs_root
*root
;
635 WARN_ON(bio
->bi_vcnt
<= 0);
636 while (bio_index
< bio
->bi_vcnt
) {
637 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
638 csum_dirty_buffer(root
, bvec
->bv_page
);
645 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
646 struct bio
*bio
, int mirror_num
,
647 unsigned long bio_flags
,
651 * when we're called for a write, we're already in the async
652 * submission context. Just jump into btrfs_map_bio
654 btree_csum_one_bio(bio
);
658 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
659 int mirror_num
, unsigned long bio_flags
,
663 * when we're called for a write, we're already in the async
664 * submission context. Just jump into btrfs_map_bio
666 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
669 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
670 int mirror_num
, unsigned long bio_flags
,
675 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
679 if (!(rw
& REQ_WRITE
)) {
681 * called for a read, do the setup so that checksum validation
682 * can happen in the async kernel threads
684 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
689 * kthread helpers are used to submit writes so that checksumming
690 * can happen in parallel across all CPUs
692 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
693 inode
, rw
, bio
, mirror_num
, 0,
695 __btree_submit_bio_start
,
696 __btree_submit_bio_done
);
699 static int btree_migratepage(struct address_space
*mapping
,
700 struct page
*newpage
, struct page
*page
)
703 * we can't safely write a btree page from here,
704 * we haven't done the locking hook
709 * Buffers may be managed in a filesystem specific way.
710 * We must have no buffers or drop them.
712 if (page_has_private(page
) &&
713 !try_to_release_page(page
, GFP_KERNEL
))
715 #ifdef CONFIG_MIGRATION
716 return migrate_page(mapping
, newpage
, page
);
722 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
724 struct extent_io_tree
*tree
;
725 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
726 struct extent_buffer
*eb
;
729 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
730 if (!(current
->flags
& PF_MEMALLOC
)) {
731 return extent_write_full_page(tree
, page
,
732 btree_get_extent
, wbc
);
735 redirty_page_for_writepage(wbc
, page
);
736 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
739 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
741 spin_lock(&root
->fs_info
->delalloc_lock
);
742 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
743 spin_unlock(&root
->fs_info
->delalloc_lock
);
745 free_extent_buffer(eb
);
751 static int btree_writepages(struct address_space
*mapping
,
752 struct writeback_control
*wbc
)
754 struct extent_io_tree
*tree
;
755 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
756 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
757 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
759 unsigned long thresh
= 32 * 1024 * 1024;
761 if (wbc
->for_kupdate
)
764 /* this is a bit racy, but that's ok */
765 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
766 if (num_dirty
< thresh
)
769 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
772 static int btree_readpage(struct file
*file
, struct page
*page
)
774 struct extent_io_tree
*tree
;
775 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
776 return extent_read_full_page(tree
, page
, btree_get_extent
);
779 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
781 struct extent_io_tree
*tree
;
782 struct extent_map_tree
*map
;
785 if (PageWriteback(page
) || PageDirty(page
))
788 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
789 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
791 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
795 ret
= try_release_extent_buffer(tree
, page
);
797 ClearPagePrivate(page
);
798 set_page_private(page
, 0);
799 page_cache_release(page
);
805 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
807 struct extent_io_tree
*tree
;
808 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
809 extent_invalidatepage(tree
, page
, offset
);
810 btree_releasepage(page
, GFP_NOFS
);
811 if (PagePrivate(page
)) {
812 printk(KERN_WARNING
"btrfs warning page private not zero "
813 "on page %llu\n", (unsigned long long)page_offset(page
));
814 ClearPagePrivate(page
);
815 set_page_private(page
, 0);
816 page_cache_release(page
);
820 static const struct address_space_operations btree_aops
= {
821 .readpage
= btree_readpage
,
822 .writepage
= btree_writepage
,
823 .writepages
= btree_writepages
,
824 .releasepage
= btree_releasepage
,
825 .invalidatepage
= btree_invalidatepage
,
826 .sync_page
= block_sync_page
,
827 #ifdef CONFIG_MIGRATION
828 .migratepage
= btree_migratepage
,
832 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
835 struct extent_buffer
*buf
= NULL
;
836 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
839 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
842 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
843 buf
, 0, 0, btree_get_extent
, 0);
844 free_extent_buffer(buf
);
848 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
849 u64 bytenr
, u32 blocksize
)
851 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
852 struct extent_buffer
*eb
;
853 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
854 bytenr
, blocksize
, GFP_NOFS
);
858 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
859 u64 bytenr
, u32 blocksize
)
861 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
862 struct extent_buffer
*eb
;
864 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
865 bytenr
, blocksize
, NULL
, GFP_NOFS
);
870 int btrfs_write_tree_block(struct extent_buffer
*buf
)
872 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
873 buf
->start
+ buf
->len
- 1);
876 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
878 return filemap_fdatawait_range(buf
->first_page
->mapping
,
879 buf
->start
, buf
->start
+ buf
->len
- 1);
882 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
883 u32 blocksize
, u64 parent_transid
)
885 struct extent_buffer
*buf
= NULL
;
888 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
892 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
895 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
900 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
901 struct extent_buffer
*buf
)
903 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
904 if (btrfs_header_generation(buf
) ==
905 root
->fs_info
->running_transaction
->transid
) {
906 btrfs_assert_tree_locked(buf
);
908 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
909 spin_lock(&root
->fs_info
->delalloc_lock
);
910 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
911 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
914 spin_unlock(&root
->fs_info
->delalloc_lock
);
917 /* ugh, clear_extent_buffer_dirty needs to lock the page */
918 btrfs_set_lock_blocking(buf
);
919 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
925 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
926 u32 stripesize
, struct btrfs_root
*root
,
927 struct btrfs_fs_info
*fs_info
,
931 root
->commit_root
= NULL
;
932 root
->sectorsize
= sectorsize
;
933 root
->nodesize
= nodesize
;
934 root
->leafsize
= leafsize
;
935 root
->stripesize
= stripesize
;
937 root
->track_dirty
= 0;
939 root
->orphan_item_inserted
= 0;
940 root
->orphan_cleanup_state
= 0;
942 root
->fs_info
= fs_info
;
943 root
->objectid
= objectid
;
944 root
->last_trans
= 0;
945 root
->highest_objectid
= 0;
948 root
->inode_tree
= RB_ROOT
;
949 root
->block_rsv
= NULL
;
950 root
->orphan_block_rsv
= NULL
;
952 INIT_LIST_HEAD(&root
->dirty_list
);
953 INIT_LIST_HEAD(&root
->orphan_list
);
954 INIT_LIST_HEAD(&root
->root_list
);
955 spin_lock_init(&root
->node_lock
);
956 spin_lock_init(&root
->orphan_lock
);
957 spin_lock_init(&root
->inode_lock
);
958 spin_lock_init(&root
->accounting_lock
);
959 mutex_init(&root
->objectid_mutex
);
960 mutex_init(&root
->log_mutex
);
961 init_waitqueue_head(&root
->log_writer_wait
);
962 init_waitqueue_head(&root
->log_commit_wait
[0]);
963 init_waitqueue_head(&root
->log_commit_wait
[1]);
964 atomic_set(&root
->log_commit
[0], 0);
965 atomic_set(&root
->log_commit
[1], 0);
966 atomic_set(&root
->log_writers
, 0);
968 root
->log_transid
= 0;
969 root
->last_log_commit
= 0;
970 extent_io_tree_init(&root
->dirty_log_pages
,
971 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
973 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
974 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
975 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
976 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
977 root
->defrag_trans_start
= fs_info
->generation
;
978 init_completion(&root
->kobj_unregister
);
979 root
->defrag_running
= 0;
980 root
->root_key
.objectid
= objectid
;
981 root
->anon_super
.s_root
= NULL
;
982 root
->anon_super
.s_dev
= 0;
983 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
984 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
985 init_rwsem(&root
->anon_super
.s_umount
);
990 static int find_and_setup_root(struct btrfs_root
*tree_root
,
991 struct btrfs_fs_info
*fs_info
,
993 struct btrfs_root
*root
)
999 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1000 tree_root
->sectorsize
, tree_root
->stripesize
,
1001 root
, fs_info
, objectid
);
1002 ret
= btrfs_find_last_root(tree_root
, objectid
,
1003 &root
->root_item
, &root
->root_key
);
1008 generation
= btrfs_root_generation(&root
->root_item
);
1009 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1010 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1011 blocksize
, generation
);
1012 BUG_ON(!root
->node
);
1013 root
->commit_root
= btrfs_root_node(root
);
1017 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1018 struct btrfs_fs_info
*fs_info
)
1020 struct btrfs_root
*root
;
1021 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1022 struct extent_buffer
*leaf
;
1024 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1026 return ERR_PTR(-ENOMEM
);
1028 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1029 tree_root
->sectorsize
, tree_root
->stripesize
,
1030 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1032 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1033 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1034 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1036 * log trees do not get reference counted because they go away
1037 * before a real commit is actually done. They do store pointers
1038 * to file data extents, and those reference counts still get
1039 * updated (along with back refs to the log tree).
1043 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1044 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1047 return ERR_CAST(leaf
);
1050 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1051 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1052 btrfs_set_header_generation(leaf
, trans
->transid
);
1053 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1054 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1057 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1058 (unsigned long)btrfs_header_fsid(root
->node
),
1060 btrfs_mark_buffer_dirty(root
->node
);
1061 btrfs_tree_unlock(root
->node
);
1065 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1066 struct btrfs_fs_info
*fs_info
)
1068 struct btrfs_root
*log_root
;
1070 log_root
= alloc_log_tree(trans
, fs_info
);
1071 if (IS_ERR(log_root
))
1072 return PTR_ERR(log_root
);
1073 WARN_ON(fs_info
->log_root_tree
);
1074 fs_info
->log_root_tree
= log_root
;
1078 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1079 struct btrfs_root
*root
)
1081 struct btrfs_root
*log_root
;
1082 struct btrfs_inode_item
*inode_item
;
1084 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1085 if (IS_ERR(log_root
))
1086 return PTR_ERR(log_root
);
1088 log_root
->last_trans
= trans
->transid
;
1089 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1091 inode_item
= &log_root
->root_item
.inode
;
1092 inode_item
->generation
= cpu_to_le64(1);
1093 inode_item
->size
= cpu_to_le64(3);
1094 inode_item
->nlink
= cpu_to_le32(1);
1095 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1096 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1098 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1100 WARN_ON(root
->log_root
);
1101 root
->log_root
= log_root
;
1102 root
->log_transid
= 0;
1103 root
->last_log_commit
= 0;
1107 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1108 struct btrfs_key
*location
)
1110 struct btrfs_root
*root
;
1111 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1112 struct btrfs_path
*path
;
1113 struct extent_buffer
*l
;
1118 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1120 return ERR_PTR(-ENOMEM
);
1121 if (location
->offset
== (u64
)-1) {
1122 ret
= find_and_setup_root(tree_root
, fs_info
,
1123 location
->objectid
, root
);
1126 return ERR_PTR(ret
);
1131 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1132 tree_root
->sectorsize
, tree_root
->stripesize
,
1133 root
, fs_info
, location
->objectid
);
1135 path
= btrfs_alloc_path();
1137 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1140 read_extent_buffer(l
, &root
->root_item
,
1141 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1142 sizeof(root
->root_item
));
1143 memcpy(&root
->root_key
, location
, sizeof(*location
));
1145 btrfs_free_path(path
);
1149 return ERR_PTR(ret
);
1152 generation
= btrfs_root_generation(&root
->root_item
);
1153 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1154 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1155 blocksize
, generation
);
1156 root
->commit_root
= btrfs_root_node(root
);
1157 BUG_ON(!root
->node
);
1159 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1165 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1168 struct btrfs_root
*root
;
1170 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1171 return fs_info
->tree_root
;
1172 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1173 return fs_info
->extent_root
;
1175 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1176 (unsigned long)root_objectid
);
1180 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1181 struct btrfs_key
*location
)
1183 struct btrfs_root
*root
;
1186 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1187 return fs_info
->tree_root
;
1188 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1189 return fs_info
->extent_root
;
1190 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1191 return fs_info
->chunk_root
;
1192 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1193 return fs_info
->dev_root
;
1194 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1195 return fs_info
->csum_root
;
1197 spin_lock(&fs_info
->fs_roots_radix_lock
);
1198 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1199 (unsigned long)location
->objectid
);
1200 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1204 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1208 set_anon_super(&root
->anon_super
, NULL
);
1210 if (btrfs_root_refs(&root
->root_item
) == 0) {
1215 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1219 root
->orphan_item_inserted
= 1;
1221 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1225 spin_lock(&fs_info
->fs_roots_radix_lock
);
1226 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1227 (unsigned long)root
->root_key
.objectid
,
1232 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1233 radix_tree_preload_end();
1235 if (ret
== -EEXIST
) {
1242 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1243 root
->root_key
.objectid
);
1248 return ERR_PTR(ret
);
1251 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1252 struct btrfs_key
*location
,
1253 const char *name
, int namelen
)
1255 return btrfs_read_fs_root_no_name(fs_info
, location
);
1257 struct btrfs_root
*root
;
1260 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1267 ret
= btrfs_set_root_name(root
, name
, namelen
);
1269 free_extent_buffer(root
->node
);
1271 return ERR_PTR(ret
);
1274 ret
= btrfs_sysfs_add_root(root
);
1276 free_extent_buffer(root
->node
);
1279 return ERR_PTR(ret
);
1286 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1288 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1290 struct btrfs_device
*device
;
1291 struct backing_dev_info
*bdi
;
1293 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1296 bdi
= blk_get_backing_dev_info(device
->bdev
);
1297 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1306 * this unplugs every device on the box, and it is only used when page
1309 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1311 struct btrfs_device
*device
;
1312 struct btrfs_fs_info
*info
;
1314 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1315 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1319 bdi
= blk_get_backing_dev_info(device
->bdev
);
1320 if (bdi
->unplug_io_fn
)
1321 bdi
->unplug_io_fn(bdi
, page
);
1325 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1327 struct inode
*inode
;
1328 struct extent_map_tree
*em_tree
;
1329 struct extent_map
*em
;
1330 struct address_space
*mapping
;
1333 /* the generic O_DIRECT read code does this */
1335 __unplug_io_fn(bdi
, page
);
1340 * page->mapping may change at any time. Get a consistent copy
1341 * and use that for everything below
1344 mapping
= page
->mapping
;
1348 inode
= mapping
->host
;
1351 * don't do the expensive searching for a small number of
1354 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1355 __unplug_io_fn(bdi
, page
);
1359 offset
= page_offset(page
);
1361 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1362 read_lock(&em_tree
->lock
);
1363 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1364 read_unlock(&em_tree
->lock
);
1366 __unplug_io_fn(bdi
, page
);
1370 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1371 free_extent_map(em
);
1372 __unplug_io_fn(bdi
, page
);
1375 offset
= offset
- em
->start
;
1376 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1377 em
->block_start
+ offset
, page
);
1378 free_extent_map(em
);
1382 * If this fails, caller must call bdi_destroy() to get rid of the
1385 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1389 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1390 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1394 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1395 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1396 bdi
->unplug_io_data
= info
;
1397 bdi
->congested_fn
= btrfs_congested_fn
;
1398 bdi
->congested_data
= info
;
1402 static int bio_ready_for_csum(struct bio
*bio
)
1408 struct extent_io_tree
*io_tree
= NULL
;
1409 struct bio_vec
*bvec
;
1413 bio_for_each_segment(bvec
, bio
, i
) {
1414 page
= bvec
->bv_page
;
1415 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1416 length
+= bvec
->bv_len
;
1419 if (!page
->private) {
1420 length
+= bvec
->bv_len
;
1423 length
= bvec
->bv_len
;
1424 buf_len
= page
->private >> 2;
1425 start
= page_offset(page
) + bvec
->bv_offset
;
1426 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1428 /* are we fully contained in this bio? */
1429 if (buf_len
<= length
)
1432 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1433 start
+ buf_len
- 1);
1438 * called by the kthread helper functions to finally call the bio end_io
1439 * functions. This is where read checksum verification actually happens
1441 static void end_workqueue_fn(struct btrfs_work
*work
)
1444 struct end_io_wq
*end_io_wq
;
1445 struct btrfs_fs_info
*fs_info
;
1448 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1449 bio
= end_io_wq
->bio
;
1450 fs_info
= end_io_wq
->info
;
1452 /* metadata bio reads are special because the whole tree block must
1453 * be checksummed at once. This makes sure the entire block is in
1454 * ram and up to date before trying to verify things. For
1455 * blocksize <= pagesize, it is basically a noop
1457 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1458 !bio_ready_for_csum(bio
)) {
1459 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1463 error
= end_io_wq
->error
;
1464 bio
->bi_private
= end_io_wq
->private;
1465 bio
->bi_end_io
= end_io_wq
->end_io
;
1467 bio_endio(bio
, error
);
1470 static int cleaner_kthread(void *arg
)
1472 struct btrfs_root
*root
= arg
;
1475 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1477 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1478 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1479 btrfs_run_delayed_iputs(root
);
1480 btrfs_clean_old_snapshots(root
);
1481 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1484 if (freezing(current
)) {
1487 set_current_state(TASK_INTERRUPTIBLE
);
1488 if (!kthread_should_stop())
1490 __set_current_state(TASK_RUNNING
);
1492 } while (!kthread_should_stop());
1496 static int transaction_kthread(void *arg
)
1498 struct btrfs_root
*root
= arg
;
1499 struct btrfs_trans_handle
*trans
;
1500 struct btrfs_transaction
*cur
;
1503 unsigned long delay
;
1508 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1509 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1511 spin_lock(&root
->fs_info
->new_trans_lock
);
1512 cur
= root
->fs_info
->running_transaction
;
1514 spin_unlock(&root
->fs_info
->new_trans_lock
);
1518 now
= get_seconds();
1519 if (!cur
->blocked
&&
1520 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1521 spin_unlock(&root
->fs_info
->new_trans_lock
);
1525 transid
= cur
->transid
;
1526 spin_unlock(&root
->fs_info
->new_trans_lock
);
1528 trans
= btrfs_join_transaction(root
, 1);
1529 if (transid
== trans
->transid
) {
1530 ret
= btrfs_commit_transaction(trans
, root
);
1533 btrfs_end_transaction(trans
, root
);
1536 wake_up_process(root
->fs_info
->cleaner_kthread
);
1537 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1539 if (freezing(current
)) {
1542 set_current_state(TASK_INTERRUPTIBLE
);
1543 if (!kthread_should_stop() &&
1544 !btrfs_transaction_blocked(root
->fs_info
))
1545 schedule_timeout(delay
);
1546 __set_current_state(TASK_RUNNING
);
1548 } while (!kthread_should_stop());
1552 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1553 struct btrfs_fs_devices
*fs_devices
,
1563 struct btrfs_key location
;
1564 struct buffer_head
*bh
;
1565 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1567 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1569 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1570 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1571 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1573 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1575 struct btrfs_root
*log_tree_root
;
1580 struct btrfs_super_block
*disk_super
;
1582 if (!extent_root
|| !tree_root
|| !fs_info
||
1583 !chunk_root
|| !dev_root
|| !csum_root
) {
1588 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1594 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1600 fs_info
->btree_inode
= new_inode(sb
);
1601 if (!fs_info
->btree_inode
) {
1606 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1607 INIT_LIST_HEAD(&fs_info
->trans_list
);
1608 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1609 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1610 INIT_LIST_HEAD(&fs_info
->hashers
);
1611 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1612 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1613 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1614 spin_lock_init(&fs_info
->delalloc_lock
);
1615 spin_lock_init(&fs_info
->new_trans_lock
);
1616 spin_lock_init(&fs_info
->ref_cache_lock
);
1617 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1618 spin_lock_init(&fs_info
->delayed_iput_lock
);
1620 init_completion(&fs_info
->kobj_unregister
);
1621 fs_info
->tree_root
= tree_root
;
1622 fs_info
->extent_root
= extent_root
;
1623 fs_info
->csum_root
= csum_root
;
1624 fs_info
->chunk_root
= chunk_root
;
1625 fs_info
->dev_root
= dev_root
;
1626 fs_info
->fs_devices
= fs_devices
;
1627 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1628 INIT_LIST_HEAD(&fs_info
->space_info
);
1629 btrfs_mapping_init(&fs_info
->mapping_tree
);
1630 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1631 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1632 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1633 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1634 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1635 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1636 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1637 atomic_set(&fs_info
->nr_async_submits
, 0);
1638 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1639 atomic_set(&fs_info
->async_submit_draining
, 0);
1640 atomic_set(&fs_info
->nr_async_bios
, 0);
1642 fs_info
->max_inline
= 8192 * 1024;
1643 fs_info
->metadata_ratio
= 0;
1645 fs_info
->thread_pool_size
= min_t(unsigned long,
1646 num_online_cpus() + 2, 8);
1648 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1649 spin_lock_init(&fs_info
->ordered_extent_lock
);
1651 sb
->s_blocksize
= 4096;
1652 sb
->s_blocksize_bits
= blksize_bits(4096);
1653 sb
->s_bdi
= &fs_info
->bdi
;
1655 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1656 fs_info
->btree_inode
->i_nlink
= 1;
1658 * we set the i_size on the btree inode to the max possible int.
1659 * the real end of the address space is determined by all of
1660 * the devices in the system
1662 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1663 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1664 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1666 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1667 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1668 fs_info
->btree_inode
->i_mapping
,
1670 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1673 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1675 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1676 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1677 sizeof(struct btrfs_key
));
1678 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1679 insert_inode_hash(fs_info
->btree_inode
);
1681 spin_lock_init(&fs_info
->block_group_cache_lock
);
1682 fs_info
->block_group_cache_tree
= RB_ROOT
;
1684 extent_io_tree_init(&fs_info
->freed_extents
[0],
1685 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1686 extent_io_tree_init(&fs_info
->freed_extents
[1],
1687 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1688 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1689 fs_info
->do_barriers
= 1;
1692 mutex_init(&fs_info
->trans_mutex
);
1693 mutex_init(&fs_info
->ordered_operations_mutex
);
1694 mutex_init(&fs_info
->tree_log_mutex
);
1695 mutex_init(&fs_info
->chunk_mutex
);
1696 mutex_init(&fs_info
->transaction_kthread_mutex
);
1697 mutex_init(&fs_info
->cleaner_mutex
);
1698 mutex_init(&fs_info
->volume_mutex
);
1699 init_rwsem(&fs_info
->extent_commit_sem
);
1700 init_rwsem(&fs_info
->cleanup_work_sem
);
1701 init_rwsem(&fs_info
->subvol_sem
);
1703 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1704 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1706 init_waitqueue_head(&fs_info
->transaction_throttle
);
1707 init_waitqueue_head(&fs_info
->transaction_wait
);
1708 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1709 init_waitqueue_head(&fs_info
->async_submit_wait
);
1711 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1712 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1714 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1718 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1719 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1720 sizeof(fs_info
->super_for_commit
));
1723 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1725 disk_super
= &fs_info
->super_copy
;
1726 if (!btrfs_super_root(disk_super
))
1729 ret
= btrfs_parse_options(tree_root
, options
);
1735 features
= btrfs_super_incompat_flags(disk_super
) &
1736 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1738 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1739 "unsupported optional features (%Lx).\n",
1740 (unsigned long long)features
);
1745 features
= btrfs_super_incompat_flags(disk_super
);
1746 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1747 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1748 btrfs_set_super_incompat_flags(disk_super
, features
);
1751 features
= btrfs_super_compat_ro_flags(disk_super
) &
1752 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1753 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1754 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1755 "unsupported option features (%Lx).\n",
1756 (unsigned long long)features
);
1761 btrfs_init_workers(&fs_info
->generic_worker
,
1762 "genwork", 1, NULL
);
1764 btrfs_init_workers(&fs_info
->workers
, "worker",
1765 fs_info
->thread_pool_size
,
1766 &fs_info
->generic_worker
);
1768 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1769 fs_info
->thread_pool_size
,
1770 &fs_info
->generic_worker
);
1772 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1773 min_t(u64
, fs_devices
->num_devices
,
1774 fs_info
->thread_pool_size
),
1775 &fs_info
->generic_worker
);
1777 /* a higher idle thresh on the submit workers makes it much more
1778 * likely that bios will be send down in a sane order to the
1781 fs_info
->submit_workers
.idle_thresh
= 64;
1783 fs_info
->workers
.idle_thresh
= 16;
1784 fs_info
->workers
.ordered
= 1;
1786 fs_info
->delalloc_workers
.idle_thresh
= 2;
1787 fs_info
->delalloc_workers
.ordered
= 1;
1789 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1790 &fs_info
->generic_worker
);
1791 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1792 fs_info
->thread_pool_size
,
1793 &fs_info
->generic_worker
);
1794 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1795 fs_info
->thread_pool_size
,
1796 &fs_info
->generic_worker
);
1797 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1798 "endio-meta-write", fs_info
->thread_pool_size
,
1799 &fs_info
->generic_worker
);
1800 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1801 fs_info
->thread_pool_size
,
1802 &fs_info
->generic_worker
);
1803 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1804 1, &fs_info
->generic_worker
);
1807 * endios are largely parallel and should have a very
1810 fs_info
->endio_workers
.idle_thresh
= 4;
1811 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1813 fs_info
->endio_write_workers
.idle_thresh
= 2;
1814 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1816 btrfs_start_workers(&fs_info
->workers
, 1);
1817 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1818 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1819 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1820 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1821 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1822 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1823 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1824 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1825 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1827 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1828 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1829 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1831 nodesize
= btrfs_super_nodesize(disk_super
);
1832 leafsize
= btrfs_super_leafsize(disk_super
);
1833 sectorsize
= btrfs_super_sectorsize(disk_super
);
1834 stripesize
= btrfs_super_stripesize(disk_super
);
1835 tree_root
->nodesize
= nodesize
;
1836 tree_root
->leafsize
= leafsize
;
1837 tree_root
->sectorsize
= sectorsize
;
1838 tree_root
->stripesize
= stripesize
;
1840 sb
->s_blocksize
= sectorsize
;
1841 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1843 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1844 sizeof(disk_super
->magic
))) {
1845 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1846 goto fail_sb_buffer
;
1849 mutex_lock(&fs_info
->chunk_mutex
);
1850 ret
= btrfs_read_sys_array(tree_root
);
1851 mutex_unlock(&fs_info
->chunk_mutex
);
1853 printk(KERN_WARNING
"btrfs: failed to read the system "
1854 "array on %s\n", sb
->s_id
);
1855 goto fail_sb_buffer
;
1858 blocksize
= btrfs_level_size(tree_root
,
1859 btrfs_super_chunk_root_level(disk_super
));
1860 generation
= btrfs_super_chunk_root_generation(disk_super
);
1862 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1863 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1865 chunk_root
->node
= read_tree_block(chunk_root
,
1866 btrfs_super_chunk_root(disk_super
),
1867 blocksize
, generation
);
1868 BUG_ON(!chunk_root
->node
);
1869 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1870 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1872 goto fail_chunk_root
;
1874 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1875 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1877 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1878 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1881 mutex_lock(&fs_info
->chunk_mutex
);
1882 ret
= btrfs_read_chunk_tree(chunk_root
);
1883 mutex_unlock(&fs_info
->chunk_mutex
);
1885 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1887 goto fail_chunk_root
;
1890 btrfs_close_extra_devices(fs_devices
);
1892 blocksize
= btrfs_level_size(tree_root
,
1893 btrfs_super_root_level(disk_super
));
1894 generation
= btrfs_super_generation(disk_super
);
1896 tree_root
->node
= read_tree_block(tree_root
,
1897 btrfs_super_root(disk_super
),
1898 blocksize
, generation
);
1899 if (!tree_root
->node
)
1900 goto fail_chunk_root
;
1901 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1902 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1904 goto fail_tree_root
;
1906 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1907 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1909 ret
= find_and_setup_root(tree_root
, fs_info
,
1910 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1912 goto fail_tree_root
;
1913 extent_root
->track_dirty
= 1;
1915 ret
= find_and_setup_root(tree_root
, fs_info
,
1916 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1918 goto fail_extent_root
;
1919 dev_root
->track_dirty
= 1;
1921 ret
= find_and_setup_root(tree_root
, fs_info
,
1922 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1926 csum_root
->track_dirty
= 1;
1928 fs_info
->generation
= generation
;
1929 fs_info
->last_trans_committed
= generation
;
1930 fs_info
->data_alloc_profile
= (u64
)-1;
1931 fs_info
->metadata_alloc_profile
= (u64
)-1;
1932 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1934 ret
= btrfs_read_block_groups(extent_root
);
1936 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1937 goto fail_block_groups
;
1940 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1942 if (IS_ERR(fs_info
->cleaner_kthread
))
1943 goto fail_block_groups
;
1945 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1947 "btrfs-transaction");
1948 if (IS_ERR(fs_info
->transaction_kthread
))
1951 if (!btrfs_test_opt(tree_root
, SSD
) &&
1952 !btrfs_test_opt(tree_root
, NOSSD
) &&
1953 !fs_info
->fs_devices
->rotating
) {
1954 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1956 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1959 if (btrfs_super_log_root(disk_super
) != 0) {
1960 u64 bytenr
= btrfs_super_log_root(disk_super
);
1962 if (fs_devices
->rw_devices
== 0) {
1963 printk(KERN_WARNING
"Btrfs log replay required "
1966 goto fail_trans_kthread
;
1969 btrfs_level_size(tree_root
,
1970 btrfs_super_log_root_level(disk_super
));
1972 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1973 if (!log_tree_root
) {
1975 goto fail_trans_kthread
;
1978 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1979 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1981 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1984 ret
= btrfs_recover_log_trees(log_tree_root
);
1987 if (sb
->s_flags
& MS_RDONLY
) {
1988 ret
= btrfs_commit_super(tree_root
);
1993 ret
= btrfs_find_orphan_roots(tree_root
);
1996 if (!(sb
->s_flags
& MS_RDONLY
)) {
1997 ret
= btrfs_cleanup_fs_roots(fs_info
);
2000 ret
= btrfs_recover_relocation(tree_root
);
2003 "btrfs: failed to recover relocation\n");
2005 goto fail_trans_kthread
;
2009 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2010 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2011 location
.offset
= (u64
)-1;
2013 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2014 if (!fs_info
->fs_root
)
2015 goto fail_trans_kthread
;
2016 if (IS_ERR(fs_info
->fs_root
)) {
2017 err
= PTR_ERR(fs_info
->fs_root
);
2018 goto fail_trans_kthread
;
2021 if (!(sb
->s_flags
& MS_RDONLY
)) {
2022 down_read(&fs_info
->cleanup_work_sem
);
2023 btrfs_orphan_cleanup(fs_info
->fs_root
);
2024 btrfs_orphan_cleanup(fs_info
->tree_root
);
2025 up_read(&fs_info
->cleanup_work_sem
);
2031 kthread_stop(fs_info
->transaction_kthread
);
2033 kthread_stop(fs_info
->cleaner_kthread
);
2036 * make sure we're done with the btree inode before we stop our
2039 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2040 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2043 btrfs_free_block_groups(fs_info
);
2044 free_extent_buffer(csum_root
->node
);
2045 free_extent_buffer(csum_root
->commit_root
);
2047 free_extent_buffer(dev_root
->node
);
2048 free_extent_buffer(dev_root
->commit_root
);
2050 free_extent_buffer(extent_root
->node
);
2051 free_extent_buffer(extent_root
->commit_root
);
2053 free_extent_buffer(tree_root
->node
);
2054 free_extent_buffer(tree_root
->commit_root
);
2056 free_extent_buffer(chunk_root
->node
);
2057 free_extent_buffer(chunk_root
->commit_root
);
2059 btrfs_stop_workers(&fs_info
->generic_worker
);
2060 btrfs_stop_workers(&fs_info
->fixup_workers
);
2061 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2062 btrfs_stop_workers(&fs_info
->workers
);
2063 btrfs_stop_workers(&fs_info
->endio_workers
);
2064 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2065 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2066 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2067 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2068 btrfs_stop_workers(&fs_info
->submit_workers
);
2070 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2071 iput(fs_info
->btree_inode
);
2073 btrfs_close_devices(fs_info
->fs_devices
);
2074 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2076 bdi_destroy(&fs_info
->bdi
);
2078 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2086 return ERR_PTR(err
);
2089 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2091 char b
[BDEVNAME_SIZE
];
2094 set_buffer_uptodate(bh
);
2096 if (printk_ratelimit()) {
2097 printk(KERN_WARNING
"lost page write due to "
2098 "I/O error on %s\n",
2099 bdevname(bh
->b_bdev
, b
));
2101 /* note, we dont' set_buffer_write_io_error because we have
2102 * our own ways of dealing with the IO errors
2104 clear_buffer_uptodate(bh
);
2110 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2112 struct buffer_head
*bh
;
2113 struct buffer_head
*latest
= NULL
;
2114 struct btrfs_super_block
*super
;
2119 /* we would like to check all the supers, but that would make
2120 * a btrfs mount succeed after a mkfs from a different FS.
2121 * So, we need to add a special mount option to scan for
2122 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2124 for (i
= 0; i
< 1; i
++) {
2125 bytenr
= btrfs_sb_offset(i
);
2126 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2128 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2132 super
= (struct btrfs_super_block
*)bh
->b_data
;
2133 if (btrfs_super_bytenr(super
) != bytenr
||
2134 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2135 sizeof(super
->magic
))) {
2140 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2143 transid
= btrfs_super_generation(super
);
2152 * this should be called twice, once with wait == 0 and
2153 * once with wait == 1. When wait == 0 is done, all the buffer heads
2154 * we write are pinned.
2156 * They are released when wait == 1 is done.
2157 * max_mirrors must be the same for both runs, and it indicates how
2158 * many supers on this one device should be written.
2160 * max_mirrors == 0 means to write them all.
2162 static int write_dev_supers(struct btrfs_device
*device
,
2163 struct btrfs_super_block
*sb
,
2164 int do_barriers
, int wait
, int max_mirrors
)
2166 struct buffer_head
*bh
;
2172 int last_barrier
= 0;
2174 if (max_mirrors
== 0)
2175 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2177 /* make sure only the last submit_bh does a barrier */
2179 for (i
= 0; i
< max_mirrors
; i
++) {
2180 bytenr
= btrfs_sb_offset(i
);
2181 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2182 device
->total_bytes
)
2188 for (i
= 0; i
< max_mirrors
; i
++) {
2189 bytenr
= btrfs_sb_offset(i
);
2190 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2194 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2195 BTRFS_SUPER_INFO_SIZE
);
2198 if (!buffer_uptodate(bh
))
2201 /* drop our reference */
2204 /* drop the reference from the wait == 0 run */
2208 btrfs_set_super_bytenr(sb
, bytenr
);
2211 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2212 BTRFS_CSUM_SIZE
, crc
,
2213 BTRFS_SUPER_INFO_SIZE
-
2215 btrfs_csum_final(crc
, sb
->csum
);
2218 * one reference for us, and we leave it for the
2221 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2222 BTRFS_SUPER_INFO_SIZE
);
2223 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2225 /* one reference for submit_bh */
2228 set_buffer_uptodate(bh
);
2230 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2233 if (i
== last_barrier
&& do_barriers
)
2234 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2236 ret
= submit_bh(WRITE_SYNC
, bh
);
2241 return errors
< i
? 0 : -1;
2244 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2246 struct list_head
*head
;
2247 struct btrfs_device
*dev
;
2248 struct btrfs_super_block
*sb
;
2249 struct btrfs_dev_item
*dev_item
;
2253 int total_errors
= 0;
2256 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2257 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2259 sb
= &root
->fs_info
->super_for_commit
;
2260 dev_item
= &sb
->dev_item
;
2262 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2263 head
= &root
->fs_info
->fs_devices
->devices
;
2264 list_for_each_entry(dev
, head
, dev_list
) {
2269 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2272 btrfs_set_stack_device_generation(dev_item
, 0);
2273 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2274 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2275 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2276 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2277 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2278 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2279 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2280 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2281 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2283 flags
= btrfs_super_flags(sb
);
2284 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2286 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2290 if (total_errors
> max_errors
) {
2291 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2297 list_for_each_entry(dev
, head
, dev_list
) {
2300 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2303 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2307 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2308 if (total_errors
> max_errors
) {
2309 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2316 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2317 struct btrfs_root
*root
, int max_mirrors
)
2321 ret
= write_all_supers(root
, max_mirrors
);
2325 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2327 spin_lock(&fs_info
->fs_roots_radix_lock
);
2328 radix_tree_delete(&fs_info
->fs_roots_radix
,
2329 (unsigned long)root
->root_key
.objectid
);
2330 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2332 if (btrfs_root_refs(&root
->root_item
) == 0)
2333 synchronize_srcu(&fs_info
->subvol_srcu
);
2339 static void free_fs_root(struct btrfs_root
*root
)
2341 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2342 if (root
->anon_super
.s_dev
) {
2343 down_write(&root
->anon_super
.s_umount
);
2344 kill_anon_super(&root
->anon_super
);
2346 free_extent_buffer(root
->node
);
2347 free_extent_buffer(root
->commit_root
);
2352 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2355 struct btrfs_root
*gang
[8];
2358 while (!list_empty(&fs_info
->dead_roots
)) {
2359 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2360 struct btrfs_root
, root_list
);
2361 list_del(&gang
[0]->root_list
);
2363 if (gang
[0]->in_radix
) {
2364 btrfs_free_fs_root(fs_info
, gang
[0]);
2366 free_extent_buffer(gang
[0]->node
);
2367 free_extent_buffer(gang
[0]->commit_root
);
2373 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2378 for (i
= 0; i
< ret
; i
++)
2379 btrfs_free_fs_root(fs_info
, gang
[i
]);
2384 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2386 u64 root_objectid
= 0;
2387 struct btrfs_root
*gang
[8];
2392 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2393 (void **)gang
, root_objectid
,
2398 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2399 for (i
= 0; i
< ret
; i
++) {
2400 root_objectid
= gang
[i
]->root_key
.objectid
;
2401 btrfs_orphan_cleanup(gang
[i
]);
2408 int btrfs_commit_super(struct btrfs_root
*root
)
2410 struct btrfs_trans_handle
*trans
;
2413 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2414 btrfs_run_delayed_iputs(root
);
2415 btrfs_clean_old_snapshots(root
);
2416 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2418 /* wait until ongoing cleanup work done */
2419 down_write(&root
->fs_info
->cleanup_work_sem
);
2420 up_write(&root
->fs_info
->cleanup_work_sem
);
2422 trans
= btrfs_join_transaction(root
, 1);
2423 ret
= btrfs_commit_transaction(trans
, root
);
2425 /* run commit again to drop the original snapshot */
2426 trans
= btrfs_join_transaction(root
, 1);
2427 btrfs_commit_transaction(trans
, root
);
2428 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2431 ret
= write_ctree_super(NULL
, root
, 0);
2435 int close_ctree(struct btrfs_root
*root
)
2437 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2440 fs_info
->closing
= 1;
2443 btrfs_put_block_group_cache(fs_info
);
2444 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2445 ret
= btrfs_commit_super(root
);
2447 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2450 kthread_stop(root
->fs_info
->transaction_kthread
);
2451 kthread_stop(root
->fs_info
->cleaner_kthread
);
2453 fs_info
->closing
= 2;
2456 if (fs_info
->delalloc_bytes
) {
2457 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2458 (unsigned long long)fs_info
->delalloc_bytes
);
2460 if (fs_info
->total_ref_cache_size
) {
2461 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2462 (unsigned long long)fs_info
->total_ref_cache_size
);
2465 free_extent_buffer(fs_info
->extent_root
->node
);
2466 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2467 free_extent_buffer(fs_info
->tree_root
->node
);
2468 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2469 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2470 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2471 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2472 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2473 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2474 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2476 btrfs_free_block_groups(root
->fs_info
);
2478 del_fs_roots(fs_info
);
2480 iput(fs_info
->btree_inode
);
2482 btrfs_stop_workers(&fs_info
->generic_worker
);
2483 btrfs_stop_workers(&fs_info
->fixup_workers
);
2484 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2485 btrfs_stop_workers(&fs_info
->workers
);
2486 btrfs_stop_workers(&fs_info
->endio_workers
);
2487 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2488 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2489 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2490 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2491 btrfs_stop_workers(&fs_info
->submit_workers
);
2493 btrfs_close_devices(fs_info
->fs_devices
);
2494 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2496 bdi_destroy(&fs_info
->bdi
);
2497 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2499 kfree(fs_info
->extent_root
);
2500 kfree(fs_info
->tree_root
);
2501 kfree(fs_info
->chunk_root
);
2502 kfree(fs_info
->dev_root
);
2503 kfree(fs_info
->csum_root
);
2507 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2510 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2512 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2517 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2522 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2524 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2525 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2529 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2531 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2532 u64 transid
= btrfs_header_generation(buf
);
2533 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2536 btrfs_assert_tree_locked(buf
);
2537 if (transid
!= root
->fs_info
->generation
) {
2538 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2539 "found %llu running %llu\n",
2540 (unsigned long long)buf
->start
,
2541 (unsigned long long)transid
,
2542 (unsigned long long)root
->fs_info
->generation
);
2545 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2548 spin_lock(&root
->fs_info
->delalloc_lock
);
2549 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2550 spin_unlock(&root
->fs_info
->delalloc_lock
);
2554 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2557 * looks as though older kernels can get into trouble with
2558 * this code, they end up stuck in balance_dirty_pages forever
2561 unsigned long thresh
= 32 * 1024 * 1024;
2563 if (current
->flags
& PF_MEMALLOC
)
2566 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2568 if (num_dirty
> thresh
) {
2569 balance_dirty_pages_ratelimited_nr(
2570 root
->fs_info
->btree_inode
->i_mapping
, 1);
2575 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2577 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2579 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2581 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2585 int btree_lock_page_hook(struct page
*page
)
2587 struct inode
*inode
= page
->mapping
->host
;
2588 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2589 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2590 struct extent_buffer
*eb
;
2592 u64 bytenr
= page_offset(page
);
2594 if (page
->private == EXTENT_PAGE_PRIVATE
)
2597 len
= page
->private >> 2;
2598 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2602 btrfs_tree_lock(eb
);
2603 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2605 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2606 spin_lock(&root
->fs_info
->delalloc_lock
);
2607 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2608 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2611 spin_unlock(&root
->fs_info
->delalloc_lock
);
2614 btrfs_tree_unlock(eb
);
2615 free_extent_buffer(eb
);
2621 static struct extent_io_ops btree_extent_io_ops
= {
2622 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2623 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2624 .submit_bio_hook
= btree_submit_bio_hook
,
2625 /* note we're sharing with inode.c for the merge bio hook */
2626 .merge_bio_hook
= btrfs_merge_bio_hook
,