staging: tidspbridge: remove OPTIONAL
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / tidspbridge / rmgr / node.c
blob069ee9e5e28ccb6fc85d897270c71e9aefc2f8f0
1 /*
2 * node.c
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
6 * DSP/BIOS Bridge Node Manager.
8 * Copyright (C) 2005-2006 Texas Instruments, Inc.
10 * This package is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
16 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19 #include <linux/types.h>
20 /* ----------------------------------- Host OS */
21 #include <dspbridge/host_os.h>
23 /* ----------------------------------- DSP/BIOS Bridge */
24 #include <dspbridge/dbdefs.h>
26 /* ----------------------------------- Trace & Debug */
27 #include <dspbridge/dbc.h>
29 /* ----------------------------------- OS Adaptation Layer */
30 #include <dspbridge/cfg.h>
31 #include <dspbridge/list.h>
32 #include <dspbridge/memdefs.h>
33 #include <dspbridge/proc.h>
34 #include <dspbridge/strm.h>
35 #include <dspbridge/sync.h>
36 #include <dspbridge/ntfy.h>
38 /* ----------------------------------- Platform Manager */
39 #include <dspbridge/cmm.h>
40 #include <dspbridge/cod.h>
41 #include <dspbridge/dev.h>
42 #include <dspbridge/msg.h>
44 /* ----------------------------------- Resource Manager */
45 #include <dspbridge/dbdcd.h>
46 #include <dspbridge/disp.h>
47 #include <dspbridge/rms_sh.h>
49 /* ----------------------------------- Link Driver */
50 #include <dspbridge/dspdefs.h>
51 #include <dspbridge/dspioctl.h>
53 /* ----------------------------------- Others */
54 #include <dspbridge/gb.h>
55 #include <dspbridge/uuidutil.h>
57 /* ----------------------------------- This */
58 #include <dspbridge/nodepriv.h>
59 #include <dspbridge/node.h>
60 #include <dspbridge/dmm.h>
62 /* Static/Dynamic Loader includes */
63 #include <dspbridge/dbll.h>
64 #include <dspbridge/nldr.h>
66 #include <dspbridge/drv.h>
67 #include <dspbridge/drvdefs.h>
68 #include <dspbridge/resourcecleanup.h>
69 #include <_tiomap.h>
71 #include <dspbridge/dspdeh.h>
73 #define HOSTPREFIX "/host"
74 #define PIPEPREFIX "/dbpipe"
76 #define MAX_INPUTS(h) \
77 ((h)->dcd_props.obj_data.node_obj.ndb_props.num_input_streams)
78 #define MAX_OUTPUTS(h) \
79 ((h)->dcd_props.obj_data.node_obj.ndb_props.num_output_streams)
81 #define NODE_GET_PRIORITY(h) ((h)->prio)
82 #define NODE_SET_PRIORITY(hnode, prio) ((hnode)->prio = prio)
83 #define NODE_SET_STATE(hnode, state) ((hnode)->node_state = state)
85 #define MAXPIPES 100 /* Max # of /pipe connections (CSL limit) */
86 #define MAXDEVSUFFIXLEN 2 /* Max(Log base 10 of MAXPIPES, MAXSTREAMS) */
88 #define PIPENAMELEN (sizeof(PIPEPREFIX) + MAXDEVSUFFIXLEN)
89 #define HOSTNAMELEN (sizeof(HOSTPREFIX) + MAXDEVSUFFIXLEN)
91 #define MAXDEVNAMELEN 32 /* dsp_ndbprops.ac_name size */
92 #define CREATEPHASE 1
93 #define EXECUTEPHASE 2
94 #define DELETEPHASE 3
96 /* Define default STRM parameters */
98 * TBD: Put in header file, make global DSP_STRMATTRS with defaults,
99 * or make defaults configurable.
101 #define DEFAULTBUFSIZE 32
102 #define DEFAULTNBUFS 2
103 #define DEFAULTSEGID 0
104 #define DEFAULTALIGNMENT 0
105 #define DEFAULTTIMEOUT 10000
107 #define RMSQUERYSERVER 0
108 #define RMSCONFIGURESERVER 1
109 #define RMSCREATENODE 2
110 #define RMSEXECUTENODE 3
111 #define RMSDELETENODE 4
112 #define RMSCHANGENODEPRIORITY 5
113 #define RMSREADMEMORY 6
114 #define RMSWRITEMEMORY 7
115 #define RMSCOPY 8
116 #define MAXTIMEOUT 2000
118 #define NUMRMSFXNS 9
120 #define PWR_TIMEOUT 500 /* default PWR timeout in msec */
122 #define STACKSEGLABEL "L1DSRAM_HEAP" /* Label for DSP Stack Segment Addr */
125 * ======== node_mgr ========
127 struct node_mgr {
128 struct dev_object *hdev_obj; /* Device object */
129 /* Function interface to Bridge driver */
130 struct bridge_drv_interface *intf_fxns;
131 struct dcd_manager *hdcd_mgr; /* Proc/Node data manager */
132 struct disp_object *disp_obj; /* Node dispatcher */
133 struct lst_list *node_list; /* List of all allocated nodes */
134 u32 num_nodes; /* Number of nodes in node_list */
135 u32 num_created; /* Number of nodes *created* on DSP */
136 struct gb_t_map *pipe_map; /* Pipe connection bit map */
137 struct gb_t_map *pipe_done_map; /* Pipes that are half free */
138 struct gb_t_map *chnl_map; /* Channel allocation bit map */
139 struct gb_t_map *dma_chnl_map; /* DMA Channel allocation bit map */
140 struct gb_t_map *zc_chnl_map; /* Zero-Copy Channel alloc bit map */
141 struct ntfy_object *ntfy_obj; /* Manages registered notifications */
142 struct mutex node_mgr_lock; /* For critical sections */
143 u32 ul_fxn_addrs[NUMRMSFXNS]; /* RMS function addresses */
144 struct msg_mgr *msg_mgr_obj;
146 /* Processor properties needed by Node Dispatcher */
147 u32 ul_num_chnls; /* Total number of channels */
148 u32 ul_chnl_offset; /* Offset of chnl ids rsvd for RMS */
149 u32 ul_chnl_buf_size; /* Buffer size for data to RMS */
150 int proc_family; /* eg, 5000 */
151 int proc_type; /* eg, 5510 */
152 u32 udsp_word_size; /* Size of DSP word on host bytes */
153 u32 udsp_data_mau_size; /* Size of DSP data MAU */
154 u32 udsp_mau_size; /* Size of MAU */
155 s32 min_pri; /* Minimum runtime priority for node */
156 s32 max_pri; /* Maximum runtime priority for node */
158 struct strm_mgr *strm_mgr_obj; /* STRM manager */
160 /* Loader properties */
161 struct nldr_object *nldr_obj; /* Handle to loader */
162 struct node_ldr_fxns nldr_fxns; /* Handle to loader functions */
163 bool loader_init; /* Loader Init function succeeded? */
167 * ======== connecttype ========
169 enum connecttype {
170 NOTCONNECTED = 0,
171 NODECONNECT,
172 HOSTCONNECT,
173 DEVICECONNECT,
177 * ======== stream_chnl ========
179 struct stream_chnl {
180 enum connecttype type; /* Type of stream connection */
181 u32 dev_id; /* pipe or channel id */
185 * ======== node_object ========
187 struct node_object {
188 struct list_head list_elem;
189 struct node_mgr *hnode_mgr; /* The manager of this node */
190 struct proc_object *hprocessor; /* Back pointer to processor */
191 struct dsp_uuid node_uuid; /* Node's ID */
192 s32 prio; /* Node's current priority */
193 u32 utimeout; /* Timeout for blocking NODE calls */
194 u32 heap_size; /* Heap Size */
195 u32 udsp_heap_virt_addr; /* Heap Size */
196 u32 ugpp_heap_virt_addr; /* Heap Size */
197 enum node_type ntype; /* Type of node: message, task, etc */
198 enum node_state node_state; /* NODE_ALLOCATED, NODE_CREATED, ... */
199 u32 num_inputs; /* Current number of inputs */
200 u32 num_outputs; /* Current number of outputs */
201 u32 max_input_index; /* Current max input stream index */
202 u32 max_output_index; /* Current max output stream index */
203 struct stream_chnl *inputs; /* Node's input streams */
204 struct stream_chnl *outputs; /* Node's output streams */
205 struct node_createargs create_args; /* Args for node create func */
206 nodeenv node_env; /* Environment returned by RMS */
207 struct dcd_genericobj dcd_props; /* Node properties from DCD */
208 struct dsp_cbdata *pargs; /* Optional args to pass to node */
209 struct ntfy_object *ntfy_obj; /* Manages registered notifications */
210 char *pstr_dev_name; /* device name, if device node */
211 struct sync_object *sync_done; /* Synchronize node_terminate */
212 s32 exit_status; /* execute function return status */
214 /* Information needed for node_get_attr() */
215 void *device_owner; /* If dev node, task that owns it */
216 u32 num_gpp_inputs; /* Current # of from GPP streams */
217 u32 num_gpp_outputs; /* Current # of to GPP streams */
218 /* Current stream connections */
219 struct dsp_streamconnect *stream_connect;
221 /* Message queue */
222 struct msg_queue *msg_queue_obj;
224 /* These fields used for SM messaging */
225 struct cmm_xlatorobject *xlator; /* Node's SM addr translator */
227 /* Handle to pass to dynamic loader */
228 struct nldr_nodeobject *nldr_node_obj;
229 bool loaded; /* Code is (dynamically) loaded */
230 bool phase_split; /* Phases split in many libs or ovly */
234 /* Default buffer attributes */
235 static struct dsp_bufferattr node_dfltbufattrs = {
236 0, /* cb_struct */
237 1, /* segment_id */
238 0, /* buf_alignment */
241 static void delete_node(struct node_object *hnode,
242 struct process_context *pr_ctxt);
243 static void delete_node_mgr(struct node_mgr *hnode_mgr);
244 static void fill_stream_connect(struct node_object *node1,
245 struct node_object *node2, u32 stream1,
246 u32 stream2);
247 static void fill_stream_def(struct node_object *hnode,
248 struct node_strmdef *pstrm_def,
249 struct dsp_strmattr *pattrs);
250 static void free_stream(struct node_mgr *hnode_mgr, struct stream_chnl stream);
251 static int get_fxn_address(struct node_object *hnode, u32 * fxn_addr,
252 u32 phase);
253 static int get_node_props(struct dcd_manager *hdcd_mgr,
254 struct node_object *hnode,
255 const struct dsp_uuid *node_uuid,
256 struct dcd_genericobj *dcd_prop);
257 static int get_proc_props(struct node_mgr *hnode_mgr,
258 struct dev_object *hdev_obj);
259 static int get_rms_fxns(struct node_mgr *hnode_mgr);
260 static u32 ovly(void *priv_ref, u32 dsp_run_addr, u32 dsp_load_addr,
261 u32 ul_num_bytes, u32 mem_space);
262 static u32 mem_write(void *priv_ref, u32 dsp_add, void *pbuf,
263 u32 ul_num_bytes, u32 mem_space);
265 static u32 refs; /* module reference count */
267 /* Dynamic loader functions. */
268 static struct node_ldr_fxns nldr_fxns = {
269 nldr_allocate,
270 nldr_create,
271 nldr_delete,
272 nldr_exit,
273 nldr_get_fxn_addr,
274 nldr_init,
275 nldr_load,
276 nldr_unload,
279 enum node_state node_get_state(void *hnode)
281 struct node_object *pnode = (struct node_object *)hnode;
282 if (!pnode)
283 return -1;
284 else
285 return pnode->node_state;
289 * ======== node_allocate ========
290 * Purpose:
291 * Allocate GPP resources to manage a node on the DSP.
293 int node_allocate(struct proc_object *hprocessor,
294 const struct dsp_uuid *node_uuid,
295 const struct dsp_cbdata *pargs,
296 const struct dsp_nodeattrin *attr_in,
297 OUT struct node_object **ph_node,
298 struct process_context *pr_ctxt)
300 struct node_mgr *hnode_mgr;
301 struct dev_object *hdev_obj;
302 struct node_object *pnode = NULL;
303 enum node_type node_type = NODE_TASK;
304 struct node_msgargs *pmsg_args;
305 struct node_taskargs *ptask_args;
306 u32 num_streams;
307 struct bridge_drv_interface *intf_fxns;
308 int status = 0;
309 struct cmm_object *hcmm_mgr = NULL; /* Shared memory manager hndl */
310 u32 proc_id;
311 u32 pul_value;
312 u32 dynext_base;
313 u32 off_set = 0;
314 u32 ul_stack_seg_addr, ul_stack_seg_val;
315 u32 ul_gpp_mem_base;
316 struct cfg_hostres *host_res;
317 struct bridge_dev_context *pbridge_context;
318 u32 mapped_addr = 0;
319 u32 map_attrs = 0x0;
320 struct dsp_processorstate proc_state;
321 #ifdef DSP_DMM_DEBUG
322 struct dmm_object *dmm_mgr;
323 struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
324 #endif
326 void *node_res;
328 DBC_REQUIRE(refs > 0);
329 DBC_REQUIRE(hprocessor != NULL);
330 DBC_REQUIRE(ph_node != NULL);
331 DBC_REQUIRE(node_uuid != NULL);
333 *ph_node = NULL;
335 status = proc_get_processor_id(hprocessor, &proc_id);
337 if (proc_id != DSP_UNIT)
338 goto func_end;
340 status = proc_get_dev_object(hprocessor, &hdev_obj);
341 if (DSP_SUCCEEDED(status)) {
342 status = dev_get_node_manager(hdev_obj, &hnode_mgr);
343 if (hnode_mgr == NULL)
344 status = -EPERM;
348 if (DSP_FAILED(status))
349 goto func_end;
351 status = dev_get_bridge_context(hdev_obj, &pbridge_context);
352 if (!pbridge_context) {
353 status = -EFAULT;
354 goto func_end;
357 status = proc_get_state(hprocessor, &proc_state,
358 sizeof(struct dsp_processorstate));
359 if (DSP_FAILED(status))
360 goto func_end;
361 /* If processor is in error state then don't attempt
362 to send the message */
363 if (proc_state.proc_state == PROC_ERROR) {
364 status = -EPERM;
365 goto func_end;
368 /* Assuming that 0 is not a valid function address */
369 if (hnode_mgr->ul_fxn_addrs[0] == 0) {
370 /* No RMS on target - we currently can't handle this */
371 pr_err("%s: Failed, no RMS in base image\n", __func__);
372 status = -EPERM;
373 } else {
374 /* Validate attr_in fields, if non-NULL */
375 if (attr_in) {
376 /* Check if attr_in->prio is within range */
377 if (attr_in->prio < hnode_mgr->min_pri ||
378 attr_in->prio > hnode_mgr->max_pri)
379 status = -EDOM;
382 /* Allocate node object and fill in */
383 if (DSP_FAILED(status))
384 goto func_end;
386 pnode = kzalloc(sizeof(struct node_object), GFP_KERNEL);
387 if (pnode == NULL) {
388 status = -ENOMEM;
389 goto func_end;
391 pnode->hnode_mgr = hnode_mgr;
392 /* This critical section protects get_node_props */
393 mutex_lock(&hnode_mgr->node_mgr_lock);
395 /* Get dsp_ndbprops from node database */
396 status = get_node_props(hnode_mgr->hdcd_mgr, pnode, node_uuid,
397 &(pnode->dcd_props));
398 if (DSP_FAILED(status))
399 goto func_cont;
401 pnode->node_uuid = *node_uuid;
402 pnode->hprocessor = hprocessor;
403 pnode->ntype = pnode->dcd_props.obj_data.node_obj.ndb_props.ntype;
404 pnode->utimeout = pnode->dcd_props.obj_data.node_obj.ndb_props.utimeout;
405 pnode->prio = pnode->dcd_props.obj_data.node_obj.ndb_props.prio;
407 /* Currently only C64 DSP builds support Node Dynamic * heaps */
408 /* Allocate memory for node heap */
409 pnode->create_args.asa.task_arg_obj.heap_size = 0;
410 pnode->create_args.asa.task_arg_obj.udsp_heap_addr = 0;
411 pnode->create_args.asa.task_arg_obj.udsp_heap_res_addr = 0;
412 pnode->create_args.asa.task_arg_obj.ugpp_heap_addr = 0;
413 if (!attr_in)
414 goto func_cont;
416 /* Check if we have a user allocated node heap */
417 if (!(attr_in->pgpp_virt_addr))
418 goto func_cont;
420 /* check for page aligned Heap size */
421 if (((attr_in->heap_size) & (PG_SIZE4K - 1))) {
422 pr_err("%s: node heap size not aligned to 4K, size = 0x%x \n",
423 __func__, attr_in->heap_size);
424 status = -EINVAL;
425 } else {
426 pnode->create_args.asa.task_arg_obj.heap_size =
427 attr_in->heap_size;
428 pnode->create_args.asa.task_arg_obj.ugpp_heap_addr =
429 (u32) attr_in->pgpp_virt_addr;
431 if (DSP_FAILED(status))
432 goto func_cont;
434 status = proc_reserve_memory(hprocessor,
435 pnode->create_args.asa.task_arg_obj.
436 heap_size + PAGE_SIZE,
437 (void **)&(pnode->create_args.asa.
438 task_arg_obj.udsp_heap_res_addr),
439 pr_ctxt);
440 if (DSP_FAILED(status)) {
441 pr_err("%s: Failed to reserve memory for heap: 0x%x\n",
442 __func__, status);
443 goto func_cont;
445 #ifdef DSP_DMM_DEBUG
446 status = dmm_get_handle(p_proc_object, &dmm_mgr);
447 if (!dmm_mgr) {
448 status = DSP_EHANDLE;
449 goto func_cont;
452 dmm_mem_map_dump(dmm_mgr);
453 #endif
455 map_attrs |= DSP_MAPLITTLEENDIAN;
456 map_attrs |= DSP_MAPELEMSIZE32;
457 map_attrs |= DSP_MAPVIRTUALADDR;
458 status = proc_map(hprocessor, (void *)attr_in->pgpp_virt_addr,
459 pnode->create_args.asa.task_arg_obj.heap_size,
460 (void *)pnode->create_args.asa.task_arg_obj.
461 udsp_heap_res_addr, (void **)&mapped_addr, map_attrs,
462 pr_ctxt);
463 if (DSP_FAILED(status))
464 pr_err("%s: Failed to map memory for Heap: 0x%x\n",
465 __func__, status);
466 else
467 pnode->create_args.asa.task_arg_obj.udsp_heap_addr =
468 (u32) mapped_addr;
470 func_cont:
471 mutex_unlock(&hnode_mgr->node_mgr_lock);
472 if (attr_in != NULL) {
473 /* Overrides of NBD properties */
474 pnode->utimeout = attr_in->utimeout;
475 pnode->prio = attr_in->prio;
477 /* Create object to manage notifications */
478 if (DSP_SUCCEEDED(status)) {
479 pnode->ntfy_obj = kmalloc(sizeof(struct ntfy_object),
480 GFP_KERNEL);
481 if (pnode->ntfy_obj)
482 ntfy_init(pnode->ntfy_obj);
483 else
484 status = -ENOMEM;
487 if (DSP_SUCCEEDED(status)) {
488 node_type = node_get_type(pnode);
489 /* Allocate dsp_streamconnect array for device, task, and
490 * dais socket nodes. */
491 if (node_type != NODE_MESSAGE) {
492 num_streams = MAX_INPUTS(pnode) + MAX_OUTPUTS(pnode);
493 pnode->stream_connect = kzalloc(num_streams *
494 sizeof(struct dsp_streamconnect),
495 GFP_KERNEL);
496 if (num_streams > 0 && pnode->stream_connect == NULL)
497 status = -ENOMEM;
500 if (DSP_SUCCEEDED(status) && (node_type == NODE_TASK ||
501 node_type == NODE_DAISSOCKET)) {
502 /* Allocate arrays for maintainig stream connections */
503 pnode->inputs = kzalloc(MAX_INPUTS(pnode) *
504 sizeof(struct stream_chnl), GFP_KERNEL);
505 pnode->outputs = kzalloc(MAX_OUTPUTS(pnode) *
506 sizeof(struct stream_chnl), GFP_KERNEL);
507 ptask_args = &(pnode->create_args.asa.task_arg_obj);
508 ptask_args->strm_in_def = kzalloc(MAX_INPUTS(pnode) *
509 sizeof(struct node_strmdef),
510 GFP_KERNEL);
511 ptask_args->strm_out_def = kzalloc(MAX_OUTPUTS(pnode) *
512 sizeof(struct node_strmdef),
513 GFP_KERNEL);
514 if ((MAX_INPUTS(pnode) > 0 && (pnode->inputs == NULL ||
515 ptask_args->strm_in_def
516 == NULL))
517 || (MAX_OUTPUTS(pnode) > 0
518 && (pnode->outputs == NULL
519 || ptask_args->strm_out_def == NULL)))
520 status = -ENOMEM;
523 if (DSP_SUCCEEDED(status) && (node_type != NODE_DEVICE)) {
524 /* Create an event that will be posted when RMS_EXIT is
525 * received. */
526 pnode->sync_done = kzalloc(sizeof(struct sync_object),
527 GFP_KERNEL);
528 if (pnode->sync_done)
529 sync_init_event(pnode->sync_done);
530 else
531 status = -ENOMEM;
533 if (DSP_SUCCEEDED(status)) {
534 /*Get the shared mem mgr for this nodes dev object */
535 status = cmm_get_handle(hprocessor, &hcmm_mgr);
536 if (DSP_SUCCEEDED(status)) {
537 /* Allocate a SM addr translator for this node
538 * w/ deflt attr */
539 status = cmm_xlator_create(&pnode->xlator,
540 hcmm_mgr, NULL);
543 if (DSP_SUCCEEDED(status)) {
544 /* Fill in message args */
545 if ((pargs != NULL) && (pargs->cb_data > 0)) {
546 pmsg_args =
547 &(pnode->create_args.asa.node_msg_args);
548 pmsg_args->pdata = kzalloc(pargs->cb_data,
549 GFP_KERNEL);
550 if (pmsg_args->pdata == NULL) {
551 status = -ENOMEM;
552 } else {
553 pmsg_args->arg_length = pargs->cb_data;
554 memcpy(pmsg_args->pdata,
555 pargs->node_data,
556 pargs->cb_data);
562 if (DSP_SUCCEEDED(status) && node_type != NODE_DEVICE) {
563 /* Create a message queue for this node */
564 intf_fxns = hnode_mgr->intf_fxns;
565 status =
566 (*intf_fxns->pfn_msg_create_queue) (hnode_mgr->msg_mgr_obj,
567 &pnode->msg_queue_obj,
569 pnode->create_args.asa.
570 node_msg_args.max_msgs,
571 pnode);
574 if (DSP_SUCCEEDED(status)) {
575 /* Create object for dynamic loading */
577 status = hnode_mgr->nldr_fxns.pfn_allocate(hnode_mgr->nldr_obj,
578 (void *)pnode,
579 &pnode->dcd_props.
580 obj_data.node_obj,
581 &pnode->
582 nldr_node_obj,
583 &pnode->phase_split);
586 /* Compare value read from Node Properties and check if it is same as
587 * STACKSEGLABEL, if yes read the Address of STACKSEGLABEL, calculate
588 * GPP Address, Read the value in that address and override the
589 * stack_seg value in task args */
590 if (DSP_SUCCEEDED(status) &&
591 (char *)pnode->dcd_props.obj_data.node_obj.ndb_props.
592 stack_seg_name != NULL) {
593 if (strcmp((char *)
594 pnode->dcd_props.obj_data.node_obj.ndb_props.
595 stack_seg_name, STACKSEGLABEL) == 0) {
596 status =
597 hnode_mgr->nldr_fxns.
598 pfn_get_fxn_addr(pnode->nldr_node_obj, "DYNEXT_BEG",
599 &dynext_base);
600 if (DSP_FAILED(status))
601 pr_err("%s: Failed to get addr for DYNEXT_BEG"
602 " status = 0x%x\n", __func__, status);
604 status =
605 hnode_mgr->nldr_fxns.
606 pfn_get_fxn_addr(pnode->nldr_node_obj,
607 "L1DSRAM_HEAP", &pul_value);
609 if (DSP_FAILED(status))
610 pr_err("%s: Failed to get addr for L1DSRAM_HEAP"
611 " status = 0x%x\n", __func__, status);
613 host_res = pbridge_context->resources;
614 if (!host_res)
615 status = -EPERM;
617 if (DSP_FAILED(status)) {
618 pr_err("%s: Failed to get host resource, status"
619 " = 0x%x\n", __func__, status);
620 goto func_end;
623 ul_gpp_mem_base = (u32) host_res->dw_mem_base[1];
624 off_set = pul_value - dynext_base;
625 ul_stack_seg_addr = ul_gpp_mem_base + off_set;
626 ul_stack_seg_val = readl(ul_stack_seg_addr);
628 dev_dbg(bridge, "%s: StackSegVal = 0x%x, StackSegAddr ="
629 " 0x%x\n", __func__, ul_stack_seg_val,
630 ul_stack_seg_addr);
632 pnode->create_args.asa.task_arg_obj.stack_seg =
633 ul_stack_seg_val;
638 if (DSP_SUCCEEDED(status)) {
639 /* Add the node to the node manager's list of allocated
640 * nodes. */
641 lst_init_elem((struct list_head *)pnode);
642 NODE_SET_STATE(pnode, NODE_ALLOCATED);
644 mutex_lock(&hnode_mgr->node_mgr_lock);
646 lst_put_tail(hnode_mgr->node_list, (struct list_head *) pnode);
647 ++(hnode_mgr->num_nodes);
649 /* Exit critical section */
650 mutex_unlock(&hnode_mgr->node_mgr_lock);
652 /* Preset this to assume phases are split
653 * (for overlay and dll) */
654 pnode->phase_split = true;
656 if (DSP_SUCCEEDED(status))
657 *ph_node = pnode;
659 /* Notify all clients registered for DSP_NODESTATECHANGE. */
660 proc_notify_all_clients(hprocessor, DSP_NODESTATECHANGE);
661 } else {
662 /* Cleanup */
663 if (pnode)
664 delete_node(pnode, pr_ctxt);
668 if (DSP_SUCCEEDED(status)) {
669 drv_insert_node_res_element(*ph_node, &node_res, pr_ctxt);
670 drv_proc_node_update_heap_status(node_res, true);
671 drv_proc_node_update_status(node_res, true);
673 DBC_ENSURE((DSP_FAILED(status) && (*ph_node == NULL)) ||
674 (DSP_SUCCEEDED(status) && *ph_node));
675 func_end:
676 dev_dbg(bridge, "%s: hprocessor: %p node_uuid: %p pargs: %p attr_in:"
677 " %p ph_node: %p status: 0x%x\n", __func__, hprocessor,
678 node_uuid, pargs, attr_in, ph_node, status);
679 return status;
683 * ======== node_alloc_msg_buf ========
684 * Purpose:
685 * Allocates buffer for zero copy messaging.
687 DBAPI node_alloc_msg_buf(struct node_object *hnode, u32 usize,
688 OUT struct dsp_bufferattr *pattr,
689 OUT u8 **pbuffer)
691 struct node_object *pnode = (struct node_object *)hnode;
692 int status = 0;
693 bool va_flag = false;
694 bool set_info;
695 u32 proc_id;
697 DBC_REQUIRE(refs > 0);
698 DBC_REQUIRE(pbuffer != NULL);
700 DBC_REQUIRE(usize > 0);
702 if (!pnode)
703 status = -EFAULT;
704 else if (node_get_type(pnode) == NODE_DEVICE)
705 status = -EPERM;
707 if (DSP_FAILED(status))
708 goto func_end;
710 if (pattr == NULL)
711 pattr = &node_dfltbufattrs; /* set defaults */
713 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
714 if (proc_id != DSP_UNIT) {
715 DBC_ASSERT(NULL);
716 goto func_end;
718 /* If segment ID includes MEM_SETVIRTUALSEGID then pbuffer is a
719 * virt address, so set this info in this node's translator
720 * object for future ref. If MEM_GETVIRTUALSEGID then retrieve
721 * virtual address from node's translator. */
722 if ((pattr->segment_id & MEM_SETVIRTUALSEGID) ||
723 (pattr->segment_id & MEM_GETVIRTUALSEGID)) {
724 va_flag = true;
725 set_info = (pattr->segment_id & MEM_SETVIRTUALSEGID) ?
726 true : false;
727 /* Clear mask bits */
728 pattr->segment_id &= ~MEM_MASKVIRTUALSEGID;
729 /* Set/get this node's translators virtual address base/size */
730 status = cmm_xlator_info(pnode->xlator, pbuffer, usize,
731 pattr->segment_id, set_info);
733 if (DSP_SUCCEEDED(status) && (!va_flag)) {
734 if (pattr->segment_id != 1) {
735 /* Node supports single SM segment only. */
736 status = -EBADR;
738 /* Arbitrary SM buffer alignment not supported for host side
739 * allocs, but guaranteed for the following alignment
740 * values. */
741 switch (pattr->buf_alignment) {
742 case 0:
743 case 1:
744 case 2:
745 case 4:
746 break;
747 default:
748 /* alignment value not suportted */
749 status = -EPERM;
750 break;
752 if (DSP_SUCCEEDED(status)) {
753 /* allocate physical buffer from seg_id in node's
754 * translator */
755 (void)cmm_xlator_alloc_buf(pnode->xlator, pbuffer,
756 usize);
757 if (*pbuffer == NULL) {
758 pr_err("%s: error - Out of shared memory\n",
759 __func__);
760 status = -ENOMEM;
764 func_end:
765 return status;
769 * ======== node_change_priority ========
770 * Purpose:
771 * Change the priority of a node in the allocated state, or that is
772 * currently running or paused on the target.
774 int node_change_priority(struct node_object *hnode, s32 prio)
776 struct node_object *pnode = (struct node_object *)hnode;
777 struct node_mgr *hnode_mgr = NULL;
778 enum node_type node_type;
779 enum node_state state;
780 int status = 0;
781 u32 proc_id;
783 DBC_REQUIRE(refs > 0);
785 if (!hnode || !hnode->hnode_mgr) {
786 status = -EFAULT;
787 } else {
788 hnode_mgr = hnode->hnode_mgr;
789 node_type = node_get_type(hnode);
790 if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
791 status = -EPERM;
792 else if (prio < hnode_mgr->min_pri || prio > hnode_mgr->max_pri)
793 status = -EDOM;
795 if (DSP_FAILED(status))
796 goto func_end;
798 /* Enter critical section */
799 mutex_lock(&hnode_mgr->node_mgr_lock);
801 state = node_get_state(hnode);
802 if (state == NODE_ALLOCATED || state == NODE_PAUSED) {
803 NODE_SET_PRIORITY(hnode, prio);
804 } else {
805 if (state != NODE_RUNNING) {
806 status = -EBADR;
807 goto func_cont;
809 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
810 if (proc_id == DSP_UNIT) {
811 status =
812 disp_node_change_priority(hnode_mgr->disp_obj,
813 hnode,
814 hnode_mgr->ul_fxn_addrs
815 [RMSCHANGENODEPRIORITY],
816 hnode->node_env, prio);
818 if (DSP_SUCCEEDED(status))
819 NODE_SET_PRIORITY(hnode, prio);
822 func_cont:
823 /* Leave critical section */
824 mutex_unlock(&hnode_mgr->node_mgr_lock);
825 func_end:
826 return status;
830 * ======== node_connect ========
831 * Purpose:
832 * Connect two nodes on the DSP, or a node on the DSP to the GPP.
834 int node_connect(struct node_object *node1, u32 stream1,
835 struct node_object *node2,
836 u32 stream2, struct dsp_strmattr *pattrs,
837 struct dsp_cbdata *conn_param)
839 struct node_mgr *hnode_mgr;
840 char *pstr_dev_name = NULL;
841 enum node_type node1_type = NODE_TASK;
842 enum node_type node2_type = NODE_TASK;
843 struct node_strmdef *pstrm_def;
844 struct node_strmdef *input = NULL;
845 struct node_strmdef *output = NULL;
846 struct node_object *dev_node_obj;
847 struct node_object *hnode;
848 struct stream_chnl *pstream;
849 u32 pipe_id = GB_NOBITS;
850 u32 chnl_id = GB_NOBITS;
851 s8 chnl_mode;
852 u32 dw_length;
853 int status = 0;
854 DBC_REQUIRE(refs > 0);
856 if ((node1 != (struct node_object *)DSP_HGPPNODE && !node1) ||
857 (node2 != (struct node_object *)DSP_HGPPNODE && !node2))
858 status = -EFAULT;
860 if (DSP_SUCCEEDED(status)) {
861 /* The two nodes must be on the same processor */
862 if (node1 != (struct node_object *)DSP_HGPPNODE &&
863 node2 != (struct node_object *)DSP_HGPPNODE &&
864 node1->hnode_mgr != node2->hnode_mgr)
865 status = -EPERM;
866 /* Cannot connect a node to itself */
867 if (node1 == node2)
868 status = -EPERM;
871 if (DSP_SUCCEEDED(status)) {
872 /* node_get_type() will return NODE_GPP if hnode =
873 * DSP_HGPPNODE. */
874 node1_type = node_get_type(node1);
875 node2_type = node_get_type(node2);
876 /* Check stream indices ranges */
877 if ((node1_type != NODE_GPP && node1_type != NODE_DEVICE &&
878 stream1 >= MAX_OUTPUTS(node1)) || (node2_type != NODE_GPP
879 && node2_type !=
880 NODE_DEVICE
881 && stream2 >=
882 MAX_INPUTS(node2)))
883 status = -EINVAL;
885 if (DSP_SUCCEEDED(status)) {
887 * Only the following types of connections are allowed:
888 * task/dais socket < == > task/dais socket
889 * task/dais socket < == > device
890 * task/dais socket < == > GPP
892 * ie, no message nodes, and at least one task or dais
893 * socket node.
895 if (node1_type == NODE_MESSAGE || node2_type == NODE_MESSAGE ||
896 (node1_type != NODE_TASK && node1_type != NODE_DAISSOCKET &&
897 node2_type != NODE_TASK && node2_type != NODE_DAISSOCKET))
898 status = -EPERM;
901 * Check stream mode. Default is STRMMODE_PROCCOPY.
903 if (DSP_SUCCEEDED(status) && pattrs) {
904 if (pattrs->strm_mode != STRMMODE_PROCCOPY)
905 status = -EPERM; /* illegal stream mode */
908 if (DSP_FAILED(status))
909 goto func_end;
911 if (node1_type != NODE_GPP) {
912 hnode_mgr = node1->hnode_mgr;
913 } else {
914 DBC_ASSERT(node2 != (struct node_object *)DSP_HGPPNODE);
915 hnode_mgr = node2->hnode_mgr;
917 /* Enter critical section */
918 mutex_lock(&hnode_mgr->node_mgr_lock);
920 /* Nodes must be in the allocated state */
921 if (node1_type != NODE_GPP && node_get_state(node1) != NODE_ALLOCATED)
922 status = -EBADR;
924 if (node2_type != NODE_GPP && node_get_state(node2) != NODE_ALLOCATED)
925 status = -EBADR;
927 if (DSP_SUCCEEDED(status)) {
928 /* Check that stream indices for task and dais socket nodes
929 * are not already be used. (Device nodes checked later) */
930 if (node1_type == NODE_TASK || node1_type == NODE_DAISSOCKET) {
931 output =
932 &(node1->create_args.asa.
933 task_arg_obj.strm_out_def[stream1]);
934 if (output->sz_device != NULL)
935 status = -EISCONN;
938 if (node2_type == NODE_TASK || node2_type == NODE_DAISSOCKET) {
939 input =
940 &(node2->create_args.asa.
941 task_arg_obj.strm_in_def[stream2]);
942 if (input->sz_device != NULL)
943 status = -EISCONN;
947 /* Connecting two task nodes? */
948 if (DSP_SUCCEEDED(status) && ((node1_type == NODE_TASK ||
949 node1_type == NODE_DAISSOCKET)
950 && (node2_type == NODE_TASK
951 || node2_type == NODE_DAISSOCKET))) {
952 /* Find available pipe */
953 pipe_id = gb_findandset(hnode_mgr->pipe_map);
954 if (pipe_id == GB_NOBITS) {
955 status = -ECONNREFUSED;
956 } else {
957 node1->outputs[stream1].type = NODECONNECT;
958 node2->inputs[stream2].type = NODECONNECT;
959 node1->outputs[stream1].dev_id = pipe_id;
960 node2->inputs[stream2].dev_id = pipe_id;
961 output->sz_device = kzalloc(PIPENAMELEN + 1,
962 GFP_KERNEL);
963 input->sz_device = kzalloc(PIPENAMELEN + 1, GFP_KERNEL);
964 if (output->sz_device == NULL ||
965 input->sz_device == NULL) {
966 /* Undo the connection */
967 kfree(output->sz_device);
969 kfree(input->sz_device);
971 output->sz_device = NULL;
972 input->sz_device = NULL;
973 gb_clear(hnode_mgr->pipe_map, pipe_id);
974 status = -ENOMEM;
975 } else {
976 /* Copy "/dbpipe<pipId>" name to device names */
977 sprintf(output->sz_device, "%s%d",
978 PIPEPREFIX, pipe_id);
979 strcpy(input->sz_device, output->sz_device);
983 /* Connecting task node to host? */
984 if (DSP_SUCCEEDED(status) && (node1_type == NODE_GPP ||
985 node2_type == NODE_GPP)) {
986 if (node1_type == NODE_GPP) {
987 chnl_mode = CHNL_MODETODSP;
988 } else {
989 DBC_ASSERT(node2_type == NODE_GPP);
990 chnl_mode = CHNL_MODEFROMDSP;
992 /* Reserve a channel id. We need to put the name "/host<id>"
993 * in the node's create_args, but the host
994 * side channel will not be opened until DSPStream_Open is
995 * called for this node. */
996 if (pattrs) {
997 if (pattrs->strm_mode == STRMMODE_RDMA) {
998 chnl_id =
999 gb_findandset(hnode_mgr->dma_chnl_map);
1000 /* dma chans are 2nd transport chnl set
1001 * ids(e.g. 16-31) */
1002 (chnl_id != GB_NOBITS) ?
1003 (chnl_id =
1004 chnl_id +
1005 hnode_mgr->ul_num_chnls) : chnl_id;
1006 } else if (pattrs->strm_mode == STRMMODE_ZEROCOPY) {
1007 chnl_id = gb_findandset(hnode_mgr->zc_chnl_map);
1008 /* zero-copy chans are 3nd transport set
1009 * (e.g. 32-47) */
1010 (chnl_id != GB_NOBITS) ? (chnl_id = chnl_id +
1011 (2 *
1012 hnode_mgr->
1013 ul_num_chnls))
1014 : chnl_id;
1015 } else { /* must be PROCCOPY */
1016 DBC_ASSERT(pattrs->strm_mode ==
1017 STRMMODE_PROCCOPY);
1018 chnl_id = gb_findandset(hnode_mgr->chnl_map);
1019 /* e.g. 0-15 */
1021 } else {
1022 /* default to PROCCOPY */
1023 chnl_id = gb_findandset(hnode_mgr->chnl_map);
1025 if (chnl_id == GB_NOBITS) {
1026 status = -ECONNREFUSED;
1027 goto func_cont2;
1029 pstr_dev_name = kzalloc(HOSTNAMELEN + 1, GFP_KERNEL);
1030 if (pstr_dev_name != NULL)
1031 goto func_cont2;
1033 if (pattrs) {
1034 if (pattrs->strm_mode == STRMMODE_RDMA) {
1035 gb_clear(hnode_mgr->dma_chnl_map, chnl_id -
1036 hnode_mgr->ul_num_chnls);
1037 } else if (pattrs->strm_mode == STRMMODE_ZEROCOPY) {
1038 gb_clear(hnode_mgr->zc_chnl_map, chnl_id -
1039 (2 * hnode_mgr->ul_num_chnls));
1040 } else {
1041 DBC_ASSERT(pattrs->strm_mode ==
1042 STRMMODE_PROCCOPY);
1043 gb_clear(hnode_mgr->chnl_map, chnl_id);
1045 } else {
1046 gb_clear(hnode_mgr->chnl_map, chnl_id);
1048 status = -ENOMEM;
1049 func_cont2:
1050 if (DSP_SUCCEEDED(status)) {
1051 if (node1 == (struct node_object *)DSP_HGPPNODE) {
1052 node2->inputs[stream2].type = HOSTCONNECT;
1053 node2->inputs[stream2].dev_id = chnl_id;
1054 input->sz_device = pstr_dev_name;
1055 } else {
1056 node1->outputs[stream1].type = HOSTCONNECT;
1057 node1->outputs[stream1].dev_id = chnl_id;
1058 output->sz_device = pstr_dev_name;
1060 sprintf(pstr_dev_name, "%s%d", HOSTPREFIX, chnl_id);
1063 /* Connecting task node to device node? */
1064 if (DSP_SUCCEEDED(status) && ((node1_type == NODE_DEVICE) ||
1065 (node2_type == NODE_DEVICE))) {
1066 if (node2_type == NODE_DEVICE) {
1067 /* node1 == > device */
1068 dev_node_obj = node2;
1069 hnode = node1;
1070 pstream = &(node1->outputs[stream1]);
1071 pstrm_def = output;
1072 } else {
1073 /* device == > node2 */
1074 dev_node_obj = node1;
1075 hnode = node2;
1076 pstream = &(node2->inputs[stream2]);
1077 pstrm_def = input;
1079 /* Set up create args */
1080 pstream->type = DEVICECONNECT;
1081 dw_length = strlen(dev_node_obj->pstr_dev_name);
1082 if (conn_param != NULL) {
1083 pstrm_def->sz_device = kzalloc(dw_length + 1 +
1084 conn_param->cb_data,
1085 GFP_KERNEL);
1086 } else {
1087 pstrm_def->sz_device = kzalloc(dw_length + 1,
1088 GFP_KERNEL);
1090 if (pstrm_def->sz_device == NULL) {
1091 status = -ENOMEM;
1092 } else {
1093 /* Copy device name */
1094 strncpy(pstrm_def->sz_device,
1095 dev_node_obj->pstr_dev_name, dw_length);
1096 if (conn_param != NULL) {
1097 strncat(pstrm_def->sz_device,
1098 (char *)conn_param->node_data,
1099 (u32) conn_param->cb_data);
1101 dev_node_obj->device_owner = hnode;
1104 if (DSP_SUCCEEDED(status)) {
1105 /* Fill in create args */
1106 if (node1_type == NODE_TASK || node1_type == NODE_DAISSOCKET) {
1107 node1->create_args.asa.task_arg_obj.num_outputs++;
1108 fill_stream_def(node1, output, pattrs);
1110 if (node2_type == NODE_TASK || node2_type == NODE_DAISSOCKET) {
1111 node2->create_args.asa.task_arg_obj.num_inputs++;
1112 fill_stream_def(node2, input, pattrs);
1114 /* Update node1 and node2 stream_connect */
1115 if (node1_type != NODE_GPP && node1_type != NODE_DEVICE) {
1116 node1->num_outputs++;
1117 if (stream1 > node1->max_output_index)
1118 node1->max_output_index = stream1;
1121 if (node2_type != NODE_GPP && node2_type != NODE_DEVICE) {
1122 node2->num_inputs++;
1123 if (stream2 > node2->max_input_index)
1124 node2->max_input_index = stream2;
1127 fill_stream_connect(node1, node2, stream1, stream2);
1129 /* end of sync_enter_cs */
1130 /* Exit critical section */
1131 mutex_unlock(&hnode_mgr->node_mgr_lock);
1132 func_end:
1133 dev_dbg(bridge, "%s: node1: %p stream1: %d node2: %p stream2: %d"
1134 "pattrs: %p status: 0x%x\n", __func__, node1,
1135 stream1, node2, stream2, pattrs, status);
1136 return status;
1140 * ======== node_create ========
1141 * Purpose:
1142 * Create a node on the DSP by remotely calling the node's create function.
1144 int node_create(struct node_object *hnode)
1146 struct node_object *pnode = (struct node_object *)hnode;
1147 struct node_mgr *hnode_mgr;
1148 struct bridge_drv_interface *intf_fxns;
1149 u32 ul_create_fxn;
1150 enum node_type node_type;
1151 int status = 0;
1152 int status1 = 0;
1153 struct dsp_cbdata cb_data;
1154 u32 proc_id = 255;
1155 struct dsp_processorstate proc_state;
1156 struct proc_object *hprocessor;
1157 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1158 struct dspbridge_platform_data *pdata =
1159 omap_dspbridge_dev->dev.platform_data;
1160 #endif
1162 DBC_REQUIRE(refs > 0);
1163 if (!pnode) {
1164 status = -EFAULT;
1165 goto func_end;
1167 hprocessor = hnode->hprocessor;
1168 status = proc_get_state(hprocessor, &proc_state,
1169 sizeof(struct dsp_processorstate));
1170 if (DSP_FAILED(status))
1171 goto func_end;
1172 /* If processor is in error state then don't attempt to create
1173 new node */
1174 if (proc_state.proc_state == PROC_ERROR) {
1175 status = -EPERM;
1176 goto func_end;
1178 /* create struct dsp_cbdata struct for PWR calls */
1179 cb_data.cb_data = PWR_TIMEOUT;
1180 node_type = node_get_type(hnode);
1181 hnode_mgr = hnode->hnode_mgr;
1182 intf_fxns = hnode_mgr->intf_fxns;
1183 /* Get access to node dispatcher */
1184 mutex_lock(&hnode_mgr->node_mgr_lock);
1186 /* Check node state */
1187 if (node_get_state(hnode) != NODE_ALLOCATED)
1188 status = -EBADR;
1190 if (DSP_SUCCEEDED(status))
1191 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
1193 if (DSP_FAILED(status))
1194 goto func_cont2;
1196 if (proc_id != DSP_UNIT)
1197 goto func_cont2;
1199 /* Make sure streams are properly connected */
1200 if ((hnode->num_inputs && hnode->max_input_index >
1201 hnode->num_inputs - 1) ||
1202 (hnode->num_outputs && hnode->max_output_index >
1203 hnode->num_outputs - 1))
1204 status = -ENOTCONN;
1206 if (DSP_SUCCEEDED(status)) {
1207 /* If node's create function is not loaded, load it */
1208 /* Boost the OPP level to max level that DSP can be requested */
1209 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1210 if (pdata->cpu_set_freq)
1211 (*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP3]);
1212 #endif
1213 status = hnode_mgr->nldr_fxns.pfn_load(hnode->nldr_node_obj,
1214 NLDR_CREATE);
1215 /* Get address of node's create function */
1216 if (DSP_SUCCEEDED(status)) {
1217 hnode->loaded = true;
1218 if (node_type != NODE_DEVICE) {
1219 status = get_fxn_address(hnode, &ul_create_fxn,
1220 CREATEPHASE);
1222 } else {
1223 pr_err("%s: failed to load create code: 0x%x\n",
1224 __func__, status);
1226 /* Request the lowest OPP level */
1227 #if defined(CONFIG_TIDSPBRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
1228 if (pdata->cpu_set_freq)
1229 (*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP1]);
1230 #endif
1231 /* Get address of iAlg functions, if socket node */
1232 if (DSP_SUCCEEDED(status)) {
1233 if (node_type == NODE_DAISSOCKET) {
1234 status = hnode_mgr->nldr_fxns.pfn_get_fxn_addr
1235 (hnode->nldr_node_obj,
1236 hnode->dcd_props.obj_data.node_obj.
1237 pstr_i_alg_name,
1238 &hnode->create_args.asa.
1239 task_arg_obj.ul_dais_arg);
1243 if (DSP_SUCCEEDED(status)) {
1244 if (node_type != NODE_DEVICE) {
1245 status = disp_node_create(hnode_mgr->disp_obj, hnode,
1246 hnode_mgr->ul_fxn_addrs
1247 [RMSCREATENODE],
1248 ul_create_fxn,
1249 &(hnode->create_args),
1250 &(hnode->node_env));
1251 if (DSP_SUCCEEDED(status)) {
1252 /* Set the message queue id to the node env
1253 * pointer */
1254 intf_fxns = hnode_mgr->intf_fxns;
1255 (*intf_fxns->pfn_msg_set_queue_id) (hnode->
1256 msg_queue_obj,
1257 hnode->node_env);
1261 /* Phase II/Overlays: Create, execute, delete phases possibly in
1262 * different files/sections. */
1263 if (hnode->loaded && hnode->phase_split) {
1264 /* If create code was dynamically loaded, we can now unload
1265 * it. */
1266 status1 = hnode_mgr->nldr_fxns.pfn_unload(hnode->nldr_node_obj,
1267 NLDR_CREATE);
1268 hnode->loaded = false;
1270 if (DSP_FAILED(status1))
1271 pr_err("%s: Failed to unload create code: 0x%x\n",
1272 __func__, status1);
1273 func_cont2:
1274 /* Update node state and node manager state */
1275 if (DSP_SUCCEEDED(status)) {
1276 NODE_SET_STATE(hnode, NODE_CREATED);
1277 hnode_mgr->num_created++;
1278 goto func_cont;
1280 if (status != -EBADR) {
1281 /* Put back in NODE_ALLOCATED state if error occurred */
1282 NODE_SET_STATE(hnode, NODE_ALLOCATED);
1284 func_cont:
1285 /* Free access to node dispatcher */
1286 mutex_unlock(&hnode_mgr->node_mgr_lock);
1287 func_end:
1288 if (DSP_SUCCEEDED(status)) {
1289 proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
1290 ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
1293 dev_dbg(bridge, "%s: hnode: %p status: 0x%x\n", __func__,
1294 hnode, status);
1295 return status;
1299 * ======== node_create_mgr ========
1300 * Purpose:
1301 * Create a NODE Manager object.
1303 int node_create_mgr(OUT struct node_mgr **node_man,
1304 struct dev_object *hdev_obj)
1306 u32 i;
1307 struct node_mgr *node_mgr_obj = NULL;
1308 struct disp_attr disp_attr_obj;
1309 char *sz_zl_file = "";
1310 struct nldr_attrs nldr_attrs_obj;
1311 int status = 0;
1312 u8 dev_type;
1313 DBC_REQUIRE(refs > 0);
1314 DBC_REQUIRE(node_man != NULL);
1315 DBC_REQUIRE(hdev_obj != NULL);
1317 *node_man = NULL;
1318 /* Allocate Node manager object */
1319 node_mgr_obj = kzalloc(sizeof(struct node_mgr), GFP_KERNEL);
1320 if (node_mgr_obj) {
1321 node_mgr_obj->hdev_obj = hdev_obj;
1322 node_mgr_obj->node_list = kzalloc(sizeof(struct lst_list),
1323 GFP_KERNEL);
1324 node_mgr_obj->pipe_map = gb_create(MAXPIPES);
1325 node_mgr_obj->pipe_done_map = gb_create(MAXPIPES);
1326 if (node_mgr_obj->node_list == NULL
1327 || node_mgr_obj->pipe_map == NULL
1328 || node_mgr_obj->pipe_done_map == NULL) {
1329 status = -ENOMEM;
1330 } else {
1331 INIT_LIST_HEAD(&node_mgr_obj->node_list->head);
1332 node_mgr_obj->ntfy_obj = kmalloc(
1333 sizeof(struct ntfy_object), GFP_KERNEL);
1334 if (node_mgr_obj->ntfy_obj)
1335 ntfy_init(node_mgr_obj->ntfy_obj);
1336 else
1337 status = -ENOMEM;
1339 node_mgr_obj->num_created = 0;
1340 } else {
1341 status = -ENOMEM;
1343 /* get devNodeType */
1344 if (DSP_SUCCEEDED(status))
1345 status = dev_get_dev_type(hdev_obj, &dev_type);
1347 /* Create the DCD Manager */
1348 if (DSP_SUCCEEDED(status)) {
1349 status =
1350 dcd_create_manager(sz_zl_file, &node_mgr_obj->hdcd_mgr);
1351 if (DSP_SUCCEEDED(status))
1352 status = get_proc_props(node_mgr_obj, hdev_obj);
1355 /* Create NODE Dispatcher */
1356 if (DSP_SUCCEEDED(status)) {
1357 disp_attr_obj.ul_chnl_offset = node_mgr_obj->ul_chnl_offset;
1358 disp_attr_obj.ul_chnl_buf_size = node_mgr_obj->ul_chnl_buf_size;
1359 disp_attr_obj.proc_family = node_mgr_obj->proc_family;
1360 disp_attr_obj.proc_type = node_mgr_obj->proc_type;
1361 status =
1362 disp_create(&node_mgr_obj->disp_obj, hdev_obj,
1363 &disp_attr_obj);
1365 /* Create a STRM Manager */
1366 if (DSP_SUCCEEDED(status))
1367 status = strm_create(&node_mgr_obj->strm_mgr_obj, hdev_obj);
1369 if (DSP_SUCCEEDED(status)) {
1370 dev_get_intf_fxns(hdev_obj, &node_mgr_obj->intf_fxns);
1371 /* Get msg_ctrl queue manager */
1372 dev_get_msg_mgr(hdev_obj, &node_mgr_obj->msg_mgr_obj);
1373 mutex_init(&node_mgr_obj->node_mgr_lock);
1374 node_mgr_obj->chnl_map = gb_create(node_mgr_obj->ul_num_chnls);
1375 /* dma chnl map. ul_num_chnls is # per transport */
1376 node_mgr_obj->dma_chnl_map =
1377 gb_create(node_mgr_obj->ul_num_chnls);
1378 node_mgr_obj->zc_chnl_map =
1379 gb_create(node_mgr_obj->ul_num_chnls);
1380 if ((node_mgr_obj->chnl_map == NULL)
1381 || (node_mgr_obj->dma_chnl_map == NULL)
1382 || (node_mgr_obj->zc_chnl_map == NULL)) {
1383 status = -ENOMEM;
1384 } else {
1385 /* Block out reserved channels */
1386 for (i = 0; i < node_mgr_obj->ul_chnl_offset; i++)
1387 gb_set(node_mgr_obj->chnl_map, i);
1389 /* Block out channels reserved for RMS */
1390 gb_set(node_mgr_obj->chnl_map,
1391 node_mgr_obj->ul_chnl_offset);
1392 gb_set(node_mgr_obj->chnl_map,
1393 node_mgr_obj->ul_chnl_offset + 1);
1396 if (DSP_SUCCEEDED(status)) {
1397 /* NO RM Server on the IVA */
1398 if (dev_type != IVA_UNIT) {
1399 /* Get addresses of any RMS functions loaded */
1400 status = get_rms_fxns(node_mgr_obj);
1404 /* Get loader functions and create loader */
1405 if (DSP_SUCCEEDED(status))
1406 node_mgr_obj->nldr_fxns = nldr_fxns; /* Dyn loader funcs */
1408 if (DSP_SUCCEEDED(status)) {
1409 nldr_attrs_obj.pfn_ovly = ovly;
1410 nldr_attrs_obj.pfn_write = mem_write;
1411 nldr_attrs_obj.us_dsp_word_size = node_mgr_obj->udsp_word_size;
1412 nldr_attrs_obj.us_dsp_mau_size = node_mgr_obj->udsp_mau_size;
1413 node_mgr_obj->loader_init = node_mgr_obj->nldr_fxns.pfn_init();
1414 status =
1415 node_mgr_obj->nldr_fxns.pfn_create(&node_mgr_obj->nldr_obj,
1416 hdev_obj,
1417 &nldr_attrs_obj);
1419 if (DSP_SUCCEEDED(status))
1420 *node_man = node_mgr_obj;
1421 else
1422 delete_node_mgr(node_mgr_obj);
1424 DBC_ENSURE((DSP_FAILED(status) && (*node_man == NULL)) ||
1425 (DSP_SUCCEEDED(status) && *node_man));
1427 return status;
1431 * ======== node_delete ========
1432 * Purpose:
1433 * Delete a node on the DSP by remotely calling the node's delete function.
1434 * Loads the node's delete function if necessary. Free GPP side resources
1435 * after node's delete function returns.
1437 int node_delete(struct node_object *hnode,
1438 struct process_context *pr_ctxt)
1440 struct node_object *pnode = (struct node_object *)hnode;
1441 struct node_mgr *hnode_mgr;
1442 struct proc_object *hprocessor;
1443 struct disp_object *disp_obj;
1444 u32 ul_delete_fxn;
1445 enum node_type node_type;
1446 enum node_state state;
1447 int status = 0;
1448 int status1 = 0;
1449 struct dsp_cbdata cb_data;
1450 u32 proc_id;
1451 struct bridge_drv_interface *intf_fxns;
1453 void *node_res;
1455 struct dsp_processorstate proc_state;
1456 DBC_REQUIRE(refs > 0);
1458 if (!hnode) {
1459 status = -EFAULT;
1460 goto func_end;
1462 /* create struct dsp_cbdata struct for PWR call */
1463 cb_data.cb_data = PWR_TIMEOUT;
1464 hnode_mgr = hnode->hnode_mgr;
1465 hprocessor = hnode->hprocessor;
1466 disp_obj = hnode_mgr->disp_obj;
1467 node_type = node_get_type(hnode);
1468 intf_fxns = hnode_mgr->intf_fxns;
1469 /* Enter critical section */
1470 mutex_lock(&hnode_mgr->node_mgr_lock);
1472 state = node_get_state(hnode);
1473 /* Execute delete phase code for non-device node in all cases
1474 * except when the node was only allocated. Delete phase must be
1475 * executed even if create phase was executed, but failed.
1476 * If the node environment pointer is non-NULL, the delete phase
1477 * code must be executed. */
1478 if (!(state == NODE_ALLOCATED && hnode->node_env == (u32) NULL) &&
1479 node_type != NODE_DEVICE) {
1480 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
1481 if (DSP_FAILED(status))
1482 goto func_cont1;
1484 if (proc_id == DSP_UNIT || proc_id == IVA_UNIT) {
1485 /* If node has terminated, execute phase code will
1486 * have already been unloaded in node_on_exit(). If the
1487 * node is PAUSED, the execute phase is loaded, and it
1488 * is now ok to unload it. If the node is running, we
1489 * will unload the execute phase only after deleting
1490 * the node. */
1491 if (state == NODE_PAUSED && hnode->loaded &&
1492 hnode->phase_split) {
1493 /* Ok to unload execute code as long as node
1494 * is not * running */
1495 status1 =
1496 hnode_mgr->nldr_fxns.
1497 pfn_unload(hnode->nldr_node_obj,
1498 NLDR_EXECUTE);
1499 hnode->loaded = false;
1500 NODE_SET_STATE(hnode, NODE_DONE);
1502 /* Load delete phase code if not loaded or if haven't
1503 * * unloaded EXECUTE phase */
1504 if ((!(hnode->loaded) || (state == NODE_RUNNING)) &&
1505 hnode->phase_split) {
1506 status =
1507 hnode_mgr->nldr_fxns.
1508 pfn_load(hnode->nldr_node_obj, NLDR_DELETE);
1509 if (DSP_SUCCEEDED(status))
1510 hnode->loaded = true;
1511 else
1512 pr_err("%s: fail - load delete code:"
1513 " 0x%x\n", __func__, status);
1516 func_cont1:
1517 if (DSP_SUCCEEDED(status)) {
1518 /* Unblock a thread trying to terminate the node */
1519 (void)sync_set_event(hnode->sync_done);
1520 if (proc_id == DSP_UNIT) {
1521 /* ul_delete_fxn = address of node's delete
1522 * function */
1523 status = get_fxn_address(hnode, &ul_delete_fxn,
1524 DELETEPHASE);
1525 } else if (proc_id == IVA_UNIT)
1526 ul_delete_fxn = (u32) hnode->node_env;
1527 if (DSP_SUCCEEDED(status)) {
1528 status = proc_get_state(hprocessor,
1529 &proc_state,
1530 sizeof(struct
1531 dsp_processorstate));
1532 if (proc_state.proc_state != PROC_ERROR) {
1533 status =
1534 disp_node_delete(disp_obj, hnode,
1535 hnode_mgr->
1536 ul_fxn_addrs
1537 [RMSDELETENODE],
1538 ul_delete_fxn,
1539 hnode->node_env);
1540 } else
1541 NODE_SET_STATE(hnode, NODE_DONE);
1543 /* Unload execute, if not unloaded, and delete
1544 * function */
1545 if (state == NODE_RUNNING &&
1546 hnode->phase_split) {
1547 status1 =
1548 hnode_mgr->nldr_fxns.
1549 pfn_unload(hnode->nldr_node_obj,
1550 NLDR_EXECUTE);
1552 if (DSP_FAILED(status1))
1553 pr_err("%s: fail - unload execute code:"
1554 " 0x%x\n", __func__, status1);
1556 status1 =
1557 hnode_mgr->nldr_fxns.pfn_unload(hnode->
1558 nldr_node_obj,
1559 NLDR_DELETE);
1560 hnode->loaded = false;
1561 if (DSP_FAILED(status1))
1562 pr_err("%s: fail - unload delete code: "
1563 "0x%x\n", __func__, status1);
1567 /* Free host side resources even if a failure occurred */
1568 /* Remove node from hnode_mgr->node_list */
1569 lst_remove_elem(hnode_mgr->node_list, (struct list_head *)hnode);
1570 hnode_mgr->num_nodes--;
1571 /* Decrement count of nodes created on DSP */
1572 if ((state != NODE_ALLOCATED) || ((state == NODE_ALLOCATED) &&
1573 (hnode->node_env != (u32) NULL)))
1574 hnode_mgr->num_created--;
1575 /* Free host-side resources allocated by node_create()
1576 * delete_node() fails if SM buffers not freed by client! */
1577 if (drv_get_node_res_element(hnode, &node_res, pr_ctxt) !=
1578 -ENOENT)
1579 drv_proc_node_update_status(node_res, false);
1580 delete_node(hnode, pr_ctxt);
1582 drv_remove_node_res_element(node_res, pr_ctxt);
1583 /* Exit critical section */
1584 mutex_unlock(&hnode_mgr->node_mgr_lock);
1585 proc_notify_clients(hprocessor, DSP_NODESTATECHANGE);
1586 func_end:
1587 dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
1588 return status;
1592 * ======== node_delete_mgr ========
1593 * Purpose:
1594 * Delete the NODE Manager.
1596 int node_delete_mgr(struct node_mgr *hnode_mgr)
1598 int status = 0;
1600 DBC_REQUIRE(refs > 0);
1602 if (hnode_mgr)
1603 delete_node_mgr(hnode_mgr);
1604 else
1605 status = -EFAULT;
1607 return status;
1611 * ======== node_enum_nodes ========
1612 * Purpose:
1613 * Enumerate currently allocated nodes.
1615 int node_enum_nodes(struct node_mgr *hnode_mgr, void **node_tab,
1616 u32 node_tab_size, OUT u32 *pu_num_nodes,
1617 OUT u32 *pu_allocated)
1619 struct node_object *hnode;
1620 u32 i;
1621 int status = 0;
1622 DBC_REQUIRE(refs > 0);
1623 DBC_REQUIRE(node_tab != NULL || node_tab_size == 0);
1624 DBC_REQUIRE(pu_num_nodes != NULL);
1625 DBC_REQUIRE(pu_allocated != NULL);
1627 if (!hnode_mgr) {
1628 status = -EFAULT;
1629 goto func_end;
1631 /* Enter critical section */
1632 mutex_lock(&hnode_mgr->node_mgr_lock);
1634 if (hnode_mgr->num_nodes > node_tab_size) {
1635 *pu_allocated = hnode_mgr->num_nodes;
1636 *pu_num_nodes = 0;
1637 status = -EINVAL;
1638 } else {
1639 hnode = (struct node_object *)lst_first(hnode_mgr->
1640 node_list);
1641 for (i = 0; i < hnode_mgr->num_nodes; i++) {
1642 DBC_ASSERT(hnode);
1643 node_tab[i] = hnode;
1644 hnode = (struct node_object *)lst_next
1645 (hnode_mgr->node_list,
1646 (struct list_head *)hnode);
1648 *pu_allocated = *pu_num_nodes = hnode_mgr->num_nodes;
1650 /* end of sync_enter_cs */
1651 /* Exit critical section */
1652 mutex_unlock(&hnode_mgr->node_mgr_lock);
1653 func_end:
1654 return status;
1658 * ======== node_exit ========
1659 * Purpose:
1660 * Discontinue usage of NODE module.
1662 void node_exit(void)
1664 DBC_REQUIRE(refs > 0);
1666 refs--;
1668 DBC_ENSURE(refs >= 0);
1672 * ======== node_free_msg_buf ========
1673 * Purpose:
1674 * Frees the message buffer.
1676 int node_free_msg_buf(struct node_object *hnode, u8 * pbuffer,
1677 struct dsp_bufferattr *pattr)
1679 struct node_object *pnode = (struct node_object *)hnode;
1680 int status = 0;
1681 u32 proc_id;
1682 DBC_REQUIRE(refs > 0);
1683 DBC_REQUIRE(pbuffer != NULL);
1684 DBC_REQUIRE(pnode != NULL);
1685 DBC_REQUIRE(pnode->xlator != NULL);
1687 if (!hnode) {
1688 status = -EFAULT;
1689 goto func_end;
1691 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
1692 if (proc_id == DSP_UNIT) {
1693 if (DSP_SUCCEEDED(status)) {
1694 if (pattr == NULL) {
1695 /* set defaults */
1696 pattr = &node_dfltbufattrs;
1698 /* Node supports single SM segment only */
1699 if (pattr->segment_id != 1)
1700 status = -EBADR;
1702 /* pbuffer is clients Va. */
1703 status = cmm_xlator_free_buf(pnode->xlator, pbuffer);
1705 } else {
1706 DBC_ASSERT(NULL); /* BUG */
1708 func_end:
1709 return status;
1713 * ======== node_get_attr ========
1714 * Purpose:
1715 * Copy the current attributes of the specified node into a dsp_nodeattr
1716 * structure.
1718 int node_get_attr(struct node_object *hnode,
1719 OUT struct dsp_nodeattr *pattr, u32 attr_size)
1721 struct node_mgr *hnode_mgr;
1722 int status = 0;
1723 DBC_REQUIRE(refs > 0);
1724 DBC_REQUIRE(pattr != NULL);
1725 DBC_REQUIRE(attr_size >= sizeof(struct dsp_nodeattr));
1727 if (!hnode) {
1728 status = -EFAULT;
1729 } else {
1730 hnode_mgr = hnode->hnode_mgr;
1731 /* Enter hnode_mgr critical section (since we're accessing
1732 * data that could be changed by node_change_priority() and
1733 * node_connect(). */
1734 mutex_lock(&hnode_mgr->node_mgr_lock);
1735 pattr->cb_struct = sizeof(struct dsp_nodeattr);
1736 /* dsp_nodeattrin */
1737 pattr->in_node_attr_in.cb_struct =
1738 sizeof(struct dsp_nodeattrin);
1739 pattr->in_node_attr_in.prio = hnode->prio;
1740 pattr->in_node_attr_in.utimeout = hnode->utimeout;
1741 pattr->in_node_attr_in.heap_size =
1742 hnode->create_args.asa.task_arg_obj.heap_size;
1743 pattr->in_node_attr_in.pgpp_virt_addr = (void *)
1744 hnode->create_args.asa.task_arg_obj.ugpp_heap_addr;
1745 pattr->node_attr_inputs = hnode->num_gpp_inputs;
1746 pattr->node_attr_outputs = hnode->num_gpp_outputs;
1747 /* dsp_nodeinfo */
1748 get_node_info(hnode, &(pattr->node_info));
1749 /* end of sync_enter_cs */
1750 /* Exit critical section */
1751 mutex_unlock(&hnode_mgr->node_mgr_lock);
1753 return status;
1757 * ======== node_get_channel_id ========
1758 * Purpose:
1759 * Get the channel index reserved for a stream connection between the
1760 * host and a node.
1762 int node_get_channel_id(struct node_object *hnode, u32 dir, u32 index,
1763 OUT u32 *chan_id)
1765 enum node_type node_type;
1766 int status = -EINVAL;
1767 DBC_REQUIRE(refs > 0);
1768 DBC_REQUIRE(dir == DSP_TONODE || dir == DSP_FROMNODE);
1769 DBC_REQUIRE(chan_id != NULL);
1771 if (!hnode) {
1772 status = -EFAULT;
1773 return status;
1775 node_type = node_get_type(hnode);
1776 if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET) {
1777 status = -EPERM;
1778 return status;
1780 if (dir == DSP_TONODE) {
1781 if (index < MAX_INPUTS(hnode)) {
1782 if (hnode->inputs[index].type == HOSTCONNECT) {
1783 *chan_id = hnode->inputs[index].dev_id;
1784 status = 0;
1787 } else {
1788 DBC_ASSERT(dir == DSP_FROMNODE);
1789 if (index < MAX_OUTPUTS(hnode)) {
1790 if (hnode->outputs[index].type == HOSTCONNECT) {
1791 *chan_id = hnode->outputs[index].dev_id;
1792 status = 0;
1796 return status;
1800 * ======== node_get_message ========
1801 * Purpose:
1802 * Retrieve a message from a node on the DSP.
1804 int node_get_message(struct node_object *hnode,
1805 OUT struct dsp_msg *message, u32 utimeout)
1807 struct node_mgr *hnode_mgr;
1808 enum node_type node_type;
1809 struct bridge_drv_interface *intf_fxns;
1810 int status = 0;
1811 void *tmp_buf;
1812 struct dsp_processorstate proc_state;
1813 struct proc_object *hprocessor;
1815 DBC_REQUIRE(refs > 0);
1816 DBC_REQUIRE(message != NULL);
1818 if (!hnode) {
1819 status = -EFAULT;
1820 goto func_end;
1822 hprocessor = hnode->hprocessor;
1823 status = proc_get_state(hprocessor, &proc_state,
1824 sizeof(struct dsp_processorstate));
1825 if (DSP_FAILED(status))
1826 goto func_end;
1827 /* If processor is in error state then don't attempt to get the
1828 message */
1829 if (proc_state.proc_state == PROC_ERROR) {
1830 status = -EPERM;
1831 goto func_end;
1833 hnode_mgr = hnode->hnode_mgr;
1834 node_type = node_get_type(hnode);
1835 if (node_type != NODE_MESSAGE && node_type != NODE_TASK &&
1836 node_type != NODE_DAISSOCKET) {
1837 status = -EPERM;
1838 goto func_end;
1840 /* This function will block unless a message is available. Since
1841 * DSPNode_RegisterNotify() allows notification when a message
1842 * is available, the system can be designed so that
1843 * DSPNode_GetMessage() is only called when a message is
1844 * available. */
1845 intf_fxns = hnode_mgr->intf_fxns;
1846 status =
1847 (*intf_fxns->pfn_msg_get) (hnode->msg_queue_obj, message, utimeout);
1848 /* Check if message contains SM descriptor */
1849 if (DSP_FAILED(status) || !(message->dw_cmd & DSP_RMSBUFDESC))
1850 goto func_end;
1852 /* Translate DSP byte addr to GPP Va. */
1853 tmp_buf = cmm_xlator_translate(hnode->xlator,
1854 (void *)(message->dw_arg1 *
1855 hnode->hnode_mgr->
1856 udsp_word_size), CMM_DSPPA2PA);
1857 if (tmp_buf != NULL) {
1858 /* now convert this GPP Pa to Va */
1859 tmp_buf = cmm_xlator_translate(hnode->xlator, tmp_buf,
1860 CMM_PA2VA);
1861 if (tmp_buf != NULL) {
1862 /* Adjust SM size in msg */
1863 message->dw_arg1 = (u32) tmp_buf;
1864 message->dw_arg2 *= hnode->hnode_mgr->udsp_word_size;
1865 } else {
1866 status = -ESRCH;
1868 } else {
1869 status = -ESRCH;
1871 func_end:
1872 dev_dbg(bridge, "%s: hnode: %p message: %p utimeout: 0x%x\n", __func__,
1873 hnode, message, utimeout);
1874 return status;
1878 * ======== node_get_nldr_obj ========
1880 int node_get_nldr_obj(struct node_mgr *hnode_mgr,
1881 struct nldr_object **nldr_ovlyobj)
1883 int status = 0;
1884 struct node_mgr *node_mgr_obj = hnode_mgr;
1885 DBC_REQUIRE(nldr_ovlyobj != NULL);
1887 if (!hnode_mgr)
1888 status = -EFAULT;
1889 else
1890 *nldr_ovlyobj = node_mgr_obj->nldr_obj;
1892 DBC_ENSURE(DSP_SUCCEEDED(status) || ((nldr_ovlyobj != NULL) &&
1893 (*nldr_ovlyobj == NULL)));
1894 return status;
1898 * ======== node_get_strm_mgr ========
1899 * Purpose:
1900 * Returns the Stream manager.
1902 int node_get_strm_mgr(struct node_object *hnode,
1903 struct strm_mgr **strm_man)
1905 int status = 0;
1907 DBC_REQUIRE(refs > 0);
1909 if (!hnode)
1910 status = -EFAULT;
1911 else
1912 *strm_man = hnode->hnode_mgr->strm_mgr_obj;
1914 return status;
1918 * ======== node_get_load_type ========
1920 enum nldr_loadtype node_get_load_type(struct node_object *hnode)
1922 DBC_REQUIRE(refs > 0);
1923 DBC_REQUIRE(hnode);
1924 if (!hnode) {
1925 dev_dbg(bridge, "%s: Failed. hnode: %p\n", __func__, hnode);
1926 return -1;
1927 } else {
1928 return hnode->dcd_props.obj_data.node_obj.us_load_type;
1933 * ======== node_get_timeout ========
1934 * Purpose:
1935 * Returns the timeout value for this node.
1937 u32 node_get_timeout(struct node_object *hnode)
1939 DBC_REQUIRE(refs > 0);
1940 DBC_REQUIRE(hnode);
1941 if (!hnode) {
1942 dev_dbg(bridge, "%s: failed. hnode: %p\n", __func__, hnode);
1943 return 0;
1944 } else {
1945 return hnode->utimeout;
1950 * ======== node_get_type ========
1951 * Purpose:
1952 * Returns the node type.
1954 enum node_type node_get_type(struct node_object *hnode)
1956 enum node_type node_type;
1958 if (hnode == (struct node_object *)DSP_HGPPNODE)
1959 node_type = NODE_GPP;
1960 else {
1961 if (!hnode)
1962 node_type = -1;
1963 else
1964 node_type = hnode->ntype;
1966 return node_type;
1970 * ======== node_init ========
1971 * Purpose:
1972 * Initialize the NODE module.
1974 bool node_init(void)
1976 DBC_REQUIRE(refs >= 0);
1978 refs++;
1980 return true;
1984 * ======== node_on_exit ========
1985 * Purpose:
1986 * Gets called when RMS_EXIT is received for a node.
1988 void node_on_exit(struct node_object *hnode, s32 node_status)
1990 if (!hnode)
1991 return;
1993 /* Set node state to done */
1994 NODE_SET_STATE(hnode, NODE_DONE);
1995 hnode->exit_status = node_status;
1996 if (hnode->loaded && hnode->phase_split) {
1997 (void)hnode->hnode_mgr->nldr_fxns.pfn_unload(hnode->
1998 nldr_node_obj,
1999 NLDR_EXECUTE);
2000 hnode->loaded = false;
2002 /* Unblock call to node_terminate */
2003 (void)sync_set_event(hnode->sync_done);
2004 /* Notify clients */
2005 proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
2006 ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
2010 * ======== node_pause ========
2011 * Purpose:
2012 * Suspend execution of a node currently running on the DSP.
2014 int node_pause(struct node_object *hnode)
2016 struct node_object *pnode = (struct node_object *)hnode;
2017 enum node_type node_type;
2018 enum node_state state;
2019 struct node_mgr *hnode_mgr;
2020 int status = 0;
2021 u32 proc_id;
2022 struct dsp_processorstate proc_state;
2023 struct proc_object *hprocessor;
2025 DBC_REQUIRE(refs > 0);
2027 if (!hnode) {
2028 status = -EFAULT;
2029 } else {
2030 node_type = node_get_type(hnode);
2031 if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
2032 status = -EPERM;
2034 if (DSP_FAILED(status))
2035 goto func_end;
2037 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
2039 if (proc_id == IVA_UNIT)
2040 status = -ENOSYS;
2042 if (DSP_SUCCEEDED(status)) {
2043 hnode_mgr = hnode->hnode_mgr;
2045 /* Enter critical section */
2046 mutex_lock(&hnode_mgr->node_mgr_lock);
2047 state = node_get_state(hnode);
2048 /* Check node state */
2049 if (state != NODE_RUNNING)
2050 status = -EBADR;
2052 if (DSP_FAILED(status))
2053 goto func_cont;
2054 hprocessor = hnode->hprocessor;
2055 status = proc_get_state(hprocessor, &proc_state,
2056 sizeof(struct dsp_processorstate));
2057 if (DSP_FAILED(status))
2058 goto func_cont;
2059 /* If processor is in error state then don't attempt
2060 to send the message */
2061 if (proc_state.proc_state == PROC_ERROR) {
2062 status = -EPERM;
2063 goto func_cont;
2066 status = disp_node_change_priority(hnode_mgr->disp_obj, hnode,
2067 hnode_mgr->ul_fxn_addrs[RMSCHANGENODEPRIORITY],
2068 hnode->node_env, NODE_SUSPENDEDPRI);
2070 /* Update state */
2071 if (DSP_SUCCEEDED(status))
2072 NODE_SET_STATE(hnode, NODE_PAUSED);
2074 func_cont:
2075 /* End of sync_enter_cs */
2076 /* Leave critical section */
2077 mutex_unlock(&hnode_mgr->node_mgr_lock);
2078 if (DSP_SUCCEEDED(status)) {
2079 proc_notify_clients(hnode->hprocessor,
2080 DSP_NODESTATECHANGE);
2081 ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
2084 func_end:
2085 dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
2086 return status;
2090 * ======== node_put_message ========
2091 * Purpose:
2092 * Send a message to a message node, task node, or XDAIS socket node. This
2093 * function will block until the message stream can accommodate the
2094 * message, or a timeout occurs.
2096 int node_put_message(struct node_object *hnode,
2097 const struct dsp_msg *pmsg, u32 utimeout)
2099 struct node_mgr *hnode_mgr = NULL;
2100 enum node_type node_type;
2101 struct bridge_drv_interface *intf_fxns;
2102 enum node_state state;
2103 int status = 0;
2104 void *tmp_buf;
2105 struct dsp_msg new_msg;
2106 struct dsp_processorstate proc_state;
2107 struct proc_object *hprocessor;
2109 DBC_REQUIRE(refs > 0);
2110 DBC_REQUIRE(pmsg != NULL);
2112 if (!hnode) {
2113 status = -EFAULT;
2114 goto func_end;
2116 hprocessor = hnode->hprocessor;
2117 status = proc_get_state(hprocessor, &proc_state,
2118 sizeof(struct dsp_processorstate));
2119 if (DSP_FAILED(status))
2120 goto func_end;
2121 /* If processor is in bad state then don't attempt sending the
2122 message */
2123 if (proc_state.proc_state == PROC_ERROR) {
2124 status = -EPERM;
2125 goto func_end;
2127 hnode_mgr = hnode->hnode_mgr;
2128 node_type = node_get_type(hnode);
2129 if (node_type != NODE_MESSAGE && node_type != NODE_TASK &&
2130 node_type != NODE_DAISSOCKET)
2131 status = -EPERM;
2133 if (DSP_SUCCEEDED(status)) {
2134 /* Check node state. Can't send messages to a node after
2135 * we've sent the RMS_EXIT command. There is still the
2136 * possibility that node_terminate can be called after we've
2137 * checked the state. Could add another SYNC object to
2138 * prevent this (can't use node_mgr_lock, since we don't
2139 * want to block other NODE functions). However, the node may
2140 * still exit on its own, before this message is sent. */
2141 mutex_lock(&hnode_mgr->node_mgr_lock);
2142 state = node_get_state(hnode);
2143 if (state == NODE_TERMINATING || state == NODE_DONE)
2144 status = -EBADR;
2146 /* end of sync_enter_cs */
2147 mutex_unlock(&hnode_mgr->node_mgr_lock);
2149 if (DSP_FAILED(status))
2150 goto func_end;
2152 /* assign pmsg values to new msg */
2153 new_msg = *pmsg;
2154 /* Now, check if message contains a SM buffer descriptor */
2155 if (pmsg->dw_cmd & DSP_RMSBUFDESC) {
2156 /* Translate GPP Va to DSP physical buf Ptr. */
2157 tmp_buf = cmm_xlator_translate(hnode->xlator,
2158 (void *)new_msg.dw_arg1,
2159 CMM_VA2DSPPA);
2160 if (tmp_buf != NULL) {
2161 /* got translation, convert to MAUs in msg */
2162 if (hnode->hnode_mgr->udsp_word_size != 0) {
2163 new_msg.dw_arg1 =
2164 (u32) tmp_buf /
2165 hnode->hnode_mgr->udsp_word_size;
2166 /* MAUs */
2167 new_msg.dw_arg2 /= hnode->hnode_mgr->
2168 udsp_word_size;
2169 } else {
2170 pr_err("%s: udsp_word_size is zero!\n",
2171 __func__);
2172 status = -EPERM; /* bad DSPWordSize */
2174 } else { /* failed to translate buffer address */
2175 status = -ESRCH;
2178 if (DSP_SUCCEEDED(status)) {
2179 intf_fxns = hnode_mgr->intf_fxns;
2180 status = (*intf_fxns->pfn_msg_put) (hnode->msg_queue_obj,
2181 &new_msg, utimeout);
2183 func_end:
2184 dev_dbg(bridge, "%s: hnode: %p pmsg: %p utimeout: 0x%x, "
2185 "status 0x%x\n", __func__, hnode, pmsg, utimeout, status);
2186 return status;
2190 * ======== node_register_notify ========
2191 * Purpose:
2192 * Register to be notified on specific events for this node.
2194 int node_register_notify(struct node_object *hnode, u32 event_mask,
2195 u32 notify_type,
2196 struct dsp_notification *hnotification)
2198 struct bridge_drv_interface *intf_fxns;
2199 int status = 0;
2201 DBC_REQUIRE(refs > 0);
2202 DBC_REQUIRE(hnotification != NULL);
2204 if (!hnode) {
2205 status = -EFAULT;
2206 } else {
2207 /* Check if event mask is a valid node related event */
2208 if (event_mask & ~(DSP_NODESTATECHANGE | DSP_NODEMESSAGEREADY))
2209 status = -EINVAL;
2211 /* Check if notify type is valid */
2212 if (notify_type != DSP_SIGNALEVENT)
2213 status = -EINVAL;
2215 /* Only one Notification can be registered at a
2216 * time - Limitation */
2217 if (event_mask == (DSP_NODESTATECHANGE | DSP_NODEMESSAGEREADY))
2218 status = -EINVAL;
2220 if (DSP_SUCCEEDED(status)) {
2221 if (event_mask == DSP_NODESTATECHANGE) {
2222 status = ntfy_register(hnode->ntfy_obj, hnotification,
2223 event_mask & DSP_NODESTATECHANGE,
2224 notify_type);
2225 } else {
2226 /* Send Message part of event mask to msg_ctrl */
2227 intf_fxns = hnode->hnode_mgr->intf_fxns;
2228 status = (*intf_fxns->pfn_msg_register_notify)
2229 (hnode->msg_queue_obj,
2230 event_mask & DSP_NODEMESSAGEREADY, notify_type,
2231 hnotification);
2235 dev_dbg(bridge, "%s: hnode: %p event_mask: 0x%x notify_type: 0x%x "
2236 "hnotification: %p status 0x%x\n", __func__, hnode,
2237 event_mask, notify_type, hnotification, status);
2238 return status;
2242 * ======== node_run ========
2243 * Purpose:
2244 * Start execution of a node's execute phase, or resume execution of a node
2245 * that has been suspended (via NODE_NodePause()) on the DSP. Load the
2246 * node's execute function if necessary.
2248 int node_run(struct node_object *hnode)
2250 struct node_object *pnode = (struct node_object *)hnode;
2251 struct node_mgr *hnode_mgr;
2252 enum node_type node_type;
2253 enum node_state state;
2254 u32 ul_execute_fxn;
2255 u32 ul_fxn_addr;
2256 int status = 0;
2257 u32 proc_id;
2258 struct bridge_drv_interface *intf_fxns;
2259 struct dsp_processorstate proc_state;
2260 struct proc_object *hprocessor;
2262 DBC_REQUIRE(refs > 0);
2264 if (!hnode) {
2265 status = -EFAULT;
2266 goto func_end;
2268 hprocessor = hnode->hprocessor;
2269 status = proc_get_state(hprocessor, &proc_state,
2270 sizeof(struct dsp_processorstate));
2271 if (DSP_FAILED(status))
2272 goto func_end;
2273 /* If processor is in error state then don't attempt to run the node */
2274 if (proc_state.proc_state == PROC_ERROR) {
2275 status = -EPERM;
2276 goto func_end;
2278 node_type = node_get_type(hnode);
2279 if (node_type == NODE_DEVICE)
2280 status = -EPERM;
2281 if (DSP_FAILED(status))
2282 goto func_end;
2284 hnode_mgr = hnode->hnode_mgr;
2285 if (!hnode_mgr) {
2286 status = -EFAULT;
2287 goto func_end;
2289 intf_fxns = hnode_mgr->intf_fxns;
2290 /* Enter critical section */
2291 mutex_lock(&hnode_mgr->node_mgr_lock);
2293 state = node_get_state(hnode);
2294 if (state != NODE_CREATED && state != NODE_PAUSED)
2295 status = -EBADR;
2297 if (DSP_SUCCEEDED(status))
2298 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
2300 if (DSP_FAILED(status))
2301 goto func_cont1;
2303 if ((proc_id != DSP_UNIT) && (proc_id != IVA_UNIT))
2304 goto func_cont1;
2306 if (state == NODE_CREATED) {
2307 /* If node's execute function is not loaded, load it */
2308 if (!(hnode->loaded) && hnode->phase_split) {
2309 status =
2310 hnode_mgr->nldr_fxns.pfn_load(hnode->nldr_node_obj,
2311 NLDR_EXECUTE);
2312 if (DSP_SUCCEEDED(status)) {
2313 hnode->loaded = true;
2314 } else {
2315 pr_err("%s: fail - load execute code: 0x%x\n",
2316 __func__, status);
2319 if (DSP_SUCCEEDED(status)) {
2320 /* Get address of node's execute function */
2321 if (proc_id == IVA_UNIT)
2322 ul_execute_fxn = (u32) hnode->node_env;
2323 else {
2324 status = get_fxn_address(hnode, &ul_execute_fxn,
2325 EXECUTEPHASE);
2328 if (DSP_SUCCEEDED(status)) {
2329 ul_fxn_addr = hnode_mgr->ul_fxn_addrs[RMSEXECUTENODE];
2330 status =
2331 disp_node_run(hnode_mgr->disp_obj, hnode,
2332 ul_fxn_addr, ul_execute_fxn,
2333 hnode->node_env);
2335 } else if (state == NODE_PAUSED) {
2336 ul_fxn_addr = hnode_mgr->ul_fxn_addrs[RMSCHANGENODEPRIORITY];
2337 status = disp_node_change_priority(hnode_mgr->disp_obj, hnode,
2338 ul_fxn_addr, hnode->node_env,
2339 NODE_GET_PRIORITY(hnode));
2340 } else {
2341 /* We should never get here */
2342 DBC_ASSERT(false);
2344 func_cont1:
2345 /* Update node state. */
2346 if (DSP_SUCCEEDED(status))
2347 NODE_SET_STATE(hnode, NODE_RUNNING);
2348 else /* Set state back to previous value */
2349 NODE_SET_STATE(hnode, state);
2350 /*End of sync_enter_cs */
2351 /* Exit critical section */
2352 mutex_unlock(&hnode_mgr->node_mgr_lock);
2353 if (DSP_SUCCEEDED(status)) {
2354 proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
2355 ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
2357 func_end:
2358 dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
2359 return status;
2363 * ======== node_terminate ========
2364 * Purpose:
2365 * Signal a node running on the DSP that it should exit its execute phase
2366 * function.
2368 int node_terminate(struct node_object *hnode, OUT int *pstatus)
2370 struct node_object *pnode = (struct node_object *)hnode;
2371 struct node_mgr *hnode_mgr = NULL;
2372 enum node_type node_type;
2373 struct bridge_drv_interface *intf_fxns;
2374 enum node_state state;
2375 struct dsp_msg msg, killmsg;
2376 int status = 0;
2377 u32 proc_id, kill_time_out;
2378 struct deh_mgr *hdeh_mgr;
2379 struct dsp_processorstate proc_state;
2381 DBC_REQUIRE(refs > 0);
2382 DBC_REQUIRE(pstatus != NULL);
2384 if (!hnode || !hnode->hnode_mgr) {
2385 status = -EFAULT;
2386 goto func_end;
2388 if (pnode->hprocessor == NULL) {
2389 status = -EFAULT;
2390 goto func_end;
2392 status = proc_get_processor_id(pnode->hprocessor, &proc_id);
2394 if (DSP_SUCCEEDED(status)) {
2395 hnode_mgr = hnode->hnode_mgr;
2396 node_type = node_get_type(hnode);
2397 if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
2398 status = -EPERM;
2400 if (DSP_SUCCEEDED(status)) {
2401 /* Check node state */
2402 mutex_lock(&hnode_mgr->node_mgr_lock);
2403 state = node_get_state(hnode);
2404 if (state != NODE_RUNNING) {
2405 status = -EBADR;
2406 /* Set the exit status if node terminated on
2407 * its own. */
2408 if (state == NODE_DONE)
2409 *pstatus = hnode->exit_status;
2411 } else {
2412 NODE_SET_STATE(hnode, NODE_TERMINATING);
2414 /* end of sync_enter_cs */
2415 mutex_unlock(&hnode_mgr->node_mgr_lock);
2417 if (DSP_SUCCEEDED(status)) {
2419 * Send exit message. Do not change state to NODE_DONE
2420 * here. That will be done in callback.
2422 status = proc_get_state(pnode->hprocessor, &proc_state,
2423 sizeof(struct dsp_processorstate));
2424 if (DSP_FAILED(status))
2425 goto func_cont;
2426 /* If processor is in error state then don't attempt to send
2427 * A kill task command */
2428 if (proc_state.proc_state == PROC_ERROR) {
2429 status = -EPERM;
2430 goto func_cont;
2433 msg.dw_cmd = RMS_EXIT;
2434 msg.dw_arg1 = hnode->node_env;
2435 killmsg.dw_cmd = RMS_KILLTASK;
2436 killmsg.dw_arg1 = hnode->node_env;
2437 intf_fxns = hnode_mgr->intf_fxns;
2439 if (hnode->utimeout > MAXTIMEOUT)
2440 kill_time_out = MAXTIMEOUT;
2441 else
2442 kill_time_out = (hnode->utimeout) * 2;
2444 status = (*intf_fxns->pfn_msg_put) (hnode->msg_queue_obj, &msg,
2445 hnode->utimeout);
2446 if (DSP_FAILED(status))
2447 goto func_cont;
2450 * Wait on synchronization object that will be
2451 * posted in the callback on receiving RMS_EXIT
2452 * message, or by node_delete. Check for valid hnode,
2453 * in case posted by node_delete().
2455 status = sync_wait_on_event(hnode->sync_done,
2456 kill_time_out / 2);
2457 if (status != ETIME)
2458 goto func_cont;
2460 status = (*intf_fxns->pfn_msg_put)(hnode->msg_queue_obj,
2461 &killmsg, hnode->utimeout);
2462 if (DSP_FAILED(status))
2463 goto func_cont;
2464 status = sync_wait_on_event(hnode->sync_done,
2465 kill_time_out / 2);
2466 if (DSP_FAILED(status)) {
2468 * Here it goes the part of the simulation of
2469 * the DSP exception.
2471 dev_get_deh_mgr(hnode_mgr->hdev_obj, &hdeh_mgr);
2472 if (!hdeh_mgr)
2473 goto func_cont;
2475 bridge_deh_notify(hdeh_mgr, DSP_SYSERROR, DSP_EXCEPTIONABORT);
2478 func_cont:
2479 if (DSP_SUCCEEDED(status)) {
2480 /* Enter CS before getting exit status, in case node was
2481 * deleted. */
2482 mutex_lock(&hnode_mgr->node_mgr_lock);
2483 /* Make sure node wasn't deleted while we blocked */
2484 if (!hnode) {
2485 status = -EPERM;
2486 } else {
2487 *pstatus = hnode->exit_status;
2488 dev_dbg(bridge, "%s: hnode: %p env 0x%x status 0x%x\n",
2489 __func__, hnode, hnode->node_env, status);
2491 mutex_unlock(&hnode_mgr->node_mgr_lock);
2492 } /*End of sync_enter_cs */
2493 func_end:
2494 return status;
2498 * ======== delete_node ========
2499 * Purpose:
2500 * Free GPP resources allocated in node_allocate() or node_connect().
2502 static void delete_node(struct node_object *hnode,
2503 struct process_context *pr_ctxt)
2505 struct node_mgr *hnode_mgr;
2506 struct cmm_xlatorobject *xlator;
2507 struct bridge_drv_interface *intf_fxns;
2508 u32 i;
2509 enum node_type node_type;
2510 struct stream_chnl stream;
2511 struct node_msgargs node_msg_args;
2512 struct node_taskargs task_arg_obj;
2513 #ifdef DSP_DMM_DEBUG
2514 struct dmm_object *dmm_mgr;
2515 struct proc_object *p_proc_object =
2516 (struct proc_object *)hnode->hprocessor;
2517 #endif
2518 int status;
2519 if (!hnode)
2520 goto func_end;
2521 hnode_mgr = hnode->hnode_mgr;
2522 if (!hnode_mgr)
2523 goto func_end;
2524 xlator = hnode->xlator;
2525 node_type = node_get_type(hnode);
2526 if (node_type != NODE_DEVICE) {
2527 node_msg_args = hnode->create_args.asa.node_msg_args;
2528 kfree(node_msg_args.pdata);
2530 /* Free msg_ctrl queue */
2531 if (hnode->msg_queue_obj) {
2532 intf_fxns = hnode_mgr->intf_fxns;
2533 (*intf_fxns->pfn_msg_delete_queue) (hnode->
2534 msg_queue_obj);
2535 hnode->msg_queue_obj = NULL;
2538 kfree(hnode->sync_done);
2540 /* Free all stream info */
2541 if (hnode->inputs) {
2542 for (i = 0; i < MAX_INPUTS(hnode); i++) {
2543 stream = hnode->inputs[i];
2544 free_stream(hnode_mgr, stream);
2546 kfree(hnode->inputs);
2547 hnode->inputs = NULL;
2549 if (hnode->outputs) {
2550 for (i = 0; i < MAX_OUTPUTS(hnode); i++) {
2551 stream = hnode->outputs[i];
2552 free_stream(hnode_mgr, stream);
2554 kfree(hnode->outputs);
2555 hnode->outputs = NULL;
2557 task_arg_obj = hnode->create_args.asa.task_arg_obj;
2558 if (task_arg_obj.strm_in_def) {
2559 for (i = 0; i < MAX_INPUTS(hnode); i++) {
2560 kfree(task_arg_obj.strm_in_def[i].sz_device);
2561 task_arg_obj.strm_in_def[i].sz_device = NULL;
2563 kfree(task_arg_obj.strm_in_def);
2564 task_arg_obj.strm_in_def = NULL;
2566 if (task_arg_obj.strm_out_def) {
2567 for (i = 0; i < MAX_OUTPUTS(hnode); i++) {
2568 kfree(task_arg_obj.strm_out_def[i].sz_device);
2569 task_arg_obj.strm_out_def[i].sz_device = NULL;
2571 kfree(task_arg_obj.strm_out_def);
2572 task_arg_obj.strm_out_def = NULL;
2574 if (task_arg_obj.udsp_heap_res_addr) {
2575 status = proc_un_map(hnode->hprocessor, (void *)
2576 task_arg_obj.udsp_heap_addr,
2577 pr_ctxt);
2579 status = proc_un_reserve_memory(hnode->hprocessor,
2580 (void *)
2581 task_arg_obj.
2582 udsp_heap_res_addr,
2583 pr_ctxt);
2584 #ifdef DSP_DMM_DEBUG
2585 status = dmm_get_handle(p_proc_object, &dmm_mgr);
2586 if (dmm_mgr)
2587 dmm_mem_map_dump(dmm_mgr);
2588 else
2589 status = DSP_EHANDLE;
2590 #endif
2593 if (node_type != NODE_MESSAGE) {
2594 kfree(hnode->stream_connect);
2595 hnode->stream_connect = NULL;
2597 kfree(hnode->pstr_dev_name);
2598 hnode->pstr_dev_name = NULL;
2600 if (hnode->ntfy_obj) {
2601 ntfy_delete(hnode->ntfy_obj);
2602 kfree(hnode->ntfy_obj);
2603 hnode->ntfy_obj = NULL;
2606 /* These were allocated in dcd_get_object_def (via node_allocate) */
2607 kfree(hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn);
2608 hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn = NULL;
2610 kfree(hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn);
2611 hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn = NULL;
2613 kfree(hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn);
2614 hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn = NULL;
2616 kfree(hnode->dcd_props.obj_data.node_obj.pstr_i_alg_name);
2617 hnode->dcd_props.obj_data.node_obj.pstr_i_alg_name = NULL;
2619 /* Free all SM address translator resources */
2620 if (xlator) {
2621 (void)cmm_xlator_delete(xlator, true); /* force free */
2622 xlator = NULL;
2625 kfree(hnode->nldr_node_obj);
2626 hnode->nldr_node_obj = NULL;
2627 hnode->hnode_mgr = NULL;
2628 kfree(hnode);
2629 hnode = NULL;
2630 func_end:
2631 return;
2635 * ======== delete_node_mgr ========
2636 * Purpose:
2637 * Frees the node manager.
2639 static void delete_node_mgr(struct node_mgr *hnode_mgr)
2641 struct node_object *hnode;
2643 if (hnode_mgr) {
2644 /* Free resources */
2645 if (hnode_mgr->hdcd_mgr)
2646 dcd_destroy_manager(hnode_mgr->hdcd_mgr);
2648 /* Remove any elements remaining in lists */
2649 if (hnode_mgr->node_list) {
2650 while ((hnode = (struct node_object *)
2651 lst_get_head(hnode_mgr->node_list)))
2652 delete_node(hnode, NULL);
2654 DBC_ASSERT(LST_IS_EMPTY(hnode_mgr->node_list));
2655 kfree(hnode_mgr->node_list);
2657 mutex_destroy(&hnode_mgr->node_mgr_lock);
2658 if (hnode_mgr->ntfy_obj) {
2659 ntfy_delete(hnode_mgr->ntfy_obj);
2660 kfree(hnode_mgr->ntfy_obj);
2663 if (hnode_mgr->pipe_map)
2664 gb_delete(hnode_mgr->pipe_map);
2666 if (hnode_mgr->pipe_done_map)
2667 gb_delete(hnode_mgr->pipe_done_map);
2669 if (hnode_mgr->chnl_map)
2670 gb_delete(hnode_mgr->chnl_map);
2672 if (hnode_mgr->dma_chnl_map)
2673 gb_delete(hnode_mgr->dma_chnl_map);
2675 if (hnode_mgr->zc_chnl_map)
2676 gb_delete(hnode_mgr->zc_chnl_map);
2678 if (hnode_mgr->disp_obj)
2679 disp_delete(hnode_mgr->disp_obj);
2681 if (hnode_mgr->strm_mgr_obj)
2682 strm_delete(hnode_mgr->strm_mgr_obj);
2684 /* Delete the loader */
2685 if (hnode_mgr->nldr_obj)
2686 hnode_mgr->nldr_fxns.pfn_delete(hnode_mgr->nldr_obj);
2688 if (hnode_mgr->loader_init)
2689 hnode_mgr->nldr_fxns.pfn_exit();
2691 kfree(hnode_mgr);
2696 * ======== fill_stream_connect ========
2697 * Purpose:
2698 * Fills stream information.
2700 static void fill_stream_connect(struct node_object *node1,
2701 struct node_object *node2,
2702 u32 stream1, u32 stream2)
2704 u32 strm_index;
2705 struct dsp_streamconnect *strm1 = NULL;
2706 struct dsp_streamconnect *strm2 = NULL;
2707 enum node_type node1_type = NODE_TASK;
2708 enum node_type node2_type = NODE_TASK;
2710 node1_type = node_get_type(node1);
2711 node2_type = node_get_type(node2);
2712 if (node1 != (struct node_object *)DSP_HGPPNODE) {
2714 if (node1_type != NODE_DEVICE) {
2715 strm_index = node1->num_inputs +
2716 node1->num_outputs - 1;
2717 strm1 = &(node1->stream_connect[strm_index]);
2718 strm1->cb_struct = sizeof(struct dsp_streamconnect);
2719 strm1->this_node_stream_index = stream1;
2722 if (node2 != (struct node_object *)DSP_HGPPNODE) {
2723 /* NODE == > NODE */
2724 if (node1_type != NODE_DEVICE) {
2725 strm1->connected_node = node2;
2726 strm1->ui_connected_node_id = node2->node_uuid;
2727 strm1->connected_node_stream_index = stream2;
2728 strm1->connect_type = CONNECTTYPE_NODEOUTPUT;
2730 if (node2_type != NODE_DEVICE) {
2731 strm_index = node2->num_inputs +
2732 node2->num_outputs - 1;
2733 strm2 = &(node2->stream_connect[strm_index]);
2734 strm2->cb_struct =
2735 sizeof(struct dsp_streamconnect);
2736 strm2->this_node_stream_index = stream2;
2737 strm2->connected_node = node1;
2738 strm2->ui_connected_node_id = node1->node_uuid;
2739 strm2->connected_node_stream_index = stream1;
2740 strm2->connect_type = CONNECTTYPE_NODEINPUT;
2742 } else if (node1_type != NODE_DEVICE)
2743 strm1->connect_type = CONNECTTYPE_GPPOUTPUT;
2744 } else {
2745 /* GPP == > NODE */
2746 DBC_ASSERT(node2 != (struct node_object *)DSP_HGPPNODE);
2747 strm_index = node2->num_inputs + node2->num_outputs - 1;
2748 strm2 = &(node2->stream_connect[strm_index]);
2749 strm2->cb_struct = sizeof(struct dsp_streamconnect);
2750 strm2->this_node_stream_index = stream2;
2751 strm2->connect_type = CONNECTTYPE_GPPINPUT;
2756 * ======== fill_stream_def ========
2757 * Purpose:
2758 * Fills Stream attributes.
2760 static void fill_stream_def(struct node_object *hnode,
2761 struct node_strmdef *pstrm_def,
2762 struct dsp_strmattr *pattrs)
2764 struct node_mgr *hnode_mgr = hnode->hnode_mgr;
2766 if (pattrs != NULL) {
2767 pstrm_def->num_bufs = pattrs->num_bufs;
2768 pstrm_def->buf_size =
2769 pattrs->buf_size / hnode_mgr->udsp_data_mau_size;
2770 pstrm_def->seg_id = pattrs->seg_id;
2771 pstrm_def->buf_alignment = pattrs->buf_alignment;
2772 pstrm_def->utimeout = pattrs->utimeout;
2773 } else {
2774 pstrm_def->num_bufs = DEFAULTNBUFS;
2775 pstrm_def->buf_size =
2776 DEFAULTBUFSIZE / hnode_mgr->udsp_data_mau_size;
2777 pstrm_def->seg_id = DEFAULTSEGID;
2778 pstrm_def->buf_alignment = DEFAULTALIGNMENT;
2779 pstrm_def->utimeout = DEFAULTTIMEOUT;
2784 * ======== free_stream ========
2785 * Purpose:
2786 * Updates the channel mask and frees the pipe id.
2788 static void free_stream(struct node_mgr *hnode_mgr, struct stream_chnl stream)
2790 /* Free up the pipe id unless other node has not yet been deleted. */
2791 if (stream.type == NODECONNECT) {
2792 if (gb_test(hnode_mgr->pipe_done_map, stream.dev_id)) {
2793 /* The other node has already been deleted */
2794 gb_clear(hnode_mgr->pipe_done_map, stream.dev_id);
2795 gb_clear(hnode_mgr->pipe_map, stream.dev_id);
2796 } else {
2797 /* The other node has not been deleted yet */
2798 gb_set(hnode_mgr->pipe_done_map, stream.dev_id);
2800 } else if (stream.type == HOSTCONNECT) {
2801 if (stream.dev_id < hnode_mgr->ul_num_chnls) {
2802 gb_clear(hnode_mgr->chnl_map, stream.dev_id);
2803 } else if (stream.dev_id < (2 * hnode_mgr->ul_num_chnls)) {
2804 /* dsp-dma */
2805 gb_clear(hnode_mgr->dma_chnl_map, stream.dev_id -
2806 (1 * hnode_mgr->ul_num_chnls));
2807 } else if (stream.dev_id < (3 * hnode_mgr->ul_num_chnls)) {
2808 /* zero-copy */
2809 gb_clear(hnode_mgr->zc_chnl_map, stream.dev_id -
2810 (2 * hnode_mgr->ul_num_chnls));
2816 * ======== get_fxn_address ========
2817 * Purpose:
2818 * Retrieves the address for create, execute or delete phase for a node.
2820 static int get_fxn_address(struct node_object *hnode, u32 * fxn_addr,
2821 u32 phase)
2823 char *pstr_fxn_name = NULL;
2824 struct node_mgr *hnode_mgr = hnode->hnode_mgr;
2825 int status = 0;
2826 DBC_REQUIRE(node_get_type(hnode) == NODE_TASK ||
2827 node_get_type(hnode) == NODE_DAISSOCKET ||
2828 node_get_type(hnode) == NODE_MESSAGE);
2830 switch (phase) {
2831 case CREATEPHASE:
2832 pstr_fxn_name =
2833 hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn;
2834 break;
2835 case EXECUTEPHASE:
2836 pstr_fxn_name =
2837 hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn;
2838 break;
2839 case DELETEPHASE:
2840 pstr_fxn_name =
2841 hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn;
2842 break;
2843 default:
2844 /* Should never get here */
2845 DBC_ASSERT(false);
2846 break;
2849 status =
2850 hnode_mgr->nldr_fxns.pfn_get_fxn_addr(hnode->nldr_node_obj,
2851 pstr_fxn_name, fxn_addr);
2853 return status;
2857 * ======== get_node_info ========
2858 * Purpose:
2859 * Retrieves the node information.
2861 void get_node_info(struct node_object *hnode, struct dsp_nodeinfo *node_info)
2863 u32 i;
2865 DBC_REQUIRE(hnode);
2866 DBC_REQUIRE(node_info != NULL);
2868 node_info->cb_struct = sizeof(struct dsp_nodeinfo);
2869 node_info->nb_node_database_props =
2870 hnode->dcd_props.obj_data.node_obj.ndb_props;
2871 node_info->execution_priority = hnode->prio;
2872 node_info->device_owner = hnode->device_owner;
2873 node_info->number_streams = hnode->num_inputs + hnode->num_outputs;
2874 node_info->node_env = hnode->node_env;
2876 node_info->ns_execution_state = node_get_state(hnode);
2878 /* Copy stream connect data */
2879 for (i = 0; i < hnode->num_inputs + hnode->num_outputs; i++)
2880 node_info->sc_stream_connection[i] = hnode->stream_connect[i];
2885 * ======== get_node_props ========
2886 * Purpose:
2887 * Retrieve node properties.
2889 static int get_node_props(struct dcd_manager *hdcd_mgr,
2890 struct node_object *hnode,
2891 const struct dsp_uuid *node_uuid,
2892 struct dcd_genericobj *dcd_prop)
2894 u32 len;
2895 struct node_msgargs *pmsg_args;
2896 struct node_taskargs *task_arg_obj;
2897 enum node_type node_type = NODE_TASK;
2898 struct dsp_ndbprops *pndb_props =
2899 &(dcd_prop->obj_data.node_obj.ndb_props);
2900 int status = 0;
2901 char sz_uuid[MAXUUIDLEN];
2903 status = dcd_get_object_def(hdcd_mgr, (struct dsp_uuid *)node_uuid,
2904 DSP_DCDNODETYPE, dcd_prop);
2906 if (DSP_SUCCEEDED(status)) {
2907 hnode->ntype = node_type = pndb_props->ntype;
2909 /* Create UUID value to set in registry. */
2910 uuid_uuid_to_string((struct dsp_uuid *)node_uuid, sz_uuid,
2911 MAXUUIDLEN);
2912 dev_dbg(bridge, "(node) UUID: %s\n", sz_uuid);
2914 /* Fill in message args that come from NDB */
2915 if (node_type != NODE_DEVICE) {
2916 pmsg_args = &(hnode->create_args.asa.node_msg_args);
2917 pmsg_args->seg_id =
2918 dcd_prop->obj_data.node_obj.msg_segid;
2919 pmsg_args->notify_type =
2920 dcd_prop->obj_data.node_obj.msg_notify_type;
2921 pmsg_args->max_msgs = pndb_props->message_depth;
2922 dev_dbg(bridge, "(node) Max Number of Messages: 0x%x\n",
2923 pmsg_args->max_msgs);
2924 } else {
2925 /* Copy device name */
2926 DBC_REQUIRE(pndb_props->ac_name);
2927 len = strlen(pndb_props->ac_name);
2928 DBC_ASSERT(len < MAXDEVNAMELEN);
2929 hnode->pstr_dev_name = kzalloc(len + 1, GFP_KERNEL);
2930 if (hnode->pstr_dev_name == NULL) {
2931 status = -ENOMEM;
2932 } else {
2933 strncpy(hnode->pstr_dev_name,
2934 pndb_props->ac_name, len);
2938 if (DSP_SUCCEEDED(status)) {
2939 /* Fill in create args that come from NDB */
2940 if (node_type == NODE_TASK || node_type == NODE_DAISSOCKET) {
2941 task_arg_obj = &(hnode->create_args.asa.task_arg_obj);
2942 task_arg_obj->prio = pndb_props->prio;
2943 task_arg_obj->stack_size = pndb_props->stack_size;
2944 task_arg_obj->sys_stack_size =
2945 pndb_props->sys_stack_size;
2946 task_arg_obj->stack_seg = pndb_props->stack_seg;
2947 dev_dbg(bridge, "(node) Priority: 0x%x Stack Size: "
2948 "0x%x words System Stack Size: 0x%x words "
2949 "Stack Segment: 0x%x profile count : 0x%x\n",
2950 task_arg_obj->prio, task_arg_obj->stack_size,
2951 task_arg_obj->sys_stack_size,
2952 task_arg_obj->stack_seg,
2953 pndb_props->count_profiles);
2957 return status;
2961 * ======== get_proc_props ========
2962 * Purpose:
2963 * Retrieve the processor properties.
2965 static int get_proc_props(struct node_mgr *hnode_mgr,
2966 struct dev_object *hdev_obj)
2968 struct cfg_hostres *host_res;
2969 struct bridge_dev_context *pbridge_context;
2970 int status = 0;
2972 status = dev_get_bridge_context(hdev_obj, &pbridge_context);
2973 if (!pbridge_context)
2974 status = -EFAULT;
2976 if (DSP_SUCCEEDED(status)) {
2977 host_res = pbridge_context->resources;
2978 if (!host_res)
2979 return -EPERM;
2980 hnode_mgr->ul_chnl_offset = host_res->dw_chnl_offset;
2981 hnode_mgr->ul_chnl_buf_size = host_res->dw_chnl_buf_size;
2982 hnode_mgr->ul_num_chnls = host_res->dw_num_chnls;
2985 * PROC will add an API to get dsp_processorinfo.
2986 * Fill in default values for now.
2988 /* TODO -- Instead of hard coding, take from registry */
2989 hnode_mgr->proc_family = 6000;
2990 hnode_mgr->proc_type = 6410;
2991 hnode_mgr->min_pri = DSP_NODE_MIN_PRIORITY;
2992 hnode_mgr->max_pri = DSP_NODE_MAX_PRIORITY;
2993 hnode_mgr->udsp_word_size = DSPWORDSIZE;
2994 hnode_mgr->udsp_data_mau_size = DSPWORDSIZE;
2995 hnode_mgr->udsp_mau_size = 1;
2998 return status;
3002 * ======== node_get_uuid_props ========
3003 * Purpose:
3004 * Fetch Node UUID properties from DCD/DOF file.
3006 int node_get_uuid_props(void *hprocessor,
3007 const struct dsp_uuid *node_uuid,
3008 OUT struct dsp_ndbprops *node_props)
3010 struct node_mgr *hnode_mgr = NULL;
3011 struct dev_object *hdev_obj;
3012 int status = 0;
3013 struct dcd_nodeprops dcd_node_props;
3014 struct dsp_processorstate proc_state;
3016 DBC_REQUIRE(refs > 0);
3017 DBC_REQUIRE(hprocessor != NULL);
3018 DBC_REQUIRE(node_uuid != NULL);
3020 if (hprocessor == NULL || node_uuid == NULL) {
3021 status = -EFAULT;
3022 goto func_end;
3024 status = proc_get_state(hprocessor, &proc_state,
3025 sizeof(struct dsp_processorstate));
3026 if (DSP_FAILED(status))
3027 goto func_end;
3028 /* If processor is in error state then don't attempt
3029 to send the message */
3030 if (proc_state.proc_state == PROC_ERROR) {
3031 status = -EPERM;
3032 goto func_end;
3035 status = proc_get_dev_object(hprocessor, &hdev_obj);
3036 if (hdev_obj) {
3037 status = dev_get_node_manager(hdev_obj, &hnode_mgr);
3038 if (hnode_mgr == NULL) {
3039 status = -EFAULT;
3040 goto func_end;
3045 * Enter the critical section. This is needed because
3046 * dcd_get_object_def will ultimately end up calling dbll_open/close,
3047 * which needs to be protected in order to not corrupt the zlib manager
3048 * (COD).
3050 mutex_lock(&hnode_mgr->node_mgr_lock);
3052 dcd_node_props.pstr_create_phase_fxn = NULL;
3053 dcd_node_props.pstr_execute_phase_fxn = NULL;
3054 dcd_node_props.pstr_delete_phase_fxn = NULL;
3055 dcd_node_props.pstr_i_alg_name = NULL;
3057 status = dcd_get_object_def(hnode_mgr->hdcd_mgr,
3058 (struct dsp_uuid *)node_uuid, DSP_DCDNODETYPE,
3059 (struct dcd_genericobj *)&dcd_node_props);
3061 if (DSP_SUCCEEDED(status)) {
3062 *node_props = dcd_node_props.ndb_props;
3063 kfree(dcd_node_props.pstr_create_phase_fxn);
3065 kfree(dcd_node_props.pstr_execute_phase_fxn);
3067 kfree(dcd_node_props.pstr_delete_phase_fxn);
3069 kfree(dcd_node_props.pstr_i_alg_name);
3071 /* Leave the critical section, we're done. */
3072 mutex_unlock(&hnode_mgr->node_mgr_lock);
3073 func_end:
3074 return status;
3078 * ======== get_rms_fxns ========
3079 * Purpose:
3080 * Retrieve the RMS functions.
3082 static int get_rms_fxns(struct node_mgr *hnode_mgr)
3084 s32 i;
3085 struct dev_object *dev_obj = hnode_mgr->hdev_obj;
3086 int status = 0;
3088 static char *psz_fxns[NUMRMSFXNS] = {
3089 "RMS_queryServer", /* RMSQUERYSERVER */
3090 "RMS_configureServer", /* RMSCONFIGURESERVER */
3091 "RMS_createNode", /* RMSCREATENODE */
3092 "RMS_executeNode", /* RMSEXECUTENODE */
3093 "RMS_deleteNode", /* RMSDELETENODE */
3094 "RMS_changeNodePriority", /* RMSCHANGENODEPRIORITY */
3095 "RMS_readMemory", /* RMSREADMEMORY */
3096 "RMS_writeMemory", /* RMSWRITEMEMORY */
3097 "RMS_copy", /* RMSCOPY */
3100 for (i = 0; i < NUMRMSFXNS; i++) {
3101 status = dev_get_symbol(dev_obj, psz_fxns[i],
3102 &(hnode_mgr->ul_fxn_addrs[i]));
3103 if (DSP_FAILED(status)) {
3104 if (status == -ESPIPE) {
3106 * May be loaded dynamically (in the future),
3107 * but return an error for now.
3109 dev_dbg(bridge, "%s: RMS function: %s currently"
3110 " not loaded\n", __func__, psz_fxns[i]);
3111 } else {
3112 dev_dbg(bridge, "%s: Symbol not found: %s "
3113 "status = 0x%x\n", __func__,
3114 psz_fxns[i], status);
3115 break;
3120 return status;
3124 * ======== ovly ========
3125 * Purpose:
3126 * Called during overlay.Sends command to RMS to copy a block of data.
3128 static u32 ovly(void *priv_ref, u32 dsp_run_addr, u32 dsp_load_addr,
3129 u32 ul_num_bytes, u32 mem_space)
3131 struct node_object *hnode = (struct node_object *)priv_ref;
3132 struct node_mgr *hnode_mgr;
3133 u32 ul_bytes = 0;
3134 u32 ul_size;
3135 u32 ul_timeout;
3136 int status = 0;
3137 struct bridge_dev_context *hbridge_context;
3138 /* Function interface to Bridge driver*/
3139 struct bridge_drv_interface *intf_fxns;
3141 DBC_REQUIRE(hnode);
3143 hnode_mgr = hnode->hnode_mgr;
3145 ul_size = ul_num_bytes / hnode_mgr->udsp_word_size;
3146 ul_timeout = hnode->utimeout;
3148 /* Call new MemCopy function */
3149 intf_fxns = hnode_mgr->intf_fxns;
3150 status = dev_get_bridge_context(hnode_mgr->hdev_obj, &hbridge_context);
3151 if (DSP_SUCCEEDED(status)) {
3152 status =
3153 (*intf_fxns->pfn_brd_mem_copy) (hbridge_context,
3154 dsp_run_addr, dsp_load_addr,
3155 ul_num_bytes, (u32) mem_space);
3156 if (DSP_SUCCEEDED(status))
3157 ul_bytes = ul_num_bytes;
3158 else
3159 pr_debug("%s: failed to copy brd memory, status 0x%x\n",
3160 __func__, status);
3161 } else {
3162 pr_debug("%s: failed to get Bridge context, status 0x%x\n",
3163 __func__, status);
3166 return ul_bytes;
3170 * ======== mem_write ========
3172 static u32 mem_write(void *priv_ref, u32 dsp_add, void *pbuf,
3173 u32 ul_num_bytes, u32 mem_space)
3175 struct node_object *hnode = (struct node_object *)priv_ref;
3176 struct node_mgr *hnode_mgr;
3177 u16 mem_sect_type;
3178 u32 ul_timeout;
3179 int status = 0;
3180 struct bridge_dev_context *hbridge_context;
3181 /* Function interface to Bridge driver */
3182 struct bridge_drv_interface *intf_fxns;
3184 DBC_REQUIRE(hnode);
3185 DBC_REQUIRE(mem_space & DBLL_CODE || mem_space & DBLL_DATA);
3187 hnode_mgr = hnode->hnode_mgr;
3189 ul_timeout = hnode->utimeout;
3190 mem_sect_type = (mem_space & DBLL_CODE) ? RMS_CODE : RMS_DATA;
3192 /* Call new MemWrite function */
3193 intf_fxns = hnode_mgr->intf_fxns;
3194 status = dev_get_bridge_context(hnode_mgr->hdev_obj, &hbridge_context);
3195 status = (*intf_fxns->pfn_brd_mem_write) (hbridge_context, pbuf,
3196 dsp_add, ul_num_bytes, mem_sect_type);
3198 return ul_num_bytes;
3201 #ifdef CONFIG_TIDSPBRIDGE_BACKTRACE
3203 * ======== node_find_addr ========
3205 int node_find_addr(struct node_mgr *node_mgr, u32 sym_addr,
3206 u32 offset_range, void *sym_addr_output, char *sym_name)
3208 struct node_object *node_obj;
3209 int status = -ENOENT;
3210 u32 n;
3212 pr_debug("%s(0x%x, 0x%x, 0x%x, 0x%x, %s)\n", __func__,
3213 (unsigned int) node_mgr,
3214 sym_addr, offset_range,
3215 (unsigned int) sym_addr_output, sym_name);
3217 node_obj = (struct node_object *)(node_mgr->node_list->head.next);
3219 for (n = 0; n < node_mgr->num_nodes; n++) {
3220 status = nldr_find_addr(node_obj->nldr_node_obj, sym_addr,
3221 offset_range, sym_addr_output, sym_name);
3223 if (DSP_SUCCEEDED(status))
3224 break;
3226 node_obj = (struct node_object *) (node_obj->list_elem.next);
3229 return status;
3231 #endif