nfs: Panic when commit fails
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / s2io.c
blob458daa06ed41ebafb0f327be81c289cf1a6e62f5
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <net/tcp.h>
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/io.h>
83 #include <asm/div64.h>
84 #include <asm/irq.h>
86 /* local include */
87 #include "s2io.h"
88 #include "s2io-regs.h"
90 #define DRV_VERSION "2.0.26.25"
92 /* S2io Driver name & version. */
93 static char s2io_driver_name[] = "Neterion";
94 static char s2io_driver_version[] = DRV_VERSION;
96 static int rxd_size[2] = {32,48};
97 static int rxd_count[2] = {127,85};
99 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 int ret;
103 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
104 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106 return ret;
110 * Cards with following subsystem_id have a link state indication
111 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112 * macro below identifies these cards given the subsystem_id.
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115 (dev_type == XFRAME_I_DEVICE) ? \
116 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 static inline int is_s2io_card_up(const struct s2io_nic * sp)
124 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 /* Ethtool related variables and Macros. */
128 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
129 "Register test\t(offline)",
130 "Eeprom test\t(offline)",
131 "Link test\t(online)",
132 "RLDRAM test\t(offline)",
133 "BIST Test\t(offline)"
136 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_frms"},
138 {"tmac_data_octets"},
139 {"tmac_drop_frms"},
140 {"tmac_mcst_frms"},
141 {"tmac_bcst_frms"},
142 {"tmac_pause_ctrl_frms"},
143 {"tmac_ttl_octets"},
144 {"tmac_ucst_frms"},
145 {"tmac_nucst_frms"},
146 {"tmac_any_err_frms"},
147 {"tmac_ttl_less_fb_octets"},
148 {"tmac_vld_ip_octets"},
149 {"tmac_vld_ip"},
150 {"tmac_drop_ip"},
151 {"tmac_icmp"},
152 {"tmac_rst_tcp"},
153 {"tmac_tcp"},
154 {"tmac_udp"},
155 {"rmac_vld_frms"},
156 {"rmac_data_octets"},
157 {"rmac_fcs_err_frms"},
158 {"rmac_drop_frms"},
159 {"rmac_vld_mcst_frms"},
160 {"rmac_vld_bcst_frms"},
161 {"rmac_in_rng_len_err_frms"},
162 {"rmac_out_rng_len_err_frms"},
163 {"rmac_long_frms"},
164 {"rmac_pause_ctrl_frms"},
165 {"rmac_unsup_ctrl_frms"},
166 {"rmac_ttl_octets"},
167 {"rmac_accepted_ucst_frms"},
168 {"rmac_accepted_nucst_frms"},
169 {"rmac_discarded_frms"},
170 {"rmac_drop_events"},
171 {"rmac_ttl_less_fb_octets"},
172 {"rmac_ttl_frms"},
173 {"rmac_usized_frms"},
174 {"rmac_osized_frms"},
175 {"rmac_frag_frms"},
176 {"rmac_jabber_frms"},
177 {"rmac_ttl_64_frms"},
178 {"rmac_ttl_65_127_frms"},
179 {"rmac_ttl_128_255_frms"},
180 {"rmac_ttl_256_511_frms"},
181 {"rmac_ttl_512_1023_frms"},
182 {"rmac_ttl_1024_1518_frms"},
183 {"rmac_ip"},
184 {"rmac_ip_octets"},
185 {"rmac_hdr_err_ip"},
186 {"rmac_drop_ip"},
187 {"rmac_icmp"},
188 {"rmac_tcp"},
189 {"rmac_udp"},
190 {"rmac_err_drp_udp"},
191 {"rmac_xgmii_err_sym"},
192 {"rmac_frms_q0"},
193 {"rmac_frms_q1"},
194 {"rmac_frms_q2"},
195 {"rmac_frms_q3"},
196 {"rmac_frms_q4"},
197 {"rmac_frms_q5"},
198 {"rmac_frms_q6"},
199 {"rmac_frms_q7"},
200 {"rmac_full_q0"},
201 {"rmac_full_q1"},
202 {"rmac_full_q2"},
203 {"rmac_full_q3"},
204 {"rmac_full_q4"},
205 {"rmac_full_q5"},
206 {"rmac_full_q6"},
207 {"rmac_full_q7"},
208 {"rmac_pause_cnt"},
209 {"rmac_xgmii_data_err_cnt"},
210 {"rmac_xgmii_ctrl_err_cnt"},
211 {"rmac_accepted_ip"},
212 {"rmac_err_tcp"},
213 {"rd_req_cnt"},
214 {"new_rd_req_cnt"},
215 {"new_rd_req_rtry_cnt"},
216 {"rd_rtry_cnt"},
217 {"wr_rtry_rd_ack_cnt"},
218 {"wr_req_cnt"},
219 {"new_wr_req_cnt"},
220 {"new_wr_req_rtry_cnt"},
221 {"wr_rtry_cnt"},
222 {"wr_disc_cnt"},
223 {"rd_rtry_wr_ack_cnt"},
224 {"txp_wr_cnt"},
225 {"txd_rd_cnt"},
226 {"txd_wr_cnt"},
227 {"rxd_rd_cnt"},
228 {"rxd_wr_cnt"},
229 {"txf_rd_cnt"},
230 {"rxf_wr_cnt"}
233 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
234 {"rmac_ttl_1519_4095_frms"},
235 {"rmac_ttl_4096_8191_frms"},
236 {"rmac_ttl_8192_max_frms"},
237 {"rmac_ttl_gt_max_frms"},
238 {"rmac_osized_alt_frms"},
239 {"rmac_jabber_alt_frms"},
240 {"rmac_gt_max_alt_frms"},
241 {"rmac_vlan_frms"},
242 {"rmac_len_discard"},
243 {"rmac_fcs_discard"},
244 {"rmac_pf_discard"},
245 {"rmac_da_discard"},
246 {"rmac_red_discard"},
247 {"rmac_rts_discard"},
248 {"rmac_ingm_full_discard"},
249 {"link_fault_cnt"}
252 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
253 {"\n DRIVER STATISTICS"},
254 {"single_bit_ecc_errs"},
255 {"double_bit_ecc_errs"},
256 {"parity_err_cnt"},
257 {"serious_err_cnt"},
258 {"soft_reset_cnt"},
259 {"fifo_full_cnt"},
260 {"ring_0_full_cnt"},
261 {"ring_1_full_cnt"},
262 {"ring_2_full_cnt"},
263 {"ring_3_full_cnt"},
264 {"ring_4_full_cnt"},
265 {"ring_5_full_cnt"},
266 {"ring_6_full_cnt"},
267 {"ring_7_full_cnt"},
268 {"alarm_transceiver_temp_high"},
269 {"alarm_transceiver_temp_low"},
270 {"alarm_laser_bias_current_high"},
271 {"alarm_laser_bias_current_low"},
272 {"alarm_laser_output_power_high"},
273 {"alarm_laser_output_power_low"},
274 {"warn_transceiver_temp_high"},
275 {"warn_transceiver_temp_low"},
276 {"warn_laser_bias_current_high"},
277 {"warn_laser_bias_current_low"},
278 {"warn_laser_output_power_high"},
279 {"warn_laser_output_power_low"},
280 {"lro_aggregated_pkts"},
281 {"lro_flush_both_count"},
282 {"lro_out_of_sequence_pkts"},
283 {"lro_flush_due_to_max_pkts"},
284 {"lro_avg_aggr_pkts"},
285 {"mem_alloc_fail_cnt"},
286 {"pci_map_fail_cnt"},
287 {"watchdog_timer_cnt"},
288 {"mem_allocated"},
289 {"mem_freed"},
290 {"link_up_cnt"},
291 {"link_down_cnt"},
292 {"link_up_time"},
293 {"link_down_time"},
294 {"tx_tcode_buf_abort_cnt"},
295 {"tx_tcode_desc_abort_cnt"},
296 {"tx_tcode_parity_err_cnt"},
297 {"tx_tcode_link_loss_cnt"},
298 {"tx_tcode_list_proc_err_cnt"},
299 {"rx_tcode_parity_err_cnt"},
300 {"rx_tcode_abort_cnt"},
301 {"rx_tcode_parity_abort_cnt"},
302 {"rx_tcode_rda_fail_cnt"},
303 {"rx_tcode_unkn_prot_cnt"},
304 {"rx_tcode_fcs_err_cnt"},
305 {"rx_tcode_buf_size_err_cnt"},
306 {"rx_tcode_rxd_corrupt_cnt"},
307 {"rx_tcode_unkn_err_cnt"},
308 {"tda_err_cnt"},
309 {"pfc_err_cnt"},
310 {"pcc_err_cnt"},
311 {"tti_err_cnt"},
312 {"tpa_err_cnt"},
313 {"sm_err_cnt"},
314 {"lso_err_cnt"},
315 {"mac_tmac_err_cnt"},
316 {"mac_rmac_err_cnt"},
317 {"xgxs_txgxs_err_cnt"},
318 {"xgxs_rxgxs_err_cnt"},
319 {"rc_err_cnt"},
320 {"prc_pcix_err_cnt"},
321 {"rpa_err_cnt"},
322 {"rda_err_cnt"},
323 {"rti_err_cnt"},
324 {"mc_err_cnt"}
327 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
334 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
335 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
337 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
340 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
341 init_timer(&timer); \
342 timer.function = handle; \
343 timer.data = (unsigned long) arg; \
344 mod_timer(&timer, (jiffies + exp)) \
346 /* copy mac addr to def_mac_addr array */
347 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
350 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
351 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
352 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
353 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
354 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 /* Add the vlan */
358 static void s2io_vlan_rx_register(struct net_device *dev,
359 struct vlan_group *grp)
361 int i;
362 struct s2io_nic *nic = netdev_priv(dev);
363 unsigned long flags[MAX_TX_FIFOS];
364 struct mac_info *mac_control = &nic->mac_control;
365 struct config_param *config = &nic->config;
367 for (i = 0; i < config->tx_fifo_num; i++)
368 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
370 nic->vlgrp = grp;
371 for (i = config->tx_fifo_num - 1; i >= 0; i--)
372 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
373 flags[i]);
376 /* Unregister the vlan */
377 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
379 int i;
380 struct s2io_nic *nic = netdev_priv(dev);
381 unsigned long flags[MAX_TX_FIFOS];
382 struct mac_info *mac_control = &nic->mac_control;
383 struct config_param *config = &nic->config;
385 for (i = 0; i < config->tx_fifo_num; i++)
386 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388 if (nic->vlgrp)
389 vlan_group_set_device(nic->vlgrp, vid, NULL);
391 for (i = config->tx_fifo_num - 1; i >= 0; i--)
392 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
393 flags[i]);
397 * Constants to be programmed into the Xena's registers, to configure
398 * the XAUI.
401 #define END_SIGN 0x0
402 static const u64 herc_act_dtx_cfg[] = {
403 /* Set address */
404 0x8000051536750000ULL, 0x80000515367500E0ULL,
405 /* Write data */
406 0x8000051536750004ULL, 0x80000515367500E4ULL,
407 /* Set address */
408 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
409 /* Write data */
410 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
411 /* Set address */
412 0x801205150D440000ULL, 0x801205150D4400E0ULL,
413 /* Write data */
414 0x801205150D440004ULL, 0x801205150D4400E4ULL,
415 /* Set address */
416 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
417 /* Write data */
418 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
419 /* Done */
420 END_SIGN
423 static const u64 xena_dtx_cfg[] = {
424 /* Set address */
425 0x8000051500000000ULL, 0x80000515000000E0ULL,
426 /* Write data */
427 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
428 /* Set address */
429 0x8001051500000000ULL, 0x80010515000000E0ULL,
430 /* Write data */
431 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
432 /* Set address */
433 0x8002051500000000ULL, 0x80020515000000E0ULL,
434 /* Write data */
435 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
436 END_SIGN
440 * Constants for Fixing the MacAddress problem seen mostly on
441 * Alpha machines.
443 static const u64 fix_mac[] = {
444 0x0060000000000000ULL, 0x0060600000000000ULL,
445 0x0040600000000000ULL, 0x0000600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0000600000000000ULL,
457 0x0040600000000000ULL, 0x0060600000000000ULL,
458 END_SIGN
461 MODULE_LICENSE("GPL");
462 MODULE_VERSION(DRV_VERSION);
465 /* Module Loadable parameters. */
466 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
467 S2IO_PARM_INT(rx_ring_num, 1);
468 S2IO_PARM_INT(multiq, 0);
469 S2IO_PARM_INT(rx_ring_mode, 1);
470 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
471 S2IO_PARM_INT(rmac_pause_time, 0x100);
472 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
473 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
474 S2IO_PARM_INT(shared_splits, 0);
475 S2IO_PARM_INT(tmac_util_period, 5);
476 S2IO_PARM_INT(rmac_util_period, 5);
477 S2IO_PARM_INT(l3l4hdr_size, 128);
478 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
479 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
480 /* Frequency of Rx desc syncs expressed as power of 2 */
481 S2IO_PARM_INT(rxsync_frequency, 3);
482 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
483 S2IO_PARM_INT(intr_type, 2);
484 /* Large receive offload feature */
485 static unsigned int lro_enable;
486 module_param_named(lro, lro_enable, uint, 0);
488 /* Max pkts to be aggregated by LRO at one time. If not specified,
489 * aggregation happens until we hit max IP pkt size(64K)
491 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
492 S2IO_PARM_INT(indicate_max_pkts, 0);
494 S2IO_PARM_INT(napi, 1);
495 S2IO_PARM_INT(ufo, 0);
496 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
498 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
499 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
500 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
501 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
502 static unsigned int rts_frm_len[MAX_RX_RINGS] =
503 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505 module_param_array(tx_fifo_len, uint, NULL, 0);
506 module_param_array(rx_ring_sz, uint, NULL, 0);
507 module_param_array(rts_frm_len, uint, NULL, 0);
510 * S2IO device table.
511 * This table lists all the devices that this driver supports.
513 static struct pci_device_id s2io_tbl[] __devinitdata = {
514 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
515 PCI_ANY_ID, PCI_ANY_ID},
516 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
517 PCI_ANY_ID, PCI_ANY_ID},
518 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
519 PCI_ANY_ID, PCI_ANY_ID},
520 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
521 PCI_ANY_ID, PCI_ANY_ID},
522 {0,}
525 MODULE_DEVICE_TABLE(pci, s2io_tbl);
527 static struct pci_error_handlers s2io_err_handler = {
528 .error_detected = s2io_io_error_detected,
529 .slot_reset = s2io_io_slot_reset,
530 .resume = s2io_io_resume,
533 static struct pci_driver s2io_driver = {
534 .name = "S2IO",
535 .id_table = s2io_tbl,
536 .probe = s2io_init_nic,
537 .remove = __devexit_p(s2io_rem_nic),
538 .err_handler = &s2io_err_handler,
541 /* A simplifier macro used both by init and free shared_mem Fns(). */
542 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544 /* netqueue manipulation helper functions */
545 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547 if (!sp->config.multiq) {
548 int i;
550 for (i = 0; i < sp->config.tx_fifo_num; i++)
551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
553 netif_tx_stop_all_queues(sp->dev);
556 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
558 if (!sp->config.multiq)
559 sp->mac_control.fifos[fifo_no].queue_state =
560 FIFO_QUEUE_STOP;
562 netif_tx_stop_all_queues(sp->dev);
565 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
567 if (!sp->config.multiq) {
568 int i;
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
573 netif_tx_start_all_queues(sp->dev);
576 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
578 if (!sp->config.multiq)
579 sp->mac_control.fifos[fifo_no].queue_state =
580 FIFO_QUEUE_START;
582 netif_tx_start_all_queues(sp->dev);
585 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
587 if (!sp->config.multiq) {
588 int i;
590 for (i = 0; i < sp->config.tx_fifo_num; i++)
591 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
593 netif_tx_wake_all_queues(sp->dev);
596 static inline void s2io_wake_tx_queue(
597 struct fifo_info *fifo, int cnt, u8 multiq)
600 if (multiq) {
601 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
602 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
603 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
604 if (netif_queue_stopped(fifo->dev)) {
605 fifo->queue_state = FIFO_QUEUE_START;
606 netif_wake_queue(fifo->dev);
612 * init_shared_mem - Allocation and Initialization of Memory
613 * @nic: Device private variable.
614 * Description: The function allocates all the memory areas shared
615 * between the NIC and the driver. This includes Tx descriptors,
616 * Rx descriptors and the statistics block.
619 static int init_shared_mem(struct s2io_nic *nic)
621 u32 size;
622 void *tmp_v_addr, *tmp_v_addr_next;
623 dma_addr_t tmp_p_addr, tmp_p_addr_next;
624 struct RxD_block *pre_rxd_blk = NULL;
625 int i, j, blk_cnt;
626 int lst_size, lst_per_page;
627 struct net_device *dev = nic->dev;
628 unsigned long tmp;
629 struct buffAdd *ba;
631 struct mac_info *mac_control;
632 struct config_param *config;
633 unsigned long long mem_allocated = 0;
635 mac_control = &nic->mac_control;
636 config = &nic->config;
639 /* Allocation and initialization of TXDLs in FIOFs */
640 size = 0;
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 size += config->tx_cfg[i].fifo_len;
644 if (size > MAX_AVAILABLE_TXDS) {
645 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
646 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
647 return -EINVAL;
650 size = 0;
651 for (i = 0; i < config->tx_fifo_num; i++) {
652 size = config->tx_cfg[i].fifo_len;
654 * Legal values are from 2 to 8192
656 if (size < 2) {
657 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
658 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
659 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
660 "are 2 to 8192\n");
661 return -EINVAL;
665 lst_size = (sizeof(struct TxD) * config->max_txds);
666 lst_per_page = PAGE_SIZE / lst_size;
668 for (i = 0; i < config->tx_fifo_num; i++) {
669 int fifo_len = config->tx_cfg[i].fifo_len;
670 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
671 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
672 GFP_KERNEL);
673 if (!mac_control->fifos[i].list_info) {
674 DBG_PRINT(INFO_DBG,
675 "Malloc failed for list_info\n");
676 return -ENOMEM;
678 mem_allocated += list_holder_size;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
682 lst_per_page);
683 mac_control->fifos[i].tx_curr_put_info.offset = 0;
684 mac_control->fifos[i].tx_curr_put_info.fifo_len =
685 config->tx_cfg[i].fifo_len - 1;
686 mac_control->fifos[i].tx_curr_get_info.offset = 0;
687 mac_control->fifos[i].tx_curr_get_info.fifo_len =
688 config->tx_cfg[i].fifo_len - 1;
689 mac_control->fifos[i].fifo_no = i;
690 mac_control->fifos[i].nic = nic;
691 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
692 mac_control->fifos[i].dev = dev;
694 for (j = 0; j < page_num; j++) {
695 int k = 0;
696 dma_addr_t tmp_p;
697 void *tmp_v;
698 tmp_v = pci_alloc_consistent(nic->pdev,
699 PAGE_SIZE, &tmp_p);
700 if (!tmp_v) {
701 DBG_PRINT(INFO_DBG,
702 "pci_alloc_consistent ");
703 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
704 return -ENOMEM;
706 /* If we got a zero DMA address(can happen on
707 * certain platforms like PPC), reallocate.
708 * Store virtual address of page we don't want,
709 * to be freed later.
711 if (!tmp_p) {
712 mac_control->zerodma_virt_addr = tmp_v;
713 DBG_PRINT(INIT_DBG,
714 "%s: Zero DMA address for TxDL. ", dev->name);
715 DBG_PRINT(INIT_DBG,
716 "Virtual address %p\n", tmp_v);
717 tmp_v = pci_alloc_consistent(nic->pdev,
718 PAGE_SIZE, &tmp_p);
719 if (!tmp_v) {
720 DBG_PRINT(INFO_DBG,
721 "pci_alloc_consistent ");
722 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
723 return -ENOMEM;
725 mem_allocated += PAGE_SIZE;
727 while (k < lst_per_page) {
728 int l = (j * lst_per_page) + k;
729 if (l == config->tx_cfg[i].fifo_len)
730 break;
731 mac_control->fifos[i].list_info[l].list_virt_addr =
732 tmp_v + (k * lst_size);
733 mac_control->fifos[i].list_info[l].list_phy_addr =
734 tmp_p + (k * lst_size);
735 k++;
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 size = config->tx_cfg[i].fifo_len;
742 mac_control->fifos[i].ufo_in_band_v
743 = kcalloc(size, sizeof(u64), GFP_KERNEL);
744 if (!mac_control->fifos[i].ufo_in_band_v)
745 return -ENOMEM;
746 mem_allocated += (size * sizeof(u64));
749 /* Allocation and initialization of RXDs in Rings */
750 size = 0;
751 for (i = 0; i < config->rx_ring_num; i++) {
752 if (config->rx_cfg[i].num_rxd %
753 (rxd_count[nic->rxd_mode] + 1)) {
754 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
755 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
757 DBG_PRINT(ERR_DBG, "RxDs per Block");
758 return FAILURE;
760 size += config->rx_cfg[i].num_rxd;
761 mac_control->rings[i].block_count =
762 config->rx_cfg[i].num_rxd /
763 (rxd_count[nic->rxd_mode] + 1 );
764 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
765 mac_control->rings[i].block_count;
767 if (nic->rxd_mode == RXD_MODE_1)
768 size = (size * (sizeof(struct RxD1)));
769 else
770 size = (size * (sizeof(struct RxD3)));
772 for (i = 0; i < config->rx_ring_num; i++) {
773 mac_control->rings[i].rx_curr_get_info.block_index = 0;
774 mac_control->rings[i].rx_curr_get_info.offset = 0;
775 mac_control->rings[i].rx_curr_get_info.ring_len =
776 config->rx_cfg[i].num_rxd - 1;
777 mac_control->rings[i].rx_curr_put_info.block_index = 0;
778 mac_control->rings[i].rx_curr_put_info.offset = 0;
779 mac_control->rings[i].rx_curr_put_info.ring_len =
780 config->rx_cfg[i].num_rxd - 1;
781 mac_control->rings[i].nic = nic;
782 mac_control->rings[i].ring_no = i;
783 mac_control->rings[i].lro = lro_enable;
785 blk_cnt = config->rx_cfg[i].num_rxd /
786 (rxd_count[nic->rxd_mode] + 1);
787 /* Allocating all the Rx blocks */
788 for (j = 0; j < blk_cnt; j++) {
789 struct rx_block_info *rx_blocks;
790 int l;
792 rx_blocks = &mac_control->rings[i].rx_blocks[j];
793 size = SIZE_OF_BLOCK; //size is always page size
794 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
795 &tmp_p_addr);
796 if (tmp_v_addr == NULL) {
798 * In case of failure, free_shared_mem()
799 * is called, which should free any
800 * memory that was alloced till the
801 * failure happened.
803 rx_blocks->block_virt_addr = tmp_v_addr;
804 return -ENOMEM;
806 mem_allocated += size;
807 memset(tmp_v_addr, 0, size);
808 rx_blocks->block_virt_addr = tmp_v_addr;
809 rx_blocks->block_dma_addr = tmp_p_addr;
810 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
811 rxd_count[nic->rxd_mode],
812 GFP_KERNEL);
813 if (!rx_blocks->rxds)
814 return -ENOMEM;
815 mem_allocated +=
816 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
817 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
818 rx_blocks->rxds[l].virt_addr =
819 rx_blocks->block_virt_addr +
820 (rxd_size[nic->rxd_mode] * l);
821 rx_blocks->rxds[l].dma_addr =
822 rx_blocks->block_dma_addr +
823 (rxd_size[nic->rxd_mode] * l);
826 /* Interlinking all Rx Blocks */
827 for (j = 0; j < blk_cnt; j++) {
828 tmp_v_addr =
829 mac_control->rings[i].rx_blocks[j].block_virt_addr;
830 tmp_v_addr_next =
831 mac_control->rings[i].rx_blocks[(j + 1) %
832 blk_cnt].block_virt_addr;
833 tmp_p_addr =
834 mac_control->rings[i].rx_blocks[j].block_dma_addr;
835 tmp_p_addr_next =
836 mac_control->rings[i].rx_blocks[(j + 1) %
837 blk_cnt].block_dma_addr;
839 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
840 pre_rxd_blk->reserved_2_pNext_RxD_block =
841 (unsigned long) tmp_v_addr_next;
842 pre_rxd_blk->pNext_RxD_Blk_physical =
843 (u64) tmp_p_addr_next;
846 if (nic->rxd_mode == RXD_MODE_3B) {
848 * Allocation of Storages for buffer addresses in 2BUFF mode
849 * and the buffers as well.
851 for (i = 0; i < config->rx_ring_num; i++) {
852 blk_cnt = config->rx_cfg[i].num_rxd /
853 (rxd_count[nic->rxd_mode]+ 1);
854 mac_control->rings[i].ba =
855 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
856 GFP_KERNEL);
857 if (!mac_control->rings[i].ba)
858 return -ENOMEM;
859 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
860 for (j = 0; j < blk_cnt; j++) {
861 int k = 0;
862 mac_control->rings[i].ba[j] =
863 kmalloc((sizeof(struct buffAdd) *
864 (rxd_count[nic->rxd_mode] + 1)),
865 GFP_KERNEL);
866 if (!mac_control->rings[i].ba[j])
867 return -ENOMEM;
868 mem_allocated += (sizeof(struct buffAdd) * \
869 (rxd_count[nic->rxd_mode] + 1));
870 while (k != rxd_count[nic->rxd_mode]) {
871 ba = &mac_control->rings[i].ba[j][k];
873 ba->ba_0_org = (void *) kmalloc
874 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
875 if (!ba->ba_0_org)
876 return -ENOMEM;
877 mem_allocated +=
878 (BUF0_LEN + ALIGN_SIZE);
879 tmp = (unsigned long)ba->ba_0_org;
880 tmp += ALIGN_SIZE;
881 tmp &= ~((unsigned long) ALIGN_SIZE);
882 ba->ba_0 = (void *) tmp;
884 ba->ba_1_org = (void *) kmalloc
885 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
886 if (!ba->ba_1_org)
887 return -ENOMEM;
888 mem_allocated
889 += (BUF1_LEN + ALIGN_SIZE);
890 tmp = (unsigned long) ba->ba_1_org;
891 tmp += ALIGN_SIZE;
892 tmp &= ~((unsigned long) ALIGN_SIZE);
893 ba->ba_1 = (void *) tmp;
894 k++;
900 /* Allocation and initialization of Statistics block */
901 size = sizeof(struct stat_block);
902 mac_control->stats_mem = pci_alloc_consistent
903 (nic->pdev, size, &mac_control->stats_mem_phy);
905 if (!mac_control->stats_mem) {
907 * In case of failure, free_shared_mem() is called, which
908 * should free any memory that was alloced till the
909 * failure happened.
911 return -ENOMEM;
913 mem_allocated += size;
914 mac_control->stats_mem_sz = size;
916 tmp_v_addr = mac_control->stats_mem;
917 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
918 memset(tmp_v_addr, 0, size);
919 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
920 (unsigned long long) tmp_p_addr);
921 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
922 return SUCCESS;
926 * free_shared_mem - Free the allocated Memory
927 * @nic: Device private variable.
928 * Description: This function is to free all memory locations allocated by
929 * the init_shared_mem() function and return it to the kernel.
932 static void free_shared_mem(struct s2io_nic *nic)
934 int i, j, blk_cnt, size;
935 void *tmp_v_addr;
936 dma_addr_t tmp_p_addr;
937 struct mac_info *mac_control;
938 struct config_param *config;
939 int lst_size, lst_per_page;
940 struct net_device *dev;
941 int page_num = 0;
943 if (!nic)
944 return;
946 dev = nic->dev;
948 mac_control = &nic->mac_control;
949 config = &nic->config;
951 lst_size = (sizeof(struct TxD) * config->max_txds);
952 lst_per_page = PAGE_SIZE / lst_size;
954 for (i = 0; i < config->tx_fifo_num; i++) {
955 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
956 lst_per_page);
957 for (j = 0; j < page_num; j++) {
958 int mem_blks = (j * lst_per_page);
959 if (!mac_control->fifos[i].list_info)
960 return;
961 if (!mac_control->fifos[i].list_info[mem_blks].
962 list_virt_addr)
963 break;
964 pci_free_consistent(nic->pdev, PAGE_SIZE,
965 mac_control->fifos[i].
966 list_info[mem_blks].
967 list_virt_addr,
968 mac_control->fifos[i].
969 list_info[mem_blks].
970 list_phy_addr);
971 nic->mac_control.stats_info->sw_stat.mem_freed
972 += PAGE_SIZE;
974 /* If we got a zero DMA address during allocation,
975 * free the page now
977 if (mac_control->zerodma_virt_addr) {
978 pci_free_consistent(nic->pdev, PAGE_SIZE,
979 mac_control->zerodma_virt_addr,
980 (dma_addr_t)0);
981 DBG_PRINT(INIT_DBG,
982 "%s: Freeing TxDL with zero DMA addr. ",
983 dev->name);
984 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
985 mac_control->zerodma_virt_addr);
986 nic->mac_control.stats_info->sw_stat.mem_freed
987 += PAGE_SIZE;
989 kfree(mac_control->fifos[i].list_info);
990 nic->mac_control.stats_info->sw_stat.mem_freed +=
991 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
994 size = SIZE_OF_BLOCK;
995 for (i = 0; i < config->rx_ring_num; i++) {
996 blk_cnt = mac_control->rings[i].block_count;
997 for (j = 0; j < blk_cnt; j++) {
998 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
999 block_virt_addr;
1000 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1001 block_dma_addr;
1002 if (tmp_v_addr == NULL)
1003 break;
1004 pci_free_consistent(nic->pdev, size,
1005 tmp_v_addr, tmp_p_addr);
1006 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1007 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1008 nic->mac_control.stats_info->sw_stat.mem_freed +=
1009 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1013 if (nic->rxd_mode == RXD_MODE_3B) {
1014 /* Freeing buffer storage addresses in 2BUFF mode. */
1015 for (i = 0; i < config->rx_ring_num; i++) {
1016 blk_cnt = config->rx_cfg[i].num_rxd /
1017 (rxd_count[nic->rxd_mode] + 1);
1018 for (j = 0; j < blk_cnt; j++) {
1019 int k = 0;
1020 if (!mac_control->rings[i].ba[j])
1021 continue;
1022 while (k != rxd_count[nic->rxd_mode]) {
1023 struct buffAdd *ba =
1024 &mac_control->rings[i].ba[j][k];
1025 kfree(ba->ba_0_org);
1026 nic->mac_control.stats_info->sw_stat.\
1027 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1028 kfree(ba->ba_1_org);
1029 nic->mac_control.stats_info->sw_stat.\
1030 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1031 k++;
1033 kfree(mac_control->rings[i].ba[j]);
1034 nic->mac_control.stats_info->sw_stat.mem_freed +=
1035 (sizeof(struct buffAdd) *
1036 (rxd_count[nic->rxd_mode] + 1));
1038 kfree(mac_control->rings[i].ba);
1039 nic->mac_control.stats_info->sw_stat.mem_freed +=
1040 (sizeof(struct buffAdd *) * blk_cnt);
1044 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1045 if (mac_control->fifos[i].ufo_in_band_v) {
1046 nic->mac_control.stats_info->sw_stat.mem_freed
1047 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1048 kfree(mac_control->fifos[i].ufo_in_band_v);
1052 if (mac_control->stats_mem) {
1053 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054 mac_control->stats_mem_sz;
1055 pci_free_consistent(nic->pdev,
1056 mac_control->stats_mem_sz,
1057 mac_control->stats_mem,
1058 mac_control->stats_mem_phy);
1063 * s2io_verify_pci_mode -
1066 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1068 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1069 register u64 val64 = 0;
1070 int mode;
1072 val64 = readq(&bar0->pci_mode);
1073 mode = (u8)GET_PCI_MODE(val64);
1075 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1076 return -1; /* Unknown PCI mode */
1077 return mode;
1080 #define NEC_VENID 0x1033
1081 #define NEC_DEVID 0x0125
1082 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1084 struct pci_dev *tdev = NULL;
1085 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1086 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1087 if (tdev->bus == s2io_pdev->bus->parent) {
1088 pci_dev_put(tdev);
1089 return 1;
1093 return 0;
1096 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1098 * s2io_print_pci_mode -
1100 static int s2io_print_pci_mode(struct s2io_nic *nic)
1102 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1103 register u64 val64 = 0;
1104 int mode;
1105 struct config_param *config = &nic->config;
1107 val64 = readq(&bar0->pci_mode);
1108 mode = (u8)GET_PCI_MODE(val64);
1110 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1111 return -1; /* Unknown PCI mode */
1113 config->bus_speed = bus_speed[mode];
1115 if (s2io_on_nec_bridge(nic->pdev)) {
1116 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1117 nic->dev->name);
1118 return mode;
1121 if (val64 & PCI_MODE_32_BITS) {
1122 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1123 } else {
1124 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1127 switch(mode) {
1128 case PCI_MODE_PCI_33:
1129 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1130 break;
1131 case PCI_MODE_PCI_66:
1132 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1133 break;
1134 case PCI_MODE_PCIX_M1_66:
1135 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1136 break;
1137 case PCI_MODE_PCIX_M1_100:
1138 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1139 break;
1140 case PCI_MODE_PCIX_M1_133:
1141 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1142 break;
1143 case PCI_MODE_PCIX_M2_66:
1144 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1145 break;
1146 case PCI_MODE_PCIX_M2_100:
1147 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1148 break;
1149 case PCI_MODE_PCIX_M2_133:
1150 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1151 break;
1152 default:
1153 return -1; /* Unsupported bus speed */
1156 return mode;
1160 * init_tti - Initialization transmit traffic interrupt scheme
1161 * @nic: device private variable
1162 * @link: link status (UP/DOWN) used to enable/disable continuous
1163 * transmit interrupts
1164 * Description: The function configures transmit traffic interrupts
1165 * Return Value: SUCCESS on success and
1166 * '-1' on failure
1169 static int init_tti(struct s2io_nic *nic, int link)
1171 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1172 register u64 val64 = 0;
1173 int i;
1174 struct config_param *config;
1176 config = &nic->config;
1178 for (i = 0; i < config->tx_fifo_num; i++) {
1180 * TTI Initialization. Default Tx timer gets us about
1181 * 250 interrupts per sec. Continuous interrupts are enabled
1182 * by default.
1184 if (nic->device_type == XFRAME_II_DEVICE) {
1185 int count = (nic->config.bus_speed * 125)/2;
1186 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1187 } else
1188 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1190 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1191 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1192 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1193 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1194 if (i == 0)
1195 if (use_continuous_tx_intrs && (link == LINK_UP))
1196 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1197 writeq(val64, &bar0->tti_data1_mem);
1199 if (nic->config.intr_type == MSI_X) {
1200 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1201 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1202 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1203 TTI_DATA2_MEM_TX_UFC_D(0x300);
1204 } else {
1205 if ((nic->config.tx_steering_type ==
1206 TX_DEFAULT_STEERING) &&
1207 (config->tx_fifo_num > 1) &&
1208 (i >= nic->udp_fifo_idx) &&
1209 (i < (nic->udp_fifo_idx +
1210 nic->total_udp_fifos)))
1211 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1212 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1213 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1214 TTI_DATA2_MEM_TX_UFC_D(0x120);
1215 else
1216 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x80);
1222 writeq(val64, &bar0->tti_data2_mem);
1224 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1225 TTI_CMD_MEM_OFFSET(i);
1226 writeq(val64, &bar0->tti_command_mem);
1228 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1229 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1230 return FAILURE;
1233 return SUCCESS;
1237 * init_nic - Initialization of hardware
1238 * @nic: device private variable
1239 * Description: The function sequentially configures every block
1240 * of the H/W from their reset values.
1241 * Return Value: SUCCESS on success and
1242 * '-1' on failure (endian settings incorrect).
1245 static int init_nic(struct s2io_nic *nic)
1247 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1248 struct net_device *dev = nic->dev;
1249 register u64 val64 = 0;
1250 void __iomem *add;
1251 u32 time;
1252 int i, j;
1253 struct mac_info *mac_control;
1254 struct config_param *config;
1255 int dtx_cnt = 0;
1256 unsigned long long mem_share;
1257 int mem_size;
1259 mac_control = &nic->mac_control;
1260 config = &nic->config;
1262 /* to set the swapper controle on the card */
1263 if(s2io_set_swapper(nic)) {
1264 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1265 return -EIO;
1269 * Herc requires EOI to be removed from reset before XGXS, so..
1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 val64 = 0xA500000000ULL;
1273 writeq(val64, &bar0->sw_reset);
1274 msleep(500);
1275 val64 = readq(&bar0->sw_reset);
1278 /* Remove XGXS from reset state */
1279 val64 = 0;
1280 writeq(val64, &bar0->sw_reset);
1281 msleep(500);
1282 val64 = readq(&bar0->sw_reset);
1284 /* Ensure that it's safe to access registers by checking
1285 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1287 if (nic->device_type == XFRAME_II_DEVICE) {
1288 for (i = 0; i < 50; i++) {
1289 val64 = readq(&bar0->adapter_status);
1290 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1291 break;
1292 msleep(10);
1294 if (i == 50)
1295 return -ENODEV;
1298 /* Enable Receiving broadcasts */
1299 add = &bar0->mac_cfg;
1300 val64 = readq(&bar0->mac_cfg);
1301 val64 |= MAC_RMAC_BCAST_ENABLE;
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303 writel((u32) val64, add);
1304 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1305 writel((u32) (val64 >> 32), (add + 4));
1307 /* Read registers in all blocks */
1308 val64 = readq(&bar0->mac_int_mask);
1309 val64 = readq(&bar0->mc_int_mask);
1310 val64 = readq(&bar0->xgxs_int_mask);
1312 /* Set MTU */
1313 val64 = dev->mtu;
1314 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1316 if (nic->device_type & XFRAME_II_DEVICE) {
1317 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1318 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1319 &bar0->dtx_control, UF);
1320 if (dtx_cnt & 0x1)
1321 msleep(1); /* Necessary!! */
1322 dtx_cnt++;
1324 } else {
1325 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 val64 = readq(&bar0->dtx_control);
1329 dtx_cnt++;
1333 /* Tx DMA Initialization */
1334 val64 = 0;
1335 writeq(val64, &bar0->tx_fifo_partition_0);
1336 writeq(val64, &bar0->tx_fifo_partition_1);
1337 writeq(val64, &bar0->tx_fifo_partition_2);
1338 writeq(val64, &bar0->tx_fifo_partition_3);
1341 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1342 val64 |=
1343 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1344 13) | vBIT(config->tx_cfg[i].fifo_priority,
1345 ((j * 32) + 5), 3);
1347 if (i == (config->tx_fifo_num - 1)) {
1348 if (i % 2 == 0)
1349 i++;
1352 switch (i) {
1353 case 1:
1354 writeq(val64, &bar0->tx_fifo_partition_0);
1355 val64 = 0;
1356 j = 0;
1357 break;
1358 case 3:
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 val64 = 0;
1361 j = 0;
1362 break;
1363 case 5:
1364 writeq(val64, &bar0->tx_fifo_partition_2);
1365 val64 = 0;
1366 j = 0;
1367 break;
1368 case 7:
1369 writeq(val64, &bar0->tx_fifo_partition_3);
1370 val64 = 0;
1371 j = 0;
1372 break;
1373 default:
1374 j++;
1375 break;
1380 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1381 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1383 if ((nic->device_type == XFRAME_I_DEVICE) &&
1384 (nic->pdev->revision < 4))
1385 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1387 val64 = readq(&bar0->tx_fifo_partition_0);
1388 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1389 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1392 * Initialization of Tx_PA_CONFIG register to ignore packet
1393 * integrity checking.
1395 val64 = readq(&bar0->tx_pa_cfg);
1396 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1397 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1398 writeq(val64, &bar0->tx_pa_cfg);
1400 /* Rx DMA intialization. */
1401 val64 = 0;
1402 for (i = 0; i < config->rx_ring_num; i++) {
1403 val64 |=
1404 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1407 writeq(val64, &bar0->rx_queue_priority);
1410 * Allocating equal share of memory to all the
1411 * configured Rings.
1413 val64 = 0;
1414 if (nic->device_type & XFRAME_II_DEVICE)
1415 mem_size = 32;
1416 else
1417 mem_size = 64;
1419 for (i = 0; i < config->rx_ring_num; i++) {
1420 switch (i) {
1421 case 0:
1422 mem_share = (mem_size / config->rx_ring_num +
1423 mem_size % config->rx_ring_num);
1424 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1425 continue;
1426 case 1:
1427 mem_share = (mem_size / config->rx_ring_num);
1428 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1429 continue;
1430 case 2:
1431 mem_share = (mem_size / config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1433 continue;
1434 case 3:
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1437 continue;
1438 case 4:
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1441 continue;
1442 case 5:
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1445 continue;
1446 case 6:
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1449 continue;
1450 case 7:
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1453 continue;
1456 writeq(val64, &bar0->rx_queue_cfg);
1459 * Filling Tx round robin registers
1460 * as per the number of FIFOs for equal scheduling priority
1462 switch (config->tx_fifo_num) {
1463 case 1:
1464 val64 = 0x0;
1465 writeq(val64, &bar0->tx_w_round_robin_0);
1466 writeq(val64, &bar0->tx_w_round_robin_1);
1467 writeq(val64, &bar0->tx_w_round_robin_2);
1468 writeq(val64, &bar0->tx_w_round_robin_3);
1469 writeq(val64, &bar0->tx_w_round_robin_4);
1470 break;
1471 case 2:
1472 val64 = 0x0001000100010001ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 val64 = 0x0001000100000000ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 3:
1481 val64 = 0x0001020001020001ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 val64 = 0x0200010200010200ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 val64 = 0x0102000102000102ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_2);
1487 val64 = 0x0001020001020001ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0200010200000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 4:
1493 val64 = 0x0001020300010203ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0001020300000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 5:
1502 val64 = 0x0001020304000102ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 val64 = 0x0304000102030400ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 val64 = 0x0102030400010203ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_2);
1508 val64 = 0x0400010203040001ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_3);
1510 val64 = 0x0203040000000000ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_4);
1512 break;
1513 case 6:
1514 val64 = 0x0001020304050001ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_0);
1516 val64 = 0x0203040500010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_1);
1518 val64 = 0x0405000102030405ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 val64 = 0x0001020304050001ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_3);
1522 val64 = 0x0203040500000000ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_4);
1524 break;
1525 case 7:
1526 val64 = 0x0001020304050600ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_0);
1528 val64 = 0x0102030405060001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_1);
1530 val64 = 0x0203040506000102ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_2);
1532 val64 = 0x0304050600010203ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_3);
1534 val64 = 0x0405060000000000ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_4);
1536 break;
1537 case 8:
1538 val64 = 0x0001020304050607ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_0);
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 writeq(val64, &bar0->tx_w_round_robin_2);
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0001020300000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1548 /* Enable all configured Tx FIFO partitions */
1549 val64 = readq(&bar0->tx_fifo_partition_0);
1550 val64 |= (TX_FIFO_PARTITION_EN);
1551 writeq(val64, &bar0->tx_fifo_partition_0);
1553 /* Filling the Rx round robin registers as per the
1554 * number of Rings and steering based on QoS with
1555 * equal priority.
1557 switch (config->rx_ring_num) {
1558 case 1:
1559 val64 = 0x0;
1560 writeq(val64, &bar0->rx_w_round_robin_0);
1561 writeq(val64, &bar0->rx_w_round_robin_1);
1562 writeq(val64, &bar0->rx_w_round_robin_2);
1563 writeq(val64, &bar0->rx_w_round_robin_3);
1564 writeq(val64, &bar0->rx_w_round_robin_4);
1566 val64 = 0x8080808080808080ULL;
1567 writeq(val64, &bar0->rts_qos_steering);
1568 break;
1569 case 2:
1570 val64 = 0x0001000100010001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 writeq(val64, &bar0->rx_w_round_robin_1);
1573 writeq(val64, &bar0->rx_w_round_robin_2);
1574 writeq(val64, &bar0->rx_w_round_robin_3);
1575 val64 = 0x0001000100000000ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_4);
1578 val64 = 0x8080808040404040ULL;
1579 writeq(val64, &bar0->rts_qos_steering);
1580 break;
1581 case 3:
1582 val64 = 0x0001020001020001ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_0);
1584 val64 = 0x0200010200010200ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_1);
1586 val64 = 0x0102000102000102ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_2);
1588 val64 = 0x0001020001020001ULL;
1589 writeq(val64, &bar0->rx_w_round_robin_3);
1590 val64 = 0x0200010200000000ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_4);
1593 val64 = 0x8080804040402020ULL;
1594 writeq(val64, &bar0->rts_qos_steering);
1595 break;
1596 case 4:
1597 val64 = 0x0001020300010203ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_0);
1599 writeq(val64, &bar0->rx_w_round_robin_1);
1600 writeq(val64, &bar0->rx_w_round_robin_2);
1601 writeq(val64, &bar0->rx_w_round_robin_3);
1602 val64 = 0x0001020300000000ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_4);
1605 val64 = 0x8080404020201010ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1607 break;
1608 case 5:
1609 val64 = 0x0001020304000102ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_0);
1611 val64 = 0x0304000102030400ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_1);
1613 val64 = 0x0102030400010203ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_2);
1615 val64 = 0x0400010203040001ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_3);
1617 val64 = 0x0203040000000000ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_4);
1620 val64 = 0x8080404020201008ULL;
1621 writeq(val64, &bar0->rts_qos_steering);
1622 break;
1623 case 6:
1624 val64 = 0x0001020304050001ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_0);
1626 val64 = 0x0203040500010203ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_1);
1628 val64 = 0x0405000102030405ULL;
1629 writeq(val64, &bar0->rx_w_round_robin_2);
1630 val64 = 0x0001020304050001ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_3);
1632 val64 = 0x0203040500000000ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_4);
1635 val64 = 0x8080404020100804ULL;
1636 writeq(val64, &bar0->rts_qos_steering);
1637 break;
1638 case 7:
1639 val64 = 0x0001020304050600ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_0);
1641 val64 = 0x0102030405060001ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_1);
1643 val64 = 0x0203040506000102ULL;
1644 writeq(val64, &bar0->rx_w_round_robin_2);
1645 val64 = 0x0304050600010203ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_3);
1647 val64 = 0x0405060000000000ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_4);
1650 val64 = 0x8080402010080402ULL;
1651 writeq(val64, &bar0->rts_qos_steering);
1652 break;
1653 case 8:
1654 val64 = 0x0001020304050607ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_0);
1656 writeq(val64, &bar0->rx_w_round_robin_1);
1657 writeq(val64, &bar0->rx_w_round_robin_2);
1658 writeq(val64, &bar0->rx_w_round_robin_3);
1659 val64 = 0x0001020300000000ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_4);
1662 val64 = 0x8040201008040201ULL;
1663 writeq(val64, &bar0->rts_qos_steering);
1664 break;
1667 /* UDP Fix */
1668 val64 = 0;
1669 for (i = 0; i < 8; i++)
1670 writeq(val64, &bar0->rts_frm_len_n[i]);
1672 /* Set the default rts frame length for the rings configured */
1673 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1674 for (i = 0 ; i < config->rx_ring_num ; i++)
1675 writeq(val64, &bar0->rts_frm_len_n[i]);
1677 /* Set the frame length for the configured rings
1678 * desired by the user
1680 for (i = 0; i < config->rx_ring_num; i++) {
1681 /* If rts_frm_len[i] == 0 then it is assumed that user not
1682 * specified frame length steering.
1683 * If the user provides the frame length then program
1684 * the rts_frm_len register for those values or else
1685 * leave it as it is.
1687 if (rts_frm_len[i] != 0) {
1688 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1689 &bar0->rts_frm_len_n[i]);
1693 /* Disable differentiated services steering logic */
1694 for (i = 0; i < 64; i++) {
1695 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1696 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1697 dev->name);
1698 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1699 return -ENODEV;
1703 /* Program statistics memory */
1704 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1706 if (nic->device_type == XFRAME_II_DEVICE) {
1707 val64 = STAT_BC(0x320);
1708 writeq(val64, &bar0->stat_byte_cnt);
1712 * Initializing the sampling rate for the device to calculate the
1713 * bandwidth utilization.
1715 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1716 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1717 writeq(val64, &bar0->mac_link_util);
1720 * Initializing the Transmit and Receive Traffic Interrupt
1721 * Scheme.
1724 /* Initialize TTI */
1725 if (SUCCESS != init_tti(nic, nic->last_link_state))
1726 return -ENODEV;
1728 /* RTI Initialization */
1729 if (nic->device_type == XFRAME_II_DEVICE) {
1731 * Programmed to generate Apprx 500 Intrs per
1732 * second
1734 int count = (nic->config.bus_speed * 125)/4;
1735 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1736 } else
1737 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1738 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1739 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1740 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1742 writeq(val64, &bar0->rti_data1_mem);
1744 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1745 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1746 if (nic->config.intr_type == MSI_X)
1747 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1748 RTI_DATA2_MEM_RX_UFC_D(0x40));
1749 else
1750 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1751 RTI_DATA2_MEM_RX_UFC_D(0x80));
1752 writeq(val64, &bar0->rti_data2_mem);
1754 for (i = 0; i < config->rx_ring_num; i++) {
1755 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1756 | RTI_CMD_MEM_OFFSET(i);
1757 writeq(val64, &bar0->rti_command_mem);
1760 * Once the operation completes, the Strobe bit of the
1761 * command register will be reset. We poll for this
1762 * particular condition. We wait for a maximum of 500ms
1763 * for the operation to complete, if it's not complete
1764 * by then we return error.
1766 time = 0;
1767 while (true) {
1768 val64 = readq(&bar0->rti_command_mem);
1769 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1770 break;
1772 if (time > 10) {
1773 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1774 dev->name);
1775 return -ENODEV;
1777 time++;
1778 msleep(50);
1783 * Initializing proper values as Pause threshold into all
1784 * the 8 Queues on Rx side.
1786 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1789 /* Disable RMAC PAD STRIPPING */
1790 add = &bar0->mac_cfg;
1791 val64 = readq(&bar0->mac_cfg);
1792 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794 writel((u32) (val64), add);
1795 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1796 writel((u32) (val64 >> 32), (add + 4));
1797 val64 = readq(&bar0->mac_cfg);
1799 /* Enable FCS stripping by adapter */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1803 if (nic->device_type == XFRAME_II_DEVICE)
1804 writeq(val64, &bar0->mac_cfg);
1805 else {
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64), add);
1808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809 writel((u32) (val64 >> 32), (add + 4));
1813 * Set the time value to be inserted in the pause frame
1814 * generated by xena.
1816 val64 = readq(&bar0->rmac_pause_cfg);
1817 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1818 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1819 writeq(val64, &bar0->rmac_pause_cfg);
1822 * Set the Threshold Limit for Generating the pause frame
1823 * If the amount of data in any Queue exceeds ratio of
1824 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1825 * pause frame is generated
1827 val64 = 0;
1828 for (i = 0; i < 4; i++) {
1829 val64 |=
1830 (((u64) 0xFF00 | nic->mac_control.
1831 mc_pause_threshold_q0q3)
1832 << (i * 2 * 8));
1834 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1836 val64 = 0;
1837 for (i = 0; i < 4; i++) {
1838 val64 |=
1839 (((u64) 0xFF00 | nic->mac_control.
1840 mc_pause_threshold_q4q7)
1841 << (i * 2 * 8));
1843 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1846 * TxDMA will stop Read request if the number of read split has
1847 * exceeded the limit pointed by shared_splits
1849 val64 = readq(&bar0->pic_control);
1850 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1851 writeq(val64, &bar0->pic_control);
1853 if (nic->config.bus_speed == 266) {
1854 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1855 writeq(0x0, &bar0->read_retry_delay);
1856 writeq(0x0, &bar0->write_retry_delay);
1860 * Programming the Herc to split every write transaction
1861 * that does not start on an ADB to reduce disconnects.
1863 if (nic->device_type == XFRAME_II_DEVICE) {
1864 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1865 MISC_LINK_STABILITY_PRD(3);
1866 writeq(val64, &bar0->misc_control);
1867 val64 = readq(&bar0->pic_control2);
1868 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1869 writeq(val64, &bar0->pic_control2);
1871 if (strstr(nic->product_name, "CX4")) {
1872 val64 = TMAC_AVG_IPG(0x17);
1873 writeq(val64, &bar0->tmac_avg_ipg);
1876 return SUCCESS;
1878 #define LINK_UP_DOWN_INTERRUPT 1
1879 #define MAC_RMAC_ERR_TIMER 2
1881 static int s2io_link_fault_indication(struct s2io_nic *nic)
1883 if (nic->device_type == XFRAME_II_DEVICE)
1884 return LINK_UP_DOWN_INTERRUPT;
1885 else
1886 return MAC_RMAC_ERR_TIMER;
1890 * do_s2io_write_bits - update alarm bits in alarm register
1891 * @value: alarm bits
1892 * @flag: interrupt status
1893 * @addr: address value
1894 * Description: update alarm bits in alarm register
1895 * Return Value:
1896 * NONE.
1898 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1900 u64 temp64;
1902 temp64 = readq(addr);
1904 if(flag == ENABLE_INTRS)
1905 temp64 &= ~((u64) value);
1906 else
1907 temp64 |= ((u64) value);
1908 writeq(temp64, addr);
1911 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 gen_int_mask = 0;
1915 u64 interruptible;
1917 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1918 if (mask & TX_DMA_INTR) {
1920 gen_int_mask |= TXDMA_INT_M;
1922 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1923 TXDMA_PCC_INT | TXDMA_TTI_INT |
1924 TXDMA_LSO_INT | TXDMA_TPA_INT |
1925 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1927 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1928 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1929 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1930 &bar0->pfc_err_mask);
1932 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1933 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1934 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1936 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1937 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1938 PCC_N_SERR | PCC_6_COF_OV_ERR |
1939 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1940 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1941 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1943 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1944 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1946 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1947 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1948 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1949 flag, &bar0->lso_err_mask);
1951 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1952 flag, &bar0->tpa_err_mask);
1954 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1958 if (mask & TX_MAC_INTR) {
1959 gen_int_mask |= TXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1961 &bar0->mac_int_mask);
1962 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1963 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1964 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1965 flag, &bar0->mac_tmac_err_mask);
1968 if (mask & TX_XGXS_INTR) {
1969 gen_int_mask |= TXXGXS_INT_M;
1970 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1971 &bar0->xgxs_int_mask);
1972 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1973 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1974 flag, &bar0->xgxs_txgxs_err_mask);
1977 if (mask & RX_DMA_INTR) {
1978 gen_int_mask |= RXDMA_INT_M;
1979 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1980 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1981 flag, &bar0->rxdma_int_mask);
1982 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1983 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1984 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1985 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1986 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1987 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1988 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1989 &bar0->prc_pcix_err_mask);
1990 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1991 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1992 &bar0->rpa_err_mask);
1993 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1994 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1995 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1996 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1997 flag, &bar0->rda_err_mask);
1998 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1999 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2000 flag, &bar0->rti_err_mask);
2003 if (mask & RX_MAC_INTR) {
2004 gen_int_mask |= RXMAC_INT_M;
2005 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2006 &bar0->mac_int_mask);
2007 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2008 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2009 RMAC_DOUBLE_ECC_ERR;
2010 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2011 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2012 do_s2io_write_bits(interruptible,
2013 flag, &bar0->mac_rmac_err_mask);
2016 if (mask & RX_XGXS_INTR)
2018 gen_int_mask |= RXXGXS_INT_M;
2019 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2020 &bar0->xgxs_int_mask);
2021 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2022 &bar0->xgxs_rxgxs_err_mask);
2025 if (mask & MC_INTR) {
2026 gen_int_mask |= MC_INT_M;
2027 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2028 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2029 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2030 &bar0->mc_err_mask);
2032 nic->general_int_mask = gen_int_mask;
2034 /* Remove this line when alarm interrupts are enabled */
2035 nic->general_int_mask = 0;
2038 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2039 * @nic: device private variable,
2040 * @mask: A mask indicating which Intr block must be modified and,
2041 * @flag: A flag indicating whether to enable or disable the Intrs.
2042 * Description: This function will either disable or enable the interrupts
2043 * depending on the flag argument. The mask argument can be used to
2044 * enable/disable any Intr block.
2045 * Return Value: NONE.
2048 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2050 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2051 register u64 temp64 = 0, intr_mask = 0;
2053 intr_mask = nic->general_int_mask;
2055 /* Top level interrupt classification */
2056 /* PIC Interrupts */
2057 if (mask & TX_PIC_INTR) {
2058 /* Enable PIC Intrs in the general intr mask register */
2059 intr_mask |= TXPIC_INT_M;
2060 if (flag == ENABLE_INTRS) {
2062 * If Hercules adapter enable GPIO otherwise
2063 * disable all PCIX, Flash, MDIO, IIC and GPIO
2064 * interrupts for now.
2065 * TODO
2067 if (s2io_link_fault_indication(nic) ==
2068 LINK_UP_DOWN_INTERRUPT ) {
2069 do_s2io_write_bits(PIC_INT_GPIO, flag,
2070 &bar0->pic_int_mask);
2071 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2072 &bar0->gpio_int_mask);
2073 } else
2074 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2075 } else if (flag == DISABLE_INTRS) {
2077 * Disable PIC Intrs in the general
2078 * intr mask register
2080 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084 /* Tx traffic interrupts */
2085 if (mask & TX_TRAFFIC_INTR) {
2086 intr_mask |= TXTRAFFIC_INT_M;
2087 if (flag == ENABLE_INTRS) {
2089 * Enable all the Tx side interrupts
2090 * writing 0 Enables all 64 TX interrupt levels
2092 writeq(0x0, &bar0->tx_traffic_mask);
2093 } else if (flag == DISABLE_INTRS) {
2095 * Disable Tx Traffic Intrs in the general intr mask
2096 * register.
2098 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2102 /* Rx traffic interrupts */
2103 if (mask & RX_TRAFFIC_INTR) {
2104 intr_mask |= RXTRAFFIC_INT_M;
2105 if (flag == ENABLE_INTRS) {
2106 /* writing 0 Enables all 8 RX interrupt levels */
2107 writeq(0x0, &bar0->rx_traffic_mask);
2108 } else if (flag == DISABLE_INTRS) {
2110 * Disable Rx Traffic Intrs in the general intr mask
2111 * register.
2113 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2117 temp64 = readq(&bar0->general_int_mask);
2118 if (flag == ENABLE_INTRS)
2119 temp64 &= ~((u64) intr_mask);
2120 else
2121 temp64 = DISABLE_ALL_INTRS;
2122 writeq(temp64, &bar0->general_int_mask);
2124 nic->general_int_mask = readq(&bar0->general_int_mask);
2128 * verify_pcc_quiescent- Checks for PCC quiescent state
2129 * Return: 1 If PCC is quiescence
2130 * 0 If PCC is not quiescence
2132 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2134 int ret = 0, herc;
2135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2136 u64 val64 = readq(&bar0->adapter_status);
2138 herc = (sp->device_type == XFRAME_II_DEVICE);
2140 if (flag == false) {
2141 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2142 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2143 ret = 1;
2144 } else {
2145 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2146 ret = 1;
2148 } else {
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2151 ADAPTER_STATUS_RMAC_PCC_IDLE))
2152 ret = 1;
2153 } else {
2154 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2155 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156 ret = 1;
2160 return ret;
2163 * verify_xena_quiescence - Checks whether the H/W is ready
2164 * Description: Returns whether the H/W is ready to go or not. Depending
2165 * on whether adapter enable bit was written or not the comparison
2166 * differs and the calling function passes the input argument flag to
2167 * indicate this.
2168 * Return: 1 If xena is quiescence
2169 * 0 If Xena is not quiescence
2172 static int verify_xena_quiescence(struct s2io_nic *sp)
2174 int mode;
2175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2176 u64 val64 = readq(&bar0->adapter_status);
2177 mode = s2io_verify_pci_mode(sp);
2179 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2180 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2181 return 0;
2183 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2184 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2185 return 0;
2187 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2189 return 0;
2191 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2193 return 0;
2195 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2197 return 0;
2199 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2201 return 0;
2203 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2204 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2205 return 0;
2207 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2208 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2209 return 0;
2213 * In PCI 33 mode, the P_PLL is not used, and therefore,
2214 * the the P_PLL_LOCK bit in the adapter_status register will
2215 * not be asserted.
2217 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2218 sp->device_type == XFRAME_II_DEVICE && mode !=
2219 PCI_MODE_PCI_33) {
2220 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2221 return 0;
2223 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2224 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2225 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2226 return 0;
2228 return 1;
2232 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2233 * @sp: Pointer to device specifc structure
2234 * Description :
2235 * New procedure to clear mac address reading problems on Alpha platforms
2239 static void fix_mac_address(struct s2io_nic * sp)
2241 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2242 u64 val64;
2243 int i = 0;
2245 while (fix_mac[i] != END_SIGN) {
2246 writeq(fix_mac[i++], &bar0->gpio_control);
2247 udelay(10);
2248 val64 = readq(&bar0->gpio_control);
2253 * start_nic - Turns the device on
2254 * @nic : device private variable.
2255 * Description:
2256 * This function actually turns the device on. Before this function is
2257 * called,all Registers are configured from their reset states
2258 * and shared memory is allocated but the NIC is still quiescent. On
2259 * calling this function, the device interrupts are cleared and the NIC is
2260 * literally switched on by writing into the adapter control register.
2261 * Return Value:
2262 * SUCCESS on success and -1 on failure.
2265 static int start_nic(struct s2io_nic *nic)
2267 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2268 struct net_device *dev = nic->dev;
2269 register u64 val64 = 0;
2270 u16 subid, i;
2271 struct mac_info *mac_control;
2272 struct config_param *config;
2274 mac_control = &nic->mac_control;
2275 config = &nic->config;
2277 /* PRC Initialization and configuration */
2278 for (i = 0; i < config->rx_ring_num; i++) {
2279 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2280 &bar0->prc_rxd0_n[i]);
2282 val64 = readq(&bar0->prc_ctrl_n[i]);
2283 if (nic->rxd_mode == RXD_MODE_1)
2284 val64 |= PRC_CTRL_RC_ENABLED;
2285 else
2286 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2287 if (nic->device_type == XFRAME_II_DEVICE)
2288 val64 |= PRC_CTRL_GROUP_READS;
2289 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2290 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2291 writeq(val64, &bar0->prc_ctrl_n[i]);
2294 if (nic->rxd_mode == RXD_MODE_3B) {
2295 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2296 val64 = readq(&bar0->rx_pa_cfg);
2297 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2298 writeq(val64, &bar0->rx_pa_cfg);
2301 if (vlan_tag_strip == 0) {
2302 val64 = readq(&bar0->rx_pa_cfg);
2303 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2304 writeq(val64, &bar0->rx_pa_cfg);
2305 nic->vlan_strip_flag = 0;
2309 * Enabling MC-RLDRAM. After enabling the device, we timeout
2310 * for around 100ms, which is approximately the time required
2311 * for the device to be ready for operation.
2313 val64 = readq(&bar0->mc_rldram_mrs);
2314 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2315 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2316 val64 = readq(&bar0->mc_rldram_mrs);
2318 msleep(100); /* Delay by around 100 ms. */
2320 /* Enabling ECC Protection. */
2321 val64 = readq(&bar0->adapter_control);
2322 val64 &= ~ADAPTER_ECC_EN;
2323 writeq(val64, &bar0->adapter_control);
2326 * Verify if the device is ready to be enabled, if so enable
2327 * it.
2329 val64 = readq(&bar0->adapter_status);
2330 if (!verify_xena_quiescence(nic)) {
2331 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2332 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2333 (unsigned long long) val64);
2334 return FAILURE;
2338 * With some switches, link might be already up at this point.
2339 * Because of this weird behavior, when we enable laser,
2340 * we may not get link. We need to handle this. We cannot
2341 * figure out which switch is misbehaving. So we are forced to
2342 * make a global change.
2345 /* Enabling Laser. */
2346 val64 = readq(&bar0->adapter_control);
2347 val64 |= ADAPTER_EOI_TX_ON;
2348 writeq(val64, &bar0->adapter_control);
2350 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2352 * Dont see link state interrupts initally on some switches,
2353 * so directly scheduling the link state task here.
2355 schedule_work(&nic->set_link_task);
2357 /* SXE-002: Initialize link and activity LED */
2358 subid = nic->pdev->subsystem_device;
2359 if (((subid & 0xFF) >= 0x07) &&
2360 (nic->device_type == XFRAME_I_DEVICE)) {
2361 val64 = readq(&bar0->gpio_control);
2362 val64 |= 0x0000800000000000ULL;
2363 writeq(val64, &bar0->gpio_control);
2364 val64 = 0x0411040400000000ULL;
2365 writeq(val64, (void __iomem *)bar0 + 0x2700);
2368 return SUCCESS;
2371 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2373 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2374 TxD *txdlp, int get_off)
2376 struct s2io_nic *nic = fifo_data->nic;
2377 struct sk_buff *skb;
2378 struct TxD *txds;
2379 u16 j, frg_cnt;
2381 txds = txdlp;
2382 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2383 pci_unmap_single(nic->pdev, (dma_addr_t)
2384 txds->Buffer_Pointer, sizeof(u64),
2385 PCI_DMA_TODEVICE);
2386 txds++;
2389 skb = (struct sk_buff *) ((unsigned long)
2390 txds->Host_Control);
2391 if (!skb) {
2392 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2393 return NULL;
2395 pci_unmap_single(nic->pdev, (dma_addr_t)
2396 txds->Buffer_Pointer,
2397 skb->len - skb->data_len,
2398 PCI_DMA_TODEVICE);
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2400 if (frg_cnt) {
2401 txds++;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2405 break;
2406 pci_unmap_page(nic->pdev, (dma_addr_t)
2407 txds->Buffer_Pointer,
2408 frag->size, PCI_DMA_TODEVICE);
2411 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 return(skb);
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2418 * Description:
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic *nic)
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
2427 struct TxD *txdp;
2428 int i, j;
2429 struct mac_info *mac_control;
2430 struct config_param *config;
2431 int cnt = 0;
2433 mac_control = &nic->mac_control;
2434 config = &nic->config;
2436 for (i = 0; i < config->tx_fifo_num; i++) {
2437 unsigned long flags;
2438 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2439 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2440 txdp = (struct TxD *) \
2441 mac_control->fifos[i].list_info[j].list_virt_addr;
2442 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2443 if (skb) {
2444 nic->mac_control.stats_info->sw_stat.mem_freed
2445 += skb->truesize;
2446 dev_kfree_skb(skb);
2447 cnt++;
2450 DBG_PRINT(INTR_DBG,
2451 "%s:forcibly freeing %d skbs on FIFO%d\n",
2452 dev->name, cnt, i);
2453 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2454 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2462 * Description:
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2465 * Return Value:
2466 * void.
2469 static void stop_nic(struct s2io_nic *nic)
2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 register u64 val64 = 0;
2473 u16 interruptible;
2474 struct mac_info *mac_control;
2475 struct config_param *config;
2477 mac_control = &nic->mac_control;
2478 config = &nic->config;
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483 interruptible |= TX_PIC_INTR;
2484 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64 = readq(&bar0->adapter_control);
2488 val64 &= ~(ADAPTER_CNTL_EN);
2489 writeq(val64, &bar0->adapter_control);
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2498 * Description:
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2503 * 1. single buffer,
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2510 * supported.
2511 * Return Value:
2512 * SUCCESS on success or an appropriate -ve value on failure.
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515 int from_card_up)
2517 struct sk_buff *skb;
2518 struct RxD_t *rxdp;
2519 int off, size, block_no, block_no1;
2520 u32 alloc_tab = 0;
2521 u32 alloc_cnt;
2522 u64 tmp;
2523 struct buffAdd *ba;
2524 struct RxD_t *first_rxdp = NULL;
2525 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526 int rxd_index = 0;
2527 struct RxD1 *rxdp1;
2528 struct RxD3 *rxdp3;
2529 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2531 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2533 block_no1 = ring->rx_curr_get_info.block_index;
2534 while (alloc_tab < alloc_cnt) {
2535 block_no = ring->rx_curr_put_info.block_index;
2537 off = ring->rx_curr_put_info.offset;
2539 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2541 rxd_index = off + 1;
2542 if (block_no)
2543 rxd_index += (block_no * ring->rxd_count);
2545 if ((block_no == block_no1) &&
2546 (off == ring->rx_curr_get_info.offset) &&
2547 (rxdp->Host_Control)) {
2548 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2549 ring->dev->name);
2550 DBG_PRINT(INTR_DBG, " info equated\n");
2551 goto end;
2553 if (off && (off == ring->rxd_count)) {
2554 ring->rx_curr_put_info.block_index++;
2555 if (ring->rx_curr_put_info.block_index ==
2556 ring->block_count)
2557 ring->rx_curr_put_info.block_index = 0;
2558 block_no = ring->rx_curr_put_info.block_index;
2559 off = 0;
2560 ring->rx_curr_put_info.offset = off;
2561 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2562 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2563 ring->dev->name, rxdp);
2567 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2568 ((ring->rxd_mode == RXD_MODE_3B) &&
2569 (rxdp->Control_2 & s2BIT(0)))) {
2570 ring->rx_curr_put_info.offset = off;
2571 goto end;
2573 /* calculate size of skb based on ring mode */
2574 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2575 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576 if (ring->rxd_mode == RXD_MODE_1)
2577 size += NET_IP_ALIGN;
2578 else
2579 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2581 /* allocate skb */
2582 skb = dev_alloc_skb(size);
2583 if(!skb) {
2584 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2585 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2586 if (first_rxdp) {
2587 wmb();
2588 first_rxdp->Control_1 |= RXD_OWN_XENA;
2590 stats->mem_alloc_fail_cnt++;
2592 return -ENOMEM ;
2594 stats->mem_allocated += skb->truesize;
2596 if (ring->rxd_mode == RXD_MODE_1) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1 = (struct RxD1*)rxdp;
2599 memset(rxdp, 0, sizeof(struct RxD1));
2600 skb_reserve(skb, NET_IP_ALIGN);
2601 rxdp1->Buffer0_ptr = pci_map_single
2602 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2608 rxdp->Control_2 =
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long) (skb);
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2618 rxdp3 = (struct RxD3*)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long) skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2635 if (from_card_up) {
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN, PCI_DMA_FROMDEVICE);
2639 if (pci_dma_mapping_error(nic->pdev,
2640 rxdp3->Buffer0_ptr))
2641 goto pci_map_failed;
2642 } else
2643 pci_dma_sync_single_for_device(ring->pdev,
2644 (dma_addr_t) rxdp3->Buffer0_ptr,
2645 BUF0_LEN, PCI_DMA_FROMDEVICE);
2647 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2648 if (ring->rxd_mode == RXD_MODE_3B) {
2649 /* Two buffer mode */
2652 * Buffer2 will have L3/L4 header plus
2653 * L4 payload
2655 rxdp3->Buffer2_ptr = pci_map_single
2656 (ring->pdev, skb->data, ring->mtu + 4,
2657 PCI_DMA_FROMDEVICE);
2659 if (pci_dma_mapping_error(nic->pdev,
2660 rxdp3->Buffer2_ptr))
2661 goto pci_map_failed;
2663 if (from_card_up) {
2664 rxdp3->Buffer1_ptr =
2665 pci_map_single(ring->pdev,
2666 ba->ba_1, BUF1_LEN,
2667 PCI_DMA_FROMDEVICE);
2669 if (pci_dma_mapping_error(nic->pdev,
2670 rxdp3->Buffer1_ptr)) {
2671 pci_unmap_single
2672 (ring->pdev,
2673 (dma_addr_t)(unsigned long)
2674 skb->data,
2675 ring->mtu + 4,
2676 PCI_DMA_FROMDEVICE);
2677 goto pci_map_failed;
2680 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2681 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2682 (ring->mtu + 4);
2684 rxdp->Control_2 |= s2BIT(0);
2685 rxdp->Host_Control = (unsigned long) (skb);
2687 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2688 rxdp->Control_1 |= RXD_OWN_XENA;
2689 off++;
2690 if (off == (ring->rxd_count + 1))
2691 off = 0;
2692 ring->rx_curr_put_info.offset = off;
2694 rxdp->Control_2 |= SET_RXD_MARKER;
2695 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2696 if (first_rxdp) {
2697 wmb();
2698 first_rxdp->Control_1 |= RXD_OWN_XENA;
2700 first_rxdp = rxdp;
2702 ring->rx_bufs_left += 1;
2703 alloc_tab++;
2706 end:
2707 /* Transfer ownership of first descriptor to adapter just before
2708 * exiting. Before that, use memory barrier so that ownership
2709 * and other fields are seen by adapter correctly.
2711 if (first_rxdp) {
2712 wmb();
2713 first_rxdp->Control_1 |= RXD_OWN_XENA;
2716 return SUCCESS;
2717 pci_map_failed:
2718 stats->pci_map_fail_cnt++;
2719 stats->mem_freed += skb->truesize;
2720 dev_kfree_skb_irq(skb);
2721 return -ENOMEM;
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2726 struct net_device *dev = sp->dev;
2727 int j;
2728 struct sk_buff *skb;
2729 struct RxD_t *rxdp;
2730 struct mac_info *mac_control;
2731 struct buffAdd *ba;
2732 struct RxD1 *rxdp1;
2733 struct RxD3 *rxdp3;
2735 mac_control = &sp->mac_control;
2736 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737 rxdp = mac_control->rings[ring_no].
2738 rx_blocks[blk].rxds[j].virt_addr;
2739 skb = (struct sk_buff *)
2740 ((unsigned long) rxdp->Host_Control);
2741 if (!skb) {
2742 continue;
2744 if (sp->rxd_mode == RXD_MODE_1) {
2745 rxdp1 = (struct RxD1*)rxdp;
2746 pci_unmap_single(sp->pdev, (dma_addr_t)
2747 rxdp1->Buffer0_ptr,
2748 dev->mtu +
2749 HEADER_ETHERNET_II_802_3_SIZE
2750 + HEADER_802_2_SIZE +
2751 HEADER_SNAP_SIZE,
2752 PCI_DMA_FROMDEVICE);
2753 memset(rxdp, 0, sizeof(struct RxD1));
2754 } else if(sp->rxd_mode == RXD_MODE_3B) {
2755 rxdp3 = (struct RxD3*)rxdp;
2756 ba = &mac_control->rings[ring_no].
2757 ba[blk][j];
2758 pci_unmap_single(sp->pdev, (dma_addr_t)
2759 rxdp3->Buffer0_ptr,
2760 BUF0_LEN,
2761 PCI_DMA_FROMDEVICE);
2762 pci_unmap_single(sp->pdev, (dma_addr_t)
2763 rxdp3->Buffer1_ptr,
2764 BUF1_LEN,
2765 PCI_DMA_FROMDEVICE);
2766 pci_unmap_single(sp->pdev, (dma_addr_t)
2767 rxdp3->Buffer2_ptr,
2768 dev->mtu + 4,
2769 PCI_DMA_FROMDEVICE);
2770 memset(rxdp, 0, sizeof(struct RxD3));
2772 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2773 dev_kfree_skb(skb);
2774 mac_control->rings[ring_no].rx_bufs_left -= 1;
2779 * free_rx_buffers - Frees all Rx buffers
2780 * @sp: device private variable.
2781 * Description:
2782 * This function will free all Rx buffers allocated by host.
2783 * Return Value:
2784 * NONE.
2787 static void free_rx_buffers(struct s2io_nic *sp)
2789 struct net_device *dev = sp->dev;
2790 int i, blk = 0, buf_cnt = 0;
2791 struct mac_info *mac_control;
2792 struct config_param *config;
2794 mac_control = &sp->mac_control;
2795 config = &sp->config;
2797 for (i = 0; i < config->rx_ring_num; i++) {
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp,i,blk);
2801 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2803 mac_control->rings[i].rx_curr_put_info.offset = 0;
2804 mac_control->rings[i].rx_curr_get_info.offset = 0;
2805 mac_control->rings[i].rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2815 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2817 return 0;
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 struct config_param *config;
2838 struct mac_info *mac_control;
2839 int pkts_processed = 0;
2840 u8 __iomem *addr = NULL;
2841 u8 val8 = 0;
2842 struct s2io_nic *nic = netdev_priv(dev);
2843 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844 int budget_org = budget;
2846 config = &nic->config;
2847 mac_control = &nic->mac_control;
2849 if (unlikely(!is_s2io_card_up(nic)))
2850 return 0;
2852 pkts_processed = rx_intr_handler(ring, budget);
2853 s2io_chk_rx_buffers(nic, ring);
2855 if (pkts_processed < budget_org) {
2856 napi_complete(napi);
2857 /*Re Enable MSI-Rx Vector*/
2858 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2859 addr += 7 - ring->ring_no;
2860 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2861 writeb(val8, addr);
2862 val8 = readb(addr);
2864 return pkts_processed;
2866 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2868 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2869 struct ring_info *ring;
2870 struct config_param *config;
2871 struct mac_info *mac_control;
2872 int pkts_processed = 0;
2873 int ring_pkts_processed, i;
2874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875 int budget_org = budget;
2877 config = &nic->config;
2878 mac_control = &nic->mac_control;
2880 if (unlikely(!is_s2io_card_up(nic)))
2881 return 0;
2883 for (i = 0; i < config->rx_ring_num; i++) {
2884 ring = &mac_control->rings[i];
2885 ring_pkts_processed = rx_intr_handler(ring, budget);
2886 s2io_chk_rx_buffers(nic, ring);
2887 pkts_processed += ring_pkts_processed;
2888 budget -= ring_pkts_processed;
2889 if (budget <= 0)
2890 break;
2892 if (pkts_processed < budget_org) {
2893 napi_complete(napi);
2894 /* Re enable the Rx interrupts for the ring */
2895 writeq(0, &bar0->rx_traffic_mask);
2896 readl(&bar0->rx_traffic_mask);
2898 return pkts_processed;
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2903 * s2io_netpoll - netpoll event handler entry point
2904 * @dev : pointer to the device structure.
2905 * Description:
2906 * This function will be called by upper layer to check for events on the
2907 * interface in situations where interrupts are disabled. It is used for
2908 * specific in-kernel networking tasks, such as remote consoles and kernel
2909 * debugging over the network (example netdump in RedHat).
2911 static void s2io_netpoll(struct net_device *dev)
2913 struct s2io_nic *nic = netdev_priv(dev);
2914 struct mac_info *mac_control;
2915 struct config_param *config;
2916 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2918 int i;
2920 if (pci_channel_offline(nic->pdev))
2921 return;
2923 disable_irq(dev->irq);
2925 mac_control = &nic->mac_control;
2926 config = &nic->config;
2928 writeq(val64, &bar0->rx_traffic_int);
2929 writeq(val64, &bar0->tx_traffic_int);
2931 /* we need to free up the transmitted skbufs or else netpoll will
2932 * run out of skbs and will fail and eventually netpoll application such
2933 * as netdump will fail.
2935 for (i = 0; i < config->tx_fifo_num; i++)
2936 tx_intr_handler(&mac_control->fifos[i]);
2938 /* check for received packet and indicate up to network */
2939 for (i = 0; i < config->rx_ring_num; i++)
2940 rx_intr_handler(&mac_control->rings[i], 0);
2942 for (i = 0; i < config->rx_ring_num; i++) {
2943 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944 -ENOMEM) {
2945 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2947 break;
2950 enable_irq(dev->irq);
2951 return;
2953 #endif
2956 * rx_intr_handler - Rx interrupt handler
2957 * @ring_info: per ring structure.
2958 * @budget: budget for napi processing.
2959 * Description:
2960 * If the interrupt is because of a received frame or if the
2961 * receive ring contains fresh as yet un-processed frames,this function is
2962 * called. It picks out the RxD at which place the last Rx processing had
2963 * stopped and sends the skb to the OSM's Rx handler and then increments
2964 * the offset.
2965 * Return Value:
2966 * No. of napi packets processed.
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2970 int get_block, put_block;
2971 struct rx_curr_get_info get_info, put_info;
2972 struct RxD_t *rxdp;
2973 struct sk_buff *skb;
2974 int pkt_cnt = 0, napi_pkts = 0;
2975 int i;
2976 struct RxD1* rxdp1;
2977 struct RxD3* rxdp3;
2979 get_info = ring_data->rx_curr_get_info;
2980 get_block = get_info.block_index;
2981 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982 put_block = put_info.block_index;
2983 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2985 while (RXD_IS_UP2DT(rxdp)) {
2987 * If your are next to put index then it's
2988 * FIFO full condition
2990 if ((get_block == put_block) &&
2991 (get_info.offset + 1) == put_info.offset) {
2992 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993 ring_data->dev->name);
2994 break;
2996 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997 if (skb == NULL) {
2998 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999 ring_data->dev->name);
3000 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001 return 0;
3003 if (ring_data->rxd_mode == RXD_MODE_1) {
3004 rxdp1 = (struct RxD1*)rxdp;
3005 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006 rxdp1->Buffer0_ptr,
3007 ring_data->mtu +
3008 HEADER_ETHERNET_II_802_3_SIZE +
3009 HEADER_802_2_SIZE +
3010 HEADER_SNAP_SIZE,
3011 PCI_DMA_FROMDEVICE);
3012 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013 rxdp3 = (struct RxD3*)rxdp;
3014 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3015 rxdp3->Buffer0_ptr,
3016 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018 rxdp3->Buffer2_ptr,
3019 ring_data->mtu + 4,
3020 PCI_DMA_FROMDEVICE);
3022 prefetch(skb->data);
3023 rx_osm_handler(ring_data, rxdp);
3024 get_info.offset++;
3025 ring_data->rx_curr_get_info.offset = get_info.offset;
3026 rxdp = ring_data->rx_blocks[get_block].
3027 rxds[get_info.offset].virt_addr;
3028 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029 get_info.offset = 0;
3030 ring_data->rx_curr_get_info.offset = get_info.offset;
3031 get_block++;
3032 if (get_block == ring_data->block_count)
3033 get_block = 0;
3034 ring_data->rx_curr_get_info.block_index = get_block;
3035 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3038 if (ring_data->nic->config.napi) {
3039 budget--;
3040 napi_pkts++;
3041 if (!budget)
3042 break;
3044 pkt_cnt++;
3045 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046 break;
3048 if (ring_data->lro) {
3049 /* Clear all LRO sessions before exiting */
3050 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051 struct lro *lro = &ring_data->lro0_n[i];
3052 if (lro->in_use) {
3053 update_L3L4_header(ring_data->nic, lro);
3054 queue_rx_frame(lro->parent, lro->vlan_tag);
3055 clear_lro_session(lro);
3059 return(napi_pkts);
3063 * tx_intr_handler - Transmit interrupt handler
3064 * @nic : device private variable
3065 * Description:
3066 * If an interrupt was raised to indicate DMA complete of the
3067 * Tx packet, this function is called. It identifies the last TxD
3068 * whose buffer was freed and frees all skbs whose data have already
3069 * DMA'ed into the NICs internal memory.
3070 * Return Value:
3071 * NONE
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3076 struct s2io_nic *nic = fifo_data->nic;
3077 struct tx_curr_get_info get_info, put_info;
3078 struct sk_buff *skb = NULL;
3079 struct TxD *txdlp;
3080 int pkt_cnt = 0;
3081 unsigned long flags = 0;
3082 u8 err_mask;
3084 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085 return;
3087 get_info = fifo_data->tx_curr_get_info;
3088 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3090 list_virt_addr;
3091 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092 (get_info.offset != put_info.offset) &&
3093 (txdlp->Host_Control)) {
3094 /* Check for TxD errors */
3095 if (txdlp->Control_1 & TXD_T_CODE) {
3096 unsigned long long err;
3097 err = txdlp->Control_1 & TXD_T_CODE;
3098 if (err & 0x1) {
3099 nic->mac_control.stats_info->sw_stat.
3100 parity_err_cnt++;
3103 /* update t_code statistics */
3104 err_mask = err >> 48;
3105 switch(err_mask) {
3106 case 2:
3107 nic->mac_control.stats_info->sw_stat.
3108 tx_buf_abort_cnt++;
3109 break;
3111 case 3:
3112 nic->mac_control.stats_info->sw_stat.
3113 tx_desc_abort_cnt++;
3114 break;
3116 case 7:
3117 nic->mac_control.stats_info->sw_stat.
3118 tx_parity_err_cnt++;
3119 break;
3121 case 10:
3122 nic->mac_control.stats_info->sw_stat.
3123 tx_link_loss_cnt++;
3124 break;
3126 case 15:
3127 nic->mac_control.stats_info->sw_stat.
3128 tx_list_proc_err_cnt++;
3129 break;
3133 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3134 if (skb == NULL) {
3135 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3137 __func__);
3138 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139 return;
3141 pkt_cnt++;
3143 /* Updating the statistics block */
3144 nic->dev->stats.tx_bytes += skb->len;
3145 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146 dev_kfree_skb_irq(skb);
3148 get_info.offset++;
3149 if (get_info.offset == get_info.fifo_len + 1)
3150 get_info.offset = 0;
3151 txdlp = (struct TxD *) fifo_data->list_info
3152 [get_info.offset].list_virt_addr;
3153 fifo_data->tx_curr_get_info.offset =
3154 get_info.offset;
3157 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3159 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3163 * s2io_mdio_write - Function to write in to MDIO registers
3164 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165 * @addr : address value
3166 * @value : data value
3167 * @dev : pointer to net_device structure
3168 * Description:
3169 * This function is used to write values to the MDIO registers
3170 * NONE
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3174 u64 val64 = 0x0;
3175 struct s2io_nic *sp = netdev_priv(dev);
3176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3178 //address transaction
3179 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180 | MDIO_MMD_DEV_ADDR(mmd_type)
3181 | MDIO_MMS_PRT_ADDR(0x0);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3187 //Data transaction
3188 val64 = 0x0;
3189 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190 | MDIO_MMD_DEV_ADDR(mmd_type)
3191 | MDIO_MMS_PRT_ADDR(0x0)
3192 | MDIO_MDIO_DATA(value)
3193 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194 writeq(val64, &bar0->mdio_control);
3195 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196 writeq(val64, &bar0->mdio_control);
3197 udelay(100);
3199 val64 = 0x0;
3200 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201 | MDIO_MMD_DEV_ADDR(mmd_type)
3202 | MDIO_MMS_PRT_ADDR(0x0)
3203 | MDIO_OP(MDIO_OP_READ_TRANS);
3204 writeq(val64, &bar0->mdio_control);
3205 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206 writeq(val64, &bar0->mdio_control);
3207 udelay(100);
3212 * s2io_mdio_read - Function to write in to MDIO registers
3213 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214 * @addr : address value
3215 * @dev : pointer to net_device structure
3216 * Description:
3217 * This function is used to read values to the MDIO registers
3218 * NONE
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3222 u64 val64 = 0x0;
3223 u64 rval64 = 0x0;
3224 struct s2io_nic *sp = netdev_priv(dev);
3225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3227 /* address transaction */
3228 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229 | MDIO_MMD_DEV_ADDR(mmd_type)
3230 | MDIO_MMS_PRT_ADDR(0x0);
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3234 udelay(100);
3236 /* Data transaction */
3237 val64 = 0x0;
3238 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239 | MDIO_MMD_DEV_ADDR(mmd_type)
3240 | MDIO_MMS_PRT_ADDR(0x0)
3241 | MDIO_OP(MDIO_OP_READ_TRANS);
3242 writeq(val64, &bar0->mdio_control);
3243 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244 writeq(val64, &bar0->mdio_control);
3245 udelay(100);
3247 /* Read the value from regs */
3248 rval64 = readq(&bar0->mdio_control);
3249 rval64 = rval64 & 0xFFFF0000;
3250 rval64 = rval64 >> 16;
3251 return rval64;
3254 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255 * @counter : couter value to be updated
3256 * @flag : flag to indicate the status
3257 * @type : counter type
3258 * Description:
3259 * This function is to check the status of the xpak counters value
3260 * NONE
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3265 u64 mask = 0x3;
3266 u64 val64;
3267 int i;
3268 for(i = 0; i <index; i++)
3269 mask = mask << 0x2;
3271 if(flag > 0)
3273 *counter = *counter + 1;
3274 val64 = *regs_stat & mask;
3275 val64 = val64 >> (index * 0x2);
3276 val64 = val64 + 1;
3277 if(val64 == 3)
3279 switch(type)
3281 case 1:
3282 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283 "service. Excessive temperatures may "
3284 "result in premature transceiver "
3285 "failure \n");
3286 break;
3287 case 2:
3288 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289 "service Excessive bias currents may "
3290 "indicate imminent laser diode "
3291 "failure \n");
3292 break;
3293 case 3:
3294 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295 "service Excessive laser output "
3296 "power may saturate far-end "
3297 "receiver\n");
3298 break;
3299 default:
3300 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301 "type \n");
3303 val64 = 0x0;
3305 val64 = val64 << (index * 0x2);
3306 *regs_stat = (*regs_stat & (~mask)) | (val64);
3308 } else {
3309 *regs_stat = *regs_stat & (~mask);
3314 * s2io_updt_xpak_counter - Function to update the xpak counters
3315 * @dev : pointer to net_device struct
3316 * Description:
3317 * This function is to upate the status of the xpak counters value
3318 * NONE
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3322 u16 flag = 0x0;
3323 u16 type = 0x0;
3324 u16 val16 = 0x0;
3325 u64 val64 = 0x0;
3326 u64 addr = 0x0;
3328 struct s2io_nic *sp = netdev_priv(dev);
3329 struct stat_block *stat_info = sp->mac_control.stats_info;
3331 /* Check the communication with the MDIO slave */
3332 addr = MDIO_CTRL1;
3333 val64 = 0x0;
3334 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335 if((val64 == 0xFFFF) || (val64 == 0x0000))
3337 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338 "Returned %llx\n", (unsigned long long)val64);
3339 return;
3342 /* Check for the expected value of control reg 1 */
3343 if(val64 != MDIO_CTRL1_SPEED10G)
3345 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3347 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3348 return;
3351 /* Loading the DOM register to MDIO register */
3352 addr = 0xA100;
3353 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3354 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3356 /* Reading the Alarm flags */
3357 addr = 0xA070;
3358 val64 = 0x0;
3359 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3361 flag = CHECKBIT(val64, 0x7);
3362 type = 1;
3363 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364 &stat_info->xpak_stat.xpak_regs_stat,
3365 0x0, flag, type);
3367 if(CHECKBIT(val64, 0x6))
3368 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3370 flag = CHECKBIT(val64, 0x3);
3371 type = 2;
3372 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373 &stat_info->xpak_stat.xpak_regs_stat,
3374 0x2, flag, type);
3376 if(CHECKBIT(val64, 0x2))
3377 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3379 flag = CHECKBIT(val64, 0x1);
3380 type = 3;
3381 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382 &stat_info->xpak_stat.xpak_regs_stat,
3383 0x4, flag, type);
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.alarm_laser_output_power_low++;
3388 /* Reading the Warning flags */
3389 addr = 0xA074;
3390 val64 = 0x0;
3391 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3393 if(CHECKBIT(val64, 0x7))
3394 stat_info->xpak_stat.warn_transceiver_temp_high++;
3396 if(CHECKBIT(val64, 0x6))
3397 stat_info->xpak_stat.warn_transceiver_temp_low++;
3399 if(CHECKBIT(val64, 0x3))
3400 stat_info->xpak_stat.warn_laser_bias_current_high++;
3402 if(CHECKBIT(val64, 0x2))
3403 stat_info->xpak_stat.warn_laser_bias_current_low++;
3405 if(CHECKBIT(val64, 0x1))
3406 stat_info->xpak_stat.warn_laser_output_power_high++;
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.warn_laser_output_power_low++;
3413 * wait_for_cmd_complete - waits for a command to complete.
3414 * @sp : private member of the device structure, which is a pointer to the
3415 * s2io_nic structure.
3416 * Description: Function that waits for a command to Write into RMAC
3417 * ADDR DATA registers to be completed and returns either success or
3418 * error depending on whether the command was complete or not.
3419 * Return value:
3420 * SUCCESS on success and FAILURE on failure.
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424 int bit_state)
3426 int ret = FAILURE, cnt = 0, delay = 1;
3427 u64 val64;
3429 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430 return FAILURE;
3432 do {
3433 val64 = readq(addr);
3434 if (bit_state == S2IO_BIT_RESET) {
3435 if (!(val64 & busy_bit)) {
3436 ret = SUCCESS;
3437 break;
3439 } else {
3440 if (!(val64 & busy_bit)) {
3441 ret = SUCCESS;
3442 break;
3446 if(in_interrupt())
3447 mdelay(delay);
3448 else
3449 msleep(delay);
3451 if (++cnt >= 10)
3452 delay = 50;
3453 } while (cnt < 20);
3454 return ret;
3457 * check_pci_device_id - Checks if the device id is supported
3458 * @id : device id
3459 * Description: Function to check if the pci device id is supported by driver.
3460 * Return value: Actual device id if supported else PCI_ANY_ID
3462 static u16 check_pci_device_id(u16 id)
3464 switch (id) {
3465 case PCI_DEVICE_ID_HERC_WIN:
3466 case PCI_DEVICE_ID_HERC_UNI:
3467 return XFRAME_II_DEVICE;
3468 case PCI_DEVICE_ID_S2IO_UNI:
3469 case PCI_DEVICE_ID_S2IO_WIN:
3470 return XFRAME_I_DEVICE;
3471 default:
3472 return PCI_ANY_ID;
3477 * s2io_reset - Resets the card.
3478 * @sp : private member of the device structure.
3479 * Description: Function to Reset the card. This function then also
3480 * restores the previously saved PCI configuration space registers as
3481 * the card reset also resets the configuration space.
3482 * Return value:
3483 * void.
3486 static void s2io_reset(struct s2io_nic * sp)
3488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489 u64 val64;
3490 u16 subid, pci_cmd;
3491 int i;
3492 u16 val16;
3493 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3496 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497 __func__, sp->dev->name);
3499 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3502 val64 = SW_RESET_ALL;
3503 writeq(val64, &bar0->sw_reset);
3504 if (strstr(sp->product_name, "CX4")) {
3505 msleep(750);
3507 msleep(250);
3508 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3510 /* Restore the PCI state saved during initialization. */
3511 pci_restore_state(sp->pdev);
3512 pci_read_config_word(sp->pdev, 0x2, &val16);
3513 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514 break;
3515 msleep(200);
3518 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3522 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3524 s2io_init_pci(sp);
3526 /* Set swapper to enable I/O register access */
3527 s2io_set_swapper(sp);
3529 /* restore mac_addr entries */
3530 do_s2io_restore_unicast_mc(sp);
3532 /* Restore the MSIX table entries from local variables */
3533 restore_xmsi_data(sp);
3535 /* Clear certain PCI/PCI-X fields after reset */
3536 if (sp->device_type == XFRAME_II_DEVICE) {
3537 /* Clear "detected parity error" bit */
3538 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3540 /* Clearing PCIX Ecc status register */
3541 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3543 /* Clearing PCI_STATUS error reflected here */
3544 writeq(s2BIT(62), &bar0->txpic_int_reg);
3547 /* Reset device statistics maintained by OS */
3548 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3550 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3570 /* SXE-002: Configure link and activity LED to turn it off */
3571 subid = sp->pdev->subsystem_device;
3572 if (((subid & 0xFF) >= 0x07) &&
3573 (sp->device_type == XFRAME_I_DEVICE)) {
3574 val64 = readq(&bar0->gpio_control);
3575 val64 |= 0x0000800000000000ULL;
3576 writeq(val64, &bar0->gpio_control);
3577 val64 = 0x0411040400000000ULL;
3578 writeq(val64, (void __iomem *)bar0 + 0x2700);
3582 * Clear spurious ECC interrupts that would have occured on
3583 * XFRAME II cards after reset.
3585 if (sp->device_type == XFRAME_II_DEVICE) {
3586 val64 = readq(&bar0->pcc_err_reg);
3587 writeq(val64, &bar0->pcc_err_reg);
3590 sp->device_enabled_once = false;
3594 * s2io_set_swapper - to set the swapper controle on the card
3595 * @sp : private member of the device structure,
3596 * pointer to the s2io_nic structure.
3597 * Description: Function to set the swapper control on the card
3598 * correctly depending on the 'endianness' of the system.
3599 * Return value:
3600 * SUCCESS on success and FAILURE on failure.
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3605 struct net_device *dev = sp->dev;
3606 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607 u64 val64, valt, valr;
3610 * Set proper endian settings and verify the same by reading
3611 * the PIF Feed-back register.
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 != 0x0123456789ABCDEFULL) {
3616 int i = 0;
3617 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3618 0x8100008181000081ULL, /* FE=1, SE=0 */
3619 0x4200004242000042ULL, /* FE=0, SE=1 */
3620 0}; /* FE=0, SE=0 */
3622 while(i<4) {
3623 writeq(value[i], &bar0->swapper_ctrl);
3624 val64 = readq(&bar0->pif_rd_swapper_fb);
3625 if (val64 == 0x0123456789ABCDEFULL)
3626 break;
3627 i++;
3629 if (i == 4) {
3630 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631 dev->name);
3632 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633 (unsigned long long) val64);
3634 return FAILURE;
3636 valr = value[i];
3637 } else {
3638 valr = readq(&bar0->swapper_ctrl);
3641 valt = 0x0123456789ABCDEFULL;
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3645 if(val64 != valt) {
3646 int i = 0;
3647 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3648 0x0081810000818100ULL, /* FE=1, SE=0 */
3649 0x0042420000424200ULL, /* FE=0, SE=1 */
3650 0}; /* FE=0, SE=0 */
3652 while(i<4) {
3653 writeq((value[i] | valr), &bar0->swapper_ctrl);
3654 writeq(valt, &bar0->xmsi_address);
3655 val64 = readq(&bar0->xmsi_address);
3656 if(val64 == valt)
3657 break;
3658 i++;
3660 if(i == 4) {
3661 unsigned long long x = val64;
3662 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3664 return FAILURE;
3667 val64 = readq(&bar0->swapper_ctrl);
3668 val64 &= 0xFFFF000000000000ULL;
3670 #ifdef __BIG_ENDIAN
3672 * The device by default set to a big endian format, so a
3673 * big endian driver need not set anything.
3675 val64 |= (SWAPPER_CTRL_TXP_FE |
3676 SWAPPER_CTRL_TXP_SE |
3677 SWAPPER_CTRL_TXD_R_FE |
3678 SWAPPER_CTRL_TXD_W_FE |
3679 SWAPPER_CTRL_TXF_R_FE |
3680 SWAPPER_CTRL_RXD_R_FE |
3681 SWAPPER_CTRL_RXD_W_FE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685 if (sp->config.intr_type == INTA)
3686 val64 |= SWAPPER_CTRL_XMSI_SE;
3687 writeq(val64, &bar0->swapper_ctrl);
3688 #else
3690 * Initially we enable all bits to make it accessible by the
3691 * driver, then we selectively enable only those bits that
3692 * we want to set.
3694 val64 |= (SWAPPER_CTRL_TXP_FE |
3695 SWAPPER_CTRL_TXP_SE |
3696 SWAPPER_CTRL_TXD_R_FE |
3697 SWAPPER_CTRL_TXD_R_SE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXD_W_SE |
3700 SWAPPER_CTRL_TXF_R_FE |
3701 SWAPPER_CTRL_RXD_R_FE |
3702 SWAPPER_CTRL_RXD_R_SE |
3703 SWAPPER_CTRL_RXD_W_FE |
3704 SWAPPER_CTRL_RXD_W_SE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708 if (sp->config.intr_type == INTA)
3709 val64 |= SWAPPER_CTRL_XMSI_SE;
3710 writeq(val64, &bar0->swapper_ctrl);
3711 #endif
3712 val64 = readq(&bar0->swapper_ctrl);
3715 * Verifying if endian settings are accurate by reading a
3716 * feedback register.
3718 val64 = readq(&bar0->pif_rd_swapper_fb);
3719 if (val64 != 0x0123456789ABCDEFULL) {
3720 /* Endian settings are incorrect, calls for another dekko. */
3721 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722 dev->name);
3723 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724 (unsigned long long) val64);
3725 return FAILURE;
3728 return SUCCESS;
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3733 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3734 u64 val64;
3735 int ret = 0, cnt = 0;
3737 do {
3738 val64 = readq(&bar0->xmsi_access);
3739 if (!(val64 & s2BIT(15)))
3740 break;
3741 mdelay(1);
3742 cnt++;
3743 } while(cnt < 5);
3744 if (cnt == 5) {
3745 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746 ret = 1;
3749 return ret;
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3755 u64 val64;
3756 int i, msix_index;
3759 if (nic->device_type == XFRAME_I_DEVICE)
3760 return;
3762 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767 writeq(val64, &bar0->xmsi_access);
3768 if (wait_for_msix_trans(nic, msix_index)) {
3769 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3770 continue;
3775 static void store_xmsi_data(struct s2io_nic *nic)
3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778 u64 val64, addr, data;
3779 int i, msix_index;
3781 if (nic->device_type == XFRAME_I_DEVICE)
3782 return;
3784 /* Store and display */
3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788 writeq(val64, &bar0->xmsi_access);
3789 if (wait_for_msix_trans(nic, msix_index)) {
3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791 continue;
3793 addr = readq(&bar0->xmsi_address);
3794 data = readq(&bar0->xmsi_data);
3795 if (addr && data) {
3796 nic->msix_info[i].addr = addr;
3797 nic->msix_info[i].data = data;
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3804 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3805 u64 rx_mat;
3806 u16 msi_control; /* Temp variable */
3807 int ret, i, j, msix_indx = 1;
3809 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3810 GFP_KERNEL);
3811 if (!nic->entries) {
3812 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3813 __func__);
3814 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3815 return -ENOMEM;
3817 nic->mac_control.stats_info->sw_stat.mem_allocated
3818 += (nic->num_entries * sizeof(struct msix_entry));
3820 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3822 nic->s2io_entries =
3823 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3824 GFP_KERNEL);
3825 if (!nic->s2io_entries) {
3826 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3827 __func__);
3828 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829 kfree(nic->entries);
3830 nic->mac_control.stats_info->sw_stat.mem_freed
3831 += (nic->num_entries * sizeof(struct msix_entry));
3832 return -ENOMEM;
3834 nic->mac_control.stats_info->sw_stat.mem_allocated
3835 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836 memset(nic->s2io_entries, 0,
3837 nic->num_entries * sizeof(struct s2io_msix_entry));
3839 nic->entries[0].entry = 0;
3840 nic->s2io_entries[0].entry = 0;
3841 nic->s2io_entries[0].in_use = MSIX_FLG;
3842 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3845 for (i = 1; i < nic->num_entries; i++) {
3846 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848 nic->s2io_entries[i].arg = NULL;
3849 nic->s2io_entries[i].in_use = 0;
3852 rx_mat = readq(&bar0->rx_mat);
3853 for (j = 0; j < nic->config.rx_ring_num; j++) {
3854 rx_mat |= RX_MAT_SET(j, msix_indx);
3855 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858 msix_indx += 8;
3860 writeq(rx_mat, &bar0->rx_mat);
3861 readq(&bar0->rx_mat);
3863 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864 /* We fail init if error or we get less vectors than min required */
3865 if (ret) {
3866 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3867 kfree(nic->entries);
3868 nic->mac_control.stats_info->sw_stat.mem_freed
3869 += (nic->num_entries * sizeof(struct msix_entry));
3870 kfree(nic->s2io_entries);
3871 nic->mac_control.stats_info->sw_stat.mem_freed
3872 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873 nic->entries = NULL;
3874 nic->s2io_entries = NULL;
3875 return -ENOMEM;
3879 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880 * in the herc NIC. (Temp change, needs to be removed later)
3882 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883 msi_control |= 0x1; /* Enable MSI */
3884 pci_write_config_word(nic->pdev, 0x42, msi_control);
3886 return 0;
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3892 struct s2io_nic *sp = dev_id;
3894 sp->msi_detected = 1;
3895 wake_up(&sp->msi_wait);
3897 return IRQ_HANDLED;
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3903 struct pci_dev *pdev = sp->pdev;
3904 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905 int err;
3906 u64 val64, saved64;
3908 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909 sp->name, sp);
3910 if (err) {
3911 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912 sp->dev->name, pci_name(pdev), pdev->irq);
3913 return err;
3916 init_waitqueue_head (&sp->msi_wait);
3917 sp->msi_detected = 0;
3919 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921 val64 |= SCHED_INT_CTRL_TIMER_EN;
3922 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923 writeq(val64, &bar0->scheduled_int_ctrl);
3925 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3927 if (!sp->msi_detected) {
3928 /* MSI(X) test failed, go back to INTx mode */
3929 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930 "using MSI(X) during test\n", sp->dev->name,
3931 pci_name(pdev));
3933 err = -EOPNOTSUPP;
3936 free_irq(sp->entries[1].vector, sp);
3938 writeq(saved64, &bar0->scheduled_int_ctrl);
3940 return err;
3943 static void remove_msix_isr(struct s2io_nic *sp)
3945 int i;
3946 u16 msi_control;
3948 for (i = 0; i < sp->num_entries; i++) {
3949 if (sp->s2io_entries[i].in_use ==
3950 MSIX_REGISTERED_SUCCESS) {
3951 int vector = sp->entries[i].vector;
3952 void *arg = sp->s2io_entries[i].arg;
3953 free_irq(vector, arg);
3957 kfree(sp->entries);
3958 kfree(sp->s2io_entries);
3959 sp->entries = NULL;
3960 sp->s2io_entries = NULL;
3962 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963 msi_control &= 0xFFFE; /* Disable MSI */
3964 pci_write_config_word(sp->pdev, 0x42, msi_control);
3966 pci_disable_msix(sp->pdev);
3969 static void remove_inta_isr(struct s2io_nic *sp)
3971 struct net_device *dev = sp->dev;
3973 free_irq(sp->pdev->irq, dev);
3976 /* ********************************************************* *
3977 * Functions defined below concern the OS part of the driver *
3978 * ********************************************************* */
3981 * s2io_open - open entry point of the driver
3982 * @dev : pointer to the device structure.
3983 * Description:
3984 * This function is the open entry point of the driver. It mainly calls a
3985 * function to allocate Rx buffers and inserts them into the buffer
3986 * descriptors and then enables the Rx part of the NIC.
3987 * Return value:
3988 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3989 * file on failure.
3992 static int s2io_open(struct net_device *dev)
3994 struct s2io_nic *sp = netdev_priv(dev);
3995 int err = 0;
3998 * Make sure you have link off by default every time
3999 * Nic is initialized
4001 netif_carrier_off(dev);
4002 sp->last_link_state = 0;
4004 /* Initialize H/W and enable interrupts */
4005 err = s2io_card_up(sp);
4006 if (err) {
4007 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008 dev->name);
4009 goto hw_init_failed;
4012 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4014 s2io_card_down(sp);
4015 err = -ENODEV;
4016 goto hw_init_failed;
4018 s2io_start_all_tx_queue(sp);
4019 return 0;
4021 hw_init_failed:
4022 if (sp->config.intr_type == MSI_X) {
4023 if (sp->entries) {
4024 kfree(sp->entries);
4025 sp->mac_control.stats_info->sw_stat.mem_freed
4026 += (sp->num_entries * sizeof(struct msix_entry));
4028 if (sp->s2io_entries) {
4029 kfree(sp->s2io_entries);
4030 sp->mac_control.stats_info->sw_stat.mem_freed
4031 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4034 return err;
4038 * s2io_close -close entry point of the driver
4039 * @dev : device pointer.
4040 * Description:
4041 * This is the stop entry point of the driver. It needs to undo exactly
4042 * whatever was done by the open entry point,thus it's usually referred to
4043 * as the close function.Among other things this function mainly stops the
4044 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045 * Return value:
4046 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4047 * file on failure.
4050 static int s2io_close(struct net_device *dev)
4052 struct s2io_nic *sp = netdev_priv(dev);
4053 struct config_param *config = &sp->config;
4054 u64 tmp64;
4055 int offset;
4057 /* Return if the device is already closed *
4058 * Can happen when s2io_card_up failed in change_mtu *
4060 if (!is_s2io_card_up(sp))
4061 return 0;
4063 s2io_stop_all_tx_queue(sp);
4064 /* delete all populated mac entries */
4065 for (offset = 1; offset < config->max_mc_addr; offset++) {
4066 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068 do_s2io_delete_unicast_mc(sp, tmp64);
4071 s2io_card_down(sp);
4073 return 0;
4077 * s2io_xmit - Tx entry point of te driver
4078 * @skb : the socket buffer containing the Tx data.
4079 * @dev : device pointer.
4080 * Description :
4081 * This function is the Tx entry point of the driver. S2IO NIC supports
4082 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4083 * NOTE: when device cant queue the pkt,just the trans_start variable will
4084 * not be upadted.
4085 * Return value:
4086 * 0 on success & 1 on failure.
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4091 struct s2io_nic *sp = netdev_priv(dev);
4092 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093 register u64 val64;
4094 struct TxD *txdp;
4095 struct TxFIFO_element __iomem *tx_fifo;
4096 unsigned long flags = 0;
4097 u16 vlan_tag = 0;
4098 struct fifo_info *fifo = NULL;
4099 struct mac_info *mac_control;
4100 struct config_param *config;
4101 int do_spin_lock = 1;
4102 int offload_type;
4103 int enable_per_list_interrupt = 0;
4104 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4106 mac_control = &sp->mac_control;
4107 config = &sp->config;
4109 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4111 if (unlikely(skb->len <= 0)) {
4112 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113 dev_kfree_skb_any(skb);
4114 return 0;
4117 if (!is_s2io_card_up(sp)) {
4118 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4119 dev->name);
4120 dev_kfree_skb(skb);
4121 return 0;
4124 queue = 0;
4125 if (sp->vlgrp && vlan_tx_tag_present(skb))
4126 vlan_tag = vlan_tx_tag_get(skb);
4127 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128 if (skb->protocol == htons(ETH_P_IP)) {
4129 struct iphdr *ip;
4130 struct tcphdr *th;
4131 ip = ip_hdr(skb);
4133 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134 th = (struct tcphdr *)(((unsigned char *)ip) +
4135 ip->ihl*4);
4137 if (ip->protocol == IPPROTO_TCP) {
4138 queue_len = sp->total_tcp_fifos;
4139 queue = (ntohs(th->source) +
4140 ntohs(th->dest)) &
4141 sp->fifo_selector[queue_len - 1];
4142 if (queue >= queue_len)
4143 queue = queue_len - 1;
4144 } else if (ip->protocol == IPPROTO_UDP) {
4145 queue_len = sp->total_udp_fifos;
4146 queue = (ntohs(th->source) +
4147 ntohs(th->dest)) &
4148 sp->fifo_selector[queue_len - 1];
4149 if (queue >= queue_len)
4150 queue = queue_len - 1;
4151 queue += sp->udp_fifo_idx;
4152 if (skb->len > 1024)
4153 enable_per_list_interrupt = 1;
4154 do_spin_lock = 0;
4158 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159 /* get fifo number based on skb->priority value */
4160 queue = config->fifo_mapping
4161 [skb->priority & (MAX_TX_FIFOS - 1)];
4162 fifo = &mac_control->fifos[queue];
4164 if (do_spin_lock)
4165 spin_lock_irqsave(&fifo->tx_lock, flags);
4166 else {
4167 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168 return NETDEV_TX_LOCKED;
4171 if (sp->config.multiq) {
4172 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174 return NETDEV_TX_BUSY;
4176 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193 dev_kfree_skb(skb);
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195 return 0;
4198 offload_type = s2io_offload_type(skb);
4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204 txdp->Control_2 |=
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206 TXD_TX_CKO_UDP_EN);
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214 if (vlan_tag) {
4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4219 frg_len = skb->len - skb->data_len;
4220 if (offload_type == SKB_GSO_UDP) {
4221 int ufo_size;
4223 ufo_size = s2io_udp_mss(skb);
4224 ufo_size &= ~7;
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo->ufo_in_band_v[put_off] =
4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233 fifo->ufo_in_band_v[put_off] =
4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238 fifo->ufo_in_band_v,
4239 sizeof(u64), PCI_DMA_TODEVICE);
4240 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241 goto pci_map_failed;
4242 txdp++;
4245 txdp->Buffer_Pointer = pci_map_single
4246 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248 goto pci_map_failed;
4250 txdp->Host_Control = (unsigned long) skb;
4251 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252 if (offload_type == SKB_GSO_UDP)
4253 txdp->Control_1 |= TXD_UFO_EN;
4255 frg_cnt = skb_shinfo(skb)->nr_frags;
4256 /* For fragmented SKB. */
4257 for (i = 0; i < frg_cnt; i++) {
4258 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259 /* A '0' length fragment will be ignored */
4260 if (!frag->size)
4261 continue;
4262 txdp++;
4263 txdp->Buffer_Pointer = (u64) pci_map_page
4264 (sp->pdev, frag->page, frag->page_offset,
4265 frag->size, PCI_DMA_TODEVICE);
4266 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267 if (offload_type == SKB_GSO_UDP)
4268 txdp->Control_1 |= TXD_UFO_EN;
4270 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4272 if (offload_type == SKB_GSO_UDP)
4273 frg_cnt++; /* as Txd0 was used for inband header */
4275 tx_fifo = mac_control->tx_FIFO_start[queue];
4276 val64 = fifo->list_info[put_off].list_phy_addr;
4277 writeq(val64, &tx_fifo->TxDL_Pointer);
4279 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280 TX_FIFO_LAST_LIST);
4281 if (offload_type)
4282 val64 |= TX_FIFO_SPECIAL_FUNC;
4284 writeq(val64, &tx_fifo->List_Control);
4286 mmiowb();
4288 put_off++;
4289 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4290 put_off = 0;
4291 fifo->tx_curr_put_info.offset = put_off;
4293 /* Avoid "put" pointer going beyond "get" pointer */
4294 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4296 DBG_PRINT(TX_DBG,
4297 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298 put_off, get_off);
4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
4301 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4304 if (sp->config.intr_type == MSI_X)
4305 tx_intr_handler(fifo);
4307 return 0;
4308 pci_map_failed:
4309 stats->pci_map_fail_cnt++;
4310 s2io_stop_tx_queue(sp, fifo->fifo_no);
4311 stats->mem_freed += skb->truesize;
4312 dev_kfree_skb(skb);
4313 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4314 return 0;
4317 static void
4318 s2io_alarm_handle(unsigned long data)
4320 struct s2io_nic *sp = (struct s2io_nic *)data;
4321 struct net_device *dev = sp->dev;
4323 s2io_handle_errors(dev);
4324 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4327 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4329 struct ring_info *ring = (struct ring_info *)dev_id;
4330 struct s2io_nic *sp = ring->nic;
4331 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4333 if (unlikely(!is_s2io_card_up(sp)))
4334 return IRQ_HANDLED;
4336 if (sp->config.napi) {
4337 u8 __iomem *addr = NULL;
4338 u8 val8 = 0;
4340 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4341 addr += (7 - ring->ring_no);
4342 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4343 writeb(val8, addr);
4344 val8 = readb(addr);
4345 napi_schedule(&ring->napi);
4346 } else {
4347 rx_intr_handler(ring, 0);
4348 s2io_chk_rx_buffers(sp, ring);
4351 return IRQ_HANDLED;
4354 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4356 int i;
4357 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4358 struct s2io_nic *sp = fifos->nic;
4359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4360 struct config_param *config = &sp->config;
4361 u64 reason;
4363 if (unlikely(!is_s2io_card_up(sp)))
4364 return IRQ_NONE;
4366 reason = readq(&bar0->general_int_status);
4367 if (unlikely(reason == S2IO_MINUS_ONE))
4368 /* Nothing much can be done. Get out */
4369 return IRQ_HANDLED;
4371 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4372 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4374 if (reason & GEN_INTR_TXPIC)
4375 s2io_txpic_intr_handle(sp);
4377 if (reason & GEN_INTR_TXTRAFFIC)
4378 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4380 for (i = 0; i < config->tx_fifo_num; i++)
4381 tx_intr_handler(&fifos[i]);
4383 writeq(sp->general_int_mask, &bar0->general_int_mask);
4384 readl(&bar0->general_int_status);
4385 return IRQ_HANDLED;
4387 /* The interrupt was not raised by us */
4388 return IRQ_NONE;
4391 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4393 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4394 u64 val64;
4396 val64 = readq(&bar0->pic_int_status);
4397 if (val64 & PIC_INT_GPIO) {
4398 val64 = readq(&bar0->gpio_int_reg);
4399 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4400 (val64 & GPIO_INT_REG_LINK_UP)) {
4402 * This is unstable state so clear both up/down
4403 * interrupt and adapter to re-evaluate the link state.
4405 val64 |= GPIO_INT_REG_LINK_DOWN;
4406 val64 |= GPIO_INT_REG_LINK_UP;
4407 writeq(val64, &bar0->gpio_int_reg);
4408 val64 = readq(&bar0->gpio_int_mask);
4409 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4410 GPIO_INT_MASK_LINK_DOWN);
4411 writeq(val64, &bar0->gpio_int_mask);
4413 else if (val64 & GPIO_INT_REG_LINK_UP) {
4414 val64 = readq(&bar0->adapter_status);
4415 /* Enable Adapter */
4416 val64 = readq(&bar0->adapter_control);
4417 val64 |= ADAPTER_CNTL_EN;
4418 writeq(val64, &bar0->adapter_control);
4419 val64 |= ADAPTER_LED_ON;
4420 writeq(val64, &bar0->adapter_control);
4421 if (!sp->device_enabled_once)
4422 sp->device_enabled_once = 1;
4424 s2io_link(sp, LINK_UP);
4426 * unmask link down interrupt and mask link-up
4427 * intr
4429 val64 = readq(&bar0->gpio_int_mask);
4430 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4431 val64 |= GPIO_INT_MASK_LINK_UP;
4432 writeq(val64, &bar0->gpio_int_mask);
4434 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4435 val64 = readq(&bar0->adapter_status);
4436 s2io_link(sp, LINK_DOWN);
4437 /* Link is down so unmaks link up interrupt */
4438 val64 = readq(&bar0->gpio_int_mask);
4439 val64 &= ~GPIO_INT_MASK_LINK_UP;
4440 val64 |= GPIO_INT_MASK_LINK_DOWN;
4441 writeq(val64, &bar0->gpio_int_mask);
4443 /* turn off LED */
4444 val64 = readq(&bar0->adapter_control);
4445 val64 = val64 &(~ADAPTER_LED_ON);
4446 writeq(val64, &bar0->adapter_control);
4449 val64 = readq(&bar0->gpio_int_mask);
4453 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454 * @value: alarm bits
4455 * @addr: address value
4456 * @cnt: counter variable
4457 * Description: Check for alarm and increment the counter
4458 * Return Value:
4459 * 1 - if alarm bit set
4460 * 0 - if alarm bit is not set
4462 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4463 unsigned long long *cnt)
4465 u64 val64;
4466 val64 = readq(addr);
4467 if ( val64 & value ) {
4468 writeq(val64, addr);
4469 (*cnt)++;
4470 return 1;
4472 return 0;
4477 * s2io_handle_errors - Xframe error indication handler
4478 * @nic: device private variable
4479 * Description: Handle alarms such as loss of link, single or
4480 * double ECC errors, critical and serious errors.
4481 * Return Value:
4482 * NONE
4484 static void s2io_handle_errors(void * dev_id)
4486 struct net_device *dev = (struct net_device *) dev_id;
4487 struct s2io_nic *sp = netdev_priv(dev);
4488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489 u64 temp64 = 0,val64=0;
4490 int i = 0;
4492 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4493 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4495 if (!is_s2io_card_up(sp))
4496 return;
4498 if (pci_channel_offline(sp->pdev))
4499 return;
4501 memset(&sw_stat->ring_full_cnt, 0,
4502 sizeof(sw_stat->ring_full_cnt));
4504 /* Handling the XPAK counters update */
4505 if(stats->xpak_timer_count < 72000) {
4506 /* waiting for an hour */
4507 stats->xpak_timer_count++;
4508 } else {
4509 s2io_updt_xpak_counter(dev);
4510 /* reset the count to zero */
4511 stats->xpak_timer_count = 0;
4514 /* Handling link status change error Intr */
4515 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4516 val64 = readq(&bar0->mac_rmac_err_reg);
4517 writeq(val64, &bar0->mac_rmac_err_reg);
4518 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4519 schedule_work(&sp->set_link_task);
4522 /* In case of a serious error, the device will be Reset. */
4523 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4524 &sw_stat->serious_err_cnt))
4525 goto reset;
4527 /* Check for data parity error */
4528 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4529 &sw_stat->parity_err_cnt))
4530 goto reset;
4532 /* Check for ring full counter */
4533 if (sp->device_type == XFRAME_II_DEVICE) {
4534 val64 = readq(&bar0->ring_bump_counter1);
4535 for (i=0; i<4; i++) {
4536 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4537 temp64 >>= 64 - ((i+1)*16);
4538 sw_stat->ring_full_cnt[i] += temp64;
4541 val64 = readq(&bar0->ring_bump_counter2);
4542 for (i=0; i<4; i++) {
4543 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4544 temp64 >>= 64 - ((i+1)*16);
4545 sw_stat->ring_full_cnt[i+4] += temp64;
4549 val64 = readq(&bar0->txdma_int_status);
4550 /*check for pfc_err*/
4551 if (val64 & TXDMA_PFC_INT) {
4552 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4553 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4554 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4555 &sw_stat->pfc_err_cnt))
4556 goto reset;
4557 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4558 &sw_stat->pfc_err_cnt);
4561 /*check for tda_err*/
4562 if (val64 & TXDMA_TDA_INT) {
4563 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4564 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4565 &sw_stat->tda_err_cnt))
4566 goto reset;
4567 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4568 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4570 /*check for pcc_err*/
4571 if (val64 & TXDMA_PCC_INT) {
4572 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4573 | PCC_N_SERR | PCC_6_COF_OV_ERR
4574 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4575 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4576 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4577 &sw_stat->pcc_err_cnt))
4578 goto reset;
4579 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4580 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4583 /*check for tti_err*/
4584 if (val64 & TXDMA_TTI_INT) {
4585 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4586 &sw_stat->tti_err_cnt))
4587 goto reset;
4588 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4589 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4592 /*check for lso_err*/
4593 if (val64 & TXDMA_LSO_INT) {
4594 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4595 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4596 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4597 goto reset;
4598 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4599 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4602 /*check for tpa_err*/
4603 if (val64 & TXDMA_TPA_INT) {
4604 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4605 &sw_stat->tpa_err_cnt))
4606 goto reset;
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4608 &sw_stat->tpa_err_cnt);
4611 /*check for sm_err*/
4612 if (val64 & TXDMA_SM_INT) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
4615 goto reset;
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
4623 goto reset;
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4625 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4644 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4645 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4648 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4651 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4652 &sw_stat->prc_pcix_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4655 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt);
4659 if (val64 & RXDMA_INT_RPA_INT_M) {
4660 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4661 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4662 goto reset;
4663 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4664 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4667 if (val64 & RXDMA_INT_RDA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4670 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4671 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4674 | RDA_MISC_ERR | RDA_PCIX_ERR,
4675 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4678 if (val64 & RXDMA_INT_RTI_INT_M) {
4679 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4680 &sw_stat->rti_err_cnt))
4681 goto reset;
4682 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4683 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4686 val64 = readq(&bar0->mac_int_status);
4687 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4688 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4689 &bar0->mac_rmac_err_reg,
4690 &sw_stat->mac_rmac_err_cnt))
4691 goto reset;
4692 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4693 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4694 &sw_stat->mac_rmac_err_cnt);
4697 val64 = readq(&bar0->xgxs_int_status);
4698 if (val64 & XGXS_INT_STATUS_RXGXS) {
4699 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4700 &bar0->xgxs_rxgxs_err_reg,
4701 &sw_stat->xgxs_rxgxs_err_cnt))
4702 goto reset;
4705 val64 = readq(&bar0->mc_int_status);
4706 if(val64 & MC_INT_STATUS_MC_INT) {
4707 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4708 &sw_stat->mc_err_cnt))
4709 goto reset;
4711 /* Handling Ecc errors */
4712 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4713 writeq(val64, &bar0->mc_err_reg);
4714 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4715 sw_stat->double_ecc_errs++;
4716 if (sp->device_type != XFRAME_II_DEVICE) {
4718 * Reset XframeI only if critical error
4720 if (val64 &
4721 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4722 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4723 goto reset;
4725 } else
4726 sw_stat->single_ecc_errs++;
4729 return;
4731 reset:
4732 s2io_stop_all_tx_queue(sp);
4733 schedule_work(&sp->rst_timer_task);
4734 sw_stat->soft_reset_cnt++;
4735 return;
4739 * s2io_isr - ISR handler of the device .
4740 * @irq: the irq of the device.
4741 * @dev_id: a void pointer to the dev structure of the NIC.
4742 * Description: This function is the ISR handler of the device. It
4743 * identifies the reason for the interrupt and calls the relevant
4744 * service routines. As a contongency measure, this ISR allocates the
4745 * recv buffers, if their numbers are below the panic value which is
4746 * presently set to 25% of the original number of rcv buffers allocated.
4747 * Return value:
4748 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4749 * IRQ_NONE: will be returned if interrupt is not from our device
4751 static irqreturn_t s2io_isr(int irq, void *dev_id)
4753 struct net_device *dev = (struct net_device *) dev_id;
4754 struct s2io_nic *sp = netdev_priv(dev);
4755 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4756 int i;
4757 u64 reason = 0;
4758 struct mac_info *mac_control;
4759 struct config_param *config;
4761 /* Pretend we handled any irq's from a disconnected card */
4762 if (pci_channel_offline(sp->pdev))
4763 return IRQ_NONE;
4765 if (!is_s2io_card_up(sp))
4766 return IRQ_NONE;
4768 mac_control = &sp->mac_control;
4769 config = &sp->config;
4772 * Identify the cause for interrupt and call the appropriate
4773 * interrupt handler. Causes for the interrupt could be;
4774 * 1. Rx of packet.
4775 * 2. Tx complete.
4776 * 3. Link down.
4778 reason = readq(&bar0->general_int_status);
4780 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4781 /* Nothing much can be done. Get out */
4782 return IRQ_HANDLED;
4785 if (reason & (GEN_INTR_RXTRAFFIC |
4786 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4788 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4790 if (config->napi) {
4791 if (reason & GEN_INTR_RXTRAFFIC) {
4792 napi_schedule(&sp->napi);
4793 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4795 readl(&bar0->rx_traffic_int);
4797 } else {
4799 * rx_traffic_int reg is an R1 register, writing all 1's
4800 * will ensure that the actual interrupt causing bit
4801 * get's cleared and hence a read can be avoided.
4803 if (reason & GEN_INTR_RXTRAFFIC)
4804 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4806 for (i = 0; i < config->rx_ring_num; i++)
4807 rx_intr_handler(&mac_control->rings[i], 0);
4811 * tx_traffic_int reg is an R1 register, writing all 1's
4812 * will ensure that the actual interrupt causing bit get's
4813 * cleared and hence a read can be avoided.
4815 if (reason & GEN_INTR_TXTRAFFIC)
4816 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4818 for (i = 0; i < config->tx_fifo_num; i++)
4819 tx_intr_handler(&mac_control->fifos[i]);
4821 if (reason & GEN_INTR_TXPIC)
4822 s2io_txpic_intr_handle(sp);
4825 * Reallocate the buffers from the interrupt handler itself.
4827 if (!config->napi) {
4828 for (i = 0; i < config->rx_ring_num; i++)
4829 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4831 writeq(sp->general_int_mask, &bar0->general_int_mask);
4832 readl(&bar0->general_int_status);
4834 return IRQ_HANDLED;
4837 else if (!reason) {
4838 /* The interrupt was not raised by us */
4839 return IRQ_NONE;
4842 return IRQ_HANDLED;
4846 * s2io_updt_stats -
4848 static void s2io_updt_stats(struct s2io_nic *sp)
4850 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4851 u64 val64;
4852 int cnt = 0;
4854 if (is_s2io_card_up(sp)) {
4855 /* Apprx 30us on a 133 MHz bus */
4856 val64 = SET_UPDT_CLICKS(10) |
4857 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4858 writeq(val64, &bar0->stat_cfg);
4859 do {
4860 udelay(100);
4861 val64 = readq(&bar0->stat_cfg);
4862 if (!(val64 & s2BIT(0)))
4863 break;
4864 cnt++;
4865 if (cnt == 5)
4866 break; /* Updt failed */
4867 } while(1);
4872 * s2io_get_stats - Updates the device statistics structure.
4873 * @dev : pointer to the device structure.
4874 * Description:
4875 * This function updates the device statistics structure in the s2io_nic
4876 * structure and returns a pointer to the same.
4877 * Return value:
4878 * pointer to the updated net_device_stats structure.
4881 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4883 struct s2io_nic *sp = netdev_priv(dev);
4884 struct mac_info *mac_control;
4885 struct config_param *config;
4886 int i;
4889 mac_control = &sp->mac_control;
4890 config = &sp->config;
4892 /* Configure Stats for immediate updt */
4893 s2io_updt_stats(sp);
4895 /* Using sp->stats as a staging area, because reset (due to mtu
4896 change, for example) will clear some hardware counters */
4897 dev->stats.tx_packets +=
4898 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4899 sp->stats.tx_packets;
4900 sp->stats.tx_packets =
4901 le32_to_cpu(mac_control->stats_info->tmac_frms);
4902 dev->stats.tx_errors +=
4903 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4904 sp->stats.tx_errors;
4905 sp->stats.tx_errors =
4906 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4907 dev->stats.rx_errors +=
4908 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4909 sp->stats.rx_errors;
4910 sp->stats.rx_errors =
4911 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4912 dev->stats.multicast =
4913 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4914 sp->stats.multicast;
4915 sp->stats.multicast =
4916 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4917 dev->stats.rx_length_errors =
4918 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4919 sp->stats.rx_length_errors;
4920 sp->stats.rx_length_errors =
4921 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4923 /* collect per-ring rx_packets and rx_bytes */
4924 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4925 for (i = 0; i < config->rx_ring_num; i++) {
4926 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4927 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4930 return (&dev->stats);
4934 * s2io_set_multicast - entry point for multicast address enable/disable.
4935 * @dev : pointer to the device structure
4936 * Description:
4937 * This function is a driver entry point which gets called by the kernel
4938 * whenever multicast addresses must be enabled/disabled. This also gets
4939 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4940 * determine, if multicast address must be enabled or if promiscuous mode
4941 * is to be disabled etc.
4942 * Return value:
4943 * void.
4946 static void s2io_set_multicast(struct net_device *dev)
4948 int i, j, prev_cnt;
4949 struct dev_mc_list *mclist;
4950 struct s2io_nic *sp = netdev_priv(dev);
4951 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4952 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4953 0xfeffffffffffULL;
4954 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4955 void __iomem *add;
4956 struct config_param *config = &sp->config;
4958 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4959 /* Enable all Multicast addresses */
4960 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4961 &bar0->rmac_addr_data0_mem);
4962 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4963 &bar0->rmac_addr_data1_mem);
4964 val64 = RMAC_ADDR_CMD_MEM_WE |
4965 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4967 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968 /* Wait till command completes */
4969 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4970 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971 S2IO_BIT_RESET);
4973 sp->m_cast_flg = 1;
4974 sp->all_multi_pos = config->max_mc_addr - 1;
4975 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4976 /* Disable all Multicast addresses */
4977 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4978 &bar0->rmac_addr_data0_mem);
4979 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4980 &bar0->rmac_addr_data1_mem);
4981 val64 = RMAC_ADDR_CMD_MEM_WE |
4982 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4984 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985 /* Wait till command completes */
4986 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4987 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988 S2IO_BIT_RESET);
4990 sp->m_cast_flg = 0;
4991 sp->all_multi_pos = 0;
4994 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4995 /* Put the NIC into promiscuous mode */
4996 add = &bar0->mac_cfg;
4997 val64 = readq(&bar0->mac_cfg);
4998 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5000 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5001 writel((u32) val64, add);
5002 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003 writel((u32) (val64 >> 32), (add + 4));
5005 if (vlan_tag_strip != 1) {
5006 val64 = readq(&bar0->rx_pa_cfg);
5007 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5008 writeq(val64, &bar0->rx_pa_cfg);
5009 sp->vlan_strip_flag = 0;
5012 val64 = readq(&bar0->mac_cfg);
5013 sp->promisc_flg = 1;
5014 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5015 dev->name);
5016 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5017 /* Remove the NIC from promiscuous mode */
5018 add = &bar0->mac_cfg;
5019 val64 = readq(&bar0->mac_cfg);
5020 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5022 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5023 writel((u32) val64, add);
5024 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025 writel((u32) (val64 >> 32), (add + 4));
5027 if (vlan_tag_strip != 0) {
5028 val64 = readq(&bar0->rx_pa_cfg);
5029 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5030 writeq(val64, &bar0->rx_pa_cfg);
5031 sp->vlan_strip_flag = 1;
5034 val64 = readq(&bar0->mac_cfg);
5035 sp->promisc_flg = 0;
5036 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5037 dev->name);
5040 /* Update individual M_CAST address list */
5041 if ((!sp->m_cast_flg) && dev->mc_count) {
5042 if (dev->mc_count >
5043 (config->max_mc_addr - config->max_mac_addr)) {
5044 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5045 dev->name);
5046 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5047 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5048 return;
5051 prev_cnt = sp->mc_addr_count;
5052 sp->mc_addr_count = dev->mc_count;
5054 /* Clear out the previous list of Mc in the H/W. */
5055 for (i = 0; i < prev_cnt; i++) {
5056 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5057 &bar0->rmac_addr_data0_mem);
5058 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5059 &bar0->rmac_addr_data1_mem);
5060 val64 = RMAC_ADDR_CMD_MEM_WE |
5061 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5062 RMAC_ADDR_CMD_MEM_OFFSET
5063 (config->mc_start_offset + i);
5064 writeq(val64, &bar0->rmac_addr_cmd_mem);
5066 /* Wait for command completes */
5067 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5068 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5069 S2IO_BIT_RESET)) {
5070 DBG_PRINT(ERR_DBG, "%s: Adding ",
5071 dev->name);
5072 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5073 return;
5077 /* Create the new Rx filter list and update the same in H/W. */
5078 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5079 i++, mclist = mclist->next) {
5080 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5081 ETH_ALEN);
5082 mac_addr = 0;
5083 for (j = 0; j < ETH_ALEN; j++) {
5084 mac_addr |= mclist->dmi_addr[j];
5085 mac_addr <<= 8;
5087 mac_addr >>= 8;
5088 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5089 &bar0->rmac_addr_data0_mem);
5090 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5091 &bar0->rmac_addr_data1_mem);
5092 val64 = RMAC_ADDR_CMD_MEM_WE |
5093 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5094 RMAC_ADDR_CMD_MEM_OFFSET
5095 (i + config->mc_start_offset);
5096 writeq(val64, &bar0->rmac_addr_cmd_mem);
5098 /* Wait for command completes */
5099 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5100 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5101 S2IO_BIT_RESET)) {
5102 DBG_PRINT(ERR_DBG, "%s: Adding ",
5103 dev->name);
5104 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5105 return;
5111 /* read from CAM unicast & multicast addresses and store it in
5112 * def_mac_addr structure
5114 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5116 int offset;
5117 u64 mac_addr = 0x0;
5118 struct config_param *config = &sp->config;
5120 /* store unicast & multicast mac addresses */
5121 for (offset = 0; offset < config->max_mc_addr; offset++) {
5122 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5123 /* if read fails disable the entry */
5124 if (mac_addr == FAILURE)
5125 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5126 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5130 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5131 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5133 int offset;
5134 struct config_param *config = &sp->config;
5135 /* restore unicast mac address */
5136 for (offset = 0; offset < config->max_mac_addr; offset++)
5137 do_s2io_prog_unicast(sp->dev,
5138 sp->def_mac_addr[offset].mac_addr);
5140 /* restore multicast mac address */
5141 for (offset = config->mc_start_offset;
5142 offset < config->max_mc_addr; offset++)
5143 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5146 /* add a multicast MAC address to CAM */
5147 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5149 int i;
5150 u64 mac_addr = 0;
5151 struct config_param *config = &sp->config;
5153 for (i = 0; i < ETH_ALEN; i++) {
5154 mac_addr <<= 8;
5155 mac_addr |= addr[i];
5157 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5158 return SUCCESS;
5160 /* check if the multicast mac already preset in CAM */
5161 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5162 u64 tmp64;
5163 tmp64 = do_s2io_read_unicast_mc(sp, i);
5164 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5165 break;
5167 if (tmp64 == mac_addr)
5168 return SUCCESS;
5170 if (i == config->max_mc_addr) {
5171 DBG_PRINT(ERR_DBG,
5172 "CAM full no space left for multicast MAC\n");
5173 return FAILURE;
5175 /* Update the internal structure with this new mac address */
5176 do_s2io_copy_mac_addr(sp, i, mac_addr);
5178 return (do_s2io_add_mac(sp, mac_addr, i));
5181 /* add MAC address to CAM */
5182 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5184 u64 val64;
5185 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5187 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5188 &bar0->rmac_addr_data0_mem);
5190 val64 =
5191 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5192 RMAC_ADDR_CMD_MEM_OFFSET(off);
5193 writeq(val64, &bar0->rmac_addr_cmd_mem);
5195 /* Wait till command completes */
5196 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5197 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5198 S2IO_BIT_RESET)) {
5199 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5200 return FAILURE;
5202 return SUCCESS;
5204 /* deletes a specified unicast/multicast mac entry from CAM */
5205 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5207 int offset;
5208 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5209 struct config_param *config = &sp->config;
5211 for (offset = 1;
5212 offset < config->max_mc_addr; offset++) {
5213 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5214 if (tmp64 == addr) {
5215 /* disable the entry by writing 0xffffffffffffULL */
5216 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5217 return FAILURE;
5218 /* store the new mac list from CAM */
5219 do_s2io_store_unicast_mc(sp);
5220 return SUCCESS;
5223 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5224 (unsigned long long)addr);
5225 return FAILURE;
5228 /* read mac entries from CAM */
5229 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5231 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5232 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234 /* read mac addr */
5235 val64 =
5236 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5238 writeq(val64, &bar0->rmac_addr_cmd_mem);
5240 /* Wait till command completes */
5241 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243 S2IO_BIT_RESET)) {
5244 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5245 return FAILURE;
5247 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5248 return (tmp64 >> 16);
5252 * s2io_set_mac_addr driver entry point
5255 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5257 struct sockaddr *addr = p;
5259 if (!is_valid_ether_addr(addr->sa_data))
5260 return -EINVAL;
5262 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5264 /* store the MAC address in CAM */
5265 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5268 * do_s2io_prog_unicast - Programs the Xframe mac address
5269 * @dev : pointer to the device structure.
5270 * @addr: a uchar pointer to the new mac address which is to be set.
5271 * Description : This procedure will program the Xframe to receive
5272 * frames with new Mac Address
5273 * Return value: SUCCESS on success and an appropriate (-)ve integer
5274 * as defined in errno.h file on failure.
5277 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5279 struct s2io_nic *sp = netdev_priv(dev);
5280 register u64 mac_addr = 0, perm_addr = 0;
5281 int i;
5282 u64 tmp64;
5283 struct config_param *config = &sp->config;
5286 * Set the new MAC address as the new unicast filter and reflect this
5287 * change on the device address registered with the OS. It will be
5288 * at offset 0.
5290 for (i = 0; i < ETH_ALEN; i++) {
5291 mac_addr <<= 8;
5292 mac_addr |= addr[i];
5293 perm_addr <<= 8;
5294 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5297 /* check if the dev_addr is different than perm_addr */
5298 if (mac_addr == perm_addr)
5299 return SUCCESS;
5301 /* check if the mac already preset in CAM */
5302 for (i = 1; i < config->max_mac_addr; i++) {
5303 tmp64 = do_s2io_read_unicast_mc(sp, i);
5304 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5305 break;
5307 if (tmp64 == mac_addr) {
5308 DBG_PRINT(INFO_DBG,
5309 "MAC addr:0x%llx already present in CAM\n",
5310 (unsigned long long)mac_addr);
5311 return SUCCESS;
5314 if (i == config->max_mac_addr) {
5315 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5316 return FAILURE;
5318 /* Update the internal structure with this new mac address */
5319 do_s2io_copy_mac_addr(sp, i, mac_addr);
5320 return (do_s2io_add_mac(sp, mac_addr, i));
5324 * s2io_ethtool_sset - Sets different link parameters.
5325 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5326 * @info: pointer to the structure with parameters given by ethtool to set
5327 * link information.
5328 * Description:
5329 * The function sets different link parameters provided by the user onto
5330 * the NIC.
5331 * Return value:
5332 * 0 on success.
5335 static int s2io_ethtool_sset(struct net_device *dev,
5336 struct ethtool_cmd *info)
5338 struct s2io_nic *sp = netdev_priv(dev);
5339 if ((info->autoneg == AUTONEG_ENABLE) ||
5340 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5341 return -EINVAL;
5342 else {
5343 s2io_close(sp->dev);
5344 s2io_open(sp->dev);
5347 return 0;
5351 * s2io_ethtol_gset - Return link specific information.
5352 * @sp : private member of the device structure, pointer to the
5353 * s2io_nic structure.
5354 * @info : pointer to the structure with parameters given by ethtool
5355 * to return link information.
5356 * Description:
5357 * Returns link specific information like speed, duplex etc.. to ethtool.
5358 * Return value :
5359 * return 0 on success.
5362 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5364 struct s2io_nic *sp = netdev_priv(dev);
5365 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5366 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->port = PORT_FIBRE;
5369 /* info->transceiver */
5370 info->transceiver = XCVR_EXTERNAL;
5372 if (netif_carrier_ok(sp->dev)) {
5373 info->speed = 10000;
5374 info->duplex = DUPLEX_FULL;
5375 } else {
5376 info->speed = -1;
5377 info->duplex = -1;
5380 info->autoneg = AUTONEG_DISABLE;
5381 return 0;
5385 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5386 * @sp : private member of the device structure, which is a pointer to the
5387 * s2io_nic structure.
5388 * @info : pointer to the structure with parameters given by ethtool to
5389 * return driver information.
5390 * Description:
5391 * Returns driver specefic information like name, version etc.. to ethtool.
5392 * Return value:
5393 * void
5396 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5397 struct ethtool_drvinfo *info)
5399 struct s2io_nic *sp = netdev_priv(dev);
5401 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5402 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5403 strncpy(info->fw_version, "", sizeof(info->fw_version));
5404 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5405 info->regdump_len = XENA_REG_SPACE;
5406 info->eedump_len = XENA_EEPROM_SPACE;
5410 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5411 * @sp: private member of the device structure, which is a pointer to the
5412 * s2io_nic structure.
5413 * @regs : pointer to the structure with parameters given by ethtool for
5414 * dumping the registers.
5415 * @reg_space: The input argumnet into which all the registers are dumped.
5416 * Description:
5417 * Dumps the entire register space of xFrame NIC into the user given
5418 * buffer area.
5419 * Return value :
5420 * void .
5423 static void s2io_ethtool_gregs(struct net_device *dev,
5424 struct ethtool_regs *regs, void *space)
5426 int i;
5427 u64 reg;
5428 u8 *reg_space = (u8 *) space;
5429 struct s2io_nic *sp = netdev_priv(dev);
5431 regs->len = XENA_REG_SPACE;
5432 regs->version = sp->pdev->subsystem_device;
5434 for (i = 0; i < regs->len; i += 8) {
5435 reg = readq(sp->bar0 + i);
5436 memcpy((reg_space + i), &reg, 8);
5441 * s2io_phy_id - timer function that alternates adapter LED.
5442 * @data : address of the private member of the device structure, which
5443 * is a pointer to the s2io_nic structure, provided as an u32.
5444 * Description: This is actually the timer function that alternates the
5445 * adapter LED bit of the adapter control bit to set/reset every time on
5446 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5447 * once every second.
5449 static void s2io_phy_id(unsigned long data)
5451 struct s2io_nic *sp = (struct s2io_nic *) data;
5452 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5453 u64 val64 = 0;
5454 u16 subid;
5456 subid = sp->pdev->subsystem_device;
5457 if ((sp->device_type == XFRAME_II_DEVICE) ||
5458 ((subid & 0xFF) >= 0x07)) {
5459 val64 = readq(&bar0->gpio_control);
5460 val64 ^= GPIO_CTRL_GPIO_0;
5461 writeq(val64, &bar0->gpio_control);
5462 } else {
5463 val64 = readq(&bar0->adapter_control);
5464 val64 ^= ADAPTER_LED_ON;
5465 writeq(val64, &bar0->adapter_control);
5468 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5472 * s2io_ethtool_idnic - To physically identify the nic on the system.
5473 * @sp : private member of the device structure, which is a pointer to the
5474 * s2io_nic structure.
5475 * @id : pointer to the structure with identification parameters given by
5476 * ethtool.
5477 * Description: Used to physically identify the NIC on the system.
5478 * The Link LED will blink for a time specified by the user for
5479 * identification.
5480 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5481 * identification is possible only if it's link is up.
5482 * Return value:
5483 * int , returns 0 on success
5486 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5488 u64 val64 = 0, last_gpio_ctrl_val;
5489 struct s2io_nic *sp = netdev_priv(dev);
5490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5491 u16 subid;
5493 subid = sp->pdev->subsystem_device;
5494 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5495 if ((sp->device_type == XFRAME_I_DEVICE) &&
5496 ((subid & 0xFF) < 0x07)) {
5497 val64 = readq(&bar0->adapter_control);
5498 if (!(val64 & ADAPTER_CNTL_EN)) {
5499 printk(KERN_ERR
5500 "Adapter Link down, cannot blink LED\n");
5501 return -EFAULT;
5504 if (sp->id_timer.function == NULL) {
5505 init_timer(&sp->id_timer);
5506 sp->id_timer.function = s2io_phy_id;
5507 sp->id_timer.data = (unsigned long) sp;
5509 mod_timer(&sp->id_timer, jiffies);
5510 if (data)
5511 msleep_interruptible(data * HZ);
5512 else
5513 msleep_interruptible(MAX_FLICKER_TIME);
5514 del_timer_sync(&sp->id_timer);
5516 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5517 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5518 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5521 return 0;
5524 static void s2io_ethtool_gringparam(struct net_device *dev,
5525 struct ethtool_ringparam *ering)
5527 struct s2io_nic *sp = netdev_priv(dev);
5528 int i,tx_desc_count=0,rx_desc_count=0;
5530 if (sp->rxd_mode == RXD_MODE_1)
5531 ering->rx_max_pending = MAX_RX_DESC_1;
5532 else if (sp->rxd_mode == RXD_MODE_3B)
5533 ering->rx_max_pending = MAX_RX_DESC_2;
5535 ering->tx_max_pending = MAX_TX_DESC;
5536 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5537 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5539 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5540 ering->tx_pending = tx_desc_count;
5541 rx_desc_count = 0;
5542 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5543 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5545 ering->rx_pending = rx_desc_count;
5547 ering->rx_mini_max_pending = 0;
5548 ering->rx_mini_pending = 0;
5549 if(sp->rxd_mode == RXD_MODE_1)
5550 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5551 else if (sp->rxd_mode == RXD_MODE_3B)
5552 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5553 ering->rx_jumbo_pending = rx_desc_count;
5557 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5558 * @sp : private member of the device structure, which is a pointer to the
5559 * s2io_nic structure.
5560 * @ep : pointer to the structure with pause parameters given by ethtool.
5561 * Description:
5562 * Returns the Pause frame generation and reception capability of the NIC.
5563 * Return value:
5564 * void
5566 static void s2io_ethtool_getpause_data(struct net_device *dev,
5567 struct ethtool_pauseparam *ep)
5569 u64 val64;
5570 struct s2io_nic *sp = netdev_priv(dev);
5571 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5573 val64 = readq(&bar0->rmac_pause_cfg);
5574 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5575 ep->tx_pause = true;
5576 if (val64 & RMAC_PAUSE_RX_ENABLE)
5577 ep->rx_pause = true;
5578 ep->autoneg = false;
5582 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5583 * @sp : private member of the device structure, which is a pointer to the
5584 * s2io_nic structure.
5585 * @ep : pointer to the structure with pause parameters given by ethtool.
5586 * Description:
5587 * It can be used to set or reset Pause frame generation or reception
5588 * support of the NIC.
5589 * Return value:
5590 * int, returns 0 on Success
5593 static int s2io_ethtool_setpause_data(struct net_device *dev,
5594 struct ethtool_pauseparam *ep)
5596 u64 val64;
5597 struct s2io_nic *sp = netdev_priv(dev);
5598 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5600 val64 = readq(&bar0->rmac_pause_cfg);
5601 if (ep->tx_pause)
5602 val64 |= RMAC_PAUSE_GEN_ENABLE;
5603 else
5604 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5605 if (ep->rx_pause)
5606 val64 |= RMAC_PAUSE_RX_ENABLE;
5607 else
5608 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5609 writeq(val64, &bar0->rmac_pause_cfg);
5610 return 0;
5614 * read_eeprom - reads 4 bytes of data from user given offset.
5615 * @sp : private member of the device structure, which is a pointer to the
5616 * s2io_nic structure.
5617 * @off : offset at which the data must be written
5618 * @data : Its an output parameter where the data read at the given
5619 * offset is stored.
5620 * Description:
5621 * Will read 4 bytes of data from the user given offset and return the
5622 * read data.
5623 * NOTE: Will allow to read only part of the EEPROM visible through the
5624 * I2C bus.
5625 * Return value:
5626 * -1 on failure and 0 on success.
5629 #define S2IO_DEV_ID 5
5630 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5632 int ret = -1;
5633 u32 exit_cnt = 0;
5634 u64 val64;
5635 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5637 if (sp->device_type == XFRAME_I_DEVICE) {
5638 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5639 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5640 I2C_CONTROL_CNTL_START;
5641 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5643 while (exit_cnt < 5) {
5644 val64 = readq(&bar0->i2c_control);
5645 if (I2C_CONTROL_CNTL_END(val64)) {
5646 *data = I2C_CONTROL_GET_DATA(val64);
5647 ret = 0;
5648 break;
5650 msleep(50);
5651 exit_cnt++;
5655 if (sp->device_type == XFRAME_II_DEVICE) {
5656 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657 SPI_CONTROL_BYTECNT(0x3) |
5658 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5659 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660 val64 |= SPI_CONTROL_REQ;
5661 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662 while (exit_cnt < 5) {
5663 val64 = readq(&bar0->spi_control);
5664 if (val64 & SPI_CONTROL_NACK) {
5665 ret = 1;
5666 break;
5667 } else if (val64 & SPI_CONTROL_DONE) {
5668 *data = readq(&bar0->spi_data);
5669 *data &= 0xffffff;
5670 ret = 0;
5671 break;
5673 msleep(50);
5674 exit_cnt++;
5677 return ret;
5681 * write_eeprom - actually writes the relevant part of the data value.
5682 * @sp : private member of the device structure, which is a pointer to the
5683 * s2io_nic structure.
5684 * @off : offset at which the data must be written
5685 * @data : The data that is to be written
5686 * @cnt : Number of bytes of the data that are actually to be written into
5687 * the Eeprom. (max of 3)
5688 * Description:
5689 * Actually writes the relevant part of the data value into the Eeprom
5690 * through the I2C bus.
5691 * Return value:
5692 * 0 on success, -1 on failure.
5695 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5697 int exit_cnt = 0, ret = -1;
5698 u64 val64;
5699 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5701 if (sp->device_type == XFRAME_I_DEVICE) {
5702 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5703 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5704 I2C_CONTROL_CNTL_START;
5705 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5707 while (exit_cnt < 5) {
5708 val64 = readq(&bar0->i2c_control);
5709 if (I2C_CONTROL_CNTL_END(val64)) {
5710 if (!(val64 & I2C_CONTROL_NACK))
5711 ret = 0;
5712 break;
5714 msleep(50);
5715 exit_cnt++;
5719 if (sp->device_type == XFRAME_II_DEVICE) {
5720 int write_cnt = (cnt == 8) ? 0 : cnt;
5721 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5723 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5724 SPI_CONTROL_BYTECNT(write_cnt) |
5725 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5726 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5727 val64 |= SPI_CONTROL_REQ;
5728 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729 while (exit_cnt < 5) {
5730 val64 = readq(&bar0->spi_control);
5731 if (val64 & SPI_CONTROL_NACK) {
5732 ret = 1;
5733 break;
5734 } else if (val64 & SPI_CONTROL_DONE) {
5735 ret = 0;
5736 break;
5738 msleep(50);
5739 exit_cnt++;
5742 return ret;
5744 static void s2io_vpd_read(struct s2io_nic *nic)
5746 u8 *vpd_data;
5747 u8 data;
5748 int i=0, cnt, fail = 0;
5749 int vpd_addr = 0x80;
5751 if (nic->device_type == XFRAME_II_DEVICE) {
5752 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5753 vpd_addr = 0x80;
5755 else {
5756 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5757 vpd_addr = 0x50;
5759 strcpy(nic->serial_num, "NOT AVAILABLE");
5761 vpd_data = kmalloc(256, GFP_KERNEL);
5762 if (!vpd_data) {
5763 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5764 return;
5766 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5768 for (i = 0; i < 256; i +=4 ) {
5769 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5770 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5771 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5772 for (cnt = 0; cnt <5; cnt++) {
5773 msleep(2);
5774 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5775 if (data == 0x80)
5776 break;
5778 if (cnt >= 5) {
5779 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5780 fail = 1;
5781 break;
5783 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5784 (u32 *)&vpd_data[i]);
5787 if(!fail) {
5788 /* read serial number of adapter */
5789 for (cnt = 0; cnt < 256; cnt++) {
5790 if ((vpd_data[cnt] == 'S') &&
5791 (vpd_data[cnt+1] == 'N') &&
5792 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5793 memset(nic->serial_num, 0, VPD_STRING_LEN);
5794 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5795 vpd_data[cnt+2]);
5796 break;
5801 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5802 memset(nic->product_name, 0, vpd_data[1]);
5803 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5805 kfree(vpd_data);
5806 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5810 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5811 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5812 * @eeprom : pointer to the user level structure provided by ethtool,
5813 * containing all relevant information.
5814 * @data_buf : user defined value to be written into Eeprom.
5815 * Description: Reads the values stored in the Eeprom at given offset
5816 * for a given length. Stores these values int the input argument data
5817 * buffer 'data_buf' and returns these to the caller (ethtool.)
5818 * Return value:
5819 * int 0 on success
5822 static int s2io_ethtool_geeprom(struct net_device *dev,
5823 struct ethtool_eeprom *eeprom, u8 * data_buf)
5825 u32 i, valid;
5826 u64 data;
5827 struct s2io_nic *sp = netdev_priv(dev);
5829 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5831 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5832 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5834 for (i = 0; i < eeprom->len; i += 4) {
5835 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5836 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5837 return -EFAULT;
5839 valid = INV(data);
5840 memcpy((data_buf + i), &valid, 4);
5842 return 0;
5846 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5847 * @sp : private member of the device structure, which is a pointer to the
5848 * s2io_nic structure.
5849 * @eeprom : pointer to the user level structure provided by ethtool,
5850 * containing all relevant information.
5851 * @data_buf ; user defined value to be written into Eeprom.
5852 * Description:
5853 * Tries to write the user provided value in the Eeprom, at the offset
5854 * given by the user.
5855 * Return value:
5856 * 0 on success, -EFAULT on failure.
5859 static int s2io_ethtool_seeprom(struct net_device *dev,
5860 struct ethtool_eeprom *eeprom,
5861 u8 * data_buf)
5863 int len = eeprom->len, cnt = 0;
5864 u64 valid = 0, data;
5865 struct s2io_nic *sp = netdev_priv(dev);
5867 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5868 DBG_PRINT(ERR_DBG,
5869 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5870 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5871 eeprom->magic);
5872 return -EFAULT;
5875 while (len) {
5876 data = (u32) data_buf[cnt] & 0x000000FF;
5877 if (data) {
5878 valid = (u32) (data << 24);
5879 } else
5880 valid = data;
5882 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5883 DBG_PRINT(ERR_DBG,
5884 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5885 DBG_PRINT(ERR_DBG,
5886 "write into the specified offset\n");
5887 return -EFAULT;
5889 cnt++;
5890 len--;
5893 return 0;
5897 * s2io_register_test - reads and writes into all clock domains.
5898 * @sp : private member of the device structure, which is a pointer to the
5899 * s2io_nic structure.
5900 * @data : variable that returns the result of each of the test conducted b
5901 * by the driver.
5902 * Description:
5903 * Read and write into all clock domains. The NIC has 3 clock domains,
5904 * see that registers in all the three regions are accessible.
5905 * Return value:
5906 * 0 on success.
5909 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5911 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5912 u64 val64 = 0, exp_val;
5913 int fail = 0;
5915 val64 = readq(&bar0->pif_rd_swapper_fb);
5916 if (val64 != 0x123456789abcdefULL) {
5917 fail = 1;
5918 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5921 val64 = readq(&bar0->rmac_pause_cfg);
5922 if (val64 != 0xc000ffff00000000ULL) {
5923 fail = 1;
5924 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5927 val64 = readq(&bar0->rx_queue_cfg);
5928 if (sp->device_type == XFRAME_II_DEVICE)
5929 exp_val = 0x0404040404040404ULL;
5930 else
5931 exp_val = 0x0808080808080808ULL;
5932 if (val64 != exp_val) {
5933 fail = 1;
5934 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5937 val64 = readq(&bar0->xgxs_efifo_cfg);
5938 if (val64 != 0x000000001923141EULL) {
5939 fail = 1;
5940 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5943 val64 = 0x5A5A5A5A5A5A5A5AULL;
5944 writeq(val64, &bar0->xmsi_data);
5945 val64 = readq(&bar0->xmsi_data);
5946 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5947 fail = 1;
5948 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5951 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5952 writeq(val64, &bar0->xmsi_data);
5953 val64 = readq(&bar0->xmsi_data);
5954 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5955 fail = 1;
5956 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5959 *data = fail;
5960 return fail;
5964 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5965 * @sp : private member of the device structure, which is a pointer to the
5966 * s2io_nic structure.
5967 * @data:variable that returns the result of each of the test conducted by
5968 * the driver.
5969 * Description:
5970 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5971 * register.
5972 * Return value:
5973 * 0 on success.
5976 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5978 int fail = 0;
5979 u64 ret_data, org_4F0, org_7F0;
5980 u8 saved_4F0 = 0, saved_7F0 = 0;
5981 struct net_device *dev = sp->dev;
5983 /* Test Write Error at offset 0 */
5984 /* Note that SPI interface allows write access to all areas
5985 * of EEPROM. Hence doing all negative testing only for Xframe I.
5987 if (sp->device_type == XFRAME_I_DEVICE)
5988 if (!write_eeprom(sp, 0, 0, 3))
5989 fail = 1;
5991 /* Save current values at offsets 0x4F0 and 0x7F0 */
5992 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5993 saved_4F0 = 1;
5994 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5995 saved_7F0 = 1;
5997 /* Test Write at offset 4f0 */
5998 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5999 fail = 1;
6000 if (read_eeprom(sp, 0x4F0, &ret_data))
6001 fail = 1;
6003 if (ret_data != 0x012345) {
6004 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6005 "Data written %llx Data read %llx\n",
6006 dev->name, (unsigned long long)0x12345,
6007 (unsigned long long)ret_data);
6008 fail = 1;
6011 /* Reset the EEPROM data go FFFF */
6012 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6014 /* Test Write Request Error at offset 0x7c */
6015 if (sp->device_type == XFRAME_I_DEVICE)
6016 if (!write_eeprom(sp, 0x07C, 0, 3))
6017 fail = 1;
6019 /* Test Write Request at offset 0x7f0 */
6020 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6021 fail = 1;
6022 if (read_eeprom(sp, 0x7F0, &ret_data))
6023 fail = 1;
6025 if (ret_data != 0x012345) {
6026 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6027 "Data written %llx Data read %llx\n",
6028 dev->name, (unsigned long long)0x12345,
6029 (unsigned long long)ret_data);
6030 fail = 1;
6033 /* Reset the EEPROM data go FFFF */
6034 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6036 if (sp->device_type == XFRAME_I_DEVICE) {
6037 /* Test Write Error at offset 0x80 */
6038 if (!write_eeprom(sp, 0x080, 0, 3))
6039 fail = 1;
6041 /* Test Write Error at offset 0xfc */
6042 if (!write_eeprom(sp, 0x0FC, 0, 3))
6043 fail = 1;
6045 /* Test Write Error at offset 0x100 */
6046 if (!write_eeprom(sp, 0x100, 0, 3))
6047 fail = 1;
6049 /* Test Write Error at offset 4ec */
6050 if (!write_eeprom(sp, 0x4EC, 0, 3))
6051 fail = 1;
6054 /* Restore values at offsets 0x4F0 and 0x7F0 */
6055 if (saved_4F0)
6056 write_eeprom(sp, 0x4F0, org_4F0, 3);
6057 if (saved_7F0)
6058 write_eeprom(sp, 0x7F0, org_7F0, 3);
6060 *data = fail;
6061 return fail;
6065 * s2io_bist_test - invokes the MemBist test of the card .
6066 * @sp : private member of the device structure, which is a pointer to the
6067 * s2io_nic structure.
6068 * @data:variable that returns the result of each of the test conducted by
6069 * the driver.
6070 * Description:
6071 * This invokes the MemBist test of the card. We give around
6072 * 2 secs time for the Test to complete. If it's still not complete
6073 * within this peiod, we consider that the test failed.
6074 * Return value:
6075 * 0 on success and -1 on failure.
6078 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6080 u8 bist = 0;
6081 int cnt = 0, ret = -1;
6083 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6084 bist |= PCI_BIST_START;
6085 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6087 while (cnt < 20) {
6088 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6089 if (!(bist & PCI_BIST_START)) {
6090 *data = (bist & PCI_BIST_CODE_MASK);
6091 ret = 0;
6092 break;
6094 msleep(100);
6095 cnt++;
6098 return ret;
6102 * s2io-link_test - verifies the link state of the nic
6103 * @sp ; private member of the device structure, which is a pointer to the
6104 * s2io_nic structure.
6105 * @data: variable that returns the result of each of the test conducted by
6106 * the driver.
6107 * Description:
6108 * The function verifies the link state of the NIC and updates the input
6109 * argument 'data' appropriately.
6110 * Return value:
6111 * 0 on success.
6114 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6116 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6117 u64 val64;
6119 val64 = readq(&bar0->adapter_status);
6120 if(!(LINK_IS_UP(val64)))
6121 *data = 1;
6122 else
6123 *data = 0;
6125 return *data;
6129 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6130 * @sp - private member of the device structure, which is a pointer to the
6131 * s2io_nic structure.
6132 * @data - variable that returns the result of each of the test
6133 * conducted by the driver.
6134 * Description:
6135 * This is one of the offline test that tests the read and write
6136 * access to the RldRam chip on the NIC.
6137 * Return value:
6138 * 0 on success.
6141 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6144 u64 val64;
6145 int cnt, iteration = 0, test_fail = 0;
6147 val64 = readq(&bar0->adapter_control);
6148 val64 &= ~ADAPTER_ECC_EN;
6149 writeq(val64, &bar0->adapter_control);
6151 val64 = readq(&bar0->mc_rldram_test_ctrl);
6152 val64 |= MC_RLDRAM_TEST_MODE;
6153 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6155 val64 = readq(&bar0->mc_rldram_mrs);
6156 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6157 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6159 val64 |= MC_RLDRAM_MRS_ENABLE;
6160 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6162 while (iteration < 2) {
6163 val64 = 0x55555555aaaa0000ULL;
6164 if (iteration == 1) {
6165 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6167 writeq(val64, &bar0->mc_rldram_test_d0);
6169 val64 = 0xaaaa5a5555550000ULL;
6170 if (iteration == 1) {
6171 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6173 writeq(val64, &bar0->mc_rldram_test_d1);
6175 val64 = 0x55aaaaaaaa5a0000ULL;
6176 if (iteration == 1) {
6177 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6179 writeq(val64, &bar0->mc_rldram_test_d2);
6181 val64 = (u64) (0x0000003ffffe0100ULL);
6182 writeq(val64, &bar0->mc_rldram_test_add);
6184 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6185 MC_RLDRAM_TEST_GO;
6186 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188 for (cnt = 0; cnt < 5; cnt++) {
6189 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 if (val64 & MC_RLDRAM_TEST_DONE)
6191 break;
6192 msleep(200);
6195 if (cnt == 5)
6196 break;
6198 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6199 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6201 for (cnt = 0; cnt < 5; cnt++) {
6202 val64 = readq(&bar0->mc_rldram_test_ctrl);
6203 if (val64 & MC_RLDRAM_TEST_DONE)
6204 break;
6205 msleep(500);
6208 if (cnt == 5)
6209 break;
6211 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212 if (!(val64 & MC_RLDRAM_TEST_PASS))
6213 test_fail = 1;
6215 iteration++;
6218 *data = test_fail;
6220 /* Bring the adapter out of test mode */
6221 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6223 return test_fail;
6227 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6228 * @sp : private member of the device structure, which is a pointer to the
6229 * s2io_nic structure.
6230 * @ethtest : pointer to a ethtool command specific structure that will be
6231 * returned to the user.
6232 * @data : variable that returns the result of each of the test
6233 * conducted by the driver.
6234 * Description:
6235 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6236 * the health of the card.
6237 * Return value:
6238 * void
6241 static void s2io_ethtool_test(struct net_device *dev,
6242 struct ethtool_test *ethtest,
6243 uint64_t * data)
6245 struct s2io_nic *sp = netdev_priv(dev);
6246 int orig_state = netif_running(sp->dev);
6248 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6249 /* Offline Tests. */
6250 if (orig_state)
6251 s2io_close(sp->dev);
6253 if (s2io_register_test(sp, &data[0]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6256 s2io_reset(sp);
6258 if (s2io_rldram_test(sp, &data[3]))
6259 ethtest->flags |= ETH_TEST_FL_FAILED;
6261 s2io_reset(sp);
6263 if (s2io_eeprom_test(sp, &data[1]))
6264 ethtest->flags |= ETH_TEST_FL_FAILED;
6266 if (s2io_bist_test(sp, &data[4]))
6267 ethtest->flags |= ETH_TEST_FL_FAILED;
6269 if (orig_state)
6270 s2io_open(sp->dev);
6272 data[2] = 0;
6273 } else {
6274 /* Online Tests. */
6275 if (!orig_state) {
6276 DBG_PRINT(ERR_DBG,
6277 "%s: is not up, cannot run test\n",
6278 dev->name);
6279 data[0] = -1;
6280 data[1] = -1;
6281 data[2] = -1;
6282 data[3] = -1;
6283 data[4] = -1;
6286 if (s2io_link_test(sp, &data[2]))
6287 ethtest->flags |= ETH_TEST_FL_FAILED;
6289 data[0] = 0;
6290 data[1] = 0;
6291 data[3] = 0;
6292 data[4] = 0;
6296 static void s2io_get_ethtool_stats(struct net_device *dev,
6297 struct ethtool_stats *estats,
6298 u64 * tmp_stats)
6300 int i = 0, k;
6301 struct s2io_nic *sp = netdev_priv(dev);
6302 struct stat_block *stat_info = sp->mac_control.stats_info;
6304 s2io_updt_stats(sp);
6305 tmp_stats[i++] =
6306 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6307 le32_to_cpu(stat_info->tmac_frms);
6308 tmp_stats[i++] =
6309 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6310 le32_to_cpu(stat_info->tmac_data_octets);
6311 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6312 tmp_stats[i++] =
6313 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6314 le32_to_cpu(stat_info->tmac_mcst_frms);
6315 tmp_stats[i++] =
6316 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6317 le32_to_cpu(stat_info->tmac_bcst_frms);
6318 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6321 le32_to_cpu(stat_info->tmac_ttl_octets);
6322 tmp_stats[i++] =
6323 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6324 le32_to_cpu(stat_info->tmac_ucst_frms);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_nucst_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_any_err_frms);
6331 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6333 tmp_stats[i++] =
6334 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6335 le32_to_cpu(stat_info->tmac_vld_ip);
6336 tmp_stats[i++] =
6337 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6338 le32_to_cpu(stat_info->tmac_drop_ip);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6341 le32_to_cpu(stat_info->tmac_icmp);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_rst_tcp);
6345 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6346 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_udp);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6350 le32_to_cpu(stat_info->rmac_vld_frms);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6353 le32_to_cpu(stat_info->rmac_data_octets);
6354 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6358 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6361 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6362 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6364 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6369 le32_to_cpu(stat_info->rmac_ttl_octets);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6372 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6375 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6378 le32_to_cpu(stat_info->rmac_discarded_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6386 le32_to_cpu(stat_info->rmac_usized_frms);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6389 le32_to_cpu(stat_info->rmac_osized_frms);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6392 le32_to_cpu(stat_info->rmac_frag_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_jabber_frms);
6396 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_ip);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6406 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6409 le32_to_cpu(stat_info->rmac_drop_ip);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6412 le32_to_cpu(stat_info->rmac_icmp);
6413 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6414 tmp_stats[i++] =
6415 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6416 le32_to_cpu(stat_info->rmac_udp);
6417 tmp_stats[i++] =
6418 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6419 le32_to_cpu(stat_info->rmac_err_drp_udp);
6420 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6429 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6437 tmp_stats[i++] =
6438 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6439 le32_to_cpu(stat_info->rmac_pause_cnt);
6440 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6442 tmp_stats[i++] =
6443 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6444 le32_to_cpu(stat_info->rmac_accepted_ip);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6465 /* Enhanced statistics exist only for Hercules */
6466 if(sp->device_type == XFRAME_II_DEVICE) {
6467 tmp_stats[i++] =
6468 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6469 tmp_stats[i++] =
6470 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6471 tmp_stats[i++] =
6472 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6478 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6488 tmp_stats[i++] = 0;
6489 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6490 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6492 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6495 for (k = 0; k < MAX_RX_RINGS; k++)
6496 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6497 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6503 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6509 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6511 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6512 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6513 if (stat_info->sw_stat.num_aggregations) {
6514 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6515 int count = 0;
6517 * Since 64-bit divide does not work on all platforms,
6518 * do repeated subtraction.
6520 while (tmp >= stat_info->sw_stat.num_aggregations) {
6521 tmp -= stat_info->sw_stat.num_aggregations;
6522 count++;
6524 tmp_stats[i++] = count;
6526 else
6527 tmp_stats[i++] = 0;
6528 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6533 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6534 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6536 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6538 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6572 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6574 return (XENA_REG_SPACE);
6578 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6580 struct s2io_nic *sp = netdev_priv(dev);
6582 return (sp->rx_csum);
6585 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6587 struct s2io_nic *sp = netdev_priv(dev);
6589 if (data)
6590 sp->rx_csum = 1;
6591 else
6592 sp->rx_csum = 0;
6594 return 0;
6597 static int s2io_get_eeprom_len(struct net_device *dev)
6599 return (XENA_EEPROM_SPACE);
6602 static int s2io_get_sset_count(struct net_device *dev, int sset)
6604 struct s2io_nic *sp = netdev_priv(dev);
6606 switch (sset) {
6607 case ETH_SS_TEST:
6608 return S2IO_TEST_LEN;
6609 case ETH_SS_STATS:
6610 switch(sp->device_type) {
6611 case XFRAME_I_DEVICE:
6612 return XFRAME_I_STAT_LEN;
6613 case XFRAME_II_DEVICE:
6614 return XFRAME_II_STAT_LEN;
6615 default:
6616 return 0;
6618 default:
6619 return -EOPNOTSUPP;
6623 static void s2io_ethtool_get_strings(struct net_device *dev,
6624 u32 stringset, u8 * data)
6626 int stat_size = 0;
6627 struct s2io_nic *sp = netdev_priv(dev);
6629 switch (stringset) {
6630 case ETH_SS_TEST:
6631 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6632 break;
6633 case ETH_SS_STATS:
6634 stat_size = sizeof(ethtool_xena_stats_keys);
6635 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6636 if(sp->device_type == XFRAME_II_DEVICE) {
6637 memcpy(data + stat_size,
6638 &ethtool_enhanced_stats_keys,
6639 sizeof(ethtool_enhanced_stats_keys));
6640 stat_size += sizeof(ethtool_enhanced_stats_keys);
6643 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6644 sizeof(ethtool_driver_stats_keys));
6648 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6650 if (data)
6651 dev->features |= NETIF_F_IP_CSUM;
6652 else
6653 dev->features &= ~NETIF_F_IP_CSUM;
6655 return 0;
6658 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6660 return (dev->features & NETIF_F_TSO) != 0;
6662 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6664 if (data)
6665 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6666 else
6667 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6669 return 0;
6672 static const struct ethtool_ops netdev_ethtool_ops = {
6673 .get_settings = s2io_ethtool_gset,
6674 .set_settings = s2io_ethtool_sset,
6675 .get_drvinfo = s2io_ethtool_gdrvinfo,
6676 .get_regs_len = s2io_ethtool_get_regs_len,
6677 .get_regs = s2io_ethtool_gregs,
6678 .get_link = ethtool_op_get_link,
6679 .get_eeprom_len = s2io_get_eeprom_len,
6680 .get_eeprom = s2io_ethtool_geeprom,
6681 .set_eeprom = s2io_ethtool_seeprom,
6682 .get_ringparam = s2io_ethtool_gringparam,
6683 .get_pauseparam = s2io_ethtool_getpause_data,
6684 .set_pauseparam = s2io_ethtool_setpause_data,
6685 .get_rx_csum = s2io_ethtool_get_rx_csum,
6686 .set_rx_csum = s2io_ethtool_set_rx_csum,
6687 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6688 .set_sg = ethtool_op_set_sg,
6689 .get_tso = s2io_ethtool_op_get_tso,
6690 .set_tso = s2io_ethtool_op_set_tso,
6691 .set_ufo = ethtool_op_set_ufo,
6692 .self_test = s2io_ethtool_test,
6693 .get_strings = s2io_ethtool_get_strings,
6694 .phys_id = s2io_ethtool_idnic,
6695 .get_ethtool_stats = s2io_get_ethtool_stats,
6696 .get_sset_count = s2io_get_sset_count,
6700 * s2io_ioctl - Entry point for the Ioctl
6701 * @dev : Device pointer.
6702 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6703 * a proprietary structure used to pass information to the driver.
6704 * @cmd : This is used to distinguish between the different commands that
6705 * can be passed to the IOCTL functions.
6706 * Description:
6707 * Currently there are no special functionality supported in IOCTL, hence
6708 * function always return EOPNOTSUPPORTED
6711 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6713 return -EOPNOTSUPP;
6717 * s2io_change_mtu - entry point to change MTU size for the device.
6718 * @dev : device pointer.
6719 * @new_mtu : the new MTU size for the device.
6720 * Description: A driver entry point to change MTU size for the device.
6721 * Before changing the MTU the device must be stopped.
6722 * Return value:
6723 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6724 * file on failure.
6727 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6729 struct s2io_nic *sp = netdev_priv(dev);
6730 int ret = 0;
6732 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6733 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6734 dev->name);
6735 return -EPERM;
6738 dev->mtu = new_mtu;
6739 if (netif_running(dev)) {
6740 s2io_stop_all_tx_queue(sp);
6741 s2io_card_down(sp);
6742 ret = s2io_card_up(sp);
6743 if (ret) {
6744 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6745 __func__);
6746 return ret;
6748 s2io_wake_all_tx_queue(sp);
6749 } else { /* Device is down */
6750 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6751 u64 val64 = new_mtu;
6753 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6756 return ret;
6760 * s2io_set_link - Set the LInk status
6761 * @data: long pointer to device private structue
6762 * Description: Sets the link status for the adapter
6765 static void s2io_set_link(struct work_struct *work)
6767 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6768 struct net_device *dev = nic->dev;
6769 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6770 register u64 val64;
6771 u16 subid;
6773 rtnl_lock();
6775 if (!netif_running(dev))
6776 goto out_unlock;
6778 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6779 /* The card is being reset, no point doing anything */
6780 goto out_unlock;
6783 subid = nic->pdev->subsystem_device;
6784 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6786 * Allow a small delay for the NICs self initiated
6787 * cleanup to complete.
6789 msleep(100);
6792 val64 = readq(&bar0->adapter_status);
6793 if (LINK_IS_UP(val64)) {
6794 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6795 if (verify_xena_quiescence(nic)) {
6796 val64 = readq(&bar0->adapter_control);
6797 val64 |= ADAPTER_CNTL_EN;
6798 writeq(val64, &bar0->adapter_control);
6799 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6800 nic->device_type, subid)) {
6801 val64 = readq(&bar0->gpio_control);
6802 val64 |= GPIO_CTRL_GPIO_0;
6803 writeq(val64, &bar0->gpio_control);
6804 val64 = readq(&bar0->gpio_control);
6805 } else {
6806 val64 |= ADAPTER_LED_ON;
6807 writeq(val64, &bar0->adapter_control);
6809 nic->device_enabled_once = true;
6810 } else {
6811 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6812 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6813 s2io_stop_all_tx_queue(nic);
6816 val64 = readq(&bar0->adapter_control);
6817 val64 |= ADAPTER_LED_ON;
6818 writeq(val64, &bar0->adapter_control);
6819 s2io_link(nic, LINK_UP);
6820 } else {
6821 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6822 subid)) {
6823 val64 = readq(&bar0->gpio_control);
6824 val64 &= ~GPIO_CTRL_GPIO_0;
6825 writeq(val64, &bar0->gpio_control);
6826 val64 = readq(&bar0->gpio_control);
6828 /* turn off LED */
6829 val64 = readq(&bar0->adapter_control);
6830 val64 = val64 &(~ADAPTER_LED_ON);
6831 writeq(val64, &bar0->adapter_control);
6832 s2io_link(nic, LINK_DOWN);
6834 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6836 out_unlock:
6837 rtnl_unlock();
6840 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6841 struct buffAdd *ba,
6842 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6843 u64 *temp2, int size)
6845 struct net_device *dev = sp->dev;
6846 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6848 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6849 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6850 /* allocate skb */
6851 if (*skb) {
6852 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6854 * As Rx frame are not going to be processed,
6855 * using same mapped address for the Rxd
6856 * buffer pointer
6858 rxdp1->Buffer0_ptr = *temp0;
6859 } else {
6860 *skb = dev_alloc_skb(size);
6861 if (!(*skb)) {
6862 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6863 DBG_PRINT(INFO_DBG, "memory to allocate ");
6864 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6865 sp->mac_control.stats_info->sw_stat. \
6866 mem_alloc_fail_cnt++;
6867 return -ENOMEM ;
6869 sp->mac_control.stats_info->sw_stat.mem_allocated
6870 += (*skb)->truesize;
6871 /* storing the mapped addr in a temp variable
6872 * such it will be used for next rxd whose
6873 * Host Control is NULL
6875 rxdp1->Buffer0_ptr = *temp0 =
6876 pci_map_single( sp->pdev, (*skb)->data,
6877 size - NET_IP_ALIGN,
6878 PCI_DMA_FROMDEVICE);
6879 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6880 goto memalloc_failed;
6881 rxdp->Host_Control = (unsigned long) (*skb);
6883 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6884 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6885 /* Two buffer Mode */
6886 if (*skb) {
6887 rxdp3->Buffer2_ptr = *temp2;
6888 rxdp3->Buffer0_ptr = *temp0;
6889 rxdp3->Buffer1_ptr = *temp1;
6890 } else {
6891 *skb = dev_alloc_skb(size);
6892 if (!(*skb)) {
6893 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6894 DBG_PRINT(INFO_DBG, "memory to allocate ");
6895 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6896 sp->mac_control.stats_info->sw_stat. \
6897 mem_alloc_fail_cnt++;
6898 return -ENOMEM;
6900 sp->mac_control.stats_info->sw_stat.mem_allocated
6901 += (*skb)->truesize;
6902 rxdp3->Buffer2_ptr = *temp2 =
6903 pci_map_single(sp->pdev, (*skb)->data,
6904 dev->mtu + 4,
6905 PCI_DMA_FROMDEVICE);
6906 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6907 goto memalloc_failed;
6908 rxdp3->Buffer0_ptr = *temp0 =
6909 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6910 PCI_DMA_FROMDEVICE);
6911 if (pci_dma_mapping_error(sp->pdev,
6912 rxdp3->Buffer0_ptr)) {
6913 pci_unmap_single (sp->pdev,
6914 (dma_addr_t)rxdp3->Buffer2_ptr,
6915 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6916 goto memalloc_failed;
6918 rxdp->Host_Control = (unsigned long) (*skb);
6920 /* Buffer-1 will be dummy buffer not used */
6921 rxdp3->Buffer1_ptr = *temp1 =
6922 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6923 PCI_DMA_FROMDEVICE);
6924 if (pci_dma_mapping_error(sp->pdev,
6925 rxdp3->Buffer1_ptr)) {
6926 pci_unmap_single (sp->pdev,
6927 (dma_addr_t)rxdp3->Buffer0_ptr,
6928 BUF0_LEN, PCI_DMA_FROMDEVICE);
6929 pci_unmap_single (sp->pdev,
6930 (dma_addr_t)rxdp3->Buffer2_ptr,
6931 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6932 goto memalloc_failed;
6936 return 0;
6937 memalloc_failed:
6938 stats->pci_map_fail_cnt++;
6939 stats->mem_freed += (*skb)->truesize;
6940 dev_kfree_skb(*skb);
6941 return -ENOMEM;
6944 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6945 int size)
6947 struct net_device *dev = sp->dev;
6948 if (sp->rxd_mode == RXD_MODE_1) {
6949 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6950 } else if (sp->rxd_mode == RXD_MODE_3B) {
6951 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6952 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6953 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6957 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6959 int i, j, k, blk_cnt = 0, size;
6960 struct mac_info * mac_control = &sp->mac_control;
6961 struct config_param *config = &sp->config;
6962 struct net_device *dev = sp->dev;
6963 struct RxD_t *rxdp = NULL;
6964 struct sk_buff *skb = NULL;
6965 struct buffAdd *ba = NULL;
6966 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6968 /* Calculate the size based on ring mode */
6969 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6970 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6971 if (sp->rxd_mode == RXD_MODE_1)
6972 size += NET_IP_ALIGN;
6973 else if (sp->rxd_mode == RXD_MODE_3B)
6974 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6976 for (i = 0; i < config->rx_ring_num; i++) {
6977 blk_cnt = config->rx_cfg[i].num_rxd /
6978 (rxd_count[sp->rxd_mode] +1);
6980 for (j = 0; j < blk_cnt; j++) {
6981 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6982 rxdp = mac_control->rings[i].
6983 rx_blocks[j].rxds[k].virt_addr;
6984 if(sp->rxd_mode == RXD_MODE_3B)
6985 ba = &mac_control->rings[i].ba[j][k];
6986 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6987 &skb,(u64 *)&temp0_64,
6988 (u64 *)&temp1_64,
6989 (u64 *)&temp2_64,
6990 size) == -ENOMEM) {
6991 return 0;
6994 set_rxd_buffer_size(sp, rxdp, size);
6995 wmb();
6996 /* flip the Ownership bit to Hardware */
6997 rxdp->Control_1 |= RXD_OWN_XENA;
7001 return 0;
7005 static int s2io_add_isr(struct s2io_nic * sp)
7007 int ret = 0;
7008 struct net_device *dev = sp->dev;
7009 int err = 0;
7011 if (sp->config.intr_type == MSI_X)
7012 ret = s2io_enable_msi_x(sp);
7013 if (ret) {
7014 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7015 sp->config.intr_type = INTA;
7018 /* Store the values of the MSIX table in the struct s2io_nic structure */
7019 store_xmsi_data(sp);
7021 /* After proper initialization of H/W, register ISR */
7022 if (sp->config.intr_type == MSI_X) {
7023 int i, msix_rx_cnt = 0;
7025 for (i = 0; i < sp->num_entries; i++) {
7026 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7027 if (sp->s2io_entries[i].type ==
7028 MSIX_RING_TYPE) {
7029 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7030 dev->name, i);
7031 err = request_irq(sp->entries[i].vector,
7032 s2io_msix_ring_handle, 0,
7033 sp->desc[i],
7034 sp->s2io_entries[i].arg);
7035 } else if (sp->s2io_entries[i].type ==
7036 MSIX_ALARM_TYPE) {
7037 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7038 dev->name, i);
7039 err = request_irq(sp->entries[i].vector,
7040 s2io_msix_fifo_handle, 0,
7041 sp->desc[i],
7042 sp->s2io_entries[i].arg);
7045 /* if either data or addr is zero print it. */
7046 if (!(sp->msix_info[i].addr &&
7047 sp->msix_info[i].data)) {
7048 DBG_PRINT(ERR_DBG,
7049 "%s @Addr:0x%llx Data:0x%llx\n",
7050 sp->desc[i],
7051 (unsigned long long)
7052 sp->msix_info[i].addr,
7053 (unsigned long long)
7054 ntohl(sp->msix_info[i].data));
7055 } else
7056 msix_rx_cnt++;
7057 if (err) {
7058 remove_msix_isr(sp);
7060 DBG_PRINT(ERR_DBG,
7061 "%s:MSI-X-%d registration "
7062 "failed\n", dev->name, i);
7064 DBG_PRINT(ERR_DBG,
7065 "%s: Defaulting to INTA\n",
7066 dev->name);
7067 sp->config.intr_type = INTA;
7068 break;
7070 sp->s2io_entries[i].in_use =
7071 MSIX_REGISTERED_SUCCESS;
7074 if (!err) {
7075 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7076 --msix_rx_cnt);
7077 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7078 " through alarm vector\n");
7081 if (sp->config.intr_type == INTA) {
7082 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7083 sp->name, dev);
7084 if (err) {
7085 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7086 dev->name);
7087 return -1;
7090 return 0;
7092 static void s2io_rem_isr(struct s2io_nic * sp)
7094 if (sp->config.intr_type == MSI_X)
7095 remove_msix_isr(sp);
7096 else
7097 remove_inta_isr(sp);
7100 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7102 int cnt = 0;
7103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7104 register u64 val64 = 0;
7105 struct config_param *config;
7106 config = &sp->config;
7108 if (!is_s2io_card_up(sp))
7109 return;
7111 del_timer_sync(&sp->alarm_timer);
7112 /* If s2io_set_link task is executing, wait till it completes. */
7113 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7114 msleep(50);
7116 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7118 /* Disable napi */
7119 if (sp->config.napi) {
7120 int off = 0;
7121 if (config->intr_type == MSI_X) {
7122 for (; off < sp->config.rx_ring_num; off++)
7123 napi_disable(&sp->mac_control.rings[off].napi);
7125 else
7126 napi_disable(&sp->napi);
7129 /* disable Tx and Rx traffic on the NIC */
7130 if (do_io)
7131 stop_nic(sp);
7133 s2io_rem_isr(sp);
7135 /* stop the tx queue, indicate link down */
7136 s2io_link(sp, LINK_DOWN);
7138 /* Check if the device is Quiescent and then Reset the NIC */
7139 while(do_io) {
7140 /* As per the HW requirement we need to replenish the
7141 * receive buffer to avoid the ring bump. Since there is
7142 * no intention of processing the Rx frame at this pointwe are
7143 * just settting the ownership bit of rxd in Each Rx
7144 * ring to HW and set the appropriate buffer size
7145 * based on the ring mode
7147 rxd_owner_bit_reset(sp);
7149 val64 = readq(&bar0->adapter_status);
7150 if (verify_xena_quiescence(sp)) {
7151 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7152 break;
7155 msleep(50);
7156 cnt++;
7157 if (cnt == 10) {
7158 DBG_PRINT(ERR_DBG,
7159 "s2io_close:Device not Quiescent ");
7160 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7161 (unsigned long long) val64);
7162 break;
7165 if (do_io)
7166 s2io_reset(sp);
7168 /* Free all Tx buffers */
7169 free_tx_buffers(sp);
7171 /* Free all Rx buffers */
7172 free_rx_buffers(sp);
7174 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7177 static void s2io_card_down(struct s2io_nic * sp)
7179 do_s2io_card_down(sp, 1);
7182 static int s2io_card_up(struct s2io_nic * sp)
7184 int i, ret = 0;
7185 struct mac_info *mac_control;
7186 struct config_param *config;
7187 struct net_device *dev = (struct net_device *) sp->dev;
7188 u16 interruptible;
7190 /* Initialize the H/W I/O registers */
7191 ret = init_nic(sp);
7192 if (ret != 0) {
7193 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7194 dev->name);
7195 if (ret != -EIO)
7196 s2io_reset(sp);
7197 return ret;
7201 * Initializing the Rx buffers. For now we are considering only 1
7202 * Rx ring and initializing buffers into 30 Rx blocks
7204 mac_control = &sp->mac_control;
7205 config = &sp->config;
7207 for (i = 0; i < config->rx_ring_num; i++) {
7208 mac_control->rings[i].mtu = dev->mtu;
7209 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7210 if (ret) {
7211 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7212 dev->name);
7213 s2io_reset(sp);
7214 free_rx_buffers(sp);
7215 return -ENOMEM;
7217 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7218 mac_control->rings[i].rx_bufs_left);
7221 /* Initialise napi */
7222 if (config->napi) {
7223 if (config->intr_type == MSI_X) {
7224 for (i = 0; i < sp->config.rx_ring_num; i++)
7225 napi_enable(&sp->mac_control.rings[i].napi);
7226 } else {
7227 napi_enable(&sp->napi);
7231 /* Maintain the state prior to the open */
7232 if (sp->promisc_flg)
7233 sp->promisc_flg = 0;
7234 if (sp->m_cast_flg) {
7235 sp->m_cast_flg = 0;
7236 sp->all_multi_pos= 0;
7239 /* Setting its receive mode */
7240 s2io_set_multicast(dev);
7242 if (sp->lro) {
7243 /* Initialize max aggregatable pkts per session based on MTU */
7244 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7245 /* Check if we can use(if specified) user provided value */
7246 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7247 sp->lro_max_aggr_per_sess = lro_max_pkts;
7250 /* Enable Rx Traffic and interrupts on the NIC */
7251 if (start_nic(sp)) {
7252 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7253 s2io_reset(sp);
7254 free_rx_buffers(sp);
7255 return -ENODEV;
7258 /* Add interrupt service routine */
7259 if (s2io_add_isr(sp) != 0) {
7260 if (sp->config.intr_type == MSI_X)
7261 s2io_rem_isr(sp);
7262 s2io_reset(sp);
7263 free_rx_buffers(sp);
7264 return -ENODEV;
7267 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7269 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7271 /* Enable select interrupts */
7272 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7273 if (sp->config.intr_type != INTA) {
7274 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7275 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7276 } else {
7277 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7278 interruptible |= TX_PIC_INTR;
7279 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7282 return 0;
7286 * s2io_restart_nic - Resets the NIC.
7287 * @data : long pointer to the device private structure
7288 * Description:
7289 * This function is scheduled to be run by the s2io_tx_watchdog
7290 * function after 0.5 secs to reset the NIC. The idea is to reduce
7291 * the run time of the watch dog routine which is run holding a
7292 * spin lock.
7295 static void s2io_restart_nic(struct work_struct *work)
7297 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7298 struct net_device *dev = sp->dev;
7300 rtnl_lock();
7302 if (!netif_running(dev))
7303 goto out_unlock;
7305 s2io_card_down(sp);
7306 if (s2io_card_up(sp)) {
7307 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7308 dev->name);
7310 s2io_wake_all_tx_queue(sp);
7311 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7312 dev->name);
7313 out_unlock:
7314 rtnl_unlock();
7318 * s2io_tx_watchdog - Watchdog for transmit side.
7319 * @dev : Pointer to net device structure
7320 * Description:
7321 * This function is triggered if the Tx Queue is stopped
7322 * for a pre-defined amount of time when the Interface is still up.
7323 * If the Interface is jammed in such a situation, the hardware is
7324 * reset (by s2io_close) and restarted again (by s2io_open) to
7325 * overcome any problem that might have been caused in the hardware.
7326 * Return value:
7327 * void
7330 static void s2io_tx_watchdog(struct net_device *dev)
7332 struct s2io_nic *sp = netdev_priv(dev);
7334 if (netif_carrier_ok(dev)) {
7335 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7336 schedule_work(&sp->rst_timer_task);
7337 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7342 * rx_osm_handler - To perform some OS related operations on SKB.
7343 * @sp: private member of the device structure,pointer to s2io_nic structure.
7344 * @skb : the socket buffer pointer.
7345 * @len : length of the packet
7346 * @cksum : FCS checksum of the frame.
7347 * @ring_no : the ring from which this RxD was extracted.
7348 * Description:
7349 * This function is called by the Rx interrupt serivce routine to perform
7350 * some OS related operations on the SKB before passing it to the upper
7351 * layers. It mainly checks if the checksum is OK, if so adds it to the
7352 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7353 * to the upper layer. If the checksum is wrong, it increments the Rx
7354 * packet error count, frees the SKB and returns error.
7355 * Return value:
7356 * SUCCESS on success and -1 on failure.
7358 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7360 struct s2io_nic *sp = ring_data->nic;
7361 struct net_device *dev = (struct net_device *) ring_data->dev;
7362 struct sk_buff *skb = (struct sk_buff *)
7363 ((unsigned long) rxdp->Host_Control);
7364 int ring_no = ring_data->ring_no;
7365 u16 l3_csum, l4_csum;
7366 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7367 struct lro *uninitialized_var(lro);
7368 u8 err_mask;
7370 skb->dev = dev;
7372 if (err) {
7373 /* Check for parity error */
7374 if (err & 0x1) {
7375 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7377 err_mask = err >> 48;
7378 switch(err_mask) {
7379 case 1:
7380 sp->mac_control.stats_info->sw_stat.
7381 rx_parity_err_cnt++;
7382 break;
7384 case 2:
7385 sp->mac_control.stats_info->sw_stat.
7386 rx_abort_cnt++;
7387 break;
7389 case 3:
7390 sp->mac_control.stats_info->sw_stat.
7391 rx_parity_abort_cnt++;
7392 break;
7394 case 4:
7395 sp->mac_control.stats_info->sw_stat.
7396 rx_rda_fail_cnt++;
7397 break;
7399 case 5:
7400 sp->mac_control.stats_info->sw_stat.
7401 rx_unkn_prot_cnt++;
7402 break;
7404 case 6:
7405 sp->mac_control.stats_info->sw_stat.
7406 rx_fcs_err_cnt++;
7407 break;
7409 case 7:
7410 sp->mac_control.stats_info->sw_stat.
7411 rx_buf_size_err_cnt++;
7412 break;
7414 case 8:
7415 sp->mac_control.stats_info->sw_stat.
7416 rx_rxd_corrupt_cnt++;
7417 break;
7419 case 15:
7420 sp->mac_control.stats_info->sw_stat.
7421 rx_unkn_err_cnt++;
7422 break;
7425 * Drop the packet if bad transfer code. Exception being
7426 * 0x5, which could be due to unsupported IPv6 extension header.
7427 * In this case, we let stack handle the packet.
7428 * Note that in this case, since checksum will be incorrect,
7429 * stack will validate the same.
7431 if (err_mask != 0x5) {
7432 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7433 dev->name, err_mask);
7434 dev->stats.rx_crc_errors++;
7435 sp->mac_control.stats_info->sw_stat.mem_freed
7436 += skb->truesize;
7437 dev_kfree_skb(skb);
7438 ring_data->rx_bufs_left -= 1;
7439 rxdp->Host_Control = 0;
7440 return 0;
7444 /* Updating statistics */
7445 ring_data->rx_packets++;
7446 rxdp->Host_Control = 0;
7447 if (sp->rxd_mode == RXD_MODE_1) {
7448 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7450 ring_data->rx_bytes += len;
7451 skb_put(skb, len);
7453 } else if (sp->rxd_mode == RXD_MODE_3B) {
7454 int get_block = ring_data->rx_curr_get_info.block_index;
7455 int get_off = ring_data->rx_curr_get_info.offset;
7456 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7457 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7458 unsigned char *buff = skb_push(skb, buf0_len);
7460 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7461 ring_data->rx_bytes += buf0_len + buf2_len;
7462 memcpy(buff, ba->ba_0, buf0_len);
7463 skb_put(skb, buf2_len);
7466 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7467 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7468 (sp->rx_csum)) {
7469 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7470 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7471 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7473 * NIC verifies if the Checksum of the received
7474 * frame is Ok or not and accordingly returns
7475 * a flag in the RxD.
7477 skb->ip_summed = CHECKSUM_UNNECESSARY;
7478 if (ring_data->lro) {
7479 u32 tcp_len;
7480 u8 *tcp;
7481 int ret = 0;
7483 ret = s2io_club_tcp_session(ring_data,
7484 skb->data, &tcp, &tcp_len, &lro,
7485 rxdp, sp);
7486 switch (ret) {
7487 case 3: /* Begin anew */
7488 lro->parent = skb;
7489 goto aggregate;
7490 case 1: /* Aggregate */
7492 lro_append_pkt(sp, lro,
7493 skb, tcp_len);
7494 goto aggregate;
7496 case 4: /* Flush session */
7498 lro_append_pkt(sp, lro,
7499 skb, tcp_len);
7500 queue_rx_frame(lro->parent,
7501 lro->vlan_tag);
7502 clear_lro_session(lro);
7503 sp->mac_control.stats_info->
7504 sw_stat.flush_max_pkts++;
7505 goto aggregate;
7507 case 2: /* Flush both */
7508 lro->parent->data_len =
7509 lro->frags_len;
7510 sp->mac_control.stats_info->
7511 sw_stat.sending_both++;
7512 queue_rx_frame(lro->parent,
7513 lro->vlan_tag);
7514 clear_lro_session(lro);
7515 goto send_up;
7516 case 0: /* sessions exceeded */
7517 case -1: /* non-TCP or not
7518 * L2 aggregatable
7520 case 5: /*
7521 * First pkt in session not
7522 * L3/L4 aggregatable
7524 break;
7525 default:
7526 DBG_PRINT(ERR_DBG,
7527 "%s: Samadhana!!\n",
7528 __func__);
7529 BUG();
7532 } else {
7534 * Packet with erroneous checksum, let the
7535 * upper layers deal with it.
7537 skb->ip_summed = CHECKSUM_NONE;
7539 } else
7540 skb->ip_summed = CHECKSUM_NONE;
7542 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7543 send_up:
7544 skb_record_rx_queue(skb, ring_no);
7545 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7546 aggregate:
7547 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7548 return SUCCESS;
7552 * s2io_link - stops/starts the Tx queue.
7553 * @sp : private member of the device structure, which is a pointer to the
7554 * s2io_nic structure.
7555 * @link : inidicates whether link is UP/DOWN.
7556 * Description:
7557 * This function stops/starts the Tx queue depending on whether the link
7558 * status of the NIC is is down or up. This is called by the Alarm
7559 * interrupt handler whenever a link change interrupt comes up.
7560 * Return value:
7561 * void.
7564 static void s2io_link(struct s2io_nic * sp, int link)
7566 struct net_device *dev = (struct net_device *) sp->dev;
7568 if (link != sp->last_link_state) {
7569 init_tti(sp, link);
7570 if (link == LINK_DOWN) {
7571 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7572 s2io_stop_all_tx_queue(sp);
7573 netif_carrier_off(dev);
7574 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7575 sp->mac_control.stats_info->sw_stat.link_up_time =
7576 jiffies - sp->start_time;
7577 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7578 } else {
7579 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7580 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7581 sp->mac_control.stats_info->sw_stat.link_down_time =
7582 jiffies - sp->start_time;
7583 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7584 netif_carrier_on(dev);
7585 s2io_wake_all_tx_queue(sp);
7588 sp->last_link_state = link;
7589 sp->start_time = jiffies;
7593 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7594 * @sp : private member of the device structure, which is a pointer to the
7595 * s2io_nic structure.
7596 * Description:
7597 * This function initializes a few of the PCI and PCI-X configuration registers
7598 * with recommended values.
7599 * Return value:
7600 * void
7603 static void s2io_init_pci(struct s2io_nic * sp)
7605 u16 pci_cmd = 0, pcix_cmd = 0;
7607 /* Enable Data Parity Error Recovery in PCI-X command register. */
7608 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7609 &(pcix_cmd));
7610 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611 (pcix_cmd | 1));
7612 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613 &(pcix_cmd));
7615 /* Set the PErr Response bit in PCI command register. */
7616 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7617 pci_write_config_word(sp->pdev, PCI_COMMAND,
7618 (pci_cmd | PCI_COMMAND_PARITY));
7619 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7622 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7623 u8 *dev_multiq)
7625 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7626 (tx_fifo_num < 1)) {
7627 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7628 "(%d) not supported\n", tx_fifo_num);
7630 if (tx_fifo_num < 1)
7631 tx_fifo_num = 1;
7632 else
7633 tx_fifo_num = MAX_TX_FIFOS;
7635 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7636 DBG_PRINT(ERR_DBG, "tx fifos\n");
7639 if (multiq)
7640 *dev_multiq = multiq;
7642 if (tx_steering_type && (1 == tx_fifo_num)) {
7643 if (tx_steering_type != TX_DEFAULT_STEERING)
7644 DBG_PRINT(ERR_DBG,
7645 "s2io: Tx steering is not supported with "
7646 "one fifo. Disabling Tx steering.\n");
7647 tx_steering_type = NO_STEERING;
7650 if ((tx_steering_type < NO_STEERING) ||
7651 (tx_steering_type > TX_DEFAULT_STEERING)) {
7652 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7653 "supported\n");
7654 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7655 tx_steering_type = NO_STEERING;
7658 if (rx_ring_num > MAX_RX_RINGS) {
7659 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7660 "supported\n");
7661 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7662 MAX_RX_RINGS);
7663 rx_ring_num = MAX_RX_RINGS;
7666 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7667 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7668 "Defaulting to INTA\n");
7669 *dev_intr_type = INTA;
7672 if ((*dev_intr_type == MSI_X) &&
7673 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7674 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7675 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7676 "Defaulting to INTA\n");
7677 *dev_intr_type = INTA;
7680 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7681 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7682 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7683 rx_ring_mode = 1;
7685 return SUCCESS;
7689 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7690 * or Traffic class respectively.
7691 * @nic: device private variable
7692 * Description: The function configures the receive steering to
7693 * desired receive ring.
7694 * Return Value: SUCCESS on success and
7695 * '-1' on failure (endian settings incorrect).
7697 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7699 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7700 register u64 val64 = 0;
7702 if (ds_codepoint > 63)
7703 return FAILURE;
7705 val64 = RTS_DS_MEM_DATA(ring);
7706 writeq(val64, &bar0->rts_ds_mem_data);
7708 val64 = RTS_DS_MEM_CTRL_WE |
7709 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7710 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7712 writeq(val64, &bar0->rts_ds_mem_ctrl);
7714 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7715 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7716 S2IO_BIT_RESET);
7719 static const struct net_device_ops s2io_netdev_ops = {
7720 .ndo_open = s2io_open,
7721 .ndo_stop = s2io_close,
7722 .ndo_get_stats = s2io_get_stats,
7723 .ndo_start_xmit = s2io_xmit,
7724 .ndo_validate_addr = eth_validate_addr,
7725 .ndo_set_multicast_list = s2io_set_multicast,
7726 .ndo_do_ioctl = s2io_ioctl,
7727 .ndo_set_mac_address = s2io_set_mac_addr,
7728 .ndo_change_mtu = s2io_change_mtu,
7729 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7730 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7731 .ndo_tx_timeout = s2io_tx_watchdog,
7732 #ifdef CONFIG_NET_POLL_CONTROLLER
7733 .ndo_poll_controller = s2io_netpoll,
7734 #endif
7738 * s2io_init_nic - Initialization of the adapter .
7739 * @pdev : structure containing the PCI related information of the device.
7740 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7741 * Description:
7742 * The function initializes an adapter identified by the pci_dec structure.
7743 * All OS related initialization including memory and device structure and
7744 * initlaization of the device private variable is done. Also the swapper
7745 * control register is initialized to enable read and write into the I/O
7746 * registers of the device.
7747 * Return value:
7748 * returns 0 on success and negative on failure.
7751 static int __devinit
7752 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7754 struct s2io_nic *sp;
7755 struct net_device *dev;
7756 int i, j, ret;
7757 int dma_flag = false;
7758 u32 mac_up, mac_down;
7759 u64 val64 = 0, tmp64 = 0;
7760 struct XENA_dev_config __iomem *bar0 = NULL;
7761 u16 subid;
7762 struct mac_info *mac_control;
7763 struct config_param *config;
7764 int mode;
7765 u8 dev_intr_type = intr_type;
7766 u8 dev_multiq = 0;
7768 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7769 if (ret)
7770 return ret;
7772 if ((ret = pci_enable_device(pdev))) {
7773 DBG_PRINT(ERR_DBG,
7774 "s2io_init_nic: pci_enable_device failed\n");
7775 return ret;
7778 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7779 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7780 dma_flag = true;
7781 if (pci_set_consistent_dma_mask
7782 (pdev, DMA_BIT_MASK(64))) {
7783 DBG_PRINT(ERR_DBG,
7784 "Unable to obtain 64bit DMA for \
7785 consistent allocations\n");
7786 pci_disable_device(pdev);
7787 return -ENOMEM;
7789 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7790 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7791 } else {
7792 pci_disable_device(pdev);
7793 return -ENOMEM;
7795 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7796 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7797 pci_disable_device(pdev);
7798 return -ENODEV;
7800 if (dev_multiq)
7801 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7802 else
7803 dev = alloc_etherdev(sizeof(struct s2io_nic));
7804 if (dev == NULL) {
7805 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7806 pci_disable_device(pdev);
7807 pci_release_regions(pdev);
7808 return -ENODEV;
7811 pci_set_master(pdev);
7812 pci_set_drvdata(pdev, dev);
7813 SET_NETDEV_DEV(dev, &pdev->dev);
7815 /* Private member variable initialized to s2io NIC structure */
7816 sp = netdev_priv(dev);
7817 memset(sp, 0, sizeof(struct s2io_nic));
7818 sp->dev = dev;
7819 sp->pdev = pdev;
7820 sp->high_dma_flag = dma_flag;
7821 sp->device_enabled_once = false;
7822 if (rx_ring_mode == 1)
7823 sp->rxd_mode = RXD_MODE_1;
7824 if (rx_ring_mode == 2)
7825 sp->rxd_mode = RXD_MODE_3B;
7827 sp->config.intr_type = dev_intr_type;
7829 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7830 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7831 sp->device_type = XFRAME_II_DEVICE;
7832 else
7833 sp->device_type = XFRAME_I_DEVICE;
7835 sp->lro = lro_enable;
7837 /* Initialize some PCI/PCI-X fields of the NIC. */
7838 s2io_init_pci(sp);
7841 * Setting the device configuration parameters.
7842 * Most of these parameters can be specified by the user during
7843 * module insertion as they are module loadable parameters. If
7844 * these parameters are not not specified during load time, they
7845 * are initialized with default values.
7847 mac_control = &sp->mac_control;
7848 config = &sp->config;
7850 config->napi = napi;
7851 config->tx_steering_type = tx_steering_type;
7853 /* Tx side parameters. */
7854 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7855 config->tx_fifo_num = MAX_TX_FIFOS;
7856 else
7857 config->tx_fifo_num = tx_fifo_num;
7859 /* Initialize the fifos used for tx steering */
7860 if (config->tx_fifo_num < 5) {
7861 if (config->tx_fifo_num == 1)
7862 sp->total_tcp_fifos = 1;
7863 else
7864 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7865 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7866 sp->total_udp_fifos = 1;
7867 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7868 } else {
7869 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7870 FIFO_OTHER_MAX_NUM);
7871 sp->udp_fifo_idx = sp->total_tcp_fifos;
7872 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7873 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7876 config->multiq = dev_multiq;
7877 for (i = 0; i < config->tx_fifo_num; i++) {
7878 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7879 config->tx_cfg[i].fifo_priority = i;
7882 /* mapping the QoS priority to the configured fifos */
7883 for (i = 0; i < MAX_TX_FIFOS; i++)
7884 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7886 /* map the hashing selector table to the configured fifos */
7887 for (i = 0; i < config->tx_fifo_num; i++)
7888 sp->fifo_selector[i] = fifo_selector[i];
7891 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7892 for (i = 0; i < config->tx_fifo_num; i++) {
7893 config->tx_cfg[i].f_no_snoop =
7894 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7895 if (config->tx_cfg[i].fifo_len < 65) {
7896 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7897 break;
7900 /* + 2 because one Txd for skb->data and one Txd for UFO */
7901 config->max_txds = MAX_SKB_FRAGS + 2;
7903 /* Rx side parameters. */
7904 config->rx_ring_num = rx_ring_num;
7905 for (i = 0; i < config->rx_ring_num; i++) {
7906 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7907 (rxd_count[sp->rxd_mode] + 1);
7908 config->rx_cfg[i].ring_priority = i;
7909 mac_control->rings[i].rx_bufs_left = 0;
7910 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7911 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7912 mac_control->rings[i].pdev = sp->pdev;
7913 mac_control->rings[i].dev = sp->dev;
7916 for (i = 0; i < rx_ring_num; i++) {
7917 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7918 config->rx_cfg[i].f_no_snoop =
7919 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7922 /* Setting Mac Control parameters */
7923 mac_control->rmac_pause_time = rmac_pause_time;
7924 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7925 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7928 /* initialize the shared memory used by the NIC and the host */
7929 if (init_shared_mem(sp)) {
7930 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7931 dev->name);
7932 ret = -ENOMEM;
7933 goto mem_alloc_failed;
7936 sp->bar0 = pci_ioremap_bar(pdev, 0);
7937 if (!sp->bar0) {
7938 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7939 dev->name);
7940 ret = -ENOMEM;
7941 goto bar0_remap_failed;
7944 sp->bar1 = pci_ioremap_bar(pdev, 2);
7945 if (!sp->bar1) {
7946 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7947 dev->name);
7948 ret = -ENOMEM;
7949 goto bar1_remap_failed;
7952 dev->irq = pdev->irq;
7953 dev->base_addr = (unsigned long) sp->bar0;
7955 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7956 for (j = 0; j < MAX_TX_FIFOS; j++) {
7957 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7958 (sp->bar1 + (j * 0x00020000));
7961 /* Driver entry points */
7962 dev->netdev_ops = &s2io_netdev_ops;
7963 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7964 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7966 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7967 if (sp->high_dma_flag == true)
7968 dev->features |= NETIF_F_HIGHDMA;
7969 dev->features |= NETIF_F_TSO;
7970 dev->features |= NETIF_F_TSO6;
7971 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7972 dev->features |= NETIF_F_UFO;
7973 dev->features |= NETIF_F_HW_CSUM;
7975 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7976 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7977 INIT_WORK(&sp->set_link_task, s2io_set_link);
7979 pci_save_state(sp->pdev);
7981 /* Setting swapper control on the NIC, for proper reset operation */
7982 if (s2io_set_swapper(sp)) {
7983 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7984 dev->name);
7985 ret = -EAGAIN;
7986 goto set_swap_failed;
7989 /* Verify if the Herc works on the slot its placed into */
7990 if (sp->device_type & XFRAME_II_DEVICE) {
7991 mode = s2io_verify_pci_mode(sp);
7992 if (mode < 0) {
7993 DBG_PRINT(ERR_DBG, "%s: ", __func__);
7994 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7995 ret = -EBADSLT;
7996 goto set_swap_failed;
8000 if (sp->config.intr_type == MSI_X) {
8001 sp->num_entries = config->rx_ring_num + 1;
8002 ret = s2io_enable_msi_x(sp);
8004 if (!ret) {
8005 ret = s2io_test_msi(sp);
8006 /* rollback MSI-X, will re-enable during add_isr() */
8007 remove_msix_isr(sp);
8009 if (ret) {
8011 DBG_PRINT(ERR_DBG,
8012 "s2io: MSI-X requested but failed to enable\n");
8013 sp->config.intr_type = INTA;
8017 if (config->intr_type == MSI_X) {
8018 for (i = 0; i < config->rx_ring_num ; i++)
8019 netif_napi_add(dev, &mac_control->rings[i].napi,
8020 s2io_poll_msix, 64);
8021 } else {
8022 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8025 /* Not needed for Herc */
8026 if (sp->device_type & XFRAME_I_DEVICE) {
8028 * Fix for all "FFs" MAC address problems observed on
8029 * Alpha platforms
8031 fix_mac_address(sp);
8032 s2io_reset(sp);
8036 * MAC address initialization.
8037 * For now only one mac address will be read and used.
8039 bar0 = sp->bar0;
8040 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8041 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8042 writeq(val64, &bar0->rmac_addr_cmd_mem);
8043 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8044 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8045 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8046 mac_down = (u32) tmp64;
8047 mac_up = (u32) (tmp64 >> 32);
8049 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8050 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8051 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8052 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8053 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8054 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8056 /* Set the factory defined MAC address initially */
8057 dev->addr_len = ETH_ALEN;
8058 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8059 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8061 /* initialize number of multicast & unicast MAC entries variables */
8062 if (sp->device_type == XFRAME_I_DEVICE) {
8063 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8064 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8065 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8066 } else if (sp->device_type == XFRAME_II_DEVICE) {
8067 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8068 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8069 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8072 /* store mac addresses from CAM to s2io_nic structure */
8073 do_s2io_store_unicast_mc(sp);
8075 /* Configure MSIX vector for number of rings configured plus one */
8076 if ((sp->device_type == XFRAME_II_DEVICE) &&
8077 (config->intr_type == MSI_X))
8078 sp->num_entries = config->rx_ring_num + 1;
8080 /* Store the values of the MSIX table in the s2io_nic structure */
8081 store_xmsi_data(sp);
8082 /* reset Nic and bring it to known state */
8083 s2io_reset(sp);
8086 * Initialize link state flags
8087 * and the card state parameter
8089 sp->state = 0;
8091 /* Initialize spinlocks */
8092 for (i = 0; i < sp->config.tx_fifo_num; i++)
8093 spin_lock_init(&mac_control->fifos[i].tx_lock);
8096 * SXE-002: Configure link and activity LED to init state
8097 * on driver load.
8099 subid = sp->pdev->subsystem_device;
8100 if ((subid & 0xFF) >= 0x07) {
8101 val64 = readq(&bar0->gpio_control);
8102 val64 |= 0x0000800000000000ULL;
8103 writeq(val64, &bar0->gpio_control);
8104 val64 = 0x0411040400000000ULL;
8105 writeq(val64, (void __iomem *) bar0 + 0x2700);
8106 val64 = readq(&bar0->gpio_control);
8109 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8111 if (register_netdev(dev)) {
8112 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8113 ret = -ENODEV;
8114 goto register_failed;
8116 s2io_vpd_read(sp);
8117 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8118 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8119 sp->product_name, pdev->revision);
8120 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8121 s2io_driver_version);
8122 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8123 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8124 if (sp->device_type & XFRAME_II_DEVICE) {
8125 mode = s2io_print_pci_mode(sp);
8126 if (mode < 0) {
8127 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8128 ret = -EBADSLT;
8129 unregister_netdev(dev);
8130 goto set_swap_failed;
8133 switch(sp->rxd_mode) {
8134 case RXD_MODE_1:
8135 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8136 dev->name);
8137 break;
8138 case RXD_MODE_3B:
8139 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8140 dev->name);
8141 break;
8144 switch (sp->config.napi) {
8145 case 0:
8146 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8147 break;
8148 case 1:
8149 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8150 break;
8153 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8154 sp->config.tx_fifo_num);
8156 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8157 sp->config.rx_ring_num);
8159 switch(sp->config.intr_type) {
8160 case INTA:
8161 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8162 break;
8163 case MSI_X:
8164 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8165 break;
8167 if (sp->config.multiq) {
8168 for (i = 0; i < sp->config.tx_fifo_num; i++)
8169 mac_control->fifos[i].multiq = config->multiq;
8170 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8171 dev->name);
8172 } else
8173 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8174 dev->name);
8176 switch (sp->config.tx_steering_type) {
8177 case NO_STEERING:
8178 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8179 " transmit\n", dev->name);
8180 break;
8181 case TX_PRIORITY_STEERING:
8182 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8183 " transmit\n", dev->name);
8184 break;
8185 case TX_DEFAULT_STEERING:
8186 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8187 " transmit\n", dev->name);
8190 if (sp->lro)
8191 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8192 dev->name);
8193 if (ufo)
8194 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8195 " enabled\n", dev->name);
8196 /* Initialize device name */
8197 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8199 if (vlan_tag_strip)
8200 sp->vlan_strip_flag = 1;
8201 else
8202 sp->vlan_strip_flag = 0;
8205 * Make Link state as off at this point, when the Link change
8206 * interrupt comes the state will be automatically changed to
8207 * the right state.
8209 netif_carrier_off(dev);
8211 return 0;
8213 register_failed:
8214 set_swap_failed:
8215 iounmap(sp->bar1);
8216 bar1_remap_failed:
8217 iounmap(sp->bar0);
8218 bar0_remap_failed:
8219 mem_alloc_failed:
8220 free_shared_mem(sp);
8221 pci_disable_device(pdev);
8222 pci_release_regions(pdev);
8223 pci_set_drvdata(pdev, NULL);
8224 free_netdev(dev);
8226 return ret;
8230 * s2io_rem_nic - Free the PCI device
8231 * @pdev: structure containing the PCI related information of the device.
8232 * Description: This function is called by the Pci subsystem to release a
8233 * PCI device and free up all resource held up by the device. This could
8234 * be in response to a Hot plug event or when the driver is to be removed
8235 * from memory.
8238 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8240 struct net_device *dev =
8241 (struct net_device *) pci_get_drvdata(pdev);
8242 struct s2io_nic *sp;
8244 if (dev == NULL) {
8245 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8246 return;
8249 flush_scheduled_work();
8251 sp = netdev_priv(dev);
8252 unregister_netdev(dev);
8254 free_shared_mem(sp);
8255 iounmap(sp->bar0);
8256 iounmap(sp->bar1);
8257 pci_release_regions(pdev);
8258 pci_set_drvdata(pdev, NULL);
8259 free_netdev(dev);
8260 pci_disable_device(pdev);
8264 * s2io_starter - Entry point for the driver
8265 * Description: This function is the entry point for the driver. It verifies
8266 * the module loadable parameters and initializes PCI configuration space.
8269 static int __init s2io_starter(void)
8271 return pci_register_driver(&s2io_driver);
8275 * s2io_closer - Cleanup routine for the driver
8276 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8279 static __exit void s2io_closer(void)
8281 pci_unregister_driver(&s2io_driver);
8282 DBG_PRINT(INIT_DBG, "cleanup done\n");
8285 module_init(s2io_starter);
8286 module_exit(s2io_closer);
8288 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8289 struct tcphdr **tcp, struct RxD_t *rxdp,
8290 struct s2io_nic *sp)
8292 int ip_off;
8293 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8295 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8296 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8297 __func__);
8298 return -1;
8301 /* Checking for DIX type or DIX type with VLAN */
8302 if ((l2_type == 0)
8303 || (l2_type == 4)) {
8304 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8306 * If vlan stripping is disabled and the frame is VLAN tagged,
8307 * shift the offset by the VLAN header size bytes.
8309 if ((!sp->vlan_strip_flag) &&
8310 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8311 ip_off += HEADER_VLAN_SIZE;
8312 } else {
8313 /* LLC, SNAP etc are considered non-mergeable */
8314 return -1;
8317 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8318 ip_len = (u8)((*ip)->ihl);
8319 ip_len <<= 2;
8320 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8322 return 0;
8325 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8326 struct tcphdr *tcp)
8328 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8329 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8330 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8331 return -1;
8332 return 0;
8335 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8337 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8340 static void initiate_new_session(struct lro *lro, u8 *l2h,
8341 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8343 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8344 lro->l2h = l2h;
8345 lro->iph = ip;
8346 lro->tcph = tcp;
8347 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8348 lro->tcp_ack = tcp->ack_seq;
8349 lro->sg_num = 1;
8350 lro->total_len = ntohs(ip->tot_len);
8351 lro->frags_len = 0;
8352 lro->vlan_tag = vlan_tag;
8354 * check if we saw TCP timestamp. Other consistency checks have
8355 * already been done.
8357 if (tcp->doff == 8) {
8358 __be32 *ptr;
8359 ptr = (__be32 *)(tcp+1);
8360 lro->saw_ts = 1;
8361 lro->cur_tsval = ntohl(*(ptr+1));
8362 lro->cur_tsecr = *(ptr+2);
8364 lro->in_use = 1;
8367 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8369 struct iphdr *ip = lro->iph;
8370 struct tcphdr *tcp = lro->tcph;
8371 __sum16 nchk;
8372 struct stat_block *statinfo = sp->mac_control.stats_info;
8373 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8375 /* Update L3 header */
8376 ip->tot_len = htons(lro->total_len);
8377 ip->check = 0;
8378 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8379 ip->check = nchk;
8381 /* Update L4 header */
8382 tcp->ack_seq = lro->tcp_ack;
8383 tcp->window = lro->window;
8385 /* Update tsecr field if this session has timestamps enabled */
8386 if (lro->saw_ts) {
8387 __be32 *ptr = (__be32 *)(tcp + 1);
8388 *(ptr+2) = lro->cur_tsecr;
8391 /* Update counters required for calculation of
8392 * average no. of packets aggregated.
8394 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8395 statinfo->sw_stat.num_aggregations++;
8398 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8399 struct tcphdr *tcp, u32 l4_pyld)
8401 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8402 lro->total_len += l4_pyld;
8403 lro->frags_len += l4_pyld;
8404 lro->tcp_next_seq += l4_pyld;
8405 lro->sg_num++;
8407 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8408 lro->tcp_ack = tcp->ack_seq;
8409 lro->window = tcp->window;
8411 if (lro->saw_ts) {
8412 __be32 *ptr;
8413 /* Update tsecr and tsval from this packet */
8414 ptr = (__be32 *)(tcp+1);
8415 lro->cur_tsval = ntohl(*(ptr+1));
8416 lro->cur_tsecr = *(ptr + 2);
8420 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8421 struct tcphdr *tcp, u32 tcp_pyld_len)
8423 u8 *ptr;
8425 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8427 if (!tcp_pyld_len) {
8428 /* Runt frame or a pure ack */
8429 return -1;
8432 if (ip->ihl != 5) /* IP has options */
8433 return -1;
8435 /* If we see CE codepoint in IP header, packet is not mergeable */
8436 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8437 return -1;
8439 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8440 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8441 tcp->ece || tcp->cwr || !tcp->ack) {
8443 * Currently recognize only the ack control word and
8444 * any other control field being set would result in
8445 * flushing the LRO session
8447 return -1;
8451 * Allow only one TCP timestamp option. Don't aggregate if
8452 * any other options are detected.
8454 if (tcp->doff != 5 && tcp->doff != 8)
8455 return -1;
8457 if (tcp->doff == 8) {
8458 ptr = (u8 *)(tcp + 1);
8459 while (*ptr == TCPOPT_NOP)
8460 ptr++;
8461 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8462 return -1;
8464 /* Ensure timestamp value increases monotonically */
8465 if (l_lro)
8466 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8467 return -1;
8469 /* timestamp echo reply should be non-zero */
8470 if (*((__be32 *)(ptr+6)) == 0)
8471 return -1;
8474 return 0;
8477 static int
8478 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8479 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8480 struct s2io_nic *sp)
8482 struct iphdr *ip;
8483 struct tcphdr *tcph;
8484 int ret = 0, i;
8485 u16 vlan_tag = 0;
8487 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8488 rxdp, sp))) {
8489 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8490 ip->saddr, ip->daddr);
8491 } else
8492 return ret;
8494 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8495 tcph = (struct tcphdr *)*tcp;
8496 *tcp_len = get_l4_pyld_length(ip, tcph);
8497 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8498 struct lro *l_lro = &ring_data->lro0_n[i];
8499 if (l_lro->in_use) {
8500 if (check_for_socket_match(l_lro, ip, tcph))
8501 continue;
8502 /* Sock pair matched */
8503 *lro = l_lro;
8505 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8506 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8507 "0x%x, actual 0x%x\n", __func__,
8508 (*lro)->tcp_next_seq,
8509 ntohl(tcph->seq));
8511 sp->mac_control.stats_info->
8512 sw_stat.outof_sequence_pkts++;
8513 ret = 2;
8514 break;
8517 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8518 ret = 1; /* Aggregate */
8519 else
8520 ret = 2; /* Flush both */
8521 break;
8525 if (ret == 0) {
8526 /* Before searching for available LRO objects,
8527 * check if the pkt is L3/L4 aggregatable. If not
8528 * don't create new LRO session. Just send this
8529 * packet up.
8531 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8532 return 5;
8535 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8536 struct lro *l_lro = &ring_data->lro0_n[i];
8537 if (!(l_lro->in_use)) {
8538 *lro = l_lro;
8539 ret = 3; /* Begin anew */
8540 break;
8545 if (ret == 0) { /* sessions exceeded */
8546 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8547 __func__);
8548 *lro = NULL;
8549 return ret;
8552 switch (ret) {
8553 case 3:
8554 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8555 vlan_tag);
8556 break;
8557 case 2:
8558 update_L3L4_header(sp, *lro);
8559 break;
8560 case 1:
8561 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8562 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8563 update_L3L4_header(sp, *lro);
8564 ret = 4; /* Flush the LRO */
8566 break;
8567 default:
8568 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8569 __func__);
8570 break;
8573 return ret;
8576 static void clear_lro_session(struct lro *lro)
8578 static u16 lro_struct_size = sizeof(struct lro);
8580 memset(lro, 0, lro_struct_size);
8583 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8585 struct net_device *dev = skb->dev;
8586 struct s2io_nic *sp = netdev_priv(dev);
8588 skb->protocol = eth_type_trans(skb, dev);
8589 if (sp->vlgrp && vlan_tag
8590 && (sp->vlan_strip_flag)) {
8591 /* Queueing the vlan frame to the upper layer */
8592 if (sp->config.napi)
8593 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8594 else
8595 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8596 } else {
8597 if (sp->config.napi)
8598 netif_receive_skb(skb);
8599 else
8600 netif_rx(skb);
8604 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8605 struct sk_buff *skb,
8606 u32 tcp_len)
8608 struct sk_buff *first = lro->parent;
8610 first->len += tcp_len;
8611 first->data_len = lro->frags_len;
8612 skb_pull(skb, (skb->len - tcp_len));
8613 if (skb_shinfo(first)->frag_list)
8614 lro->last_frag->next = skb;
8615 else
8616 skb_shinfo(first)->frag_list = skb;
8617 first->truesize += skb->truesize;
8618 lro->last_frag = skb;
8619 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8620 return;
8624 * s2io_io_error_detected - called when PCI error is detected
8625 * @pdev: Pointer to PCI device
8626 * @state: The current pci connection state
8628 * This function is called after a PCI bus error affecting
8629 * this device has been detected.
8631 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8632 pci_channel_state_t state)
8634 struct net_device *netdev = pci_get_drvdata(pdev);
8635 struct s2io_nic *sp = netdev_priv(netdev);
8637 netif_device_detach(netdev);
8639 if (netif_running(netdev)) {
8640 /* Bring down the card, while avoiding PCI I/O */
8641 do_s2io_card_down(sp, 0);
8643 pci_disable_device(pdev);
8645 return PCI_ERS_RESULT_NEED_RESET;
8649 * s2io_io_slot_reset - called after the pci bus has been reset.
8650 * @pdev: Pointer to PCI device
8652 * Restart the card from scratch, as if from a cold-boot.
8653 * At this point, the card has exprienced a hard reset,
8654 * followed by fixups by BIOS, and has its config space
8655 * set up identically to what it was at cold boot.
8657 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8659 struct net_device *netdev = pci_get_drvdata(pdev);
8660 struct s2io_nic *sp = netdev_priv(netdev);
8662 if (pci_enable_device(pdev)) {
8663 printk(KERN_ERR "s2io: "
8664 "Cannot re-enable PCI device after reset.\n");
8665 return PCI_ERS_RESULT_DISCONNECT;
8668 pci_set_master(pdev);
8669 s2io_reset(sp);
8671 return PCI_ERS_RESULT_RECOVERED;
8675 * s2io_io_resume - called when traffic can start flowing again.
8676 * @pdev: Pointer to PCI device
8678 * This callback is called when the error recovery driver tells
8679 * us that its OK to resume normal operation.
8681 static void s2io_io_resume(struct pci_dev *pdev)
8683 struct net_device *netdev = pci_get_drvdata(pdev);
8684 struct s2io_nic *sp = netdev_priv(netdev);
8686 if (netif_running(netdev)) {
8687 if (s2io_card_up(sp)) {
8688 printk(KERN_ERR "s2io: "
8689 "Can't bring device back up after reset.\n");
8690 return;
8693 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8694 s2io_card_down(sp);
8695 printk(KERN_ERR "s2io: "
8696 "Can't resetore mac addr after reset.\n");
8697 return;
8701 netif_device_attach(netdev);
8702 netif_tx_wake_all_queues(netdev);