4 * AES Cipher Algorithm.
6 * Based on Brian Gladman's code.
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * ---------------------------------------------------------------------------
20 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
21 * All rights reserved.
25 * The free distribution and use of this software in both source and binary
26 * form is allowed (with or without changes) provided that:
28 * 1. distributions of this source code include the above copyright
29 * notice, this list of conditions and the following disclaimer;
31 * 2. distributions in binary form include the above copyright
32 * notice, this list of conditions and the following disclaimer
33 * in the documentation and/or other associated materials;
35 * 3. the copyright holder's name is not used to endorse products
36 * built using this software without specific written permission.
38 * ALTERNATIVELY, provided that this notice is retained in full, this product
39 * may be distributed under the terms of the GNU General Public License (GPL),
40 * in which case the provisions of the GPL apply INSTEAD OF those given above.
44 * This software is provided 'as is' with no explicit or implied warranties
45 * in respect of its properties, including, but not limited to, correctness
46 * and/or fitness for purpose.
47 * ---------------------------------------------------------------------------
50 #include <crypto/aes.h>
51 #include <linux/module.h>
52 #include <linux/init.h>
53 #include <linux/types.h>
54 #include <linux/errno.h>
55 #include <linux/crypto.h>
56 #include <asm/byteorder.h>
58 static inline u8
byte(const u32 x
, const unsigned n
)
63 static u8 pow_tab
[256] __initdata
;
64 static u8 log_tab
[256] __initdata
;
65 static u8 sbx_tab
[256] __initdata
;
66 static u8 isb_tab
[256] __initdata
;
67 static u32 rco_tab
[10];
69 u32 crypto_ft_tab
[4][256];
70 u32 crypto_fl_tab
[4][256];
71 u32 crypto_it_tab
[4][256];
72 u32 crypto_il_tab
[4][256];
74 EXPORT_SYMBOL_GPL(crypto_ft_tab
);
75 EXPORT_SYMBOL_GPL(crypto_fl_tab
);
76 EXPORT_SYMBOL_GPL(crypto_it_tab
);
77 EXPORT_SYMBOL_GPL(crypto_il_tab
);
79 static inline u8 __init
f_mult(u8 a
, u8 b
)
81 u8 aa
= log_tab
[a
], cc
= aa
+ log_tab
[b
];
83 return pow_tab
[cc
+ (cc
< aa
? 1 : 0)];
86 #define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
88 static void __init
gen_tabs(void)
94 * log and power tables for GF(2**8) finite field with
95 * 0x011b as modular polynomial - the simplest primitive
96 * root is 0x03, used here to generate the tables
99 for (i
= 0, p
= 1; i
< 256; ++i
) {
103 p
^= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
108 for (i
= 0, p
= 1; i
< 10; ++i
) {
111 p
= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
114 for (i
= 0; i
< 256; ++i
) {
115 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
116 q
= ((p
>> 7) | (p
<< 1)) ^ ((p
>> 6) | (p
<< 2));
117 p
^= 0x63 ^ q
^ ((q
>> 6) | (q
<< 2));
122 for (i
= 0; i
< 256; ++i
) {
126 crypto_fl_tab
[0][i
] = t
;
127 crypto_fl_tab
[1][i
] = rol32(t
, 8);
128 crypto_fl_tab
[2][i
] = rol32(t
, 16);
129 crypto_fl_tab
[3][i
] = rol32(t
, 24);
131 t
= ((u32
) ff_mult(2, p
)) |
133 ((u32
) p
<< 16) | ((u32
) ff_mult(3, p
) << 24);
135 crypto_ft_tab
[0][i
] = t
;
136 crypto_ft_tab
[1][i
] = rol32(t
, 8);
137 crypto_ft_tab
[2][i
] = rol32(t
, 16);
138 crypto_ft_tab
[3][i
] = rol32(t
, 24);
143 crypto_il_tab
[0][i
] = t
;
144 crypto_il_tab
[1][i
] = rol32(t
, 8);
145 crypto_il_tab
[2][i
] = rol32(t
, 16);
146 crypto_il_tab
[3][i
] = rol32(t
, 24);
148 t
= ((u32
) ff_mult(14, p
)) |
149 ((u32
) ff_mult(9, p
) << 8) |
150 ((u32
) ff_mult(13, p
) << 16) |
151 ((u32
) ff_mult(11, p
) << 24);
153 crypto_it_tab
[0][i
] = t
;
154 crypto_it_tab
[1][i
] = rol32(t
, 8);
155 crypto_it_tab
[2][i
] = rol32(t
, 16);
156 crypto_it_tab
[3][i
] = rol32(t
, 24);
160 /* initialise the key schedule from the user supplied key */
162 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
164 #define imix_col(y,x) do { \
170 (y) ^= ror32(u ^ t, 8) ^ \
176 crypto_fl_tab[0][byte(x, 0)] ^ \
177 crypto_fl_tab[1][byte(x, 1)] ^ \
178 crypto_fl_tab[2][byte(x, 2)] ^ \
179 crypto_fl_tab[3][byte(x, 3)]
181 #define loop4(i) do { \
183 t = ls_box(t) ^ rco_tab[i]; \
184 t ^= ctx->key_enc[4 * i]; \
185 ctx->key_enc[4 * i + 4] = t; \
186 t ^= ctx->key_enc[4 * i + 1]; \
187 ctx->key_enc[4 * i + 5] = t; \
188 t ^= ctx->key_enc[4 * i + 2]; \
189 ctx->key_enc[4 * i + 6] = t; \
190 t ^= ctx->key_enc[4 * i + 3]; \
191 ctx->key_enc[4 * i + 7] = t; \
194 #define loop6(i) do { \
196 t = ls_box(t) ^ rco_tab[i]; \
197 t ^= ctx->key_enc[6 * i]; \
198 ctx->key_enc[6 * i + 6] = t; \
199 t ^= ctx->key_enc[6 * i + 1]; \
200 ctx->key_enc[6 * i + 7] = t; \
201 t ^= ctx->key_enc[6 * i + 2]; \
202 ctx->key_enc[6 * i + 8] = t; \
203 t ^= ctx->key_enc[6 * i + 3]; \
204 ctx->key_enc[6 * i + 9] = t; \
205 t ^= ctx->key_enc[6 * i + 4]; \
206 ctx->key_enc[6 * i + 10] = t; \
207 t ^= ctx->key_enc[6 * i + 5]; \
208 ctx->key_enc[6 * i + 11] = t; \
211 #define loop8(i) do { \
213 t = ls_box(t) ^ rco_tab[i]; \
214 t ^= ctx->key_enc[8 * i]; \
215 ctx->key_enc[8 * i + 8] = t; \
216 t ^= ctx->key_enc[8 * i + 1]; \
217 ctx->key_enc[8 * i + 9] = t; \
218 t ^= ctx->key_enc[8 * i + 2]; \
219 ctx->key_enc[8 * i + 10] = t; \
220 t ^= ctx->key_enc[8 * i + 3]; \
221 ctx->key_enc[8 * i + 11] = t; \
222 t = ctx->key_enc[8 * i + 4] ^ ls_box(t); \
223 ctx->key_enc[8 * i + 12] = t; \
224 t ^= ctx->key_enc[8 * i + 5]; \
225 ctx->key_enc[8 * i + 13] = t; \
226 t ^= ctx->key_enc[8 * i + 6]; \
227 ctx->key_enc[8 * i + 14] = t; \
228 t ^= ctx->key_enc[8 * i + 7]; \
229 ctx->key_enc[8 * i + 15] = t; \
233 * crypto_aes_expand_key - Expands the AES key as described in FIPS-197
234 * @ctx: The location where the computed key will be stored.
235 * @in_key: The supplied key.
236 * @key_len: The length of the supplied key.
238 * Returns 0 on success. The function fails only if an invalid key size (or
239 * pointer) is supplied.
240 * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes
241 * key schedule plus a 16 bytes key which is used before the first round).
242 * The decryption key is prepared for the "Equivalent Inverse Cipher" as
243 * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is
244 * for the initial combination, the second slot for the first round and so on.
246 int crypto_aes_expand_key(struct crypto_aes_ctx
*ctx
, const u8
*in_key
,
247 unsigned int key_len
)
249 const __le32
*key
= (const __le32
*)in_key
;
250 u32 i
, t
, u
, v
, w
, j
;
252 if (key_len
!= AES_KEYSIZE_128
&& key_len
!= AES_KEYSIZE_192
&&
253 key_len
!= AES_KEYSIZE_256
)
256 ctx
->key_length
= key_len
;
258 ctx
->key_dec
[key_len
+ 24] = ctx
->key_enc
[0] = le32_to_cpu(key
[0]);
259 ctx
->key_dec
[key_len
+ 25] = ctx
->key_enc
[1] = le32_to_cpu(key
[1]);
260 ctx
->key_dec
[key_len
+ 26] = ctx
->key_enc
[2] = le32_to_cpu(key
[2]);
261 ctx
->key_dec
[key_len
+ 27] = ctx
->key_enc
[3] = le32_to_cpu(key
[3]);
264 case AES_KEYSIZE_128
:
266 for (i
= 0; i
< 10; ++i
)
270 case AES_KEYSIZE_192
:
271 ctx
->key_enc
[4] = le32_to_cpu(key
[4]);
272 t
= ctx
->key_enc
[5] = le32_to_cpu(key
[5]);
273 for (i
= 0; i
< 8; ++i
)
277 case AES_KEYSIZE_256
:
278 ctx
->key_enc
[4] = le32_to_cpu(key
[4]);
279 ctx
->key_enc
[5] = le32_to_cpu(key
[5]);
280 ctx
->key_enc
[6] = le32_to_cpu(key
[6]);
281 t
= ctx
->key_enc
[7] = le32_to_cpu(key
[7]);
282 for (i
= 0; i
< 7; ++i
)
287 ctx
->key_dec
[0] = ctx
->key_enc
[key_len
+ 24];
288 ctx
->key_dec
[1] = ctx
->key_enc
[key_len
+ 25];
289 ctx
->key_dec
[2] = ctx
->key_enc
[key_len
+ 26];
290 ctx
->key_dec
[3] = ctx
->key_enc
[key_len
+ 27];
292 for (i
= 4; i
< key_len
+ 24; ++i
) {
293 j
= key_len
+ 24 - (i
& ~3) + (i
& 3);
294 imix_col(ctx
->key_dec
[j
], ctx
->key_enc
[i
]);
298 EXPORT_SYMBOL_GPL(crypto_aes_expand_key
);
301 * crypto_aes_set_key - Set the AES key.
302 * @tfm: The %crypto_tfm that is used in the context.
303 * @in_key: The input key.
304 * @key_len: The size of the key.
306 * Returns 0 on success, on failure the %CRYPTO_TFM_RES_BAD_KEY_LEN flag in tfm
307 * is set. The function uses crypto_aes_expand_key() to expand the key.
308 * &crypto_aes_ctx _must_ be the private data embedded in @tfm which is
309 * retrieved with crypto_tfm_ctx().
311 int crypto_aes_set_key(struct crypto_tfm
*tfm
, const u8
*in_key
,
312 unsigned int key_len
)
314 struct crypto_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
315 u32
*flags
= &tfm
->crt_flags
;
318 ret
= crypto_aes_expand_key(ctx
, in_key
, key_len
);
322 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
325 EXPORT_SYMBOL_GPL(crypto_aes_set_key
);
327 /* encrypt a block of text */
329 #define f_rn(bo, bi, n, k) do { \
330 bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^ \
331 crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
332 crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
333 crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
336 #define f_nround(bo, bi, k) do {\
337 f_rn(bo, bi, 0, k); \
338 f_rn(bo, bi, 1, k); \
339 f_rn(bo, bi, 2, k); \
340 f_rn(bo, bi, 3, k); \
344 #define f_rl(bo, bi, n, k) do { \
345 bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^ \
346 crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
347 crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
348 crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
351 #define f_lround(bo, bi, k) do {\
352 f_rl(bo, bi, 0, k); \
353 f_rl(bo, bi, 1, k); \
354 f_rl(bo, bi, 2, k); \
355 f_rl(bo, bi, 3, k); \
358 static void aes_encrypt(struct crypto_tfm
*tfm
, u8
*out
, const u8
*in
)
360 const struct crypto_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
361 const __le32
*src
= (const __le32
*)in
;
362 __le32
*dst
= (__le32
*)out
;
364 const u32
*kp
= ctx
->key_enc
+ 4;
365 const int key_len
= ctx
->key_length
;
367 b0
[0] = le32_to_cpu(src
[0]) ^ ctx
->key_enc
[0];
368 b0
[1] = le32_to_cpu(src
[1]) ^ ctx
->key_enc
[1];
369 b0
[2] = le32_to_cpu(src
[2]) ^ ctx
->key_enc
[2];
370 b0
[3] = le32_to_cpu(src
[3]) ^ ctx
->key_enc
[3];
373 f_nround(b1
, b0
, kp
);
374 f_nround(b0
, b1
, kp
);
378 f_nround(b1
, b0
, kp
);
379 f_nround(b0
, b1
, kp
);
382 f_nround(b1
, b0
, kp
);
383 f_nround(b0
, b1
, kp
);
384 f_nround(b1
, b0
, kp
);
385 f_nround(b0
, b1
, kp
);
386 f_nround(b1
, b0
, kp
);
387 f_nround(b0
, b1
, kp
);
388 f_nround(b1
, b0
, kp
);
389 f_nround(b0
, b1
, kp
);
390 f_nround(b1
, b0
, kp
);
391 f_lround(b0
, b1
, kp
);
393 dst
[0] = cpu_to_le32(b0
[0]);
394 dst
[1] = cpu_to_le32(b0
[1]);
395 dst
[2] = cpu_to_le32(b0
[2]);
396 dst
[3] = cpu_to_le32(b0
[3]);
399 /* decrypt a block of text */
401 #define i_rn(bo, bi, n, k) do { \
402 bo[n] = crypto_it_tab[0][byte(bi[n], 0)] ^ \
403 crypto_it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
404 crypto_it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
405 crypto_it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
408 #define i_nround(bo, bi, k) do {\
409 i_rn(bo, bi, 0, k); \
410 i_rn(bo, bi, 1, k); \
411 i_rn(bo, bi, 2, k); \
412 i_rn(bo, bi, 3, k); \
416 #define i_rl(bo, bi, n, k) do { \
417 bo[n] = crypto_il_tab[0][byte(bi[n], 0)] ^ \
418 crypto_il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
419 crypto_il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
420 crypto_il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
423 #define i_lround(bo, bi, k) do {\
424 i_rl(bo, bi, 0, k); \
425 i_rl(bo, bi, 1, k); \
426 i_rl(bo, bi, 2, k); \
427 i_rl(bo, bi, 3, k); \
430 static void aes_decrypt(struct crypto_tfm
*tfm
, u8
*out
, const u8
*in
)
432 const struct crypto_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
433 const __le32
*src
= (const __le32
*)in
;
434 __le32
*dst
= (__le32
*)out
;
436 const int key_len
= ctx
->key_length
;
437 const u32
*kp
= ctx
->key_dec
+ 4;
439 b0
[0] = le32_to_cpu(src
[0]) ^ ctx
->key_dec
[0];
440 b0
[1] = le32_to_cpu(src
[1]) ^ ctx
->key_dec
[1];
441 b0
[2] = le32_to_cpu(src
[2]) ^ ctx
->key_dec
[2];
442 b0
[3] = le32_to_cpu(src
[3]) ^ ctx
->key_dec
[3];
445 i_nround(b1
, b0
, kp
);
446 i_nround(b0
, b1
, kp
);
450 i_nround(b1
, b0
, kp
);
451 i_nround(b0
, b1
, kp
);
454 i_nround(b1
, b0
, kp
);
455 i_nround(b0
, b1
, kp
);
456 i_nround(b1
, b0
, kp
);
457 i_nround(b0
, b1
, kp
);
458 i_nround(b1
, b0
, kp
);
459 i_nround(b0
, b1
, kp
);
460 i_nround(b1
, b0
, kp
);
461 i_nround(b0
, b1
, kp
);
462 i_nround(b1
, b0
, kp
);
463 i_lround(b0
, b1
, kp
);
465 dst
[0] = cpu_to_le32(b0
[0]);
466 dst
[1] = cpu_to_le32(b0
[1]);
467 dst
[2] = cpu_to_le32(b0
[2]);
468 dst
[3] = cpu_to_le32(b0
[3]);
471 static struct crypto_alg aes_alg
= {
473 .cra_driver_name
= "aes-generic",
475 .cra_flags
= CRYPTO_ALG_TYPE_CIPHER
,
476 .cra_blocksize
= AES_BLOCK_SIZE
,
477 .cra_ctxsize
= sizeof(struct crypto_aes_ctx
),
479 .cra_module
= THIS_MODULE
,
480 .cra_list
= LIST_HEAD_INIT(aes_alg
.cra_list
),
483 .cia_min_keysize
= AES_MIN_KEY_SIZE
,
484 .cia_max_keysize
= AES_MAX_KEY_SIZE
,
485 .cia_setkey
= crypto_aes_set_key
,
486 .cia_encrypt
= aes_encrypt
,
487 .cia_decrypt
= aes_decrypt
492 static int __init
aes_init(void)
495 return crypto_register_alg(&aes_alg
);
498 static void __exit
aes_fini(void)
500 crypto_unregister_alg(&aes_alg
);
503 module_init(aes_init
);
504 module_exit(aes_fini
);
506 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
507 MODULE_LICENSE("Dual BSD/GPL");