[SCSI] st: convert st_flush to use st_scsi_kern_execute
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / elevator.c
blob86836dd179c05476078719869a0481777e999bc1
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
40 #include "blk.h"
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
45 DEFINE_TRACE(block_rq_abort);
48 * Merge hash stuff.
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
52 #define ELV_HASH_FN(sec) \
53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
55 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
56 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
58 DEFINE_TRACE(block_rq_insert);
59 DEFINE_TRACE(block_rq_issue);
62 * Query io scheduler to see if the current process issuing bio may be
63 * merged with rq.
65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
67 struct request_queue *q = rq->q;
68 elevator_t *e = q->elevator;
70 if (e->ops->elevator_allow_merge_fn)
71 return e->ops->elevator_allow_merge_fn(q, rq, bio);
73 return 1;
77 * can we safely merge with this request?
79 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
81 if (!rq_mergeable(rq))
82 return 0;
85 * Don't merge file system requests and discard requests
87 if (bio_discard(bio) != bio_discard(rq->bio))
88 return 0;
91 * different data direction or already started, don't merge
93 if (bio_data_dir(bio) != rq_data_dir(rq))
94 return 0;
97 * must be same device and not a special request
99 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
100 return 0;
103 * only merge integrity protected bio into ditto rq
105 if (bio_integrity(bio) != blk_integrity_rq(rq))
106 return 0;
108 if (!elv_iosched_allow_merge(rq, bio))
109 return 0;
111 return 1;
113 EXPORT_SYMBOL(elv_rq_merge_ok);
115 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
117 int ret = ELEVATOR_NO_MERGE;
120 * we can merge and sequence is ok, check if it's possible
122 if (elv_rq_merge_ok(__rq, bio)) {
123 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
124 ret = ELEVATOR_BACK_MERGE;
125 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
126 ret = ELEVATOR_FRONT_MERGE;
129 return ret;
132 static struct elevator_type *elevator_find(const char *name)
134 struct elevator_type *e;
136 list_for_each_entry(e, &elv_list, list) {
137 if (!strcmp(e->elevator_name, name))
138 return e;
141 return NULL;
144 static void elevator_put(struct elevator_type *e)
146 module_put(e->elevator_owner);
149 static struct elevator_type *elevator_get(const char *name)
151 struct elevator_type *e;
153 spin_lock(&elv_list_lock);
155 e = elevator_find(name);
156 if (!e) {
157 char elv[ELV_NAME_MAX + strlen("-iosched")];
159 spin_unlock(&elv_list_lock);
161 if (!strcmp(name, "anticipatory"))
162 sprintf(elv, "as-iosched");
163 else
164 sprintf(elv, "%s-iosched", name);
166 request_module("%s", elv);
167 spin_lock(&elv_list_lock);
168 e = elevator_find(name);
171 if (e && !try_module_get(e->elevator_owner))
172 e = NULL;
174 spin_unlock(&elv_list_lock);
176 return e;
179 static void *elevator_init_queue(struct request_queue *q,
180 struct elevator_queue *eq)
182 return eq->ops->elevator_init_fn(q);
185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
186 void *data)
188 q->elevator = eq;
189 eq->elevator_data = data;
192 static char chosen_elevator[16];
194 static int __init elevator_setup(char *str)
197 * Be backwards-compatible with previous kernels, so users
198 * won't get the wrong elevator.
200 if (!strcmp(str, "as"))
201 strcpy(chosen_elevator, "anticipatory");
202 else
203 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
204 return 1;
207 __setup("elevator=", elevator_setup);
209 static struct kobj_type elv_ktype;
211 static elevator_t *elevator_alloc(struct request_queue *q,
212 struct elevator_type *e)
214 elevator_t *eq;
215 int i;
217 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
218 if (unlikely(!eq))
219 goto err;
221 eq->ops = &e->ops;
222 eq->elevator_type = e;
223 kobject_init(&eq->kobj, &elv_ktype);
224 mutex_init(&eq->sysfs_lock);
226 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
227 GFP_KERNEL, q->node);
228 if (!eq->hash)
229 goto err;
231 for (i = 0; i < ELV_HASH_ENTRIES; i++)
232 INIT_HLIST_HEAD(&eq->hash[i]);
234 return eq;
235 err:
236 kfree(eq);
237 elevator_put(e);
238 return NULL;
241 static void elevator_release(struct kobject *kobj)
243 elevator_t *e = container_of(kobj, elevator_t, kobj);
245 elevator_put(e->elevator_type);
246 kfree(e->hash);
247 kfree(e);
250 int elevator_init(struct request_queue *q, char *name)
252 struct elevator_type *e = NULL;
253 struct elevator_queue *eq;
254 int ret = 0;
255 void *data;
257 INIT_LIST_HEAD(&q->queue_head);
258 q->last_merge = NULL;
259 q->end_sector = 0;
260 q->boundary_rq = NULL;
262 if (name) {
263 e = elevator_get(name);
264 if (!e)
265 return -EINVAL;
268 if (!e && *chosen_elevator) {
269 e = elevator_get(chosen_elevator);
270 if (!e)
271 printk(KERN_ERR "I/O scheduler %s not found\n",
272 chosen_elevator);
275 if (!e) {
276 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
277 if (!e) {
278 printk(KERN_ERR
279 "Default I/O scheduler not found. " \
280 "Using noop.\n");
281 e = elevator_get("noop");
285 eq = elevator_alloc(q, e);
286 if (!eq)
287 return -ENOMEM;
289 data = elevator_init_queue(q, eq);
290 if (!data) {
291 kobject_put(&eq->kobj);
292 return -ENOMEM;
295 elevator_attach(q, eq, data);
296 return ret;
298 EXPORT_SYMBOL(elevator_init);
300 void elevator_exit(elevator_t *e)
302 mutex_lock(&e->sysfs_lock);
303 if (e->ops->elevator_exit_fn)
304 e->ops->elevator_exit_fn(e);
305 e->ops = NULL;
306 mutex_unlock(&e->sysfs_lock);
308 kobject_put(&e->kobj);
310 EXPORT_SYMBOL(elevator_exit);
312 static void elv_activate_rq(struct request_queue *q, struct request *rq)
314 elevator_t *e = q->elevator;
316 if (e->ops->elevator_activate_req_fn)
317 e->ops->elevator_activate_req_fn(q, rq);
320 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
322 elevator_t *e = q->elevator;
324 if (e->ops->elevator_deactivate_req_fn)
325 e->ops->elevator_deactivate_req_fn(q, rq);
328 static inline void __elv_rqhash_del(struct request *rq)
330 hlist_del_init(&rq->hash);
333 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
335 if (ELV_ON_HASH(rq))
336 __elv_rqhash_del(rq);
339 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
341 elevator_t *e = q->elevator;
343 BUG_ON(ELV_ON_HASH(rq));
344 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
347 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
349 __elv_rqhash_del(rq);
350 elv_rqhash_add(q, rq);
353 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
355 elevator_t *e = q->elevator;
356 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
357 struct hlist_node *entry, *next;
358 struct request *rq;
360 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
361 BUG_ON(!ELV_ON_HASH(rq));
363 if (unlikely(!rq_mergeable(rq))) {
364 __elv_rqhash_del(rq);
365 continue;
368 if (rq_hash_key(rq) == offset)
369 return rq;
372 return NULL;
376 * RB-tree support functions for inserting/lookup/removal of requests
377 * in a sorted RB tree.
379 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
381 struct rb_node **p = &root->rb_node;
382 struct rb_node *parent = NULL;
383 struct request *__rq;
385 while (*p) {
386 parent = *p;
387 __rq = rb_entry(parent, struct request, rb_node);
389 if (rq->sector < __rq->sector)
390 p = &(*p)->rb_left;
391 else if (rq->sector > __rq->sector)
392 p = &(*p)->rb_right;
393 else
394 return __rq;
397 rb_link_node(&rq->rb_node, parent, p);
398 rb_insert_color(&rq->rb_node, root);
399 return NULL;
401 EXPORT_SYMBOL(elv_rb_add);
403 void elv_rb_del(struct rb_root *root, struct request *rq)
405 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
406 rb_erase(&rq->rb_node, root);
407 RB_CLEAR_NODE(&rq->rb_node);
409 EXPORT_SYMBOL(elv_rb_del);
411 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
413 struct rb_node *n = root->rb_node;
414 struct request *rq;
416 while (n) {
417 rq = rb_entry(n, struct request, rb_node);
419 if (sector < rq->sector)
420 n = n->rb_left;
421 else if (sector > rq->sector)
422 n = n->rb_right;
423 else
424 return rq;
427 return NULL;
429 EXPORT_SYMBOL(elv_rb_find);
432 * Insert rq into dispatch queue of q. Queue lock must be held on
433 * entry. rq is sort instead into the dispatch queue. To be used by
434 * specific elevators.
436 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
438 sector_t boundary;
439 struct list_head *entry;
440 int stop_flags;
442 if (q->last_merge == rq)
443 q->last_merge = NULL;
445 elv_rqhash_del(q, rq);
447 q->nr_sorted--;
449 boundary = q->end_sector;
450 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
451 list_for_each_prev(entry, &q->queue_head) {
452 struct request *pos = list_entry_rq(entry);
454 if (blk_discard_rq(rq) != blk_discard_rq(pos))
455 break;
456 if (rq_data_dir(rq) != rq_data_dir(pos))
457 break;
458 if (pos->cmd_flags & stop_flags)
459 break;
460 if (rq->sector >= boundary) {
461 if (pos->sector < boundary)
462 continue;
463 } else {
464 if (pos->sector >= boundary)
465 break;
467 if (rq->sector >= pos->sector)
468 break;
471 list_add(&rq->queuelist, entry);
473 EXPORT_SYMBOL(elv_dispatch_sort);
476 * Insert rq into dispatch queue of q. Queue lock must be held on
477 * entry. rq is added to the back of the dispatch queue. To be used by
478 * specific elevators.
480 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
482 if (q->last_merge == rq)
483 q->last_merge = NULL;
485 elv_rqhash_del(q, rq);
487 q->nr_sorted--;
489 q->end_sector = rq_end_sector(rq);
490 q->boundary_rq = rq;
491 list_add_tail(&rq->queuelist, &q->queue_head);
493 EXPORT_SYMBOL(elv_dispatch_add_tail);
495 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
497 elevator_t *e = q->elevator;
498 struct request *__rq;
499 int ret;
502 * First try one-hit cache.
504 if (q->last_merge) {
505 ret = elv_try_merge(q->last_merge, bio);
506 if (ret != ELEVATOR_NO_MERGE) {
507 *req = q->last_merge;
508 return ret;
512 if (blk_queue_nomerges(q))
513 return ELEVATOR_NO_MERGE;
516 * See if our hash lookup can find a potential backmerge.
518 __rq = elv_rqhash_find(q, bio->bi_sector);
519 if (__rq && elv_rq_merge_ok(__rq, bio)) {
520 *req = __rq;
521 return ELEVATOR_BACK_MERGE;
524 if (e->ops->elevator_merge_fn)
525 return e->ops->elevator_merge_fn(q, req, bio);
527 return ELEVATOR_NO_MERGE;
530 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
532 elevator_t *e = q->elevator;
534 if (e->ops->elevator_merged_fn)
535 e->ops->elevator_merged_fn(q, rq, type);
537 if (type == ELEVATOR_BACK_MERGE)
538 elv_rqhash_reposition(q, rq);
540 q->last_merge = rq;
543 void elv_merge_requests(struct request_queue *q, struct request *rq,
544 struct request *next)
546 elevator_t *e = q->elevator;
548 if (e->ops->elevator_merge_req_fn)
549 e->ops->elevator_merge_req_fn(q, rq, next);
551 elv_rqhash_reposition(q, rq);
552 elv_rqhash_del(q, next);
554 q->nr_sorted--;
555 q->last_merge = rq;
558 void elv_requeue_request(struct request_queue *q, struct request *rq)
561 * it already went through dequeue, we need to decrement the
562 * in_flight count again
564 if (blk_account_rq(rq)) {
565 q->in_flight--;
566 if (blk_sorted_rq(rq))
567 elv_deactivate_rq(q, rq);
570 rq->cmd_flags &= ~REQ_STARTED;
572 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
575 static void elv_drain_elevator(struct request_queue *q)
577 static int printed;
578 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
580 if (q->nr_sorted == 0)
581 return;
582 if (printed++ < 10) {
583 printk(KERN_ERR "%s: forced dispatching is broken "
584 "(nr_sorted=%u), please report this\n",
585 q->elevator->elevator_type->elevator_name, q->nr_sorted);
589 void elv_insert(struct request_queue *q, struct request *rq, int where)
591 struct list_head *pos;
592 unsigned ordseq;
593 int unplug_it = 1;
595 trace_block_rq_insert(q, rq);
597 rq->q = q;
599 switch (where) {
600 case ELEVATOR_INSERT_FRONT:
601 rq->cmd_flags |= REQ_SOFTBARRIER;
603 list_add(&rq->queuelist, &q->queue_head);
604 break;
606 case ELEVATOR_INSERT_BACK:
607 rq->cmd_flags |= REQ_SOFTBARRIER;
608 elv_drain_elevator(q);
609 list_add_tail(&rq->queuelist, &q->queue_head);
611 * We kick the queue here for the following reasons.
612 * - The elevator might have returned NULL previously
613 * to delay requests and returned them now. As the
614 * queue wasn't empty before this request, ll_rw_blk
615 * won't run the queue on return, resulting in hang.
616 * - Usually, back inserted requests won't be merged
617 * with anything. There's no point in delaying queue
618 * processing.
620 blk_remove_plug(q);
621 blk_start_queueing(q);
622 break;
624 case ELEVATOR_INSERT_SORT:
625 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
626 rq->cmd_flags |= REQ_SORTED;
627 q->nr_sorted++;
628 if (rq_mergeable(rq)) {
629 elv_rqhash_add(q, rq);
630 if (!q->last_merge)
631 q->last_merge = rq;
635 * Some ioscheds (cfq) run q->request_fn directly, so
636 * rq cannot be accessed after calling
637 * elevator_add_req_fn.
639 q->elevator->ops->elevator_add_req_fn(q, rq);
640 break;
642 case ELEVATOR_INSERT_REQUEUE:
644 * If ordered flush isn't in progress, we do front
645 * insertion; otherwise, requests should be requeued
646 * in ordseq order.
648 rq->cmd_flags |= REQ_SOFTBARRIER;
651 * Most requeues happen because of a busy condition,
652 * don't force unplug of the queue for that case.
654 unplug_it = 0;
656 if (q->ordseq == 0) {
657 list_add(&rq->queuelist, &q->queue_head);
658 break;
661 ordseq = blk_ordered_req_seq(rq);
663 list_for_each(pos, &q->queue_head) {
664 struct request *pos_rq = list_entry_rq(pos);
665 if (ordseq <= blk_ordered_req_seq(pos_rq))
666 break;
669 list_add_tail(&rq->queuelist, pos);
670 break;
672 default:
673 printk(KERN_ERR "%s: bad insertion point %d\n",
674 __func__, where);
675 BUG();
678 if (unplug_it && blk_queue_plugged(q)) {
679 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
680 - q->in_flight;
682 if (nrq >= q->unplug_thresh)
683 __generic_unplug_device(q);
687 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
688 int plug)
690 if (q->ordcolor)
691 rq->cmd_flags |= REQ_ORDERED_COLOR;
693 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
695 * toggle ordered color
697 if (blk_barrier_rq(rq))
698 q->ordcolor ^= 1;
701 * barriers implicitly indicate back insertion
703 if (where == ELEVATOR_INSERT_SORT)
704 where = ELEVATOR_INSERT_BACK;
707 * this request is scheduling boundary, update
708 * end_sector
710 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
711 q->end_sector = rq_end_sector(rq);
712 q->boundary_rq = rq;
714 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
715 where == ELEVATOR_INSERT_SORT)
716 where = ELEVATOR_INSERT_BACK;
718 if (plug)
719 blk_plug_device(q);
721 elv_insert(q, rq, where);
723 EXPORT_SYMBOL(__elv_add_request);
725 void elv_add_request(struct request_queue *q, struct request *rq, int where,
726 int plug)
728 unsigned long flags;
730 spin_lock_irqsave(q->queue_lock, flags);
731 __elv_add_request(q, rq, where, plug);
732 spin_unlock_irqrestore(q->queue_lock, flags);
734 EXPORT_SYMBOL(elv_add_request);
736 static inline struct request *__elv_next_request(struct request_queue *q)
738 struct request *rq;
740 while (1) {
741 while (!list_empty(&q->queue_head)) {
742 rq = list_entry_rq(q->queue_head.next);
743 if (blk_do_ordered(q, &rq))
744 return rq;
747 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
748 return NULL;
752 struct request *elv_next_request(struct request_queue *q)
754 struct request *rq;
755 int ret;
757 while ((rq = __elv_next_request(q)) != NULL) {
759 * Kill the empty barrier place holder, the driver must
760 * not ever see it.
762 if (blk_empty_barrier(rq)) {
763 __blk_end_request(rq, 0, blk_rq_bytes(rq));
764 continue;
766 if (!(rq->cmd_flags & REQ_STARTED)) {
768 * This is the first time the device driver
769 * sees this request (possibly after
770 * requeueing). Notify IO scheduler.
772 if (blk_sorted_rq(rq))
773 elv_activate_rq(q, rq);
776 * just mark as started even if we don't start
777 * it, a request that has been delayed should
778 * not be passed by new incoming requests
780 rq->cmd_flags |= REQ_STARTED;
781 trace_block_rq_issue(q, rq);
784 if (!q->boundary_rq || q->boundary_rq == rq) {
785 q->end_sector = rq_end_sector(rq);
786 q->boundary_rq = NULL;
789 if (rq->cmd_flags & REQ_DONTPREP)
790 break;
792 if (q->dma_drain_size && rq->data_len) {
794 * make sure space for the drain appears we
795 * know we can do this because max_hw_segments
796 * has been adjusted to be one fewer than the
797 * device can handle
799 rq->nr_phys_segments++;
802 if (!q->prep_rq_fn)
803 break;
805 ret = q->prep_rq_fn(q, rq);
806 if (ret == BLKPREP_OK) {
807 break;
808 } else if (ret == BLKPREP_DEFER) {
810 * the request may have been (partially) prepped.
811 * we need to keep this request in the front to
812 * avoid resource deadlock. REQ_STARTED will
813 * prevent other fs requests from passing this one.
815 if (q->dma_drain_size && rq->data_len &&
816 !(rq->cmd_flags & REQ_DONTPREP)) {
818 * remove the space for the drain we added
819 * so that we don't add it again
821 --rq->nr_phys_segments;
824 rq = NULL;
825 break;
826 } else if (ret == BLKPREP_KILL) {
827 rq->cmd_flags |= REQ_QUIET;
828 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
829 } else {
830 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
831 break;
835 return rq;
837 EXPORT_SYMBOL(elv_next_request);
839 void elv_dequeue_request(struct request_queue *q, struct request *rq)
841 BUG_ON(list_empty(&rq->queuelist));
842 BUG_ON(ELV_ON_HASH(rq));
844 list_del_init(&rq->queuelist);
847 * the time frame between a request being removed from the lists
848 * and to it is freed is accounted as io that is in progress at
849 * the driver side.
851 if (blk_account_rq(rq))
852 q->in_flight++;
855 int elv_queue_empty(struct request_queue *q)
857 elevator_t *e = q->elevator;
859 if (!list_empty(&q->queue_head))
860 return 0;
862 if (e->ops->elevator_queue_empty_fn)
863 return e->ops->elevator_queue_empty_fn(q);
865 return 1;
867 EXPORT_SYMBOL(elv_queue_empty);
869 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
871 elevator_t *e = q->elevator;
873 if (e->ops->elevator_latter_req_fn)
874 return e->ops->elevator_latter_req_fn(q, rq);
875 return NULL;
878 struct request *elv_former_request(struct request_queue *q, struct request *rq)
880 elevator_t *e = q->elevator;
882 if (e->ops->elevator_former_req_fn)
883 return e->ops->elevator_former_req_fn(q, rq);
884 return NULL;
887 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
889 elevator_t *e = q->elevator;
891 if (e->ops->elevator_set_req_fn)
892 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
894 rq->elevator_private = NULL;
895 return 0;
898 void elv_put_request(struct request_queue *q, struct request *rq)
900 elevator_t *e = q->elevator;
902 if (e->ops->elevator_put_req_fn)
903 e->ops->elevator_put_req_fn(rq);
906 int elv_may_queue(struct request_queue *q, int rw)
908 elevator_t *e = q->elevator;
910 if (e->ops->elevator_may_queue_fn)
911 return e->ops->elevator_may_queue_fn(q, rw);
913 return ELV_MQUEUE_MAY;
916 void elv_abort_queue(struct request_queue *q)
918 struct request *rq;
920 while (!list_empty(&q->queue_head)) {
921 rq = list_entry_rq(q->queue_head.next);
922 rq->cmd_flags |= REQ_QUIET;
923 trace_block_rq_abort(q, rq);
924 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
927 EXPORT_SYMBOL(elv_abort_queue);
929 void elv_completed_request(struct request_queue *q, struct request *rq)
931 elevator_t *e = q->elevator;
934 * request is released from the driver, io must be done
936 if (blk_account_rq(rq)) {
937 q->in_flight--;
938 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
939 e->ops->elevator_completed_req_fn(q, rq);
943 * Check if the queue is waiting for fs requests to be
944 * drained for flush sequence.
946 if (unlikely(q->ordseq)) {
947 struct request *first_rq = list_entry_rq(q->queue_head.next);
948 if (q->in_flight == 0 &&
949 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
950 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
951 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
952 blk_start_queueing(q);
957 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
959 static ssize_t
960 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
962 elevator_t *e = container_of(kobj, elevator_t, kobj);
963 struct elv_fs_entry *entry = to_elv(attr);
964 ssize_t error;
966 if (!entry->show)
967 return -EIO;
969 mutex_lock(&e->sysfs_lock);
970 error = e->ops ? entry->show(e, page) : -ENOENT;
971 mutex_unlock(&e->sysfs_lock);
972 return error;
975 static ssize_t
976 elv_attr_store(struct kobject *kobj, struct attribute *attr,
977 const char *page, size_t length)
979 elevator_t *e = container_of(kobj, elevator_t, kobj);
980 struct elv_fs_entry *entry = to_elv(attr);
981 ssize_t error;
983 if (!entry->store)
984 return -EIO;
986 mutex_lock(&e->sysfs_lock);
987 error = e->ops ? entry->store(e, page, length) : -ENOENT;
988 mutex_unlock(&e->sysfs_lock);
989 return error;
992 static struct sysfs_ops elv_sysfs_ops = {
993 .show = elv_attr_show,
994 .store = elv_attr_store,
997 static struct kobj_type elv_ktype = {
998 .sysfs_ops = &elv_sysfs_ops,
999 .release = elevator_release,
1002 int elv_register_queue(struct request_queue *q)
1004 elevator_t *e = q->elevator;
1005 int error;
1007 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1008 if (!error) {
1009 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1010 if (attr) {
1011 while (attr->attr.name) {
1012 if (sysfs_create_file(&e->kobj, &attr->attr))
1013 break;
1014 attr++;
1017 kobject_uevent(&e->kobj, KOBJ_ADD);
1019 return error;
1022 static void __elv_unregister_queue(elevator_t *e)
1024 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1025 kobject_del(&e->kobj);
1028 void elv_unregister_queue(struct request_queue *q)
1030 if (q)
1031 __elv_unregister_queue(q->elevator);
1034 void elv_register(struct elevator_type *e)
1036 char *def = "";
1038 spin_lock(&elv_list_lock);
1039 BUG_ON(elevator_find(e->elevator_name));
1040 list_add_tail(&e->list, &elv_list);
1041 spin_unlock(&elv_list_lock);
1043 if (!strcmp(e->elevator_name, chosen_elevator) ||
1044 (!*chosen_elevator &&
1045 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1046 def = " (default)";
1048 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1049 def);
1051 EXPORT_SYMBOL_GPL(elv_register);
1053 void elv_unregister(struct elevator_type *e)
1055 struct task_struct *g, *p;
1058 * Iterate every thread in the process to remove the io contexts.
1060 if (e->ops.trim) {
1061 read_lock(&tasklist_lock);
1062 do_each_thread(g, p) {
1063 task_lock(p);
1064 if (p->io_context)
1065 e->ops.trim(p->io_context);
1066 task_unlock(p);
1067 } while_each_thread(g, p);
1068 read_unlock(&tasklist_lock);
1071 spin_lock(&elv_list_lock);
1072 list_del_init(&e->list);
1073 spin_unlock(&elv_list_lock);
1075 EXPORT_SYMBOL_GPL(elv_unregister);
1078 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1079 * we don't free the old io scheduler, before we have allocated what we
1080 * need for the new one. this way we have a chance of going back to the old
1081 * one, if the new one fails init for some reason.
1083 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1085 elevator_t *old_elevator, *e;
1086 void *data;
1089 * Allocate new elevator
1091 e = elevator_alloc(q, new_e);
1092 if (!e)
1093 return 0;
1095 data = elevator_init_queue(q, e);
1096 if (!data) {
1097 kobject_put(&e->kobj);
1098 return 0;
1102 * Turn on BYPASS and drain all requests w/ elevator private data
1104 spin_lock_irq(q->queue_lock);
1106 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1108 elv_drain_elevator(q);
1110 while (q->rq.elvpriv) {
1111 blk_start_queueing(q);
1112 spin_unlock_irq(q->queue_lock);
1113 msleep(10);
1114 spin_lock_irq(q->queue_lock);
1115 elv_drain_elevator(q);
1119 * Remember old elevator.
1121 old_elevator = q->elevator;
1124 * attach and start new elevator
1126 elevator_attach(q, e, data);
1128 spin_unlock_irq(q->queue_lock);
1130 __elv_unregister_queue(old_elevator);
1132 if (elv_register_queue(q))
1133 goto fail_register;
1136 * finally exit old elevator and turn off BYPASS.
1138 elevator_exit(old_elevator);
1139 spin_lock_irq(q->queue_lock);
1140 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1141 spin_unlock_irq(q->queue_lock);
1143 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1145 return 1;
1147 fail_register:
1149 * switch failed, exit the new io scheduler and reattach the old
1150 * one again (along with re-adding the sysfs dir)
1152 elevator_exit(e);
1153 q->elevator = old_elevator;
1154 elv_register_queue(q);
1156 spin_lock_irq(q->queue_lock);
1157 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1158 spin_unlock_irq(q->queue_lock);
1160 return 0;
1163 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1164 size_t count)
1166 char elevator_name[ELV_NAME_MAX];
1167 struct elevator_type *e;
1169 strlcpy(elevator_name, name, sizeof(elevator_name));
1170 strstrip(elevator_name);
1172 e = elevator_get(elevator_name);
1173 if (!e) {
1174 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1175 return -EINVAL;
1178 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1179 elevator_put(e);
1180 return count;
1183 if (!elevator_switch(q, e))
1184 printk(KERN_ERR "elevator: switch to %s failed\n",
1185 elevator_name);
1186 return count;
1189 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1191 elevator_t *e = q->elevator;
1192 struct elevator_type *elv = e->elevator_type;
1193 struct elevator_type *__e;
1194 int len = 0;
1196 spin_lock(&elv_list_lock);
1197 list_for_each_entry(__e, &elv_list, list) {
1198 if (!strcmp(elv->elevator_name, __e->elevator_name))
1199 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1200 else
1201 len += sprintf(name+len, "%s ", __e->elevator_name);
1203 spin_unlock(&elv_list_lock);
1205 len += sprintf(len+name, "\n");
1206 return len;
1209 struct request *elv_rb_former_request(struct request_queue *q,
1210 struct request *rq)
1212 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1214 if (rbprev)
1215 return rb_entry_rq(rbprev);
1217 return NULL;
1219 EXPORT_SYMBOL(elv_rb_former_request);
1221 struct request *elv_rb_latter_request(struct request_queue *q,
1222 struct request *rq)
1224 struct rb_node *rbnext = rb_next(&rq->rb_node);
1226 if (rbnext)
1227 return rb_entry_rq(rbnext);
1229 return NULL;
1231 EXPORT_SYMBOL(elv_rb_latter_request);