4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
44 /* failed to write page out, page is locked */
46 /* move page to the active list, page is locked */
48 /* page has been sent to the disk successfully, page is unlocked */
50 /* page is clean and locked */
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan
;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned
;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed
;
64 unsigned long nr_mapped
; /* From page_state */
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority
;
69 /* This context's GFP mask */
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
82 * The list of shrinker callbacks used by to apply pressure to
87 struct list_head list
;
88 int seeks
; /* seeks to recreate an obj */
89 long nr
; /* objs pending delete */
92 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
94 #ifdef ARCH_HAS_PREFETCH
95 #define prefetch_prev_lru_page(_page, _base, _field) \
97 if ((_page)->lru.prev != _base) { \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
105 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
108 #ifdef ARCH_HAS_PREFETCHW
109 #define prefetchw_prev_lru_page(_page, _base, _field) \
111 if ((_page)->lru.prev != _base) { \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
119 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 * From 0 .. 100. Higher means more swappy.
125 int vm_swappiness
= 60;
126 static long total_memory
;
128 static LIST_HEAD(shrinker_list
);
129 static DECLARE_RWSEM(shrinker_rwsem
);
132 * Add a shrinker callback to be called from the vm
134 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
136 struct shrinker
*shrinker
;
138 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
140 shrinker
->shrinker
= theshrinker
;
141 shrinker
->seeks
= seeks
;
143 down_write(&shrinker_rwsem
);
144 list_add_tail(&shrinker
->list
, &shrinker_list
);
145 up_write(&shrinker_rwsem
);
149 EXPORT_SYMBOL(set_shrinker
);
154 void remove_shrinker(struct shrinker
*shrinker
)
156 down_write(&shrinker_rwsem
);
157 list_del(&shrinker
->list
);
158 up_write(&shrinker_rwsem
);
161 EXPORT_SYMBOL(remove_shrinker
);
163 #define SHRINK_BATCH 128
165 * Call the shrink functions to age shrinkable caches
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
181 * Returns the number of slab objects which we shrunk.
183 static int shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
184 unsigned long lru_pages
)
186 struct shrinker
*shrinker
;
190 scanned
= SWAP_CLUSTER_MAX
;
192 if (!down_read_trylock(&shrinker_rwsem
))
193 return 1; /* Assume we'll be able to shrink next time */
195 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
196 unsigned long long delta
;
197 unsigned long total_scan
;
198 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
200 delta
= (4 * scanned
) / shrinker
->seeks
;
202 do_div(delta
, lru_pages
+ 1);
203 shrinker
->nr
+= delta
;
204 if (shrinker
->nr
< 0) {
205 printk(KERN_ERR
"%s: nr=%ld\n",
206 __FUNCTION__
, shrinker
->nr
);
207 shrinker
->nr
= max_pass
;
211 * Avoid risking looping forever due to too large nr value:
212 * never try to free more than twice the estimate number of
215 if (shrinker
->nr
> max_pass
* 2)
216 shrinker
->nr
= max_pass
* 2;
218 total_scan
= shrinker
->nr
;
221 while (total_scan
>= SHRINK_BATCH
) {
222 long this_scan
= SHRINK_BATCH
;
226 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
227 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
228 if (shrink_ret
== -1)
230 if (shrink_ret
< nr_before
)
231 ret
+= nr_before
- shrink_ret
;
232 mod_page_state(slabs_scanned
, this_scan
);
233 total_scan
-= this_scan
;
238 shrinker
->nr
+= total_scan
;
240 up_read(&shrinker_rwsem
);
244 /* Called without lock on whether page is mapped, so answer is unstable */
245 static inline int page_mapping_inuse(struct page
*page
)
247 struct address_space
*mapping
;
249 /* Page is in somebody's page tables. */
250 if (page_mapped(page
))
253 /* Be more reluctant to reclaim swapcache than pagecache */
254 if (PageSwapCache(page
))
257 mapping
= page_mapping(page
);
261 /* File is mmap'd by somebody? */
262 return mapping_mapped(mapping
);
265 static inline int is_page_cache_freeable(struct page
*page
)
267 return page_count(page
) - !!PagePrivate(page
) == 2;
270 static int may_write_to_queue(struct backing_dev_info
*bdi
)
272 if (current_is_kswapd())
274 if (current_is_pdflush()) /* This is unlikely, but why not... */
276 if (!bdi_write_congested(bdi
))
278 if (bdi
== current
->backing_dev_info
)
284 * We detected a synchronous write error writing a page out. Probably
285 * -ENOSPC. We need to propagate that into the address_space for a subsequent
286 * fsync(), msync() or close().
288 * The tricky part is that after writepage we cannot touch the mapping: nothing
289 * prevents it from being freed up. But we have a ref on the page and once
290 * that page is locked, the mapping is pinned.
292 * We're allowed to run sleeping lock_page() here because we know the caller has
295 static void handle_write_error(struct address_space
*mapping
,
296 struct page
*page
, int error
)
299 if (page_mapping(page
) == mapping
) {
300 if (error
== -ENOSPC
)
301 set_bit(AS_ENOSPC
, &mapping
->flags
);
303 set_bit(AS_EIO
, &mapping
->flags
);
309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
311 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
314 * If the page is dirty, only perform writeback if that write
315 * will be non-blocking. To prevent this allocation from being
316 * stalled by pagecache activity. But note that there may be
317 * stalls if we need to run get_block(). We could test
318 * PagePrivate for that.
320 * If this process is currently in generic_file_write() against
321 * this page's queue, we can perform writeback even if that
324 * If the page is swapcache, write it back even if that would
325 * block, for some throttling. This happens by accident, because
326 * swap_backing_dev_info is bust: it doesn't reflect the
327 * congestion state of the swapdevs. Easy to fix, if needed.
328 * See swapfile.c:page_queue_congested().
330 if (!is_page_cache_freeable(page
))
334 * Some data journaling orphaned pages can have
335 * page->mapping == NULL while being dirty with clean buffers.
337 if (PagePrivate(page
)) {
338 if (try_to_free_buffers(page
)) {
339 ClearPageDirty(page
);
340 printk("%s: orphaned page\n", __FUNCTION__
);
346 if (mapping
->a_ops
->writepage
== NULL
)
347 return PAGE_ACTIVATE
;
348 if (!may_write_to_queue(mapping
->backing_dev_info
))
351 if (clear_page_dirty_for_io(page
)) {
353 struct writeback_control wbc
= {
354 .sync_mode
= WB_SYNC_NONE
,
355 .nr_to_write
= SWAP_CLUSTER_MAX
,
360 SetPageReclaim(page
);
361 res
= mapping
->a_ops
->writepage(page
, &wbc
);
363 handle_write_error(mapping
, page
, res
);
364 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
365 ClearPageReclaim(page
);
366 return PAGE_ACTIVATE
;
368 if (!PageWriteback(page
)) {
369 /* synchronous write or broken a_ops? */
370 ClearPageReclaim(page
);
380 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
382 static int shrink_list(struct list_head
*page_list
, struct scan_control
*sc
)
384 LIST_HEAD(ret_pages
);
385 struct pagevec freed_pvec
;
391 pagevec_init(&freed_pvec
, 1);
392 while (!list_empty(page_list
)) {
393 struct address_space
*mapping
;
400 page
= lru_to_page(page_list
);
401 list_del(&page
->lru
);
403 if (TestSetPageLocked(page
))
406 BUG_ON(PageActive(page
));
409 /* Double the slab pressure for mapped and swapcache pages */
410 if (page_mapped(page
) || PageSwapCache(page
))
413 if (PageWriteback(page
))
416 referenced
= page_referenced(page
, 1);
417 /* In active use or really unfreeable? Activate it. */
418 if (referenced
&& page_mapping_inuse(page
))
419 goto activate_locked
;
423 * Anonymous process memory has backing store?
424 * Try to allocate it some swap space here.
426 if (PageAnon(page
) && !PageSwapCache(page
)) {
427 if (!add_to_swap(page
))
428 goto activate_locked
;
430 #endif /* CONFIG_SWAP */
432 mapping
= page_mapping(page
);
433 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
434 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
437 * The page is mapped into the page tables of one or more
438 * processes. Try to unmap it here.
440 if (page_mapped(page
) && mapping
) {
441 switch (try_to_unmap(page
)) {
443 goto activate_locked
;
447 ; /* try to free the page below */
451 if (PageDirty(page
)) {
456 if (laptop_mode
&& !sc
->may_writepage
)
459 /* Page is dirty, try to write it out here */
460 switch(pageout(page
, mapping
)) {
464 goto activate_locked
;
466 if (PageWriteback(page
) || PageDirty(page
))
469 * A synchronous write - probably a ramdisk. Go
470 * ahead and try to reclaim the page.
472 if (TestSetPageLocked(page
))
474 if (PageDirty(page
) || PageWriteback(page
))
476 mapping
= page_mapping(page
);
478 ; /* try to free the page below */
483 * If the page has buffers, try to free the buffer mappings
484 * associated with this page. If we succeed we try to free
487 * We do this even if the page is PageDirty().
488 * try_to_release_page() does not perform I/O, but it is
489 * possible for a page to have PageDirty set, but it is actually
490 * clean (all its buffers are clean). This happens if the
491 * buffers were written out directly, with submit_bh(). ext3
492 * will do this, as well as the blockdev mapping.
493 * try_to_release_page() will discover that cleanness and will
494 * drop the buffers and mark the page clean - it can be freed.
496 * Rarely, pages can have buffers and no ->mapping. These are
497 * the pages which were not successfully invalidated in
498 * truncate_complete_page(). We try to drop those buffers here
499 * and if that worked, and the page is no longer mapped into
500 * process address space (page_count == 1) it can be freed.
501 * Otherwise, leave the page on the LRU so it is swappable.
503 if (PagePrivate(page
)) {
504 if (!try_to_release_page(page
, sc
->gfp_mask
))
505 goto activate_locked
;
506 if (!mapping
&& page_count(page
) == 1)
511 goto keep_locked
; /* truncate got there first */
513 write_lock_irq(&mapping
->tree_lock
);
516 * The non-racy check for busy page. It is critical to check
517 * PageDirty _after_ making sure that the page is freeable and
518 * not in use by anybody. (pagecache + us == 2)
520 if (unlikely(page_count(page
) != 2))
523 if (unlikely(PageDirty(page
)))
527 if (PageSwapCache(page
)) {
528 swp_entry_t swap
= { .val
= page_private(page
) };
529 __delete_from_swap_cache(page
);
530 write_unlock_irq(&mapping
->tree_lock
);
532 __put_page(page
); /* The pagecache ref */
535 #endif /* CONFIG_SWAP */
537 __remove_from_page_cache(page
);
538 write_unlock_irq(&mapping
->tree_lock
);
544 if (!pagevec_add(&freed_pvec
, page
))
545 __pagevec_release_nonlru(&freed_pvec
);
549 write_unlock_irq(&mapping
->tree_lock
);
558 list_add(&page
->lru
, &ret_pages
);
559 BUG_ON(PageLRU(page
));
561 list_splice(&ret_pages
, page_list
);
562 if (pagevec_count(&freed_pvec
))
563 __pagevec_release_nonlru(&freed_pvec
);
564 mod_page_state(pgactivate
, pgactivate
);
565 sc
->nr_reclaimed
+= reclaimed
;
570 * zone->lru_lock is heavily contended. Some of the functions that
571 * shrink the lists perform better by taking out a batch of pages
572 * and working on them outside the LRU lock.
574 * For pagecache intensive workloads, this function is the hottest
575 * spot in the kernel (apart from copy_*_user functions).
577 * Appropriate locks must be held before calling this function.
579 * @nr_to_scan: The number of pages to look through on the list.
580 * @src: The LRU list to pull pages off.
581 * @dst: The temp list to put pages on to.
582 * @scanned: The number of pages that were scanned.
584 * returns how many pages were moved onto *@dst.
586 static int isolate_lru_pages(int nr_to_scan
, struct list_head
*src
,
587 struct list_head
*dst
, int *scanned
)
593 while (scan
++ < nr_to_scan
&& !list_empty(src
)) {
594 page
= lru_to_page(src
);
595 prefetchw_prev_lru_page(page
, src
, flags
);
597 if (!TestClearPageLRU(page
))
599 list_del(&page
->lru
);
600 if (get_page_testone(page
)) {
602 * It is being freed elsewhere
606 list_add(&page
->lru
, src
);
609 list_add(&page
->lru
, dst
);
619 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
621 static void shrink_cache(struct zone
*zone
, struct scan_control
*sc
)
623 LIST_HEAD(page_list
);
625 int max_scan
= sc
->nr_to_scan
;
627 pagevec_init(&pvec
, 1);
630 spin_lock_irq(&zone
->lru_lock
);
631 while (max_scan
> 0) {
637 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
638 &zone
->inactive_list
,
639 &page_list
, &nr_scan
);
640 zone
->nr_inactive
-= nr_taken
;
641 zone
->pages_scanned
+= nr_scan
;
642 spin_unlock_irq(&zone
->lru_lock
);
648 if (current_is_kswapd())
649 mod_page_state_zone(zone
, pgscan_kswapd
, nr_scan
);
651 mod_page_state_zone(zone
, pgscan_direct
, nr_scan
);
652 nr_freed
= shrink_list(&page_list
, sc
);
653 if (current_is_kswapd())
654 mod_page_state(kswapd_steal
, nr_freed
);
655 mod_page_state_zone(zone
, pgsteal
, nr_freed
);
657 spin_lock_irq(&zone
->lru_lock
);
659 * Put back any unfreeable pages.
661 while (!list_empty(&page_list
)) {
662 page
= lru_to_page(&page_list
);
663 if (TestSetPageLRU(page
))
665 list_del(&page
->lru
);
666 if (PageActive(page
))
667 add_page_to_active_list(zone
, page
);
669 add_page_to_inactive_list(zone
, page
);
670 if (!pagevec_add(&pvec
, page
)) {
671 spin_unlock_irq(&zone
->lru_lock
);
672 __pagevec_release(&pvec
);
673 spin_lock_irq(&zone
->lru_lock
);
677 spin_unlock_irq(&zone
->lru_lock
);
679 pagevec_release(&pvec
);
683 * This moves pages from the active list to the inactive list.
685 * We move them the other way if the page is referenced by one or more
686 * processes, from rmap.
688 * If the pages are mostly unmapped, the processing is fast and it is
689 * appropriate to hold zone->lru_lock across the whole operation. But if
690 * the pages are mapped, the processing is slow (page_referenced()) so we
691 * should drop zone->lru_lock around each page. It's impossible to balance
692 * this, so instead we remove the pages from the LRU while processing them.
693 * It is safe to rely on PG_active against the non-LRU pages in here because
694 * nobody will play with that bit on a non-LRU page.
696 * The downside is that we have to touch page->_count against each page.
697 * But we had to alter page->flags anyway.
700 refill_inactive_zone(struct zone
*zone
, struct scan_control
*sc
)
703 int pgdeactivate
= 0;
705 int nr_pages
= sc
->nr_to_scan
;
706 LIST_HEAD(l_hold
); /* The pages which were snipped off */
707 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
708 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
711 int reclaim_mapped
= 0;
717 spin_lock_irq(&zone
->lru_lock
);
718 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
719 &l_hold
, &pgscanned
);
720 zone
->pages_scanned
+= pgscanned
;
721 zone
->nr_active
-= pgmoved
;
722 spin_unlock_irq(&zone
->lru_lock
);
725 * `distress' is a measure of how much trouble we're having reclaiming
726 * pages. 0 -> no problems. 100 -> great trouble.
728 distress
= 100 >> zone
->prev_priority
;
731 * The point of this algorithm is to decide when to start reclaiming
732 * mapped memory instead of just pagecache. Work out how much memory
735 mapped_ratio
= (sc
->nr_mapped
* 100) / total_memory
;
738 * Now decide how much we really want to unmap some pages. The mapped
739 * ratio is downgraded - just because there's a lot of mapped memory
740 * doesn't necessarily mean that page reclaim isn't succeeding.
742 * The distress ratio is important - we don't want to start going oom.
744 * A 100% value of vm_swappiness overrides this algorithm altogether.
746 swap_tendency
= mapped_ratio
/ 2 + distress
+ vm_swappiness
;
749 * Now use this metric to decide whether to start moving mapped memory
750 * onto the inactive list.
752 if (swap_tendency
>= 100)
755 while (!list_empty(&l_hold
)) {
757 page
= lru_to_page(&l_hold
);
758 list_del(&page
->lru
);
759 if (page_mapped(page
)) {
760 if (!reclaim_mapped
||
761 (total_swap_pages
== 0 && PageAnon(page
)) ||
762 page_referenced(page
, 0)) {
763 list_add(&page
->lru
, &l_active
);
767 list_add(&page
->lru
, &l_inactive
);
770 pagevec_init(&pvec
, 1);
772 spin_lock_irq(&zone
->lru_lock
);
773 while (!list_empty(&l_inactive
)) {
774 page
= lru_to_page(&l_inactive
);
775 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
776 if (TestSetPageLRU(page
))
778 if (!TestClearPageActive(page
))
780 list_move(&page
->lru
, &zone
->inactive_list
);
782 if (!pagevec_add(&pvec
, page
)) {
783 zone
->nr_inactive
+= pgmoved
;
784 spin_unlock_irq(&zone
->lru_lock
);
785 pgdeactivate
+= pgmoved
;
787 if (buffer_heads_over_limit
)
788 pagevec_strip(&pvec
);
789 __pagevec_release(&pvec
);
790 spin_lock_irq(&zone
->lru_lock
);
793 zone
->nr_inactive
+= pgmoved
;
794 pgdeactivate
+= pgmoved
;
795 if (buffer_heads_over_limit
) {
796 spin_unlock_irq(&zone
->lru_lock
);
797 pagevec_strip(&pvec
);
798 spin_lock_irq(&zone
->lru_lock
);
802 while (!list_empty(&l_active
)) {
803 page
= lru_to_page(&l_active
);
804 prefetchw_prev_lru_page(page
, &l_active
, flags
);
805 if (TestSetPageLRU(page
))
807 BUG_ON(!PageActive(page
));
808 list_move(&page
->lru
, &zone
->active_list
);
810 if (!pagevec_add(&pvec
, page
)) {
811 zone
->nr_active
+= pgmoved
;
813 spin_unlock_irq(&zone
->lru_lock
);
814 __pagevec_release(&pvec
);
815 spin_lock_irq(&zone
->lru_lock
);
818 zone
->nr_active
+= pgmoved
;
819 spin_unlock_irq(&zone
->lru_lock
);
820 pagevec_release(&pvec
);
822 mod_page_state_zone(zone
, pgrefill
, pgscanned
);
823 mod_page_state(pgdeactivate
, pgdeactivate
);
827 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
830 shrink_zone(struct zone
*zone
, struct scan_control
*sc
)
832 unsigned long nr_active
;
833 unsigned long nr_inactive
;
835 atomic_inc(&zone
->reclaim_in_progress
);
838 * Add one to `nr_to_scan' just to make sure that the kernel will
839 * slowly sift through the active list.
841 zone
->nr_scan_active
+= (zone
->nr_active
>> sc
->priority
) + 1;
842 nr_active
= zone
->nr_scan_active
;
843 if (nr_active
>= sc
->swap_cluster_max
)
844 zone
->nr_scan_active
= 0;
848 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> sc
->priority
) + 1;
849 nr_inactive
= zone
->nr_scan_inactive
;
850 if (nr_inactive
>= sc
->swap_cluster_max
)
851 zone
->nr_scan_inactive
= 0;
855 while (nr_active
|| nr_inactive
) {
857 sc
->nr_to_scan
= min(nr_active
,
858 (unsigned long)sc
->swap_cluster_max
);
859 nr_active
-= sc
->nr_to_scan
;
860 refill_inactive_zone(zone
, sc
);
864 sc
->nr_to_scan
= min(nr_inactive
,
865 (unsigned long)sc
->swap_cluster_max
);
866 nr_inactive
-= sc
->nr_to_scan
;
867 shrink_cache(zone
, sc
);
871 throttle_vm_writeout();
873 atomic_dec(&zone
->reclaim_in_progress
);
877 * This is the direct reclaim path, for page-allocating processes. We only
878 * try to reclaim pages from zones which will satisfy the caller's allocation
881 * We reclaim from a zone even if that zone is over pages_high. Because:
882 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
884 * b) The zones may be over pages_high but they must go *over* pages_high to
885 * satisfy the `incremental min' zone defense algorithm.
887 * Returns the number of reclaimed pages.
889 * If a zone is deemed to be full of pinned pages then just give it a light
890 * scan then give up on it.
893 shrink_caches(struct zone
**zones
, struct scan_control
*sc
)
897 for (i
= 0; zones
[i
] != NULL
; i
++) {
898 struct zone
*zone
= zones
[i
];
900 if (zone
->present_pages
== 0)
903 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
906 zone
->temp_priority
= sc
->priority
;
907 if (zone
->prev_priority
> sc
->priority
)
908 zone
->prev_priority
= sc
->priority
;
910 if (zone
->all_unreclaimable
&& sc
->priority
!= DEF_PRIORITY
)
911 continue; /* Let kswapd poll it */
913 shrink_zone(zone
, sc
);
918 * This is the main entry point to direct page reclaim.
920 * If a full scan of the inactive list fails to free enough memory then we
921 * are "out of memory" and something needs to be killed.
923 * If the caller is !__GFP_FS then the probability of a failure is reasonably
924 * high - the zone may be full of dirty or under-writeback pages, which this
925 * caller can't do much about. We kick pdflush and take explicit naps in the
926 * hope that some of these pages can be written. But if the allocating task
927 * holds filesystem locks which prevent writeout this might not work, and the
928 * allocation attempt will fail.
930 int try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
)
934 int total_scanned
= 0, total_reclaimed
= 0;
935 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
936 struct scan_control sc
;
937 unsigned long lru_pages
= 0;
940 sc
.gfp_mask
= gfp_mask
;
941 sc
.may_writepage
= 0;
943 inc_page_state(allocstall
);
945 for (i
= 0; zones
[i
] != NULL
; i
++) {
946 struct zone
*zone
= zones
[i
];
948 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
951 zone
->temp_priority
= DEF_PRIORITY
;
952 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
955 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
956 sc
.nr_mapped
= read_page_state(nr_mapped
);
959 sc
.priority
= priority
;
960 sc
.swap_cluster_max
= SWAP_CLUSTER_MAX
;
962 disable_swap_token();
963 shrink_caches(zones
, &sc
);
964 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
966 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
967 reclaim_state
->reclaimed_slab
= 0;
969 total_scanned
+= sc
.nr_scanned
;
970 total_reclaimed
+= sc
.nr_reclaimed
;
971 if (total_reclaimed
>= sc
.swap_cluster_max
) {
977 * Try to write back as many pages as we just scanned. This
978 * tends to cause slow streaming writers to write data to the
979 * disk smoothly, at the dirtying rate, which is nice. But
980 * that's undesirable in laptop mode, where we *want* lumpy
981 * writeout. So in laptop mode, write out the whole world.
983 if (total_scanned
> sc
.swap_cluster_max
+ sc
.swap_cluster_max
/2) {
984 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
985 sc
.may_writepage
= 1;
988 /* Take a nap, wait for some writeback to complete */
989 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
990 blk_congestion_wait(WRITE
, HZ
/10);
993 for (i
= 0; zones
[i
] != 0; i
++) {
994 struct zone
*zone
= zones
[i
];
996 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
999 zone
->prev_priority
= zone
->temp_priority
;
1005 * For kswapd, balance_pgdat() will work across all this node's zones until
1006 * they are all at pages_high.
1008 * If `nr_pages' is non-zero then it is the number of pages which are to be
1009 * reclaimed, regardless of the zone occupancies. This is a software suspend
1012 * Returns the number of pages which were actually freed.
1014 * There is special handling here for zones which are full of pinned pages.
1015 * This can happen if the pages are all mlocked, or if they are all used by
1016 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1017 * What we do is to detect the case where all pages in the zone have been
1018 * scanned twice and there has been zero successful reclaim. Mark the zone as
1019 * dead and from now on, only perform a short scan. Basically we're polling
1020 * the zone for when the problem goes away.
1022 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1023 * zones which have free_pages > pages_high, but once a zone is found to have
1024 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1025 * of the number of free pages in the lower zones. This interoperates with
1026 * the page allocator fallback scheme to ensure that aging of pages is balanced
1029 static int balance_pgdat(pg_data_t
*pgdat
, int nr_pages
, int order
)
1031 int to_free
= nr_pages
;
1035 int total_scanned
, total_reclaimed
;
1036 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1037 struct scan_control sc
;
1041 total_reclaimed
= 0;
1042 sc
.gfp_mask
= GFP_KERNEL
;
1043 sc
.may_writepage
= 0;
1044 sc
.nr_mapped
= read_page_state(nr_mapped
);
1046 inc_page_state(pageoutrun
);
1048 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1049 struct zone
*zone
= pgdat
->node_zones
+ i
;
1051 zone
->temp_priority
= DEF_PRIORITY
;
1054 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1055 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1056 unsigned long lru_pages
= 0;
1058 /* The swap token gets in the way of swapout... */
1060 disable_swap_token();
1064 if (nr_pages
== 0) {
1066 * Scan in the highmem->dma direction for the highest
1067 * zone which needs scanning
1069 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1070 struct zone
*zone
= pgdat
->node_zones
+ i
;
1072 if (zone
->present_pages
== 0)
1075 if (zone
->all_unreclaimable
&&
1076 priority
!= DEF_PRIORITY
)
1079 if (!zone_watermark_ok(zone
, order
,
1080 zone
->pages_high
, 0, 0)) {
1087 end_zone
= pgdat
->nr_zones
- 1;
1090 for (i
= 0; i
<= end_zone
; i
++) {
1091 struct zone
*zone
= pgdat
->node_zones
+ i
;
1093 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1097 * Now scan the zone in the dma->highmem direction, stopping
1098 * at the last zone which needs scanning.
1100 * We do this because the page allocator works in the opposite
1101 * direction. This prevents the page allocator from allocating
1102 * pages behind kswapd's direction of progress, which would
1103 * cause too much scanning of the lower zones.
1105 for (i
= 0; i
<= end_zone
; i
++) {
1106 struct zone
*zone
= pgdat
->node_zones
+ i
;
1109 if (zone
->present_pages
== 0)
1112 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1115 if (nr_pages
== 0) { /* Not software suspend */
1116 if (!zone_watermark_ok(zone
, order
,
1117 zone
->pages_high
, end_zone
, 0))
1120 zone
->temp_priority
= priority
;
1121 if (zone
->prev_priority
> priority
)
1122 zone
->prev_priority
= priority
;
1124 sc
.nr_reclaimed
= 0;
1125 sc
.priority
= priority
;
1126 sc
.swap_cluster_max
= nr_pages
? nr_pages
: SWAP_CLUSTER_MAX
;
1127 atomic_inc(&zone
->reclaim_in_progress
);
1128 shrink_zone(zone
, &sc
);
1129 atomic_dec(&zone
->reclaim_in_progress
);
1130 reclaim_state
->reclaimed_slab
= 0;
1131 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1133 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1134 total_reclaimed
+= sc
.nr_reclaimed
;
1135 total_scanned
+= sc
.nr_scanned
;
1136 if (zone
->all_unreclaimable
)
1138 if (nr_slab
== 0 && zone
->pages_scanned
>=
1139 (zone
->nr_active
+ zone
->nr_inactive
) * 4)
1140 zone
->all_unreclaimable
= 1;
1142 * If we've done a decent amount of scanning and
1143 * the reclaim ratio is low, start doing writepage
1144 * even in laptop mode
1146 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1147 total_scanned
> total_reclaimed
+total_reclaimed
/2)
1148 sc
.may_writepage
= 1;
1150 if (nr_pages
&& to_free
> total_reclaimed
)
1151 continue; /* swsusp: need to do more work */
1153 break; /* kswapd: all done */
1155 * OK, kswapd is getting into trouble. Take a nap, then take
1156 * another pass across the zones.
1158 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1159 blk_congestion_wait(WRITE
, HZ
/10);
1162 * We do this so kswapd doesn't build up large priorities for
1163 * example when it is freeing in parallel with allocators. It
1164 * matches the direct reclaim path behaviour in terms of impact
1165 * on zone->*_priority.
1167 if ((total_reclaimed
>= SWAP_CLUSTER_MAX
) && (!nr_pages
))
1171 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1172 struct zone
*zone
= pgdat
->node_zones
+ i
;
1174 zone
->prev_priority
= zone
->temp_priority
;
1176 if (!all_zones_ok
) {
1181 return total_reclaimed
;
1185 * The background pageout daemon, started as a kernel thread
1186 * from the init process.
1188 * This basically trickles out pages so that we have _some_
1189 * free memory available even if there is no other activity
1190 * that frees anything up. This is needed for things like routing
1191 * etc, where we otherwise might have all activity going on in
1192 * asynchronous contexts that cannot page things out.
1194 * If there are applications that are active memory-allocators
1195 * (most normal use), this basically shouldn't matter.
1197 static int kswapd(void *p
)
1199 unsigned long order
;
1200 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1201 struct task_struct
*tsk
= current
;
1203 struct reclaim_state reclaim_state
= {
1204 .reclaimed_slab
= 0,
1208 daemonize("kswapd%d", pgdat
->node_id
);
1209 cpumask
= node_to_cpumask(pgdat
->node_id
);
1210 if (!cpus_empty(cpumask
))
1211 set_cpus_allowed(tsk
, cpumask
);
1212 current
->reclaim_state
= &reclaim_state
;
1215 * Tell the memory management that we're a "memory allocator",
1216 * and that if we need more memory we should get access to it
1217 * regardless (see "__alloc_pages()"). "kswapd" should
1218 * never get caught in the normal page freeing logic.
1220 * (Kswapd normally doesn't need memory anyway, but sometimes
1221 * you need a small amount of memory in order to be able to
1222 * page out something else, and this flag essentially protects
1223 * us from recursively trying to free more memory as we're
1224 * trying to free the first piece of memory in the first place).
1226 tsk
->flags
|= PF_MEMALLOC
|PF_KSWAPD
;
1230 unsigned long new_order
;
1234 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1235 new_order
= pgdat
->kswapd_max_order
;
1236 pgdat
->kswapd_max_order
= 0;
1237 if (order
< new_order
) {
1239 * Don't sleep if someone wants a larger 'order'
1245 order
= pgdat
->kswapd_max_order
;
1247 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1249 balance_pgdat(pgdat
, 0, order
);
1255 * A zone is low on free memory, so wake its kswapd task to service it.
1257 void wakeup_kswapd(struct zone
*zone
, int order
)
1261 if (zone
->present_pages
== 0)
1264 pgdat
= zone
->zone_pgdat
;
1265 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1267 if (pgdat
->kswapd_max_order
< order
)
1268 pgdat
->kswapd_max_order
= order
;
1269 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
1271 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1273 wake_up_interruptible(&pgdat
->kswapd_wait
);
1278 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1281 int shrink_all_memory(int nr_pages
)
1284 int nr_to_free
= nr_pages
;
1286 struct reclaim_state reclaim_state
= {
1287 .reclaimed_slab
= 0,
1290 current
->reclaim_state
= &reclaim_state
;
1291 for_each_pgdat(pgdat
) {
1293 freed
= balance_pgdat(pgdat
, nr_to_free
, 0);
1295 nr_to_free
-= freed
;
1296 if (nr_to_free
<= 0)
1299 current
->reclaim_state
= NULL
;
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1306 not required for correctness. So if the last cpu in a node goes
1307 away, we get changed to run anywhere: as the first one comes back,
1308 restore their cpu bindings. */
1309 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1310 unsigned long action
,
1316 if (action
== CPU_ONLINE
) {
1317 for_each_pgdat(pgdat
) {
1318 mask
= node_to_cpumask(pgdat
->node_id
);
1319 if (any_online_cpu(mask
) != NR_CPUS
)
1320 /* One of our CPUs online: restore mask */
1321 set_cpus_allowed(pgdat
->kswapd
, mask
);
1326 #endif /* CONFIG_HOTPLUG_CPU */
1328 static int __init
kswapd_init(void)
1332 for_each_pgdat(pgdat
)
1334 = find_task_by_pid(kernel_thread(kswapd
, pgdat
, CLONE_KERNEL
));
1335 total_memory
= nr_free_pagecache_pages();
1336 hotcpu_notifier(cpu_callback
, 0);
1340 module_init(kswapd_init
)