[PATCH] vmscan: balancing fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blob5c8a412b43f4fe3564da89a3a5e3c99585df71fe
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
43 typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52 } pageout_t;
54 struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
64 unsigned long nr_mapped; /* From page_state */
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
72 int may_writepage;
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
85 struct shrinker {
86 shrinker_t shrinker;
87 struct list_head list;
88 int seeks; /* seeks to recreate an obj */
89 long nr; /* objs pending delete */
92 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
94 #ifdef ARCH_HAS_PREFETCH
95 #define prefetch_prev_lru_page(_page, _base, _field) \
96 do { \
97 if ((_page)->lru.prev != _base) { \
98 struct page *prev; \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
103 } while (0)
104 #else
105 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106 #endif
108 #ifdef ARCH_HAS_PREFETCHW
109 #define prefetchw_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
117 } while (0)
118 #else
119 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
123 * From 0 .. 100. Higher means more swappy.
125 int vm_swappiness = 60;
126 static long total_memory;
128 static LIST_HEAD(shrinker_list);
129 static DECLARE_RWSEM(shrinker_rwsem);
132 * Add a shrinker callback to be called from the vm
134 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
136 struct shrinker *shrinker;
138 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139 if (shrinker) {
140 shrinker->shrinker = theshrinker;
141 shrinker->seeks = seeks;
142 shrinker->nr = 0;
143 down_write(&shrinker_rwsem);
144 list_add_tail(&shrinker->list, &shrinker_list);
145 up_write(&shrinker_rwsem);
147 return shrinker;
149 EXPORT_SYMBOL(set_shrinker);
152 * Remove one
154 void remove_shrinker(struct shrinker *shrinker)
156 down_write(&shrinker_rwsem);
157 list_del(&shrinker->list);
158 up_write(&shrinker_rwsem);
159 kfree(shrinker);
161 EXPORT_SYMBOL(remove_shrinker);
163 #define SHRINK_BATCH 128
165 * Call the shrink functions to age shrinkable caches
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
181 * Returns the number of slab objects which we shrunk.
183 static int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
184 unsigned long lru_pages)
186 struct shrinker *shrinker;
187 int ret = 0;
189 if (scanned == 0)
190 scanned = SWAP_CLUSTER_MAX;
192 if (!down_read_trylock(&shrinker_rwsem))
193 return 1; /* Assume we'll be able to shrink next time */
195 list_for_each_entry(shrinker, &shrinker_list, list) {
196 unsigned long long delta;
197 unsigned long total_scan;
198 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
200 delta = (4 * scanned) / shrinker->seeks;
201 delta *= max_pass;
202 do_div(delta, lru_pages + 1);
203 shrinker->nr += delta;
204 if (shrinker->nr < 0) {
205 printk(KERN_ERR "%s: nr=%ld\n",
206 __FUNCTION__, shrinker->nr);
207 shrinker->nr = max_pass;
211 * Avoid risking looping forever due to too large nr value:
212 * never try to free more than twice the estimate number of
213 * freeable entries.
215 if (shrinker->nr > max_pass * 2)
216 shrinker->nr = max_pass * 2;
218 total_scan = shrinker->nr;
219 shrinker->nr = 0;
221 while (total_scan >= SHRINK_BATCH) {
222 long this_scan = SHRINK_BATCH;
223 int shrink_ret;
224 int nr_before;
226 nr_before = (*shrinker->shrinker)(0, gfp_mask);
227 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
228 if (shrink_ret == -1)
229 break;
230 if (shrink_ret < nr_before)
231 ret += nr_before - shrink_ret;
232 mod_page_state(slabs_scanned, this_scan);
233 total_scan -= this_scan;
235 cond_resched();
238 shrinker->nr += total_scan;
240 up_read(&shrinker_rwsem);
241 return ret;
244 /* Called without lock on whether page is mapped, so answer is unstable */
245 static inline int page_mapping_inuse(struct page *page)
247 struct address_space *mapping;
249 /* Page is in somebody's page tables. */
250 if (page_mapped(page))
251 return 1;
253 /* Be more reluctant to reclaim swapcache than pagecache */
254 if (PageSwapCache(page))
255 return 1;
257 mapping = page_mapping(page);
258 if (!mapping)
259 return 0;
261 /* File is mmap'd by somebody? */
262 return mapping_mapped(mapping);
265 static inline int is_page_cache_freeable(struct page *page)
267 return page_count(page) - !!PagePrivate(page) == 2;
270 static int may_write_to_queue(struct backing_dev_info *bdi)
272 if (current_is_kswapd())
273 return 1;
274 if (current_is_pdflush()) /* This is unlikely, but why not... */
275 return 1;
276 if (!bdi_write_congested(bdi))
277 return 1;
278 if (bdi == current->backing_dev_info)
279 return 1;
280 return 0;
284 * We detected a synchronous write error writing a page out. Probably
285 * -ENOSPC. We need to propagate that into the address_space for a subsequent
286 * fsync(), msync() or close().
288 * The tricky part is that after writepage we cannot touch the mapping: nothing
289 * prevents it from being freed up. But we have a ref on the page and once
290 * that page is locked, the mapping is pinned.
292 * We're allowed to run sleeping lock_page() here because we know the caller has
293 * __GFP_FS.
295 static void handle_write_error(struct address_space *mapping,
296 struct page *page, int error)
298 lock_page(page);
299 if (page_mapping(page) == mapping) {
300 if (error == -ENOSPC)
301 set_bit(AS_ENOSPC, &mapping->flags);
302 else
303 set_bit(AS_EIO, &mapping->flags);
305 unlock_page(page);
309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
311 static pageout_t pageout(struct page *page, struct address_space *mapping)
314 * If the page is dirty, only perform writeback if that write
315 * will be non-blocking. To prevent this allocation from being
316 * stalled by pagecache activity. But note that there may be
317 * stalls if we need to run get_block(). We could test
318 * PagePrivate for that.
320 * If this process is currently in generic_file_write() against
321 * this page's queue, we can perform writeback even if that
322 * will block.
324 * If the page is swapcache, write it back even if that would
325 * block, for some throttling. This happens by accident, because
326 * swap_backing_dev_info is bust: it doesn't reflect the
327 * congestion state of the swapdevs. Easy to fix, if needed.
328 * See swapfile.c:page_queue_congested().
330 if (!is_page_cache_freeable(page))
331 return PAGE_KEEP;
332 if (!mapping) {
334 * Some data journaling orphaned pages can have
335 * page->mapping == NULL while being dirty with clean buffers.
337 if (PagePrivate(page)) {
338 if (try_to_free_buffers(page)) {
339 ClearPageDirty(page);
340 printk("%s: orphaned page\n", __FUNCTION__);
341 return PAGE_CLEAN;
344 return PAGE_KEEP;
346 if (mapping->a_ops->writepage == NULL)
347 return PAGE_ACTIVATE;
348 if (!may_write_to_queue(mapping->backing_dev_info))
349 return PAGE_KEEP;
351 if (clear_page_dirty_for_io(page)) {
352 int res;
353 struct writeback_control wbc = {
354 .sync_mode = WB_SYNC_NONE,
355 .nr_to_write = SWAP_CLUSTER_MAX,
356 .nonblocking = 1,
357 .for_reclaim = 1,
360 SetPageReclaim(page);
361 res = mapping->a_ops->writepage(page, &wbc);
362 if (res < 0)
363 handle_write_error(mapping, page, res);
364 if (res == AOP_WRITEPAGE_ACTIVATE) {
365 ClearPageReclaim(page);
366 return PAGE_ACTIVATE;
368 if (!PageWriteback(page)) {
369 /* synchronous write or broken a_ops? */
370 ClearPageReclaim(page);
373 return PAGE_SUCCESS;
376 return PAGE_CLEAN;
380 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
382 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
384 LIST_HEAD(ret_pages);
385 struct pagevec freed_pvec;
386 int pgactivate = 0;
387 int reclaimed = 0;
389 cond_resched();
391 pagevec_init(&freed_pvec, 1);
392 while (!list_empty(page_list)) {
393 struct address_space *mapping;
394 struct page *page;
395 int may_enter_fs;
396 int referenced;
398 cond_resched();
400 page = lru_to_page(page_list);
401 list_del(&page->lru);
403 if (TestSetPageLocked(page))
404 goto keep;
406 BUG_ON(PageActive(page));
408 sc->nr_scanned++;
409 /* Double the slab pressure for mapped and swapcache pages */
410 if (page_mapped(page) || PageSwapCache(page))
411 sc->nr_scanned++;
413 if (PageWriteback(page))
414 goto keep_locked;
416 referenced = page_referenced(page, 1);
417 /* In active use or really unfreeable? Activate it. */
418 if (referenced && page_mapping_inuse(page))
419 goto activate_locked;
421 #ifdef CONFIG_SWAP
423 * Anonymous process memory has backing store?
424 * Try to allocate it some swap space here.
426 if (PageAnon(page) && !PageSwapCache(page)) {
427 if (!add_to_swap(page))
428 goto activate_locked;
430 #endif /* CONFIG_SWAP */
432 mapping = page_mapping(page);
433 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
434 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
437 * The page is mapped into the page tables of one or more
438 * processes. Try to unmap it here.
440 if (page_mapped(page) && mapping) {
441 switch (try_to_unmap(page)) {
442 case SWAP_FAIL:
443 goto activate_locked;
444 case SWAP_AGAIN:
445 goto keep_locked;
446 case SWAP_SUCCESS:
447 ; /* try to free the page below */
451 if (PageDirty(page)) {
452 if (referenced)
453 goto keep_locked;
454 if (!may_enter_fs)
455 goto keep_locked;
456 if (laptop_mode && !sc->may_writepage)
457 goto keep_locked;
459 /* Page is dirty, try to write it out here */
460 switch(pageout(page, mapping)) {
461 case PAGE_KEEP:
462 goto keep_locked;
463 case PAGE_ACTIVATE:
464 goto activate_locked;
465 case PAGE_SUCCESS:
466 if (PageWriteback(page) || PageDirty(page))
467 goto keep;
469 * A synchronous write - probably a ramdisk. Go
470 * ahead and try to reclaim the page.
472 if (TestSetPageLocked(page))
473 goto keep;
474 if (PageDirty(page) || PageWriteback(page))
475 goto keep_locked;
476 mapping = page_mapping(page);
477 case PAGE_CLEAN:
478 ; /* try to free the page below */
483 * If the page has buffers, try to free the buffer mappings
484 * associated with this page. If we succeed we try to free
485 * the page as well.
487 * We do this even if the page is PageDirty().
488 * try_to_release_page() does not perform I/O, but it is
489 * possible for a page to have PageDirty set, but it is actually
490 * clean (all its buffers are clean). This happens if the
491 * buffers were written out directly, with submit_bh(). ext3
492 * will do this, as well as the blockdev mapping.
493 * try_to_release_page() will discover that cleanness and will
494 * drop the buffers and mark the page clean - it can be freed.
496 * Rarely, pages can have buffers and no ->mapping. These are
497 * the pages which were not successfully invalidated in
498 * truncate_complete_page(). We try to drop those buffers here
499 * and if that worked, and the page is no longer mapped into
500 * process address space (page_count == 1) it can be freed.
501 * Otherwise, leave the page on the LRU so it is swappable.
503 if (PagePrivate(page)) {
504 if (!try_to_release_page(page, sc->gfp_mask))
505 goto activate_locked;
506 if (!mapping && page_count(page) == 1)
507 goto free_it;
510 if (!mapping)
511 goto keep_locked; /* truncate got there first */
513 write_lock_irq(&mapping->tree_lock);
516 * The non-racy check for busy page. It is critical to check
517 * PageDirty _after_ making sure that the page is freeable and
518 * not in use by anybody. (pagecache + us == 2)
520 if (unlikely(page_count(page) != 2))
521 goto cannot_free;
522 smp_rmb();
523 if (unlikely(PageDirty(page)))
524 goto cannot_free;
526 #ifdef CONFIG_SWAP
527 if (PageSwapCache(page)) {
528 swp_entry_t swap = { .val = page_private(page) };
529 __delete_from_swap_cache(page);
530 write_unlock_irq(&mapping->tree_lock);
531 swap_free(swap);
532 __put_page(page); /* The pagecache ref */
533 goto free_it;
535 #endif /* CONFIG_SWAP */
537 __remove_from_page_cache(page);
538 write_unlock_irq(&mapping->tree_lock);
539 __put_page(page);
541 free_it:
542 unlock_page(page);
543 reclaimed++;
544 if (!pagevec_add(&freed_pvec, page))
545 __pagevec_release_nonlru(&freed_pvec);
546 continue;
548 cannot_free:
549 write_unlock_irq(&mapping->tree_lock);
550 goto keep_locked;
552 activate_locked:
553 SetPageActive(page);
554 pgactivate++;
555 keep_locked:
556 unlock_page(page);
557 keep:
558 list_add(&page->lru, &ret_pages);
559 BUG_ON(PageLRU(page));
561 list_splice(&ret_pages, page_list);
562 if (pagevec_count(&freed_pvec))
563 __pagevec_release_nonlru(&freed_pvec);
564 mod_page_state(pgactivate, pgactivate);
565 sc->nr_reclaimed += reclaimed;
566 return reclaimed;
570 * zone->lru_lock is heavily contended. Some of the functions that
571 * shrink the lists perform better by taking out a batch of pages
572 * and working on them outside the LRU lock.
574 * For pagecache intensive workloads, this function is the hottest
575 * spot in the kernel (apart from copy_*_user functions).
577 * Appropriate locks must be held before calling this function.
579 * @nr_to_scan: The number of pages to look through on the list.
580 * @src: The LRU list to pull pages off.
581 * @dst: The temp list to put pages on to.
582 * @scanned: The number of pages that were scanned.
584 * returns how many pages were moved onto *@dst.
586 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
587 struct list_head *dst, int *scanned)
589 int nr_taken = 0;
590 struct page *page;
591 int scan = 0;
593 while (scan++ < nr_to_scan && !list_empty(src)) {
594 page = lru_to_page(src);
595 prefetchw_prev_lru_page(page, src, flags);
597 if (!TestClearPageLRU(page))
598 BUG();
599 list_del(&page->lru);
600 if (get_page_testone(page)) {
602 * It is being freed elsewhere
604 __put_page(page);
605 SetPageLRU(page);
606 list_add(&page->lru, src);
607 continue;
608 } else {
609 list_add(&page->lru, dst);
610 nr_taken++;
614 *scanned = scan;
615 return nr_taken;
619 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
621 static void shrink_cache(struct zone *zone, struct scan_control *sc)
623 LIST_HEAD(page_list);
624 struct pagevec pvec;
625 int max_scan = sc->nr_to_scan;
627 pagevec_init(&pvec, 1);
629 lru_add_drain();
630 spin_lock_irq(&zone->lru_lock);
631 while (max_scan > 0) {
632 struct page *page;
633 int nr_taken;
634 int nr_scan;
635 int nr_freed;
637 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
638 &zone->inactive_list,
639 &page_list, &nr_scan);
640 zone->nr_inactive -= nr_taken;
641 zone->pages_scanned += nr_scan;
642 spin_unlock_irq(&zone->lru_lock);
644 if (nr_taken == 0)
645 goto done;
647 max_scan -= nr_scan;
648 if (current_is_kswapd())
649 mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
650 else
651 mod_page_state_zone(zone, pgscan_direct, nr_scan);
652 nr_freed = shrink_list(&page_list, sc);
653 if (current_is_kswapd())
654 mod_page_state(kswapd_steal, nr_freed);
655 mod_page_state_zone(zone, pgsteal, nr_freed);
657 spin_lock_irq(&zone->lru_lock);
659 * Put back any unfreeable pages.
661 while (!list_empty(&page_list)) {
662 page = lru_to_page(&page_list);
663 if (TestSetPageLRU(page))
664 BUG();
665 list_del(&page->lru);
666 if (PageActive(page))
667 add_page_to_active_list(zone, page);
668 else
669 add_page_to_inactive_list(zone, page);
670 if (!pagevec_add(&pvec, page)) {
671 spin_unlock_irq(&zone->lru_lock);
672 __pagevec_release(&pvec);
673 spin_lock_irq(&zone->lru_lock);
677 spin_unlock_irq(&zone->lru_lock);
678 done:
679 pagevec_release(&pvec);
683 * This moves pages from the active list to the inactive list.
685 * We move them the other way if the page is referenced by one or more
686 * processes, from rmap.
688 * If the pages are mostly unmapped, the processing is fast and it is
689 * appropriate to hold zone->lru_lock across the whole operation. But if
690 * the pages are mapped, the processing is slow (page_referenced()) so we
691 * should drop zone->lru_lock around each page. It's impossible to balance
692 * this, so instead we remove the pages from the LRU while processing them.
693 * It is safe to rely on PG_active against the non-LRU pages in here because
694 * nobody will play with that bit on a non-LRU page.
696 * The downside is that we have to touch page->_count against each page.
697 * But we had to alter page->flags anyway.
699 static void
700 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
702 int pgmoved;
703 int pgdeactivate = 0;
704 int pgscanned;
705 int nr_pages = sc->nr_to_scan;
706 LIST_HEAD(l_hold); /* The pages which were snipped off */
707 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
708 LIST_HEAD(l_active); /* Pages to go onto the active_list */
709 struct page *page;
710 struct pagevec pvec;
711 int reclaim_mapped = 0;
712 long mapped_ratio;
713 long distress;
714 long swap_tendency;
716 lru_add_drain();
717 spin_lock_irq(&zone->lru_lock);
718 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
719 &l_hold, &pgscanned);
720 zone->pages_scanned += pgscanned;
721 zone->nr_active -= pgmoved;
722 spin_unlock_irq(&zone->lru_lock);
725 * `distress' is a measure of how much trouble we're having reclaiming
726 * pages. 0 -> no problems. 100 -> great trouble.
728 distress = 100 >> zone->prev_priority;
731 * The point of this algorithm is to decide when to start reclaiming
732 * mapped memory instead of just pagecache. Work out how much memory
733 * is mapped.
735 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
738 * Now decide how much we really want to unmap some pages. The mapped
739 * ratio is downgraded - just because there's a lot of mapped memory
740 * doesn't necessarily mean that page reclaim isn't succeeding.
742 * The distress ratio is important - we don't want to start going oom.
744 * A 100% value of vm_swappiness overrides this algorithm altogether.
746 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
749 * Now use this metric to decide whether to start moving mapped memory
750 * onto the inactive list.
752 if (swap_tendency >= 100)
753 reclaim_mapped = 1;
755 while (!list_empty(&l_hold)) {
756 cond_resched();
757 page = lru_to_page(&l_hold);
758 list_del(&page->lru);
759 if (page_mapped(page)) {
760 if (!reclaim_mapped ||
761 (total_swap_pages == 0 && PageAnon(page)) ||
762 page_referenced(page, 0)) {
763 list_add(&page->lru, &l_active);
764 continue;
767 list_add(&page->lru, &l_inactive);
770 pagevec_init(&pvec, 1);
771 pgmoved = 0;
772 spin_lock_irq(&zone->lru_lock);
773 while (!list_empty(&l_inactive)) {
774 page = lru_to_page(&l_inactive);
775 prefetchw_prev_lru_page(page, &l_inactive, flags);
776 if (TestSetPageLRU(page))
777 BUG();
778 if (!TestClearPageActive(page))
779 BUG();
780 list_move(&page->lru, &zone->inactive_list);
781 pgmoved++;
782 if (!pagevec_add(&pvec, page)) {
783 zone->nr_inactive += pgmoved;
784 spin_unlock_irq(&zone->lru_lock);
785 pgdeactivate += pgmoved;
786 pgmoved = 0;
787 if (buffer_heads_over_limit)
788 pagevec_strip(&pvec);
789 __pagevec_release(&pvec);
790 spin_lock_irq(&zone->lru_lock);
793 zone->nr_inactive += pgmoved;
794 pgdeactivate += pgmoved;
795 if (buffer_heads_over_limit) {
796 spin_unlock_irq(&zone->lru_lock);
797 pagevec_strip(&pvec);
798 spin_lock_irq(&zone->lru_lock);
801 pgmoved = 0;
802 while (!list_empty(&l_active)) {
803 page = lru_to_page(&l_active);
804 prefetchw_prev_lru_page(page, &l_active, flags);
805 if (TestSetPageLRU(page))
806 BUG();
807 BUG_ON(!PageActive(page));
808 list_move(&page->lru, &zone->active_list);
809 pgmoved++;
810 if (!pagevec_add(&pvec, page)) {
811 zone->nr_active += pgmoved;
812 pgmoved = 0;
813 spin_unlock_irq(&zone->lru_lock);
814 __pagevec_release(&pvec);
815 spin_lock_irq(&zone->lru_lock);
818 zone->nr_active += pgmoved;
819 spin_unlock_irq(&zone->lru_lock);
820 pagevec_release(&pvec);
822 mod_page_state_zone(zone, pgrefill, pgscanned);
823 mod_page_state(pgdeactivate, pgdeactivate);
827 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
829 static void
830 shrink_zone(struct zone *zone, struct scan_control *sc)
832 unsigned long nr_active;
833 unsigned long nr_inactive;
835 atomic_inc(&zone->reclaim_in_progress);
838 * Add one to `nr_to_scan' just to make sure that the kernel will
839 * slowly sift through the active list.
841 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
842 nr_active = zone->nr_scan_active;
843 if (nr_active >= sc->swap_cluster_max)
844 zone->nr_scan_active = 0;
845 else
846 nr_active = 0;
848 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
849 nr_inactive = zone->nr_scan_inactive;
850 if (nr_inactive >= sc->swap_cluster_max)
851 zone->nr_scan_inactive = 0;
852 else
853 nr_inactive = 0;
855 while (nr_active || nr_inactive) {
856 if (nr_active) {
857 sc->nr_to_scan = min(nr_active,
858 (unsigned long)sc->swap_cluster_max);
859 nr_active -= sc->nr_to_scan;
860 refill_inactive_zone(zone, sc);
863 if (nr_inactive) {
864 sc->nr_to_scan = min(nr_inactive,
865 (unsigned long)sc->swap_cluster_max);
866 nr_inactive -= sc->nr_to_scan;
867 shrink_cache(zone, sc);
871 throttle_vm_writeout();
873 atomic_dec(&zone->reclaim_in_progress);
877 * This is the direct reclaim path, for page-allocating processes. We only
878 * try to reclaim pages from zones which will satisfy the caller's allocation
879 * request.
881 * We reclaim from a zone even if that zone is over pages_high. Because:
882 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
883 * allocation or
884 * b) The zones may be over pages_high but they must go *over* pages_high to
885 * satisfy the `incremental min' zone defense algorithm.
887 * Returns the number of reclaimed pages.
889 * If a zone is deemed to be full of pinned pages then just give it a light
890 * scan then give up on it.
892 static void
893 shrink_caches(struct zone **zones, struct scan_control *sc)
895 int i;
897 for (i = 0; zones[i] != NULL; i++) {
898 struct zone *zone = zones[i];
900 if (zone->present_pages == 0)
901 continue;
903 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
904 continue;
906 zone->temp_priority = sc->priority;
907 if (zone->prev_priority > sc->priority)
908 zone->prev_priority = sc->priority;
910 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
911 continue; /* Let kswapd poll it */
913 shrink_zone(zone, sc);
918 * This is the main entry point to direct page reclaim.
920 * If a full scan of the inactive list fails to free enough memory then we
921 * are "out of memory" and something needs to be killed.
923 * If the caller is !__GFP_FS then the probability of a failure is reasonably
924 * high - the zone may be full of dirty or under-writeback pages, which this
925 * caller can't do much about. We kick pdflush and take explicit naps in the
926 * hope that some of these pages can be written. But if the allocating task
927 * holds filesystem locks which prevent writeout this might not work, and the
928 * allocation attempt will fail.
930 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
932 int priority;
933 int ret = 0;
934 int total_scanned = 0, total_reclaimed = 0;
935 struct reclaim_state *reclaim_state = current->reclaim_state;
936 struct scan_control sc;
937 unsigned long lru_pages = 0;
938 int i;
940 sc.gfp_mask = gfp_mask;
941 sc.may_writepage = 0;
943 inc_page_state(allocstall);
945 for (i = 0; zones[i] != NULL; i++) {
946 struct zone *zone = zones[i];
948 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
949 continue;
951 zone->temp_priority = DEF_PRIORITY;
952 lru_pages += zone->nr_active + zone->nr_inactive;
955 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
956 sc.nr_mapped = read_page_state(nr_mapped);
957 sc.nr_scanned = 0;
958 sc.nr_reclaimed = 0;
959 sc.priority = priority;
960 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
961 if (!priority)
962 disable_swap_token();
963 shrink_caches(zones, &sc);
964 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
965 if (reclaim_state) {
966 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
967 reclaim_state->reclaimed_slab = 0;
969 total_scanned += sc.nr_scanned;
970 total_reclaimed += sc.nr_reclaimed;
971 if (total_reclaimed >= sc.swap_cluster_max) {
972 ret = 1;
973 goto out;
977 * Try to write back as many pages as we just scanned. This
978 * tends to cause slow streaming writers to write data to the
979 * disk smoothly, at the dirtying rate, which is nice. But
980 * that's undesirable in laptop mode, where we *want* lumpy
981 * writeout. So in laptop mode, write out the whole world.
983 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
984 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
985 sc.may_writepage = 1;
988 /* Take a nap, wait for some writeback to complete */
989 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
990 blk_congestion_wait(WRITE, HZ/10);
992 out:
993 for (i = 0; zones[i] != 0; i++) {
994 struct zone *zone = zones[i];
996 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
997 continue;
999 zone->prev_priority = zone->temp_priority;
1001 return ret;
1005 * For kswapd, balance_pgdat() will work across all this node's zones until
1006 * they are all at pages_high.
1008 * If `nr_pages' is non-zero then it is the number of pages which are to be
1009 * reclaimed, regardless of the zone occupancies. This is a software suspend
1010 * special.
1012 * Returns the number of pages which were actually freed.
1014 * There is special handling here for zones which are full of pinned pages.
1015 * This can happen if the pages are all mlocked, or if they are all used by
1016 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1017 * What we do is to detect the case where all pages in the zone have been
1018 * scanned twice and there has been zero successful reclaim. Mark the zone as
1019 * dead and from now on, only perform a short scan. Basically we're polling
1020 * the zone for when the problem goes away.
1022 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1023 * zones which have free_pages > pages_high, but once a zone is found to have
1024 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1025 * of the number of free pages in the lower zones. This interoperates with
1026 * the page allocator fallback scheme to ensure that aging of pages is balanced
1027 * across the zones.
1029 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1031 int to_free = nr_pages;
1032 int all_zones_ok;
1033 int priority;
1034 int i;
1035 int total_scanned, total_reclaimed;
1036 struct reclaim_state *reclaim_state = current->reclaim_state;
1037 struct scan_control sc;
1039 loop_again:
1040 total_scanned = 0;
1041 total_reclaimed = 0;
1042 sc.gfp_mask = GFP_KERNEL;
1043 sc.may_writepage = 0;
1044 sc.nr_mapped = read_page_state(nr_mapped);
1046 inc_page_state(pageoutrun);
1048 for (i = 0; i < pgdat->nr_zones; i++) {
1049 struct zone *zone = pgdat->node_zones + i;
1051 zone->temp_priority = DEF_PRIORITY;
1054 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1055 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1056 unsigned long lru_pages = 0;
1058 /* The swap token gets in the way of swapout... */
1059 if (!priority)
1060 disable_swap_token();
1062 all_zones_ok = 1;
1064 if (nr_pages == 0) {
1066 * Scan in the highmem->dma direction for the highest
1067 * zone which needs scanning
1069 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1070 struct zone *zone = pgdat->node_zones + i;
1072 if (zone->present_pages == 0)
1073 continue;
1075 if (zone->all_unreclaimable &&
1076 priority != DEF_PRIORITY)
1077 continue;
1079 if (!zone_watermark_ok(zone, order,
1080 zone->pages_high, 0, 0)) {
1081 end_zone = i;
1082 goto scan;
1085 goto out;
1086 } else {
1087 end_zone = pgdat->nr_zones - 1;
1089 scan:
1090 for (i = 0; i <= end_zone; i++) {
1091 struct zone *zone = pgdat->node_zones + i;
1093 lru_pages += zone->nr_active + zone->nr_inactive;
1097 * Now scan the zone in the dma->highmem direction, stopping
1098 * at the last zone which needs scanning.
1100 * We do this because the page allocator works in the opposite
1101 * direction. This prevents the page allocator from allocating
1102 * pages behind kswapd's direction of progress, which would
1103 * cause too much scanning of the lower zones.
1105 for (i = 0; i <= end_zone; i++) {
1106 struct zone *zone = pgdat->node_zones + i;
1107 int nr_slab;
1109 if (zone->present_pages == 0)
1110 continue;
1112 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1113 continue;
1115 if (nr_pages == 0) { /* Not software suspend */
1116 if (!zone_watermark_ok(zone, order,
1117 zone->pages_high, end_zone, 0))
1118 all_zones_ok = 0;
1120 zone->temp_priority = priority;
1121 if (zone->prev_priority > priority)
1122 zone->prev_priority = priority;
1123 sc.nr_scanned = 0;
1124 sc.nr_reclaimed = 0;
1125 sc.priority = priority;
1126 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1127 atomic_inc(&zone->reclaim_in_progress);
1128 shrink_zone(zone, &sc);
1129 atomic_dec(&zone->reclaim_in_progress);
1130 reclaim_state->reclaimed_slab = 0;
1131 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1132 lru_pages);
1133 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1134 total_reclaimed += sc.nr_reclaimed;
1135 total_scanned += sc.nr_scanned;
1136 if (zone->all_unreclaimable)
1137 continue;
1138 if (nr_slab == 0 && zone->pages_scanned >=
1139 (zone->nr_active + zone->nr_inactive) * 4)
1140 zone->all_unreclaimable = 1;
1142 * If we've done a decent amount of scanning and
1143 * the reclaim ratio is low, start doing writepage
1144 * even in laptop mode
1146 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1147 total_scanned > total_reclaimed+total_reclaimed/2)
1148 sc.may_writepage = 1;
1150 if (nr_pages && to_free > total_reclaimed)
1151 continue; /* swsusp: need to do more work */
1152 if (all_zones_ok)
1153 break; /* kswapd: all done */
1155 * OK, kswapd is getting into trouble. Take a nap, then take
1156 * another pass across the zones.
1158 if (total_scanned && priority < DEF_PRIORITY - 2)
1159 blk_congestion_wait(WRITE, HZ/10);
1162 * We do this so kswapd doesn't build up large priorities for
1163 * example when it is freeing in parallel with allocators. It
1164 * matches the direct reclaim path behaviour in terms of impact
1165 * on zone->*_priority.
1167 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1168 break;
1170 out:
1171 for (i = 0; i < pgdat->nr_zones; i++) {
1172 struct zone *zone = pgdat->node_zones + i;
1174 zone->prev_priority = zone->temp_priority;
1176 if (!all_zones_ok) {
1177 cond_resched();
1178 goto loop_again;
1181 return total_reclaimed;
1185 * The background pageout daemon, started as a kernel thread
1186 * from the init process.
1188 * This basically trickles out pages so that we have _some_
1189 * free memory available even if there is no other activity
1190 * that frees anything up. This is needed for things like routing
1191 * etc, where we otherwise might have all activity going on in
1192 * asynchronous contexts that cannot page things out.
1194 * If there are applications that are active memory-allocators
1195 * (most normal use), this basically shouldn't matter.
1197 static int kswapd(void *p)
1199 unsigned long order;
1200 pg_data_t *pgdat = (pg_data_t*)p;
1201 struct task_struct *tsk = current;
1202 DEFINE_WAIT(wait);
1203 struct reclaim_state reclaim_state = {
1204 .reclaimed_slab = 0,
1206 cpumask_t cpumask;
1208 daemonize("kswapd%d", pgdat->node_id);
1209 cpumask = node_to_cpumask(pgdat->node_id);
1210 if (!cpus_empty(cpumask))
1211 set_cpus_allowed(tsk, cpumask);
1212 current->reclaim_state = &reclaim_state;
1215 * Tell the memory management that we're a "memory allocator",
1216 * and that if we need more memory we should get access to it
1217 * regardless (see "__alloc_pages()"). "kswapd" should
1218 * never get caught in the normal page freeing logic.
1220 * (Kswapd normally doesn't need memory anyway, but sometimes
1221 * you need a small amount of memory in order to be able to
1222 * page out something else, and this flag essentially protects
1223 * us from recursively trying to free more memory as we're
1224 * trying to free the first piece of memory in the first place).
1226 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1228 order = 0;
1229 for ( ; ; ) {
1230 unsigned long new_order;
1232 try_to_freeze();
1234 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1235 new_order = pgdat->kswapd_max_order;
1236 pgdat->kswapd_max_order = 0;
1237 if (order < new_order) {
1239 * Don't sleep if someone wants a larger 'order'
1240 * allocation
1242 order = new_order;
1243 } else {
1244 schedule();
1245 order = pgdat->kswapd_max_order;
1247 finish_wait(&pgdat->kswapd_wait, &wait);
1249 balance_pgdat(pgdat, 0, order);
1251 return 0;
1255 * A zone is low on free memory, so wake its kswapd task to service it.
1257 void wakeup_kswapd(struct zone *zone, int order)
1259 pg_data_t *pgdat;
1261 if (zone->present_pages == 0)
1262 return;
1264 pgdat = zone->zone_pgdat;
1265 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1266 return;
1267 if (pgdat->kswapd_max_order < order)
1268 pgdat->kswapd_max_order = order;
1269 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1270 return;
1271 if (!waitqueue_active(&pgdat->kswapd_wait))
1272 return;
1273 wake_up_interruptible(&pgdat->kswapd_wait);
1276 #ifdef CONFIG_PM
1278 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1279 * pages.
1281 int shrink_all_memory(int nr_pages)
1283 pg_data_t *pgdat;
1284 int nr_to_free = nr_pages;
1285 int ret = 0;
1286 struct reclaim_state reclaim_state = {
1287 .reclaimed_slab = 0,
1290 current->reclaim_state = &reclaim_state;
1291 for_each_pgdat(pgdat) {
1292 int freed;
1293 freed = balance_pgdat(pgdat, nr_to_free, 0);
1294 ret += freed;
1295 nr_to_free -= freed;
1296 if (nr_to_free <= 0)
1297 break;
1299 current->reclaim_state = NULL;
1300 return ret;
1302 #endif
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1306 not required for correctness. So if the last cpu in a node goes
1307 away, we get changed to run anywhere: as the first one comes back,
1308 restore their cpu bindings. */
1309 static int __devinit cpu_callback(struct notifier_block *nfb,
1310 unsigned long action,
1311 void *hcpu)
1313 pg_data_t *pgdat;
1314 cpumask_t mask;
1316 if (action == CPU_ONLINE) {
1317 for_each_pgdat(pgdat) {
1318 mask = node_to_cpumask(pgdat->node_id);
1319 if (any_online_cpu(mask) != NR_CPUS)
1320 /* One of our CPUs online: restore mask */
1321 set_cpus_allowed(pgdat->kswapd, mask);
1324 return NOTIFY_OK;
1326 #endif /* CONFIG_HOTPLUG_CPU */
1328 static int __init kswapd_init(void)
1330 pg_data_t *pgdat;
1331 swap_setup();
1332 for_each_pgdat(pgdat)
1333 pgdat->kswapd
1334 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1335 total_memory = nr_free_pagecache_pages();
1336 hotcpu_notifier(cpu_callback, 0);
1337 return 0;
1340 module_init(kswapd_init)