[PATCH] vmscan: balancing fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / bio.c
blob38d3e8023a0795273595b46ef8647ebaee9952e6
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h> /* for struct sg_iovec */
30 #define BIO_POOL_SIZE 256
32 static kmem_cache_t *bio_slab;
34 #define BIOVEC_NR_POOLS 6
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
40 #define BIO_SPLIT_ENTRIES 8
41 mempool_t *bio_split_pool;
43 struct biovec_slab {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
50 * if you change this list, also change bvec_alloc or things will
51 * break badly! cannot be bigger than what you can fit into an
52 * unsigned short
55 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
56 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
57 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
59 #undef BV
62 * bio_set is used to allow other portions of the IO system to
63 * allocate their own private memory pools for bio and iovec structures.
64 * These memory pools in turn all allocate from the bio_slab
65 * and the bvec_slabs[].
67 struct bio_set {
68 mempool_t *bio_pool;
69 mempool_t *bvec_pools[BIOVEC_NR_POOLS];
73 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
74 * IO code that does not need private memory pools.
76 static struct bio_set *fs_bio_set;
78 static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
80 struct bio_vec *bvl;
81 struct biovec_slab *bp;
84 * see comment near bvec_array define!
86 switch (nr) {
87 case 1 : *idx = 0; break;
88 case 2 ... 4: *idx = 1; break;
89 case 5 ... 16: *idx = 2; break;
90 case 17 ... 64: *idx = 3; break;
91 case 65 ... 128: *idx = 4; break;
92 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
93 default:
94 return NULL;
97 * idx now points to the pool we want to allocate from
100 bp = bvec_slabs + *idx;
101 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
102 if (bvl)
103 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
105 return bvl;
108 void bio_free(struct bio *bio, struct bio_set *bio_set)
110 const int pool_idx = BIO_POOL_IDX(bio);
112 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
114 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
115 mempool_free(bio, bio_set->bio_pool);
119 * default destructor for a bio allocated with bio_alloc_bioset()
121 static void bio_fs_destructor(struct bio *bio)
123 bio_free(bio, fs_bio_set);
126 inline void bio_init(struct bio *bio)
128 bio->bi_next = NULL;
129 bio->bi_flags = 1 << BIO_UPTODATE;
130 bio->bi_rw = 0;
131 bio->bi_vcnt = 0;
132 bio->bi_idx = 0;
133 bio->bi_phys_segments = 0;
134 bio->bi_hw_segments = 0;
135 bio->bi_hw_front_size = 0;
136 bio->bi_hw_back_size = 0;
137 bio->bi_size = 0;
138 bio->bi_max_vecs = 0;
139 bio->bi_end_io = NULL;
140 atomic_set(&bio->bi_cnt, 1);
141 bio->bi_private = NULL;
145 * bio_alloc_bioset - allocate a bio for I/O
146 * @gfp_mask: the GFP_ mask given to the slab allocator
147 * @nr_iovecs: number of iovecs to pre-allocate
148 * @bs: the bio_set to allocate from
150 * Description:
151 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
152 * If %__GFP_WAIT is set then we will block on the internal pool waiting
153 * for a &struct bio to become free.
155 * allocate bio and iovecs from the memory pools specified by the
156 * bio_set structure.
158 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
160 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
162 if (likely(bio)) {
163 struct bio_vec *bvl = NULL;
165 bio_init(bio);
166 if (likely(nr_iovecs)) {
167 unsigned long idx;
169 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
170 if (unlikely(!bvl)) {
171 mempool_free(bio, bs->bio_pool);
172 bio = NULL;
173 goto out;
175 bio->bi_flags |= idx << BIO_POOL_OFFSET;
176 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
178 bio->bi_io_vec = bvl;
180 out:
181 return bio;
184 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
186 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
188 if (bio)
189 bio->bi_destructor = bio_fs_destructor;
191 return bio;
194 void zero_fill_bio(struct bio *bio)
196 unsigned long flags;
197 struct bio_vec *bv;
198 int i;
200 bio_for_each_segment(bv, bio, i) {
201 char *data = bvec_kmap_irq(bv, &flags);
202 memset(data, 0, bv->bv_len);
203 flush_dcache_page(bv->bv_page);
204 bvec_kunmap_irq(data, &flags);
207 EXPORT_SYMBOL(zero_fill_bio);
210 * bio_put - release a reference to a bio
211 * @bio: bio to release reference to
213 * Description:
214 * Put a reference to a &struct bio, either one you have gotten with
215 * bio_alloc or bio_get. The last put of a bio will free it.
217 void bio_put(struct bio *bio)
219 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
222 * last put frees it
224 if (atomic_dec_and_test(&bio->bi_cnt)) {
225 bio->bi_next = NULL;
226 bio->bi_destructor(bio);
230 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
232 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
233 blk_recount_segments(q, bio);
235 return bio->bi_phys_segments;
238 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
240 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
241 blk_recount_segments(q, bio);
243 return bio->bi_hw_segments;
247 * __bio_clone - clone a bio
248 * @bio: destination bio
249 * @bio_src: bio to clone
251 * Clone a &bio. Caller will own the returned bio, but not
252 * the actual data it points to. Reference count of returned
253 * bio will be one.
255 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
257 request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
259 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
260 bio_src->bi_max_vecs * sizeof(struct bio_vec));
262 bio->bi_sector = bio_src->bi_sector;
263 bio->bi_bdev = bio_src->bi_bdev;
264 bio->bi_flags |= 1 << BIO_CLONED;
265 bio->bi_rw = bio_src->bi_rw;
266 bio->bi_vcnt = bio_src->bi_vcnt;
267 bio->bi_size = bio_src->bi_size;
268 bio->bi_idx = bio_src->bi_idx;
269 bio_phys_segments(q, bio);
270 bio_hw_segments(q, bio);
274 * bio_clone - clone a bio
275 * @bio: bio to clone
276 * @gfp_mask: allocation priority
278 * Like __bio_clone, only also allocates the returned bio
280 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
282 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
284 if (b) {
285 b->bi_destructor = bio_fs_destructor;
286 __bio_clone(b, bio);
289 return b;
293 * bio_get_nr_vecs - return approx number of vecs
294 * @bdev: I/O target
296 * Return the approximate number of pages we can send to this target.
297 * There's no guarantee that you will be able to fit this number of pages
298 * into a bio, it does not account for dynamic restrictions that vary
299 * on offset.
301 int bio_get_nr_vecs(struct block_device *bdev)
303 request_queue_t *q = bdev_get_queue(bdev);
304 int nr_pages;
306 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 if (nr_pages > q->max_phys_segments)
308 nr_pages = q->max_phys_segments;
309 if (nr_pages > q->max_hw_segments)
310 nr_pages = q->max_hw_segments;
312 return nr_pages;
315 static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
316 *page, unsigned int len, unsigned int offset,
317 unsigned short max_sectors)
319 int retried_segments = 0;
320 struct bio_vec *bvec;
323 * cloned bio must not modify vec list
325 if (unlikely(bio_flagged(bio, BIO_CLONED)))
326 return 0;
328 if (bio->bi_vcnt >= bio->bi_max_vecs)
329 return 0;
331 if (((bio->bi_size + len) >> 9) > max_sectors)
332 return 0;
335 * we might lose a segment or two here, but rather that than
336 * make this too complex.
339 while (bio->bi_phys_segments >= q->max_phys_segments
340 || bio->bi_hw_segments >= q->max_hw_segments
341 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
343 if (retried_segments)
344 return 0;
346 retried_segments = 1;
347 blk_recount_segments(q, bio);
351 * setup the new entry, we might clear it again later if we
352 * cannot add the page
354 bvec = &bio->bi_io_vec[bio->bi_vcnt];
355 bvec->bv_page = page;
356 bvec->bv_len = len;
357 bvec->bv_offset = offset;
360 * if queue has other restrictions (eg varying max sector size
361 * depending on offset), it can specify a merge_bvec_fn in the
362 * queue to get further control
364 if (q->merge_bvec_fn) {
366 * merge_bvec_fn() returns number of bytes it can accept
367 * at this offset
369 if (q->merge_bvec_fn(q, bio, bvec) < len) {
370 bvec->bv_page = NULL;
371 bvec->bv_len = 0;
372 bvec->bv_offset = 0;
373 return 0;
377 /* If we may be able to merge these biovecs, force a recount */
378 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
379 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
380 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
382 bio->bi_vcnt++;
383 bio->bi_phys_segments++;
384 bio->bi_hw_segments++;
385 bio->bi_size += len;
386 return len;
390 * bio_add_pc_page - attempt to add page to bio
391 * @bio: destination bio
392 * @page: page to add
393 * @len: vec entry length
394 * @offset: vec entry offset
396 * Attempt to add a page to the bio_vec maplist. This can fail for a
397 * number of reasons, such as the bio being full or target block
398 * device limitations. The target block device must allow bio's
399 * smaller than PAGE_SIZE, so it is always possible to add a single
400 * page to an empty bio. This should only be used by REQ_PC bios.
402 int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page,
403 unsigned int len, unsigned int offset)
405 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
409 * bio_add_page - attempt to add page to bio
410 * @bio: destination bio
411 * @page: page to add
412 * @len: vec entry length
413 * @offset: vec entry offset
415 * Attempt to add a page to the bio_vec maplist. This can fail for a
416 * number of reasons, such as the bio being full or target block
417 * device limitations. The target block device must allow bio's
418 * smaller than PAGE_SIZE, so it is always possible to add a single
419 * page to an empty bio.
421 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
422 unsigned int offset)
424 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
425 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
428 struct bio_map_data {
429 struct bio_vec *iovecs;
430 void __user *userptr;
433 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
435 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
436 bio->bi_private = bmd;
439 static void bio_free_map_data(struct bio_map_data *bmd)
441 kfree(bmd->iovecs);
442 kfree(bmd);
445 static struct bio_map_data *bio_alloc_map_data(int nr_segs)
447 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
449 if (!bmd)
450 return NULL;
452 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
453 if (bmd->iovecs)
454 return bmd;
456 kfree(bmd);
457 return NULL;
461 * bio_uncopy_user - finish previously mapped bio
462 * @bio: bio being terminated
464 * Free pages allocated from bio_copy_user() and write back data
465 * to user space in case of a read.
467 int bio_uncopy_user(struct bio *bio)
469 struct bio_map_data *bmd = bio->bi_private;
470 const int read = bio_data_dir(bio) == READ;
471 struct bio_vec *bvec;
472 int i, ret = 0;
474 __bio_for_each_segment(bvec, bio, i, 0) {
475 char *addr = page_address(bvec->bv_page);
476 unsigned int len = bmd->iovecs[i].bv_len;
478 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
479 ret = -EFAULT;
481 __free_page(bvec->bv_page);
482 bmd->userptr += len;
484 bio_free_map_data(bmd);
485 bio_put(bio);
486 return ret;
490 * bio_copy_user - copy user data to bio
491 * @q: destination block queue
492 * @uaddr: start of user address
493 * @len: length in bytes
494 * @write_to_vm: bool indicating writing to pages or not
496 * Prepares and returns a bio for indirect user io, bouncing data
497 * to/from kernel pages as necessary. Must be paired with
498 * call bio_uncopy_user() on io completion.
500 struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
501 unsigned int len, int write_to_vm)
503 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
504 unsigned long start = uaddr >> PAGE_SHIFT;
505 struct bio_map_data *bmd;
506 struct bio_vec *bvec;
507 struct page *page;
508 struct bio *bio;
509 int i, ret;
511 bmd = bio_alloc_map_data(end - start);
512 if (!bmd)
513 return ERR_PTR(-ENOMEM);
515 bmd->userptr = (void __user *) uaddr;
517 ret = -ENOMEM;
518 bio = bio_alloc(GFP_KERNEL, end - start);
519 if (!bio)
520 goto out_bmd;
522 bio->bi_rw |= (!write_to_vm << BIO_RW);
524 ret = 0;
525 while (len) {
526 unsigned int bytes = PAGE_SIZE;
528 if (bytes > len)
529 bytes = len;
531 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
532 if (!page) {
533 ret = -ENOMEM;
534 break;
537 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
538 ret = -EINVAL;
539 break;
542 len -= bytes;
545 if (ret)
546 goto cleanup;
549 * success
551 if (!write_to_vm) {
552 char __user *p = (char __user *) uaddr;
555 * for a write, copy in data to kernel pages
557 ret = -EFAULT;
558 bio_for_each_segment(bvec, bio, i) {
559 char *addr = page_address(bvec->bv_page);
561 if (copy_from_user(addr, p, bvec->bv_len))
562 goto cleanup;
563 p += bvec->bv_len;
567 bio_set_map_data(bmd, bio);
568 return bio;
569 cleanup:
570 bio_for_each_segment(bvec, bio, i)
571 __free_page(bvec->bv_page);
573 bio_put(bio);
574 out_bmd:
575 bio_free_map_data(bmd);
576 return ERR_PTR(ret);
579 static struct bio *__bio_map_user_iov(request_queue_t *q,
580 struct block_device *bdev,
581 struct sg_iovec *iov, int iov_count,
582 int write_to_vm)
584 int i, j;
585 int nr_pages = 0;
586 struct page **pages;
587 struct bio *bio;
588 int cur_page = 0;
589 int ret, offset;
591 for (i = 0; i < iov_count; i++) {
592 unsigned long uaddr = (unsigned long)iov[i].iov_base;
593 unsigned long len = iov[i].iov_len;
594 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
595 unsigned long start = uaddr >> PAGE_SHIFT;
597 nr_pages += end - start;
599 * transfer and buffer must be aligned to at least hardsector
600 * size for now, in the future we can relax this restriction
602 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
603 return ERR_PTR(-EINVAL);
606 if (!nr_pages)
607 return ERR_PTR(-EINVAL);
609 bio = bio_alloc(GFP_KERNEL, nr_pages);
610 if (!bio)
611 return ERR_PTR(-ENOMEM);
613 ret = -ENOMEM;
614 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
615 if (!pages)
616 goto out;
618 memset(pages, 0, nr_pages * sizeof(struct page *));
620 for (i = 0; i < iov_count; i++) {
621 unsigned long uaddr = (unsigned long)iov[i].iov_base;
622 unsigned long len = iov[i].iov_len;
623 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
624 unsigned long start = uaddr >> PAGE_SHIFT;
625 const int local_nr_pages = end - start;
626 const int page_limit = cur_page + local_nr_pages;
628 down_read(&current->mm->mmap_sem);
629 ret = get_user_pages(current, current->mm, uaddr,
630 local_nr_pages,
631 write_to_vm, 0, &pages[cur_page], NULL);
632 up_read(&current->mm->mmap_sem);
634 if (ret < local_nr_pages)
635 goto out_unmap;
638 offset = uaddr & ~PAGE_MASK;
639 for (j = cur_page; j < page_limit; j++) {
640 unsigned int bytes = PAGE_SIZE - offset;
642 if (len <= 0)
643 break;
645 if (bytes > len)
646 bytes = len;
649 * sorry...
651 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
652 bytes)
653 break;
655 len -= bytes;
656 offset = 0;
659 cur_page = j;
661 * release the pages we didn't map into the bio, if any
663 while (j < page_limit)
664 page_cache_release(pages[j++]);
667 kfree(pages);
670 * set data direction, and check if mapped pages need bouncing
672 if (!write_to_vm)
673 bio->bi_rw |= (1 << BIO_RW);
675 bio->bi_bdev = bdev;
676 bio->bi_flags |= (1 << BIO_USER_MAPPED);
677 return bio;
679 out_unmap:
680 for (i = 0; i < nr_pages; i++) {
681 if(!pages[i])
682 break;
683 page_cache_release(pages[i]);
685 out:
686 kfree(pages);
687 bio_put(bio);
688 return ERR_PTR(ret);
692 * bio_map_user - map user address into bio
693 * @q: the request_queue_t for the bio
694 * @bdev: destination block device
695 * @uaddr: start of user address
696 * @len: length in bytes
697 * @write_to_vm: bool indicating writing to pages or not
699 * Map the user space address into a bio suitable for io to a block
700 * device. Returns an error pointer in case of error.
702 struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
703 unsigned long uaddr, unsigned int len, int write_to_vm)
705 struct sg_iovec iov;
707 iov.iov_base = (void __user *)uaddr;
708 iov.iov_len = len;
710 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
714 * bio_map_user_iov - map user sg_iovec table into bio
715 * @q: the request_queue_t for the bio
716 * @bdev: destination block device
717 * @iov: the iovec.
718 * @iov_count: number of elements in the iovec
719 * @write_to_vm: bool indicating writing to pages or not
721 * Map the user space address into a bio suitable for io to a block
722 * device. Returns an error pointer in case of error.
724 struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev,
725 struct sg_iovec *iov, int iov_count,
726 int write_to_vm)
728 struct bio *bio;
729 int len = 0, i;
731 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
733 if (IS_ERR(bio))
734 return bio;
737 * subtle -- if __bio_map_user() ended up bouncing a bio,
738 * it would normally disappear when its bi_end_io is run.
739 * however, we need it for the unmap, so grab an extra
740 * reference to it
742 bio_get(bio);
744 for (i = 0; i < iov_count; i++)
745 len += iov[i].iov_len;
747 if (bio->bi_size == len)
748 return bio;
751 * don't support partial mappings
753 bio_endio(bio, bio->bi_size, 0);
754 bio_unmap_user(bio);
755 return ERR_PTR(-EINVAL);
758 static void __bio_unmap_user(struct bio *bio)
760 struct bio_vec *bvec;
761 int i;
764 * make sure we dirty pages we wrote to
766 __bio_for_each_segment(bvec, bio, i, 0) {
767 if (bio_data_dir(bio) == READ)
768 set_page_dirty_lock(bvec->bv_page);
770 page_cache_release(bvec->bv_page);
773 bio_put(bio);
777 * bio_unmap_user - unmap a bio
778 * @bio: the bio being unmapped
780 * Unmap a bio previously mapped by bio_map_user(). Must be called with
781 * a process context.
783 * bio_unmap_user() may sleep.
785 void bio_unmap_user(struct bio *bio)
787 __bio_unmap_user(bio);
788 bio_put(bio);
791 static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err)
793 if (bio->bi_size)
794 return 1;
796 bio_put(bio);
797 return 0;
801 static struct bio *__bio_map_kern(request_queue_t *q, void *data,
802 unsigned int len, gfp_t gfp_mask)
804 unsigned long kaddr = (unsigned long)data;
805 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
806 unsigned long start = kaddr >> PAGE_SHIFT;
807 const int nr_pages = end - start;
808 int offset, i;
809 struct bio *bio;
811 bio = bio_alloc(gfp_mask, nr_pages);
812 if (!bio)
813 return ERR_PTR(-ENOMEM);
815 offset = offset_in_page(kaddr);
816 for (i = 0; i < nr_pages; i++) {
817 unsigned int bytes = PAGE_SIZE - offset;
819 if (len <= 0)
820 break;
822 if (bytes > len)
823 bytes = len;
825 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
826 offset) < bytes)
827 break;
829 data += bytes;
830 len -= bytes;
831 offset = 0;
834 bio->bi_end_io = bio_map_kern_endio;
835 return bio;
839 * bio_map_kern - map kernel address into bio
840 * @q: the request_queue_t for the bio
841 * @data: pointer to buffer to map
842 * @len: length in bytes
843 * @gfp_mask: allocation flags for bio allocation
845 * Map the kernel address into a bio suitable for io to a block
846 * device. Returns an error pointer in case of error.
848 struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len,
849 gfp_t gfp_mask)
851 struct bio *bio;
853 bio = __bio_map_kern(q, data, len, gfp_mask);
854 if (IS_ERR(bio))
855 return bio;
857 if (bio->bi_size == len)
858 return bio;
861 * Don't support partial mappings.
863 bio_put(bio);
864 return ERR_PTR(-EINVAL);
868 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
869 * for performing direct-IO in BIOs.
871 * The problem is that we cannot run set_page_dirty() from interrupt context
872 * because the required locks are not interrupt-safe. So what we can do is to
873 * mark the pages dirty _before_ performing IO. And in interrupt context,
874 * check that the pages are still dirty. If so, fine. If not, redirty them
875 * in process context.
877 * We special-case compound pages here: normally this means reads into hugetlb
878 * pages. The logic in here doesn't really work right for compound pages
879 * because the VM does not uniformly chase down the head page in all cases.
880 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
881 * handle them at all. So we skip compound pages here at an early stage.
883 * Note that this code is very hard to test under normal circumstances because
884 * direct-io pins the pages with get_user_pages(). This makes
885 * is_page_cache_freeable return false, and the VM will not clean the pages.
886 * But other code (eg, pdflush) could clean the pages if they are mapped
887 * pagecache.
889 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
890 * deferred bio dirtying paths.
894 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
896 void bio_set_pages_dirty(struct bio *bio)
898 struct bio_vec *bvec = bio->bi_io_vec;
899 int i;
901 for (i = 0; i < bio->bi_vcnt; i++) {
902 struct page *page = bvec[i].bv_page;
904 if (page && !PageCompound(page))
905 set_page_dirty_lock(page);
909 static void bio_release_pages(struct bio *bio)
911 struct bio_vec *bvec = bio->bi_io_vec;
912 int i;
914 for (i = 0; i < bio->bi_vcnt; i++) {
915 struct page *page = bvec[i].bv_page;
917 if (page)
918 put_page(page);
923 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
924 * If they are, then fine. If, however, some pages are clean then they must
925 * have been written out during the direct-IO read. So we take another ref on
926 * the BIO and the offending pages and re-dirty the pages in process context.
928 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
929 * here on. It will run one page_cache_release() against each page and will
930 * run one bio_put() against the BIO.
933 static void bio_dirty_fn(void *data);
935 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
936 static DEFINE_SPINLOCK(bio_dirty_lock);
937 static struct bio *bio_dirty_list;
940 * This runs in process context
942 static void bio_dirty_fn(void *data)
944 unsigned long flags;
945 struct bio *bio;
947 spin_lock_irqsave(&bio_dirty_lock, flags);
948 bio = bio_dirty_list;
949 bio_dirty_list = NULL;
950 spin_unlock_irqrestore(&bio_dirty_lock, flags);
952 while (bio) {
953 struct bio *next = bio->bi_private;
955 bio_set_pages_dirty(bio);
956 bio_release_pages(bio);
957 bio_put(bio);
958 bio = next;
962 void bio_check_pages_dirty(struct bio *bio)
964 struct bio_vec *bvec = bio->bi_io_vec;
965 int nr_clean_pages = 0;
966 int i;
968 for (i = 0; i < bio->bi_vcnt; i++) {
969 struct page *page = bvec[i].bv_page;
971 if (PageDirty(page) || PageCompound(page)) {
972 page_cache_release(page);
973 bvec[i].bv_page = NULL;
974 } else {
975 nr_clean_pages++;
979 if (nr_clean_pages) {
980 unsigned long flags;
982 spin_lock_irqsave(&bio_dirty_lock, flags);
983 bio->bi_private = bio_dirty_list;
984 bio_dirty_list = bio;
985 spin_unlock_irqrestore(&bio_dirty_lock, flags);
986 schedule_work(&bio_dirty_work);
987 } else {
988 bio_put(bio);
993 * bio_endio - end I/O on a bio
994 * @bio: bio
995 * @bytes_done: number of bytes completed
996 * @error: error, if any
998 * Description:
999 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
1000 * just a partial part of the bio, or it may be the whole bio. bio_endio()
1001 * is the preferred way to end I/O on a bio, it takes care of decrementing
1002 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
1003 * and one of the established -Exxxx (-EIO, for instance) error values in
1004 * case something went wrong. Noone should call bi_end_io() directly on
1005 * a bio unless they own it and thus know that it has an end_io function.
1007 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
1009 if (error)
1010 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1012 if (unlikely(bytes_done > bio->bi_size)) {
1013 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
1014 bytes_done, bio->bi_size);
1015 bytes_done = bio->bi_size;
1018 bio->bi_size -= bytes_done;
1019 bio->bi_sector += (bytes_done >> 9);
1021 if (bio->bi_end_io)
1022 bio->bi_end_io(bio, bytes_done, error);
1025 void bio_pair_release(struct bio_pair *bp)
1027 if (atomic_dec_and_test(&bp->cnt)) {
1028 struct bio *master = bp->bio1.bi_private;
1030 bio_endio(master, master->bi_size, bp->error);
1031 mempool_free(bp, bp->bio2.bi_private);
1035 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
1037 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1039 if (err)
1040 bp->error = err;
1042 if (bi->bi_size)
1043 return 1;
1045 bio_pair_release(bp);
1046 return 0;
1049 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
1051 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1053 if (err)
1054 bp->error = err;
1056 if (bi->bi_size)
1057 return 1;
1059 bio_pair_release(bp);
1060 return 0;
1064 * split a bio - only worry about a bio with a single page
1065 * in it's iovec
1067 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1069 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1071 if (!bp)
1072 return bp;
1074 BUG_ON(bi->bi_vcnt != 1);
1075 BUG_ON(bi->bi_idx != 0);
1076 atomic_set(&bp->cnt, 3);
1077 bp->error = 0;
1078 bp->bio1 = *bi;
1079 bp->bio2 = *bi;
1080 bp->bio2.bi_sector += first_sectors;
1081 bp->bio2.bi_size -= first_sectors << 9;
1082 bp->bio1.bi_size = first_sectors << 9;
1084 bp->bv1 = bi->bi_io_vec[0];
1085 bp->bv2 = bi->bi_io_vec[0];
1086 bp->bv2.bv_offset += first_sectors << 9;
1087 bp->bv2.bv_len -= first_sectors << 9;
1088 bp->bv1.bv_len = first_sectors << 9;
1090 bp->bio1.bi_io_vec = &bp->bv1;
1091 bp->bio2.bi_io_vec = &bp->bv2;
1093 bp->bio1.bi_end_io = bio_pair_end_1;
1094 bp->bio2.bi_end_io = bio_pair_end_2;
1096 bp->bio1.bi_private = bi;
1097 bp->bio2.bi_private = pool;
1099 return bp;
1102 static void *bio_pair_alloc(gfp_t gfp_flags, void *data)
1104 return kmalloc(sizeof(struct bio_pair), gfp_flags);
1107 static void bio_pair_free(void *bp, void *data)
1109 kfree(bp);
1114 * create memory pools for biovec's in a bio_set.
1115 * use the global biovec slabs created for general use.
1117 static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
1119 int i;
1121 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1122 struct biovec_slab *bp = bvec_slabs + i;
1123 mempool_t **bvp = bs->bvec_pools + i;
1125 if (i >= scale)
1126 pool_entries >>= 1;
1128 *bvp = mempool_create(pool_entries, mempool_alloc_slab,
1129 mempool_free_slab, bp->slab);
1130 if (!*bvp)
1131 return -ENOMEM;
1133 return 0;
1136 static void biovec_free_pools(struct bio_set *bs)
1138 int i;
1140 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1141 mempool_t *bvp = bs->bvec_pools[i];
1143 if (bvp)
1144 mempool_destroy(bvp);
1149 void bioset_free(struct bio_set *bs)
1151 if (bs->bio_pool)
1152 mempool_destroy(bs->bio_pool);
1154 biovec_free_pools(bs);
1156 kfree(bs);
1159 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
1161 struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
1163 if (!bs)
1164 return NULL;
1166 memset(bs, 0, sizeof(*bs));
1167 bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
1168 mempool_free_slab, bio_slab);
1170 if (!bs->bio_pool)
1171 goto bad;
1173 if (!biovec_create_pools(bs, bvec_pool_size, scale))
1174 return bs;
1176 bad:
1177 bioset_free(bs);
1178 return NULL;
1181 static void __init biovec_init_slabs(void)
1183 int i;
1185 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1186 int size;
1187 struct biovec_slab *bvs = bvec_slabs + i;
1189 size = bvs->nr_vecs * sizeof(struct bio_vec);
1190 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1191 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1195 static int __init init_bio(void)
1197 int megabytes, bvec_pool_entries;
1198 int scale = BIOVEC_NR_POOLS;
1200 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
1201 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1203 biovec_init_slabs();
1205 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
1208 * find out where to start scaling
1210 if (megabytes <= 16)
1211 scale = 0;
1212 else if (megabytes <= 32)
1213 scale = 1;
1214 else if (megabytes <= 64)
1215 scale = 2;
1216 else if (megabytes <= 96)
1217 scale = 3;
1218 else if (megabytes <= 128)
1219 scale = 4;
1222 * scale number of entries
1224 bvec_pool_entries = megabytes * 2;
1225 if (bvec_pool_entries > 256)
1226 bvec_pool_entries = 256;
1228 fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
1229 if (!fs_bio_set)
1230 panic("bio: can't allocate bios\n");
1232 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
1233 bio_pair_alloc, bio_pair_free, NULL);
1234 if (!bio_split_pool)
1235 panic("bio: can't create split pool\n");
1237 return 0;
1240 subsys_initcall(init_bio);
1242 EXPORT_SYMBOL(bio_alloc);
1243 EXPORT_SYMBOL(bio_put);
1244 EXPORT_SYMBOL(bio_free);
1245 EXPORT_SYMBOL(bio_endio);
1246 EXPORT_SYMBOL(bio_init);
1247 EXPORT_SYMBOL(__bio_clone);
1248 EXPORT_SYMBOL(bio_clone);
1249 EXPORT_SYMBOL(bio_phys_segments);
1250 EXPORT_SYMBOL(bio_hw_segments);
1251 EXPORT_SYMBOL(bio_add_page);
1252 EXPORT_SYMBOL(bio_add_pc_page);
1253 EXPORT_SYMBOL(bio_get_nr_vecs);
1254 EXPORT_SYMBOL(bio_map_user);
1255 EXPORT_SYMBOL(bio_unmap_user);
1256 EXPORT_SYMBOL(bio_map_kern);
1257 EXPORT_SYMBOL(bio_pair_release);
1258 EXPORT_SYMBOL(bio_split);
1259 EXPORT_SYMBOL(bio_split_pool);
1260 EXPORT_SYMBOL(bio_copy_user);
1261 EXPORT_SYMBOL(bio_uncopy_user);
1262 EXPORT_SYMBOL(bioset_create);
1263 EXPORT_SYMBOL(bioset_free);
1264 EXPORT_SYMBOL(bio_alloc_bioset);