2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
19 * NTP timekeeping variables:
22 /* USER_HZ period (usecs): */
23 unsigned long tick_usec
= TICK_USEC
;
25 /* ACTHZ period (nsecs): */
26 unsigned long tick_nsec
;
29 static u64 tick_length_base
;
31 static struct hrtimer leap_timer
;
33 #define MAX_TICKADJ 500LL /* usecs */
34 #define MAX_TICKADJ_SCALED \
35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
38 * phase-lock loop variables
42 * clock synchronization status
44 * (TIME_ERROR prevents overwriting the CMOS clock)
46 static int time_state
= TIME_OK
;
48 /* clock status bits: */
49 int time_status
= STA_UNSYNC
;
51 /* TAI offset (secs): */
54 /* time adjustment (nsecs): */
55 static s64 time_offset
;
57 /* pll time constant: */
58 static long time_constant
= 2;
60 /* maximum error (usecs): */
61 long time_maxerror
= NTP_PHASE_LIMIT
;
63 /* estimated error (usecs): */
64 long time_esterror
= NTP_PHASE_LIMIT
;
66 /* frequency offset (scaled nsecs/secs): */
69 /* time at last adjustment (secs): */
70 static long time_reftime
;
74 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
75 static s64 ntp_tick_adj
;
82 * Update (tick_length, tick_length_base, tick_nsec), based
83 * on (tick_usec, ntp_tick_adj, time_freq):
85 static void ntp_update_frequency(void)
90 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
93 second_length
+= ntp_tick_adj
;
94 second_length
+= time_freq
;
96 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
97 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
100 * Don't wait for the next second_overflow, apply
101 * the change to the tick length immediately:
103 tick_length
+= new_base
- tick_length_base
;
104 tick_length_base
= new_base
;
107 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
109 time_status
&= ~STA_MODE
;
114 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
117 time_status
|= STA_MODE
;
119 return div_s64(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
122 static void ntp_update_offset(long offset
)
128 if (!(time_status
& STA_PLL
))
131 if (!(time_status
& STA_NANO
))
132 offset
*= NSEC_PER_USEC
;
135 * Scale the phase adjustment and
136 * clamp to the operating range.
138 offset
= min(offset
, MAXPHASE
);
139 offset
= max(offset
, -MAXPHASE
);
142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL).
145 secs
= xtime
.tv_sec
- time_reftime
;
146 if (unlikely(time_status
& STA_FREQHOLD
))
149 time_reftime
= xtime
.tv_sec
;
152 freq_adj
= (offset64
* secs
) <<
153 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
155 freq_adj
+= ntp_update_offset_fll(offset64
, secs
);
157 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
159 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
161 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
165 * ntp_clear - Clears the NTP state variables
167 * Must be called while holding a write on the xtime_lock
171 time_adjust
= 0; /* stop active adjtime() */
172 time_status
|= STA_UNSYNC
;
173 time_maxerror
= NTP_PHASE_LIMIT
;
174 time_esterror
= NTP_PHASE_LIMIT
;
176 ntp_update_frequency();
178 tick_length
= tick_length_base
;
183 * Leap second processing. If in leap-insert state at the end of the
184 * day, the system clock is set back one second; if in leap-delete
185 * state, the system clock is set ahead one second.
187 static enum hrtimer_restart
ntp_leap_second(struct hrtimer
*timer
)
189 enum hrtimer_restart res
= HRTIMER_NORESTART
;
191 write_seqlock(&xtime_lock
);
193 switch (time_state
) {
198 wall_to_monotonic
.tv_sec
++;
199 time_state
= TIME_OOP
;
201 "Clock: inserting leap second 23:59:60 UTC\n");
202 hrtimer_add_expires_ns(&leap_timer
, NSEC_PER_SEC
);
203 res
= HRTIMER_RESTART
;
208 wall_to_monotonic
.tv_sec
--;
209 time_state
= TIME_WAIT
;
211 "Clock: deleting leap second 23:59:59 UTC\n");
215 time_state
= TIME_WAIT
;
218 if (!(time_status
& (STA_INS
| STA_DEL
)))
219 time_state
= TIME_OK
;
222 update_vsyscall(&xtime
, clock
);
224 write_sequnlock(&xtime_lock
);
230 * this routine handles the overflow of the microsecond field
232 * The tricky bits of code to handle the accurate clock support
233 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
234 * They were originally developed for SUN and DEC kernels.
235 * All the kudos should go to Dave for this stuff.
237 void second_overflow(void)
241 /* Bump the maxerror field */
242 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
243 if (time_maxerror
> NTP_PHASE_LIMIT
) {
244 time_maxerror
= NTP_PHASE_LIMIT
;
245 time_status
|= STA_UNSYNC
;
249 * Compute the phase adjustment for the next second. The offset is
250 * reduced by a fixed factor times the time constant.
252 tick_length
= tick_length_base
;
254 delta
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
255 time_offset
-= delta
;
256 tick_length
+= delta
;
261 if (time_adjust
> MAX_TICKADJ
) {
262 time_adjust
-= MAX_TICKADJ
;
263 tick_length
+= MAX_TICKADJ_SCALED
;
267 if (time_adjust
< -MAX_TICKADJ
) {
268 time_adjust
+= MAX_TICKADJ
;
269 tick_length
-= MAX_TICKADJ_SCALED
;
273 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
278 #ifdef CONFIG_GENERIC_CMOS_UPDATE
280 /* Disable the cmos update - used by virtualization and embedded */
281 int no_sync_cmos_clock __read_mostly
;
283 static void sync_cmos_clock(struct work_struct
*work
);
285 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
287 static void sync_cmos_clock(struct work_struct
*work
)
289 struct timespec now
, next
;
293 * If we have an externally synchronized Linux clock, then update
294 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
295 * called as close as possible to 500 ms before the new second starts.
296 * This code is run on a timer. If the clock is set, that timer
297 * may not expire at the correct time. Thus, we adjust...
301 * Not synced, exit, do not restart a timer (if one is
302 * running, let it run out).
307 getnstimeofday(&now
);
308 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
309 fail
= update_persistent_clock(now
);
311 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
312 if (next
.tv_nsec
<= 0)
313 next
.tv_nsec
+= NSEC_PER_SEC
;
320 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
322 next
.tv_nsec
-= NSEC_PER_SEC
;
324 schedule_delayed_work(&sync_cmos_work
, timespec_to_jiffies(&next
));
327 static void notify_cmos_timer(void)
329 if (!no_sync_cmos_clock
)
330 schedule_delayed_work(&sync_cmos_work
, 0);
334 static inline void notify_cmos_timer(void) { }
338 * Start the leap seconds timer:
340 static inline void ntp_start_leap_timer(struct timespec
*ts
)
342 long now
= ts
->tv_sec
;
344 if (time_status
& STA_INS
) {
345 time_state
= TIME_INS
;
346 now
+= 86400 - now
% 86400;
347 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
352 if (time_status
& STA_DEL
) {
353 time_state
= TIME_DEL
;
354 now
+= 86400 - (now
+ 1) % 86400;
355 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
360 * Propagate a new txc->status value into the NTP state:
362 static inline void process_adj_status(struct timex
*txc
, struct timespec
*ts
)
364 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
365 time_state
= TIME_OK
;
366 time_status
= STA_UNSYNC
;
370 * If we turn on PLL adjustments then reset the
371 * reference time to current time.
373 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
374 time_reftime
= xtime
.tv_sec
;
376 /* only set allowed bits */
377 time_status
&= STA_RONLY
;
378 time_status
|= txc
->status
& ~STA_RONLY
;
380 switch (time_state
) {
382 ntp_start_leap_timer(ts
);
386 time_state
= TIME_OK
;
387 ntp_start_leap_timer(ts
);
389 if (!(time_status
& (STA_INS
| STA_DEL
)))
390 time_state
= TIME_OK
;
393 hrtimer_restart(&leap_timer
);
398 * Called with the xtime lock held, so we can access and modify
399 * all the global NTP state:
401 static inline void process_adjtimex_modes(struct timex
*txc
, struct timespec
*ts
)
403 if (txc
->modes
& ADJ_STATUS
)
404 process_adj_status(txc
, ts
);
406 if (txc
->modes
& ADJ_NANO
)
407 time_status
|= STA_NANO
;
409 if (txc
->modes
& ADJ_MICRO
)
410 time_status
&= ~STA_NANO
;
412 if (txc
->modes
& ADJ_FREQUENCY
) {
413 time_freq
= txc
->freq
* PPM_SCALE
;
414 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
415 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
418 if (txc
->modes
& ADJ_MAXERROR
)
419 time_maxerror
= txc
->maxerror
;
421 if (txc
->modes
& ADJ_ESTERROR
)
422 time_esterror
= txc
->esterror
;
424 if (txc
->modes
& ADJ_TIMECONST
) {
425 time_constant
= txc
->constant
;
426 if (!(time_status
& STA_NANO
))
428 time_constant
= min(time_constant
, (long)MAXTC
);
429 time_constant
= max(time_constant
, 0l);
432 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
433 time_tai
= txc
->constant
;
435 if (txc
->modes
& ADJ_OFFSET
)
436 ntp_update_offset(txc
->offset
);
438 if (txc
->modes
& ADJ_TICK
)
439 tick_usec
= txc
->tick
;
441 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
442 ntp_update_frequency();
446 * adjtimex mainly allows reading (and writing, if superuser) of
447 * kernel time-keeping variables. used by xntpd.
449 int do_adjtimex(struct timex
*txc
)
454 /* Validate the data before disabling interrupts */
455 if (txc
->modes
& ADJ_ADJTIME
) {
456 /* singleshot must not be used with any other mode bits */
457 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
459 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
460 !capable(CAP_SYS_TIME
))
463 /* In order to modify anything, you gotta be super-user! */
464 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
468 * if the quartz is off by more than 10% then
469 * something is VERY wrong!
471 if (txc
->modes
& ADJ_TICK
&&
472 (txc
->tick
< 900000/USER_HZ
||
473 txc
->tick
> 1100000/USER_HZ
))
476 if (txc
->modes
& ADJ_STATUS
&& time_state
!= TIME_OK
)
477 hrtimer_cancel(&leap_timer
);
482 write_seqlock_irq(&xtime_lock
);
484 if (txc
->modes
& ADJ_ADJTIME
) {
485 long save_adjust
= time_adjust
;
487 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
488 /* adjtime() is independent from ntp_adjtime() */
489 time_adjust
= txc
->offset
;
490 ntp_update_frequency();
492 txc
->offset
= save_adjust
;
495 /* If there are input parameters, then process them: */
497 process_adjtimex_modes(txc
, &ts
);
499 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
501 if (!(time_status
& STA_NANO
))
502 txc
->offset
/= NSEC_PER_USEC
;
505 result
= time_state
; /* mostly `TIME_OK' */
506 if (time_status
& (STA_UNSYNC
|STA_CLOCKERR
))
509 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
510 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
511 txc
->maxerror
= time_maxerror
;
512 txc
->esterror
= time_esterror
;
513 txc
->status
= time_status
;
514 txc
->constant
= time_constant
;
516 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
517 txc
->tick
= tick_usec
;
520 /* PPS is not implemented, so these are zero */
530 write_sequnlock_irq(&xtime_lock
);
532 txc
->time
.tv_sec
= ts
.tv_sec
;
533 txc
->time
.tv_usec
= ts
.tv_nsec
;
534 if (!(time_status
& STA_NANO
))
535 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
542 static int __init
ntp_tick_adj_setup(char *str
)
544 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
545 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
550 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
552 void __init
ntp_init(void)
555 hrtimer_init(&leap_timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
556 leap_timer
.function
= ntp_leap_second
;