tiocmset: kill the file pointer argument
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / tty / tty_io.c
blob83af24ca1e5e2ff683e757707a15955f8a19f436
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
101 #include <linux/uaccess.h>
102 #include <asm/system.h>
104 #include <linux/kbd_kern.h>
105 #include <linux/vt_kern.h>
106 #include <linux/selection.h>
108 #include <linux/kmod.h>
109 #include <linux/nsproxy.h>
111 #undef TTY_DEBUG_HANGUP
113 #define TTY_PARANOIA_CHECK 1
114 #define CHECK_TTY_COUNT 1
116 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
117 .c_iflag = ICRNL | IXON,
118 .c_oflag = OPOST | ONLCR,
119 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
120 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
121 ECHOCTL | ECHOKE | IEXTEN,
122 .c_cc = INIT_C_CC,
123 .c_ispeed = 38400,
124 .c_ospeed = 38400
127 EXPORT_SYMBOL(tty_std_termios);
129 /* This list gets poked at by procfs and various bits of boot up code. This
130 could do with some rationalisation such as pulling the tty proc function
131 into this file */
133 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
135 /* Mutex to protect creating and releasing a tty. This is shared with
136 vt.c for deeply disgusting hack reasons */
137 DEFINE_MUTEX(tty_mutex);
138 EXPORT_SYMBOL(tty_mutex);
140 /* Spinlock to protect the tty->tty_files list */
141 DEFINE_SPINLOCK(tty_files_lock);
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 * alloc_tty_struct - allocate a tty object
165 * Return a new empty tty structure. The data fields have not
166 * been initialized in any way but has been zeroed
168 * Locking: none
171 struct tty_struct *alloc_tty_struct(void)
173 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 * free_tty_struct - free a disused tty
178 * @tty: tty struct to free
180 * Free the write buffers, tty queue and tty memory itself.
182 * Locking: none. Must be called after tty is definitely unused
185 void free_tty_struct(struct tty_struct *tty)
187 if (tty->dev)
188 put_device(tty->dev);
189 kfree(tty->write_buf);
190 tty_buffer_free_all(tty);
191 kfree(tty);
194 static inline struct tty_struct *file_tty(struct file *file)
196 return ((struct tty_file_private *)file->private_data)->tty;
199 /* Associate a new file with the tty structure */
200 int tty_add_file(struct tty_struct *tty, struct file *file)
202 struct tty_file_private *priv;
204 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
205 if (!priv)
206 return -ENOMEM;
208 priv->tty = tty;
209 priv->file = file;
210 file->private_data = priv;
212 spin_lock(&tty_files_lock);
213 list_add(&priv->list, &tty->tty_files);
214 spin_unlock(&tty_files_lock);
216 return 0;
219 /* Delete file from its tty */
220 void tty_del_file(struct file *file)
222 struct tty_file_private *priv = file->private_data;
224 spin_lock(&tty_files_lock);
225 list_del(&priv->list);
226 spin_unlock(&tty_files_lock);
227 file->private_data = NULL;
228 kfree(priv);
232 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235 * tty_name - return tty naming
236 * @tty: tty structure
237 * @buf: buffer for output
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
242 * Locking: none
245 char *tty_name(struct tty_struct *tty, char *buf)
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 strcpy(buf, "NULL tty");
249 else
250 strcpy(buf, tty->name);
251 return buf;
254 EXPORT_SYMBOL(tty_name);
256 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
257 const char *routine)
259 #ifdef TTY_PARANOIA_CHECK
260 if (!tty) {
261 printk(KERN_WARNING
262 "null TTY for (%d:%d) in %s\n",
263 imajor(inode), iminor(inode), routine);
264 return 1;
266 if (tty->magic != TTY_MAGIC) {
267 printk(KERN_WARNING
268 "bad magic number for tty struct (%d:%d) in %s\n",
269 imajor(inode), iminor(inode), routine);
270 return 1;
272 #endif
273 return 0;
276 static int check_tty_count(struct tty_struct *tty, const char *routine)
278 #ifdef CHECK_TTY_COUNT
279 struct list_head *p;
280 int count = 0;
282 spin_lock(&tty_files_lock);
283 list_for_each(p, &tty->tty_files) {
284 count++;
286 spin_unlock(&tty_files_lock);
287 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
288 tty->driver->subtype == PTY_TYPE_SLAVE &&
289 tty->link && tty->link->count)
290 count++;
291 if (tty->count != count) {
292 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
293 "!= #fd's(%d) in %s\n",
294 tty->name, tty->count, count, routine);
295 return count;
297 #endif
298 return 0;
302 * get_tty_driver - find device of a tty
303 * @dev_t: device identifier
304 * @index: returns the index of the tty
306 * This routine returns a tty driver structure, given a device number
307 * and also passes back the index number.
309 * Locking: caller must hold tty_mutex
312 static struct tty_driver *get_tty_driver(dev_t device, int *index)
314 struct tty_driver *p;
316 list_for_each_entry(p, &tty_drivers, tty_drivers) {
317 dev_t base = MKDEV(p->major, p->minor_start);
318 if (device < base || device >= base + p->num)
319 continue;
320 *index = device - base;
321 return tty_driver_kref_get(p);
323 return NULL;
326 #ifdef CONFIG_CONSOLE_POLL
329 * tty_find_polling_driver - find device of a polled tty
330 * @name: name string to match
331 * @line: pointer to resulting tty line nr
333 * This routine returns a tty driver structure, given a name
334 * and the condition that the tty driver is capable of polled
335 * operation.
337 struct tty_driver *tty_find_polling_driver(char *name, int *line)
339 struct tty_driver *p, *res = NULL;
340 int tty_line = 0;
341 int len;
342 char *str, *stp;
344 for (str = name; *str; str++)
345 if ((*str >= '0' && *str <= '9') || *str == ',')
346 break;
347 if (!*str)
348 return NULL;
350 len = str - name;
351 tty_line = simple_strtoul(str, &str, 10);
353 mutex_lock(&tty_mutex);
354 /* Search through the tty devices to look for a match */
355 list_for_each_entry(p, &tty_drivers, tty_drivers) {
356 if (strncmp(name, p->name, len) != 0)
357 continue;
358 stp = str;
359 if (*stp == ',')
360 stp++;
361 if (*stp == '\0')
362 stp = NULL;
364 if (tty_line >= 0 && tty_line < p->num && p->ops &&
365 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
366 res = tty_driver_kref_get(p);
367 *line = tty_line;
368 break;
371 mutex_unlock(&tty_mutex);
373 return res;
375 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
376 #endif
379 * tty_check_change - check for POSIX terminal changes
380 * @tty: tty to check
382 * If we try to write to, or set the state of, a terminal and we're
383 * not in the foreground, send a SIGTTOU. If the signal is blocked or
384 * ignored, go ahead and perform the operation. (POSIX 7.2)
386 * Locking: ctrl_lock
389 int tty_check_change(struct tty_struct *tty)
391 unsigned long flags;
392 int ret = 0;
394 if (current->signal->tty != tty)
395 return 0;
397 spin_lock_irqsave(&tty->ctrl_lock, flags);
399 if (!tty->pgrp) {
400 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
401 goto out_unlock;
403 if (task_pgrp(current) == tty->pgrp)
404 goto out_unlock;
405 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
406 if (is_ignored(SIGTTOU))
407 goto out;
408 if (is_current_pgrp_orphaned()) {
409 ret = -EIO;
410 goto out;
412 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
413 set_thread_flag(TIF_SIGPENDING);
414 ret = -ERESTARTSYS;
415 out:
416 return ret;
417 out_unlock:
418 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
419 return ret;
422 EXPORT_SYMBOL(tty_check_change);
424 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
425 size_t count, loff_t *ppos)
427 return 0;
430 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
431 size_t count, loff_t *ppos)
433 return -EIO;
436 /* No kernel lock held - none needed ;) */
437 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
439 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
443 unsigned long arg)
445 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 static long hung_up_tty_compat_ioctl(struct file *file,
449 unsigned int cmd, unsigned long arg)
451 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 static const struct file_operations tty_fops = {
455 .llseek = no_llseek,
456 .read = tty_read,
457 .write = tty_write,
458 .poll = tty_poll,
459 .unlocked_ioctl = tty_ioctl,
460 .compat_ioctl = tty_compat_ioctl,
461 .open = tty_open,
462 .release = tty_release,
463 .fasync = tty_fasync,
466 static const struct file_operations console_fops = {
467 .llseek = no_llseek,
468 .read = tty_read,
469 .write = redirected_tty_write,
470 .poll = tty_poll,
471 .unlocked_ioctl = tty_ioctl,
472 .compat_ioctl = tty_compat_ioctl,
473 .open = tty_open,
474 .release = tty_release,
475 .fasync = tty_fasync,
478 static const struct file_operations hung_up_tty_fops = {
479 .llseek = no_llseek,
480 .read = hung_up_tty_read,
481 .write = hung_up_tty_write,
482 .poll = hung_up_tty_poll,
483 .unlocked_ioctl = hung_up_tty_ioctl,
484 .compat_ioctl = hung_up_tty_compat_ioctl,
485 .release = tty_release,
488 static DEFINE_SPINLOCK(redirect_lock);
489 static struct file *redirect;
492 * tty_wakeup - request more data
493 * @tty: terminal
495 * Internal and external helper for wakeups of tty. This function
496 * informs the line discipline if present that the driver is ready
497 * to receive more output data.
500 void tty_wakeup(struct tty_struct *tty)
502 struct tty_ldisc *ld;
504 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
505 ld = tty_ldisc_ref(tty);
506 if (ld) {
507 if (ld->ops->write_wakeup)
508 ld->ops->write_wakeup(tty);
509 tty_ldisc_deref(ld);
512 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
515 EXPORT_SYMBOL_GPL(tty_wakeup);
518 * __tty_hangup - actual handler for hangup events
519 * @work: tty device
521 * This can be called by the "eventd" kernel thread. That is process
522 * synchronous but doesn't hold any locks, so we need to make sure we
523 * have the appropriate locks for what we're doing.
525 * The hangup event clears any pending redirections onto the hung up
526 * device. It ensures future writes will error and it does the needed
527 * line discipline hangup and signal delivery. The tty object itself
528 * remains intact.
530 * Locking:
531 * BTM
532 * redirect lock for undoing redirection
533 * file list lock for manipulating list of ttys
534 * tty_ldisc_lock from called functions
535 * termios_mutex resetting termios data
536 * tasklist_lock to walk task list for hangup event
537 * ->siglock to protect ->signal/->sighand
539 void __tty_hangup(struct tty_struct *tty)
541 struct file *cons_filp = NULL;
542 struct file *filp, *f = NULL;
543 struct task_struct *p;
544 struct tty_file_private *priv;
545 int closecount = 0, n;
546 unsigned long flags;
547 int refs = 0;
549 if (!tty)
550 return;
553 spin_lock(&redirect_lock);
554 if (redirect && file_tty(redirect) == tty) {
555 f = redirect;
556 redirect = NULL;
558 spin_unlock(&redirect_lock);
560 tty_lock();
562 /* some functions below drop BTM, so we need this bit */
563 set_bit(TTY_HUPPING, &tty->flags);
565 /* inuse_filps is protected by the single tty lock,
566 this really needs to change if we want to flush the
567 workqueue with the lock held */
568 check_tty_count(tty, "tty_hangup");
570 spin_lock(&tty_files_lock);
571 /* This breaks for file handles being sent over AF_UNIX sockets ? */
572 list_for_each_entry(priv, &tty->tty_files, list) {
573 filp = priv->file;
574 if (filp->f_op->write == redirected_tty_write)
575 cons_filp = filp;
576 if (filp->f_op->write != tty_write)
577 continue;
578 closecount++;
579 __tty_fasync(-1, filp, 0); /* can't block */
580 filp->f_op = &hung_up_tty_fops;
582 spin_unlock(&tty_files_lock);
585 * it drops BTM and thus races with reopen
586 * we protect the race by TTY_HUPPING
588 tty_ldisc_hangup(tty);
590 read_lock(&tasklist_lock);
591 if (tty->session) {
592 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
593 spin_lock_irq(&p->sighand->siglock);
594 if (p->signal->tty == tty) {
595 p->signal->tty = NULL;
596 /* We defer the dereferences outside fo
597 the tasklist lock */
598 refs++;
600 if (!p->signal->leader) {
601 spin_unlock_irq(&p->sighand->siglock);
602 continue;
604 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
605 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
606 put_pid(p->signal->tty_old_pgrp); /* A noop */
607 spin_lock_irqsave(&tty->ctrl_lock, flags);
608 if (tty->pgrp)
609 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
610 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
611 spin_unlock_irq(&p->sighand->siglock);
612 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
614 read_unlock(&tasklist_lock);
616 spin_lock_irqsave(&tty->ctrl_lock, flags);
617 clear_bit(TTY_THROTTLED, &tty->flags);
618 clear_bit(TTY_PUSH, &tty->flags);
619 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
620 put_pid(tty->session);
621 put_pid(tty->pgrp);
622 tty->session = NULL;
623 tty->pgrp = NULL;
624 tty->ctrl_status = 0;
625 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 /* Account for the p->signal references we killed */
628 while (refs--)
629 tty_kref_put(tty);
632 * If one of the devices matches a console pointer, we
633 * cannot just call hangup() because that will cause
634 * tty->count and state->count to go out of sync.
635 * So we just call close() the right number of times.
637 if (cons_filp) {
638 if (tty->ops->close)
639 for (n = 0; n < closecount; n++)
640 tty->ops->close(tty, cons_filp);
641 } else if (tty->ops->hangup)
642 (tty->ops->hangup)(tty);
644 * We don't want to have driver/ldisc interactions beyond
645 * the ones we did here. The driver layer expects no
646 * calls after ->hangup() from the ldisc side. However we
647 * can't yet guarantee all that.
649 set_bit(TTY_HUPPED, &tty->flags);
650 clear_bit(TTY_HUPPING, &tty->flags);
651 tty_ldisc_enable(tty);
653 tty_unlock();
655 if (f)
656 fput(f);
659 static void do_tty_hangup(struct work_struct *work)
661 struct tty_struct *tty =
662 container_of(work, struct tty_struct, hangup_work);
664 __tty_hangup(tty);
668 * tty_hangup - trigger a hangup event
669 * @tty: tty to hangup
671 * A carrier loss (virtual or otherwise) has occurred on this like
672 * schedule a hangup sequence to run after this event.
675 void tty_hangup(struct tty_struct *tty)
677 #ifdef TTY_DEBUG_HANGUP
678 char buf[64];
679 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
680 #endif
681 schedule_work(&tty->hangup_work);
684 EXPORT_SYMBOL(tty_hangup);
687 * tty_vhangup - process vhangup
688 * @tty: tty to hangup
690 * The user has asked via system call for the terminal to be hung up.
691 * We do this synchronously so that when the syscall returns the process
692 * is complete. That guarantee is necessary for security reasons.
695 void tty_vhangup(struct tty_struct *tty)
697 #ifdef TTY_DEBUG_HANGUP
698 char buf[64];
700 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
701 #endif
702 __tty_hangup(tty);
705 EXPORT_SYMBOL(tty_vhangup);
709 * tty_vhangup_self - process vhangup for own ctty
711 * Perform a vhangup on the current controlling tty
714 void tty_vhangup_self(void)
716 struct tty_struct *tty;
718 tty = get_current_tty();
719 if (tty) {
720 tty_vhangup(tty);
721 tty_kref_put(tty);
726 * tty_hung_up_p - was tty hung up
727 * @filp: file pointer of tty
729 * Return true if the tty has been subject to a vhangup or a carrier
730 * loss
733 int tty_hung_up_p(struct file *filp)
735 return (filp->f_op == &hung_up_tty_fops);
738 EXPORT_SYMBOL(tty_hung_up_p);
740 static void session_clear_tty(struct pid *session)
742 struct task_struct *p;
743 do_each_pid_task(session, PIDTYPE_SID, p) {
744 proc_clear_tty(p);
745 } while_each_pid_task(session, PIDTYPE_SID, p);
749 * disassociate_ctty - disconnect controlling tty
750 * @on_exit: true if exiting so need to "hang up" the session
752 * This function is typically called only by the session leader, when
753 * it wants to disassociate itself from its controlling tty.
755 * It performs the following functions:
756 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
757 * (2) Clears the tty from being controlling the session
758 * (3) Clears the controlling tty for all processes in the
759 * session group.
761 * The argument on_exit is set to 1 if called when a process is
762 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
764 * Locking:
765 * BTM is taken for hysterical raisins, and held when
766 * called from no_tty().
767 * tty_mutex is taken to protect tty
768 * ->siglock is taken to protect ->signal/->sighand
769 * tasklist_lock is taken to walk process list for sessions
770 * ->siglock is taken to protect ->signal/->sighand
773 void disassociate_ctty(int on_exit)
775 struct tty_struct *tty;
776 struct pid *tty_pgrp = NULL;
778 if (!current->signal->leader)
779 return;
781 tty = get_current_tty();
782 if (tty) {
783 tty_pgrp = get_pid(tty->pgrp);
784 if (on_exit) {
785 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
786 tty_vhangup(tty);
788 tty_kref_put(tty);
789 } else if (on_exit) {
790 struct pid *old_pgrp;
791 spin_lock_irq(&current->sighand->siglock);
792 old_pgrp = current->signal->tty_old_pgrp;
793 current->signal->tty_old_pgrp = NULL;
794 spin_unlock_irq(&current->sighand->siglock);
795 if (old_pgrp) {
796 kill_pgrp(old_pgrp, SIGHUP, on_exit);
797 kill_pgrp(old_pgrp, SIGCONT, on_exit);
798 put_pid(old_pgrp);
800 return;
802 if (tty_pgrp) {
803 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804 if (!on_exit)
805 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806 put_pid(tty_pgrp);
809 spin_lock_irq(&current->sighand->siglock);
810 put_pid(current->signal->tty_old_pgrp);
811 current->signal->tty_old_pgrp = NULL;
812 spin_unlock_irq(&current->sighand->siglock);
814 tty = get_current_tty();
815 if (tty) {
816 unsigned long flags;
817 spin_lock_irqsave(&tty->ctrl_lock, flags);
818 put_pid(tty->session);
819 put_pid(tty->pgrp);
820 tty->session = NULL;
821 tty->pgrp = NULL;
822 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823 tty_kref_put(tty);
824 } else {
825 #ifdef TTY_DEBUG_HANGUP
826 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827 " = NULL", tty);
828 #endif
831 /* Now clear signal->tty under the lock */
832 read_lock(&tasklist_lock);
833 session_clear_tty(task_session(current));
834 read_unlock(&tasklist_lock);
839 * no_tty - Ensure the current process does not have a controlling tty
841 void no_tty(void)
843 struct task_struct *tsk = current;
844 tty_lock();
845 disassociate_ctty(0);
846 tty_unlock();
847 proc_clear_tty(tsk);
852 * stop_tty - propagate flow control
853 * @tty: tty to stop
855 * Perform flow control to the driver. For PTY/TTY pairs we
856 * must also propagate the TIOCKPKT status. May be called
857 * on an already stopped device and will not re-call the driver
858 * method.
860 * This functionality is used by both the line disciplines for
861 * halting incoming flow and by the driver. It may therefore be
862 * called from any context, may be under the tty atomic_write_lock
863 * but not always.
865 * Locking:
866 * Uses the tty control lock internally
869 void stop_tty(struct tty_struct *tty)
871 unsigned long flags;
872 spin_lock_irqsave(&tty->ctrl_lock, flags);
873 if (tty->stopped) {
874 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
875 return;
877 tty->stopped = 1;
878 if (tty->link && tty->link->packet) {
879 tty->ctrl_status &= ~TIOCPKT_START;
880 tty->ctrl_status |= TIOCPKT_STOP;
881 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
883 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
884 if (tty->ops->stop)
885 (tty->ops->stop)(tty);
888 EXPORT_SYMBOL(stop_tty);
891 * start_tty - propagate flow control
892 * @tty: tty to start
894 * Start a tty that has been stopped if at all possible. Perform
895 * any necessary wakeups and propagate the TIOCPKT status. If this
896 * is the tty was previous stopped and is being started then the
897 * driver start method is invoked and the line discipline woken.
899 * Locking:
900 * ctrl_lock
903 void start_tty(struct tty_struct *tty)
905 unsigned long flags;
906 spin_lock_irqsave(&tty->ctrl_lock, flags);
907 if (!tty->stopped || tty->flow_stopped) {
908 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
909 return;
911 tty->stopped = 0;
912 if (tty->link && tty->link->packet) {
913 tty->ctrl_status &= ~TIOCPKT_STOP;
914 tty->ctrl_status |= TIOCPKT_START;
915 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
917 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
918 if (tty->ops->start)
919 (tty->ops->start)(tty);
920 /* If we have a running line discipline it may need kicking */
921 tty_wakeup(tty);
924 EXPORT_SYMBOL(start_tty);
927 * tty_read - read method for tty device files
928 * @file: pointer to tty file
929 * @buf: user buffer
930 * @count: size of user buffer
931 * @ppos: unused
933 * Perform the read system call function on this terminal device. Checks
934 * for hung up devices before calling the line discipline method.
936 * Locking:
937 * Locks the line discipline internally while needed. Multiple
938 * read calls may be outstanding in parallel.
941 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
942 loff_t *ppos)
944 int i;
945 struct inode *inode = file->f_path.dentry->d_inode;
946 struct tty_struct *tty = file_tty(file);
947 struct tty_ldisc *ld;
949 if (tty_paranoia_check(tty, inode, "tty_read"))
950 return -EIO;
951 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
952 return -EIO;
954 /* We want to wait for the line discipline to sort out in this
955 situation */
956 ld = tty_ldisc_ref_wait(tty);
957 if (ld->ops->read)
958 i = (ld->ops->read)(tty, file, buf, count);
959 else
960 i = -EIO;
961 tty_ldisc_deref(ld);
962 if (i > 0)
963 inode->i_atime = current_fs_time(inode->i_sb);
964 return i;
967 void tty_write_unlock(struct tty_struct *tty)
969 mutex_unlock(&tty->atomic_write_lock);
970 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
973 int tty_write_lock(struct tty_struct *tty, int ndelay)
975 if (!mutex_trylock(&tty->atomic_write_lock)) {
976 if (ndelay)
977 return -EAGAIN;
978 if (mutex_lock_interruptible(&tty->atomic_write_lock))
979 return -ERESTARTSYS;
981 return 0;
985 * Split writes up in sane blocksizes to avoid
986 * denial-of-service type attacks
988 static inline ssize_t do_tty_write(
989 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990 struct tty_struct *tty,
991 struct file *file,
992 const char __user *buf,
993 size_t count)
995 ssize_t ret, written = 0;
996 unsigned int chunk;
998 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999 if (ret < 0)
1000 return ret;
1003 * We chunk up writes into a temporary buffer. This
1004 * simplifies low-level drivers immensely, since they
1005 * don't have locking issues and user mode accesses.
1007 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008 * big chunk-size..
1010 * The default chunk-size is 2kB, because the NTTY
1011 * layer has problems with bigger chunks. It will
1012 * claim to be able to handle more characters than
1013 * it actually does.
1015 * FIXME: This can probably go away now except that 64K chunks
1016 * are too likely to fail unless switched to vmalloc...
1018 chunk = 2048;
1019 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020 chunk = 65536;
1021 if (count < chunk)
1022 chunk = count;
1024 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025 if (tty->write_cnt < chunk) {
1026 unsigned char *buf_chunk;
1028 if (chunk < 1024)
1029 chunk = 1024;
1031 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032 if (!buf_chunk) {
1033 ret = -ENOMEM;
1034 goto out;
1036 kfree(tty->write_buf);
1037 tty->write_cnt = chunk;
1038 tty->write_buf = buf_chunk;
1041 /* Do the write .. */
1042 for (;;) {
1043 size_t size = count;
1044 if (size > chunk)
1045 size = chunk;
1046 ret = -EFAULT;
1047 if (copy_from_user(tty->write_buf, buf, size))
1048 break;
1049 ret = write(tty, file, tty->write_buf, size);
1050 if (ret <= 0)
1051 break;
1052 written += ret;
1053 buf += ret;
1054 count -= ret;
1055 if (!count)
1056 break;
1057 ret = -ERESTARTSYS;
1058 if (signal_pending(current))
1059 break;
1060 cond_resched();
1062 if (written) {
1063 struct inode *inode = file->f_path.dentry->d_inode;
1064 inode->i_mtime = current_fs_time(inode->i_sb);
1065 ret = written;
1067 out:
1068 tty_write_unlock(tty);
1069 return ret;
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1086 if (tty) {
1087 mutex_lock(&tty->atomic_write_lock);
1088 tty_lock();
1089 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090 tty_unlock();
1091 tty->ops->write(tty, msg, strlen(msg));
1092 } else
1093 tty_unlock();
1094 tty_write_unlock(tty);
1096 return;
1101 * tty_write - write method for tty device file
1102 * @file: tty file pointer
1103 * @buf: user data to write
1104 * @count: bytes to write
1105 * @ppos: unused
1107 * Write data to a tty device via the line discipline.
1109 * Locking:
1110 * Locks the line discipline as required
1111 * Writes to the tty driver are serialized by the atomic_write_lock
1112 * and are then processed in chunks to the device. The line discipline
1113 * write method will not be invoked in parallel for each device.
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117 size_t count, loff_t *ppos)
1119 struct inode *inode = file->f_path.dentry->d_inode;
1120 struct tty_struct *tty = file_tty(file);
1121 struct tty_ldisc *ld;
1122 ssize_t ret;
1124 if (tty_paranoia_check(tty, inode, "tty_write"))
1125 return -EIO;
1126 if (!tty || !tty->ops->write ||
1127 (test_bit(TTY_IO_ERROR, &tty->flags)))
1128 return -EIO;
1129 /* Short term debug to catch buggy drivers */
1130 if (tty->ops->write_room == NULL)
1131 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132 tty->driver->name);
1133 ld = tty_ldisc_ref_wait(tty);
1134 if (!ld->ops->write)
1135 ret = -EIO;
1136 else
1137 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138 tty_ldisc_deref(ld);
1139 return ret;
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143 size_t count, loff_t *ppos)
1145 struct file *p = NULL;
1147 spin_lock(&redirect_lock);
1148 if (redirect) {
1149 get_file(redirect);
1150 p = redirect;
1152 spin_unlock(&redirect_lock);
1154 if (p) {
1155 ssize_t res;
1156 res = vfs_write(p, buf, count, &p->f_pos);
1157 fput(p);
1158 return res;
1160 return tty_write(file, buf, count, ppos);
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1166 * pty_line_name - generate name for a pty
1167 * @driver: the tty driver in use
1168 * @index: the minor number
1169 * @p: output buffer of at least 6 bytes
1171 * Generate a name from a driver reference and write it to the output
1172 * buffer.
1174 * Locking: None
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1178 int i = index + driver->name_base;
1179 /* ->name is initialized to "ttyp", but "tty" is expected */
1180 sprintf(p, "%s%c%x",
1181 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182 ptychar[i >> 4 & 0xf], i & 0xf);
1186 * tty_line_name - generate name for a tty
1187 * @driver: the tty driver in use
1188 * @index: the minor number
1189 * @p: output buffer of at least 7 bytes
1191 * Generate a name from a driver reference and write it to the output
1192 * buffer.
1194 * Locking: None
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1198 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1202 * tty_driver_lookup_tty() - find an existing tty, if any
1203 * @driver: the driver for the tty
1204 * @idx: the minor number
1206 * Return the tty, if found or ERR_PTR() otherwise.
1208 * Locking: tty_mutex must be held. If tty is found, the mutex must
1209 * be held until the 'fast-open' is also done. Will change once we
1210 * have refcounting in the driver and per driver locking
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213 struct inode *inode, int idx)
1215 struct tty_struct *tty;
1217 if (driver->ops->lookup)
1218 return driver->ops->lookup(driver, inode, idx);
1220 tty = driver->ttys[idx];
1221 return tty;
1225 * tty_init_termios - helper for termios setup
1226 * @tty: the tty to set up
1228 * Initialise the termios structures for this tty. Thus runs under
1229 * the tty_mutex currently so we can be relaxed about ordering.
1232 int tty_init_termios(struct tty_struct *tty)
1234 struct ktermios *tp;
1235 int idx = tty->index;
1237 tp = tty->driver->termios[idx];
1238 if (tp == NULL) {
1239 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240 if (tp == NULL)
1241 return -ENOMEM;
1242 memcpy(tp, &tty->driver->init_termios,
1243 sizeof(struct ktermios));
1244 tty->driver->termios[idx] = tp;
1246 tty->termios = tp;
1247 tty->termios_locked = tp + 1;
1249 /* Compatibility until drivers always set this */
1250 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252 return 0;
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1257 * tty_driver_install_tty() - install a tty entry in the driver
1258 * @driver: the driver for the tty
1259 * @tty: the tty
1261 * Install a tty object into the driver tables. The tty->index field
1262 * will be set by the time this is called. This method is responsible
1263 * for ensuring any need additional structures are allocated and
1264 * configured.
1266 * Locking: tty_mutex for now
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269 struct tty_struct *tty)
1271 int idx = tty->index;
1272 int ret;
1274 if (driver->ops->install) {
1275 ret = driver->ops->install(driver, tty);
1276 return ret;
1279 if (tty_init_termios(tty) == 0) {
1280 tty_driver_kref_get(driver);
1281 tty->count++;
1282 driver->ttys[idx] = tty;
1283 return 0;
1285 return -ENOMEM;
1289 * tty_driver_remove_tty() - remove a tty from the driver tables
1290 * @driver: the driver for the tty
1291 * @idx: the minor number
1293 * Remvoe a tty object from the driver tables. The tty->index field
1294 * will be set by the time this is called.
1296 * Locking: tty_mutex for now
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299 struct tty_struct *tty)
1301 if (driver->ops->remove)
1302 driver->ops->remove(driver, tty);
1303 else
1304 driver->ttys[tty->index] = NULL;
1308 * tty_reopen() - fast re-open of an open tty
1309 * @tty - the tty to open
1311 * Return 0 on success, -errno on error.
1313 * Locking: tty_mutex must be held from the time the tty was found
1314 * till this open completes.
1316 static int tty_reopen(struct tty_struct *tty)
1318 struct tty_driver *driver = tty->driver;
1320 if (test_bit(TTY_CLOSING, &tty->flags) ||
1321 test_bit(TTY_HUPPING, &tty->flags) ||
1322 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1323 return -EIO;
1325 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1326 driver->subtype == PTY_TYPE_MASTER) {
1328 * special case for PTY masters: only one open permitted,
1329 * and the slave side open count is incremented as well.
1331 if (tty->count)
1332 return -EIO;
1334 tty->link->count++;
1336 tty->count++;
1337 tty->driver = driver; /* N.B. why do this every time?? */
1339 mutex_lock(&tty->ldisc_mutex);
1340 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1341 mutex_unlock(&tty->ldisc_mutex);
1343 return 0;
1347 * tty_init_dev - initialise a tty device
1348 * @driver: tty driver we are opening a device on
1349 * @idx: device index
1350 * @ret_tty: returned tty structure
1351 * @first_ok: ok to open a new device (used by ptmx)
1353 * Prepare a tty device. This may not be a "new" clean device but
1354 * could also be an active device. The pty drivers require special
1355 * handling because of this.
1357 * Locking:
1358 * The function is called under the tty_mutex, which
1359 * protects us from the tty struct or driver itself going away.
1361 * On exit the tty device has the line discipline attached and
1362 * a reference count of 1. If a pair was created for pty/tty use
1363 * and the other was a pty master then it too has a reference count of 1.
1365 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1366 * failed open. The new code protects the open with a mutex, so it's
1367 * really quite straightforward. The mutex locking can probably be
1368 * relaxed for the (most common) case of reopening a tty.
1371 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1372 int first_ok)
1374 struct tty_struct *tty;
1375 int retval;
1377 /* Check if pty master is being opened multiple times */
1378 if (driver->subtype == PTY_TYPE_MASTER &&
1379 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1380 return ERR_PTR(-EIO);
1384 * First time open is complex, especially for PTY devices.
1385 * This code guarantees that either everything succeeds and the
1386 * TTY is ready for operation, or else the table slots are vacated
1387 * and the allocated memory released. (Except that the termios
1388 * and locked termios may be retained.)
1391 if (!try_module_get(driver->owner))
1392 return ERR_PTR(-ENODEV);
1394 tty = alloc_tty_struct();
1395 if (!tty)
1396 goto fail_no_mem;
1397 initialize_tty_struct(tty, driver, idx);
1399 retval = tty_driver_install_tty(driver, tty);
1400 if (retval < 0) {
1401 free_tty_struct(tty);
1402 module_put(driver->owner);
1403 return ERR_PTR(retval);
1407 * Structures all installed ... call the ldisc open routines.
1408 * If we fail here just call release_tty to clean up. No need
1409 * to decrement the use counts, as release_tty doesn't care.
1411 retval = tty_ldisc_setup(tty, tty->link);
1412 if (retval)
1413 goto release_mem_out;
1414 return tty;
1416 fail_no_mem:
1417 module_put(driver->owner);
1418 return ERR_PTR(-ENOMEM);
1420 /* call the tty release_tty routine to clean out this slot */
1421 release_mem_out:
1422 if (printk_ratelimit())
1423 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1424 "clearing slot %d\n", idx);
1425 release_tty(tty, idx);
1426 return ERR_PTR(retval);
1429 void tty_free_termios(struct tty_struct *tty)
1431 struct ktermios *tp;
1432 int idx = tty->index;
1433 /* Kill this flag and push into drivers for locking etc */
1434 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435 /* FIXME: Locking on ->termios array */
1436 tp = tty->termios;
1437 tty->driver->termios[idx] = NULL;
1438 kfree(tp);
1441 EXPORT_SYMBOL(tty_free_termios);
1443 void tty_shutdown(struct tty_struct *tty)
1445 tty_driver_remove_tty(tty->driver, tty);
1446 tty_free_termios(tty);
1448 EXPORT_SYMBOL(tty_shutdown);
1451 * release_one_tty - release tty structure memory
1452 * @kref: kref of tty we are obliterating
1454 * Releases memory associated with a tty structure, and clears out the
1455 * driver table slots. This function is called when a device is no longer
1456 * in use. It also gets called when setup of a device fails.
1458 * Locking:
1459 * tty_mutex - sometimes only
1460 * takes the file list lock internally when working on the list
1461 * of ttys that the driver keeps.
1463 * This method gets called from a work queue so that the driver private
1464 * cleanup ops can sleep (needed for USB at least)
1466 static void release_one_tty(struct work_struct *work)
1468 struct tty_struct *tty =
1469 container_of(work, struct tty_struct, hangup_work);
1470 struct tty_driver *driver = tty->driver;
1472 if (tty->ops->cleanup)
1473 tty->ops->cleanup(tty);
1475 tty->magic = 0;
1476 tty_driver_kref_put(driver);
1477 module_put(driver->owner);
1479 spin_lock(&tty_files_lock);
1480 list_del_init(&tty->tty_files);
1481 spin_unlock(&tty_files_lock);
1483 put_pid(tty->pgrp);
1484 put_pid(tty->session);
1485 free_tty_struct(tty);
1488 static void queue_release_one_tty(struct kref *kref)
1490 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1492 if (tty->ops->shutdown)
1493 tty->ops->shutdown(tty);
1494 else
1495 tty_shutdown(tty);
1497 /* The hangup queue is now free so we can reuse it rather than
1498 waste a chunk of memory for each port */
1499 INIT_WORK(&tty->hangup_work, release_one_tty);
1500 schedule_work(&tty->hangup_work);
1504 * tty_kref_put - release a tty kref
1505 * @tty: tty device
1507 * Release a reference to a tty device and if need be let the kref
1508 * layer destruct the object for us
1511 void tty_kref_put(struct tty_struct *tty)
1513 if (tty)
1514 kref_put(&tty->kref, queue_release_one_tty);
1516 EXPORT_SYMBOL(tty_kref_put);
1519 * release_tty - release tty structure memory
1521 * Release both @tty and a possible linked partner (think pty pair),
1522 * and decrement the refcount of the backing module.
1524 * Locking:
1525 * tty_mutex - sometimes only
1526 * takes the file list lock internally when working on the list
1527 * of ttys that the driver keeps.
1528 * FIXME: should we require tty_mutex is held here ??
1531 static void release_tty(struct tty_struct *tty, int idx)
1533 /* This should always be true but check for the moment */
1534 WARN_ON(tty->index != idx);
1536 if (tty->link)
1537 tty_kref_put(tty->link);
1538 tty_kref_put(tty);
1542 * tty_release - vfs callback for close
1543 * @inode: inode of tty
1544 * @filp: file pointer for handle to tty
1546 * Called the last time each file handle is closed that references
1547 * this tty. There may however be several such references.
1549 * Locking:
1550 * Takes bkl. See tty_release_dev
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1560 int tty_release(struct inode *inode, struct file *filp)
1562 struct tty_struct *tty = file_tty(filp);
1563 struct tty_struct *o_tty;
1564 int pty_master, tty_closing, o_tty_closing, do_sleep;
1565 int devpts;
1566 int idx;
1567 char buf[64];
1569 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570 return 0;
1572 tty_lock();
1573 check_tty_count(tty, "tty_release_dev");
1575 __tty_fasync(-1, filp, 0);
1577 idx = tty->index;
1578 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579 tty->driver->subtype == PTY_TYPE_MASTER);
1580 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581 o_tty = tty->link;
1583 #ifdef TTY_PARANOIA_CHECK
1584 if (idx < 0 || idx >= tty->driver->num) {
1585 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586 "free (%s)\n", tty->name);
1587 tty_unlock();
1588 return 0;
1590 if (!devpts) {
1591 if (tty != tty->driver->ttys[idx]) {
1592 tty_unlock();
1593 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594 "for (%s)\n", idx, tty->name);
1595 return 0;
1597 if (tty->termios != tty->driver->termios[idx]) {
1598 tty_unlock();
1599 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600 "for (%s)\n",
1601 idx, tty->name);
1602 return 0;
1605 #endif
1607 #ifdef TTY_DEBUG_HANGUP
1608 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609 tty_name(tty, buf), tty->count);
1610 #endif
1612 #ifdef TTY_PARANOIA_CHECK
1613 if (tty->driver->other &&
1614 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615 if (o_tty != tty->driver->other->ttys[idx]) {
1616 tty_unlock();
1617 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618 "not o_tty for (%s)\n",
1619 idx, tty->name);
1620 return 0 ;
1622 if (o_tty->termios != tty->driver->other->termios[idx]) {
1623 tty_unlock();
1624 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625 "not o_termios for (%s)\n",
1626 idx, tty->name);
1627 return 0;
1629 if (o_tty->link != tty) {
1630 tty_unlock();
1631 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632 return 0;
1635 #endif
1636 if (tty->ops->close)
1637 tty->ops->close(tty, filp);
1639 tty_unlock();
1641 * Sanity check: if tty->count is going to zero, there shouldn't be
1642 * any waiters on tty->read_wait or tty->write_wait. We test the
1643 * wait queues and kick everyone out _before_ actually starting to
1644 * close. This ensures that we won't block while releasing the tty
1645 * structure.
1647 * The test for the o_tty closing is necessary, since the master and
1648 * slave sides may close in any order. If the slave side closes out
1649 * first, its count will be one, since the master side holds an open.
1650 * Thus this test wouldn't be triggered at the time the slave closes,
1651 * so we do it now.
1653 * Note that it's possible for the tty to be opened again while we're
1654 * flushing out waiters. By recalculating the closing flags before
1655 * each iteration we avoid any problems.
1657 while (1) {
1658 /* Guard against races with tty->count changes elsewhere and
1659 opens on /dev/tty */
1661 mutex_lock(&tty_mutex);
1662 tty_lock();
1663 tty_closing = tty->count <= 1;
1664 o_tty_closing = o_tty &&
1665 (o_tty->count <= (pty_master ? 1 : 0));
1666 do_sleep = 0;
1668 if (tty_closing) {
1669 if (waitqueue_active(&tty->read_wait)) {
1670 wake_up_poll(&tty->read_wait, POLLIN);
1671 do_sleep++;
1673 if (waitqueue_active(&tty->write_wait)) {
1674 wake_up_poll(&tty->write_wait, POLLOUT);
1675 do_sleep++;
1678 if (o_tty_closing) {
1679 if (waitqueue_active(&o_tty->read_wait)) {
1680 wake_up_poll(&o_tty->read_wait, POLLIN);
1681 do_sleep++;
1683 if (waitqueue_active(&o_tty->write_wait)) {
1684 wake_up_poll(&o_tty->write_wait, POLLOUT);
1685 do_sleep++;
1688 if (!do_sleep)
1689 break;
1691 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692 "active!\n", tty_name(tty, buf));
1693 tty_unlock();
1694 mutex_unlock(&tty_mutex);
1695 schedule();
1699 * The closing flags are now consistent with the open counts on
1700 * both sides, and we've completed the last operation that could
1701 * block, so it's safe to proceed with closing.
1703 if (pty_master) {
1704 if (--o_tty->count < 0) {
1705 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706 "(%d) for %s\n",
1707 o_tty->count, tty_name(o_tty, buf));
1708 o_tty->count = 0;
1711 if (--tty->count < 0) {
1712 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713 tty->count, tty_name(tty, buf));
1714 tty->count = 0;
1718 * We've decremented tty->count, so we need to remove this file
1719 * descriptor off the tty->tty_files list; this serves two
1720 * purposes:
1721 * - check_tty_count sees the correct number of file descriptors
1722 * associated with this tty.
1723 * - do_tty_hangup no longer sees this file descriptor as
1724 * something that needs to be handled for hangups.
1726 tty_del_file(filp);
1729 * Perform some housekeeping before deciding whether to return.
1731 * Set the TTY_CLOSING flag if this was the last open. In the
1732 * case of a pty we may have to wait around for the other side
1733 * to close, and TTY_CLOSING makes sure we can't be reopened.
1735 if (tty_closing)
1736 set_bit(TTY_CLOSING, &tty->flags);
1737 if (o_tty_closing)
1738 set_bit(TTY_CLOSING, &o_tty->flags);
1741 * If _either_ side is closing, make sure there aren't any
1742 * processes that still think tty or o_tty is their controlling
1743 * tty.
1745 if (tty_closing || o_tty_closing) {
1746 read_lock(&tasklist_lock);
1747 session_clear_tty(tty->session);
1748 if (o_tty)
1749 session_clear_tty(o_tty->session);
1750 read_unlock(&tasklist_lock);
1753 mutex_unlock(&tty_mutex);
1755 /* check whether both sides are closing ... */
1756 if (!tty_closing || (o_tty && !o_tty_closing)) {
1757 tty_unlock();
1758 return 0;
1761 #ifdef TTY_DEBUG_HANGUP
1762 printk(KERN_DEBUG "freeing tty structure...");
1763 #endif
1765 * Ask the line discipline code to release its structures
1767 tty_ldisc_release(tty, o_tty);
1769 * The release_tty function takes care of the details of clearing
1770 * the slots and preserving the termios structure.
1772 release_tty(tty, idx);
1774 /* Make this pty number available for reallocation */
1775 if (devpts)
1776 devpts_kill_index(inode, idx);
1777 tty_unlock();
1778 return 0;
1782 * tty_open - open a tty device
1783 * @inode: inode of device file
1784 * @filp: file pointer to tty
1786 * tty_open and tty_release keep up the tty count that contains the
1787 * number of opens done on a tty. We cannot use the inode-count, as
1788 * different inodes might point to the same tty.
1790 * Open-counting is needed for pty masters, as well as for keeping
1791 * track of serial lines: DTR is dropped when the last close happens.
1792 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1794 * The termios state of a pty is reset on first open so that
1795 * settings don't persist across reuse.
1797 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 * tty->count should protect the rest.
1799 * ->siglock protects ->signal/->sighand
1802 static int tty_open(struct inode *inode, struct file *filp)
1804 struct tty_struct *tty = NULL;
1805 int noctty, retval;
1806 struct tty_driver *driver;
1807 int index;
1808 dev_t device = inode->i_rdev;
1809 unsigned saved_flags = filp->f_flags;
1811 nonseekable_open(inode, filp);
1813 retry_open:
1814 noctty = filp->f_flags & O_NOCTTY;
1815 index = -1;
1816 retval = 0;
1818 mutex_lock(&tty_mutex);
1819 tty_lock();
1821 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822 tty = get_current_tty();
1823 if (!tty) {
1824 tty_unlock();
1825 mutex_unlock(&tty_mutex);
1826 return -ENXIO;
1828 driver = tty_driver_kref_get(tty->driver);
1829 index = tty->index;
1830 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831 /* noctty = 1; */
1832 /* FIXME: Should we take a driver reference ? */
1833 tty_kref_put(tty);
1834 goto got_driver;
1836 #ifdef CONFIG_VT
1837 if (device == MKDEV(TTY_MAJOR, 0)) {
1838 extern struct tty_driver *console_driver;
1839 driver = tty_driver_kref_get(console_driver);
1840 index = fg_console;
1841 noctty = 1;
1842 goto got_driver;
1844 #endif
1845 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846 struct tty_driver *console_driver = console_device(&index);
1847 if (console_driver) {
1848 driver = tty_driver_kref_get(console_driver);
1849 if (driver) {
1850 /* Don't let /dev/console block */
1851 filp->f_flags |= O_NONBLOCK;
1852 noctty = 1;
1853 goto got_driver;
1856 tty_unlock();
1857 mutex_unlock(&tty_mutex);
1858 return -ENODEV;
1861 driver = get_tty_driver(device, &index);
1862 if (!driver) {
1863 tty_unlock();
1864 mutex_unlock(&tty_mutex);
1865 return -ENODEV;
1867 got_driver:
1868 if (!tty) {
1869 /* check whether we're reopening an existing tty */
1870 tty = tty_driver_lookup_tty(driver, inode, index);
1872 if (IS_ERR(tty)) {
1873 tty_unlock();
1874 mutex_unlock(&tty_mutex);
1875 return PTR_ERR(tty);
1879 if (tty) {
1880 retval = tty_reopen(tty);
1881 if (retval)
1882 tty = ERR_PTR(retval);
1883 } else
1884 tty = tty_init_dev(driver, index, 0);
1886 mutex_unlock(&tty_mutex);
1887 tty_driver_kref_put(driver);
1888 if (IS_ERR(tty)) {
1889 tty_unlock();
1890 return PTR_ERR(tty);
1893 retval = tty_add_file(tty, filp);
1894 if (retval) {
1895 tty_unlock();
1896 return retval;
1899 check_tty_count(tty, "tty_open");
1900 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1901 tty->driver->subtype == PTY_TYPE_MASTER)
1902 noctty = 1;
1903 #ifdef TTY_DEBUG_HANGUP
1904 printk(KERN_DEBUG "opening %s...", tty->name);
1905 #endif
1906 if (!retval) {
1907 if (tty->ops->open)
1908 retval = tty->ops->open(tty, filp);
1909 else
1910 retval = -ENODEV;
1912 filp->f_flags = saved_flags;
1914 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915 !capable(CAP_SYS_ADMIN))
1916 retval = -EBUSY;
1918 if (retval) {
1919 #ifdef TTY_DEBUG_HANGUP
1920 printk(KERN_DEBUG "error %d in opening %s...", retval,
1921 tty->name);
1922 #endif
1923 tty_unlock(); /* need to call tty_release without BTM */
1924 tty_release(inode, filp);
1925 if (retval != -ERESTARTSYS)
1926 return retval;
1928 if (signal_pending(current))
1929 return retval;
1931 schedule();
1933 * Need to reset f_op in case a hangup happened.
1935 tty_lock();
1936 if (filp->f_op == &hung_up_tty_fops)
1937 filp->f_op = &tty_fops;
1938 tty_unlock();
1939 goto retry_open;
1941 tty_unlock();
1944 mutex_lock(&tty_mutex);
1945 tty_lock();
1946 spin_lock_irq(&current->sighand->siglock);
1947 if (!noctty &&
1948 current->signal->leader &&
1949 !current->signal->tty &&
1950 tty->session == NULL)
1951 __proc_set_tty(current, tty);
1952 spin_unlock_irq(&current->sighand->siglock);
1953 tty_unlock();
1954 mutex_unlock(&tty_mutex);
1955 return 0;
1961 * tty_poll - check tty status
1962 * @filp: file being polled
1963 * @wait: poll wait structures to update
1965 * Call the line discipline polling method to obtain the poll
1966 * status of the device.
1968 * Locking: locks called line discipline but ldisc poll method
1969 * may be re-entered freely by other callers.
1972 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1974 struct tty_struct *tty = file_tty(filp);
1975 struct tty_ldisc *ld;
1976 int ret = 0;
1978 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979 return 0;
1981 ld = tty_ldisc_ref_wait(tty);
1982 if (ld->ops->poll)
1983 ret = (ld->ops->poll)(tty, filp, wait);
1984 tty_ldisc_deref(ld);
1985 return ret;
1988 static int __tty_fasync(int fd, struct file *filp, int on)
1990 struct tty_struct *tty = file_tty(filp);
1991 unsigned long flags;
1992 int retval = 0;
1994 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995 goto out;
1997 retval = fasync_helper(fd, filp, on, &tty->fasync);
1998 if (retval <= 0)
1999 goto out;
2001 if (on) {
2002 enum pid_type type;
2003 struct pid *pid;
2004 if (!waitqueue_active(&tty->read_wait))
2005 tty->minimum_to_wake = 1;
2006 spin_lock_irqsave(&tty->ctrl_lock, flags);
2007 if (tty->pgrp) {
2008 pid = tty->pgrp;
2009 type = PIDTYPE_PGID;
2010 } else {
2011 pid = task_pid(current);
2012 type = PIDTYPE_PID;
2014 get_pid(pid);
2015 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016 retval = __f_setown(filp, pid, type, 0);
2017 put_pid(pid);
2018 if (retval)
2019 goto out;
2020 } else {
2021 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2024 retval = 0;
2025 out:
2026 return retval;
2029 static int tty_fasync(int fd, struct file *filp, int on)
2031 int retval;
2032 tty_lock();
2033 retval = __tty_fasync(fd, filp, on);
2034 tty_unlock();
2035 return retval;
2039 * tiocsti - fake input character
2040 * @tty: tty to fake input into
2041 * @p: pointer to character
2043 * Fake input to a tty device. Does the necessary locking and
2044 * input management.
2046 * FIXME: does not honour flow control ??
2048 * Locking:
2049 * Called functions take tty_ldisc_lock
2050 * current->signal->tty check is safe without locks
2052 * FIXME: may race normal receive processing
2055 static int tiocsti(struct tty_struct *tty, char __user *p)
2057 char ch, mbz = 0;
2058 struct tty_ldisc *ld;
2060 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061 return -EPERM;
2062 if (get_user(ch, p))
2063 return -EFAULT;
2064 tty_audit_tiocsti(tty, ch);
2065 ld = tty_ldisc_ref_wait(tty);
2066 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067 tty_ldisc_deref(ld);
2068 return 0;
2072 * tiocgwinsz - implement window query ioctl
2073 * @tty; tty
2074 * @arg: user buffer for result
2076 * Copies the kernel idea of the window size into the user buffer.
2078 * Locking: tty->termios_mutex is taken to ensure the winsize data
2079 * is consistent.
2082 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2084 int err;
2086 mutex_lock(&tty->termios_mutex);
2087 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088 mutex_unlock(&tty->termios_mutex);
2090 return err ? -EFAULT: 0;
2094 * tty_do_resize - resize event
2095 * @tty: tty being resized
2096 * @rows: rows (character)
2097 * @cols: cols (character)
2099 * Update the termios variables and send the necessary signals to
2100 * peform a terminal resize correctly
2103 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2105 struct pid *pgrp;
2106 unsigned long flags;
2108 /* Lock the tty */
2109 mutex_lock(&tty->termios_mutex);
2110 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111 goto done;
2112 /* Get the PID values and reference them so we can
2113 avoid holding the tty ctrl lock while sending signals */
2114 spin_lock_irqsave(&tty->ctrl_lock, flags);
2115 pgrp = get_pid(tty->pgrp);
2116 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2118 if (pgrp)
2119 kill_pgrp(pgrp, SIGWINCH, 1);
2120 put_pid(pgrp);
2122 tty->winsize = *ws;
2123 done:
2124 mutex_unlock(&tty->termios_mutex);
2125 return 0;
2129 * tiocswinsz - implement window size set ioctl
2130 * @tty; tty side of tty
2131 * @arg: user buffer for result
2133 * Copies the user idea of the window size to the kernel. Traditionally
2134 * this is just advisory information but for the Linux console it
2135 * actually has driver level meaning and triggers a VC resize.
2137 * Locking:
2138 * Driver dependant. The default do_resize method takes the
2139 * tty termios mutex and ctrl_lock. The console takes its own lock
2140 * then calls into the default method.
2143 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2145 struct winsize tmp_ws;
2146 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147 return -EFAULT;
2149 if (tty->ops->resize)
2150 return tty->ops->resize(tty, &tmp_ws);
2151 else
2152 return tty_do_resize(tty, &tmp_ws);
2156 * tioccons - allow admin to move logical console
2157 * @file: the file to become console
2159 * Allow the adminstrator to move the redirected console device
2161 * Locking: uses redirect_lock to guard the redirect information
2164 static int tioccons(struct file *file)
2166 if (!capable(CAP_SYS_ADMIN))
2167 return -EPERM;
2168 if (file->f_op->write == redirected_tty_write) {
2169 struct file *f;
2170 spin_lock(&redirect_lock);
2171 f = redirect;
2172 redirect = NULL;
2173 spin_unlock(&redirect_lock);
2174 if (f)
2175 fput(f);
2176 return 0;
2178 spin_lock(&redirect_lock);
2179 if (redirect) {
2180 spin_unlock(&redirect_lock);
2181 return -EBUSY;
2183 get_file(file);
2184 redirect = file;
2185 spin_unlock(&redirect_lock);
2186 return 0;
2190 * fionbio - non blocking ioctl
2191 * @file: file to set blocking value
2192 * @p: user parameter
2194 * Historical tty interfaces had a blocking control ioctl before
2195 * the generic functionality existed. This piece of history is preserved
2196 * in the expected tty API of posix OS's.
2198 * Locking: none, the open file handle ensures it won't go away.
2201 static int fionbio(struct file *file, int __user *p)
2203 int nonblock;
2205 if (get_user(nonblock, p))
2206 return -EFAULT;
2208 spin_lock(&file->f_lock);
2209 if (nonblock)
2210 file->f_flags |= O_NONBLOCK;
2211 else
2212 file->f_flags &= ~O_NONBLOCK;
2213 spin_unlock(&file->f_lock);
2214 return 0;
2218 * tiocsctty - set controlling tty
2219 * @tty: tty structure
2220 * @arg: user argument
2222 * This ioctl is used to manage job control. It permits a session
2223 * leader to set this tty as the controlling tty for the session.
2225 * Locking:
2226 * Takes tty_mutex() to protect tty instance
2227 * Takes tasklist_lock internally to walk sessions
2228 * Takes ->siglock() when updating signal->tty
2231 static int tiocsctty(struct tty_struct *tty, int arg)
2233 int ret = 0;
2234 if (current->signal->leader && (task_session(current) == tty->session))
2235 return ret;
2237 mutex_lock(&tty_mutex);
2239 * The process must be a session leader and
2240 * not have a controlling tty already.
2242 if (!current->signal->leader || current->signal->tty) {
2243 ret = -EPERM;
2244 goto unlock;
2247 if (tty->session) {
2249 * This tty is already the controlling
2250 * tty for another session group!
2252 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2254 * Steal it away
2256 read_lock(&tasklist_lock);
2257 session_clear_tty(tty->session);
2258 read_unlock(&tasklist_lock);
2259 } else {
2260 ret = -EPERM;
2261 goto unlock;
2264 proc_set_tty(current, tty);
2265 unlock:
2266 mutex_unlock(&tty_mutex);
2267 return ret;
2271 * tty_get_pgrp - return a ref counted pgrp pid
2272 * @tty: tty to read
2274 * Returns a refcounted instance of the pid struct for the process
2275 * group controlling the tty.
2278 struct pid *tty_get_pgrp(struct tty_struct *tty)
2280 unsigned long flags;
2281 struct pid *pgrp;
2283 spin_lock_irqsave(&tty->ctrl_lock, flags);
2284 pgrp = get_pid(tty->pgrp);
2285 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2287 return pgrp;
2289 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2292 * tiocgpgrp - get process group
2293 * @tty: tty passed by user
2294 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2295 * @p: returned pid
2297 * Obtain the process group of the tty. If there is no process group
2298 * return an error.
2300 * Locking: none. Reference to current->signal->tty is safe.
2303 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2305 struct pid *pid;
2306 int ret;
2308 * (tty == real_tty) is a cheap way of
2309 * testing if the tty is NOT a master pty.
2311 if (tty == real_tty && current->signal->tty != real_tty)
2312 return -ENOTTY;
2313 pid = tty_get_pgrp(real_tty);
2314 ret = put_user(pid_vnr(pid), p);
2315 put_pid(pid);
2316 return ret;
2320 * tiocspgrp - attempt to set process group
2321 * @tty: tty passed by user
2322 * @real_tty: tty side device matching tty passed by user
2323 * @p: pid pointer
2325 * Set the process group of the tty to the session passed. Only
2326 * permitted where the tty session is our session.
2328 * Locking: RCU, ctrl lock
2331 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2333 struct pid *pgrp;
2334 pid_t pgrp_nr;
2335 int retval = tty_check_change(real_tty);
2336 unsigned long flags;
2338 if (retval == -EIO)
2339 return -ENOTTY;
2340 if (retval)
2341 return retval;
2342 if (!current->signal->tty ||
2343 (current->signal->tty != real_tty) ||
2344 (real_tty->session != task_session(current)))
2345 return -ENOTTY;
2346 if (get_user(pgrp_nr, p))
2347 return -EFAULT;
2348 if (pgrp_nr < 0)
2349 return -EINVAL;
2350 rcu_read_lock();
2351 pgrp = find_vpid(pgrp_nr);
2352 retval = -ESRCH;
2353 if (!pgrp)
2354 goto out_unlock;
2355 retval = -EPERM;
2356 if (session_of_pgrp(pgrp) != task_session(current))
2357 goto out_unlock;
2358 retval = 0;
2359 spin_lock_irqsave(&tty->ctrl_lock, flags);
2360 put_pid(real_tty->pgrp);
2361 real_tty->pgrp = get_pid(pgrp);
2362 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363 out_unlock:
2364 rcu_read_unlock();
2365 return retval;
2369 * tiocgsid - get session id
2370 * @tty: tty passed by user
2371 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2372 * @p: pointer to returned session id
2374 * Obtain the session id of the tty. If there is no session
2375 * return an error.
2377 * Locking: none. Reference to current->signal->tty is safe.
2380 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2383 * (tty == real_tty) is a cheap way of
2384 * testing if the tty is NOT a master pty.
2386 if (tty == real_tty && current->signal->tty != real_tty)
2387 return -ENOTTY;
2388 if (!real_tty->session)
2389 return -ENOTTY;
2390 return put_user(pid_vnr(real_tty->session), p);
2394 * tiocsetd - set line discipline
2395 * @tty: tty device
2396 * @p: pointer to user data
2398 * Set the line discipline according to user request.
2400 * Locking: see tty_set_ldisc, this function is just a helper
2403 static int tiocsetd(struct tty_struct *tty, int __user *p)
2405 int ldisc;
2406 int ret;
2408 if (get_user(ldisc, p))
2409 return -EFAULT;
2411 ret = tty_set_ldisc(tty, ldisc);
2413 return ret;
2417 * send_break - performed time break
2418 * @tty: device to break on
2419 * @duration: timeout in mS
2421 * Perform a timed break on hardware that lacks its own driver level
2422 * timed break functionality.
2424 * Locking:
2425 * atomic_write_lock serializes
2429 static int send_break(struct tty_struct *tty, unsigned int duration)
2431 int retval;
2433 if (tty->ops->break_ctl == NULL)
2434 return 0;
2436 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437 retval = tty->ops->break_ctl(tty, duration);
2438 else {
2439 /* Do the work ourselves */
2440 if (tty_write_lock(tty, 0) < 0)
2441 return -EINTR;
2442 retval = tty->ops->break_ctl(tty, -1);
2443 if (retval)
2444 goto out;
2445 if (!signal_pending(current))
2446 msleep_interruptible(duration);
2447 retval = tty->ops->break_ctl(tty, 0);
2448 out:
2449 tty_write_unlock(tty);
2450 if (signal_pending(current))
2451 retval = -EINTR;
2453 return retval;
2457 * tty_tiocmget - get modem status
2458 * @tty: tty device
2459 * @file: user file pointer
2460 * @p: pointer to result
2462 * Obtain the modem status bits from the tty driver if the feature
2463 * is supported. Return -EINVAL if it is not available.
2465 * Locking: none (up to the driver)
2468 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2470 int retval = -EINVAL;
2472 if (tty->ops->tiocmget) {
2473 retval = tty->ops->tiocmget(tty);
2475 if (retval >= 0)
2476 retval = put_user(retval, p);
2478 return retval;
2482 * tty_tiocmset - set modem status
2483 * @tty: tty device
2484 * @cmd: command - clear bits, set bits or set all
2485 * @p: pointer to desired bits
2487 * Set the modem status bits from the tty driver if the feature
2488 * is supported. Return -EINVAL if it is not available.
2490 * Locking: none (up to the driver)
2493 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2494 unsigned __user *p)
2496 int retval;
2497 unsigned int set, clear, val;
2499 if (tty->ops->tiocmset == NULL)
2500 return -EINVAL;
2502 retval = get_user(val, p);
2503 if (retval)
2504 return retval;
2505 set = clear = 0;
2506 switch (cmd) {
2507 case TIOCMBIS:
2508 set = val;
2509 break;
2510 case TIOCMBIC:
2511 clear = val;
2512 break;
2513 case TIOCMSET:
2514 set = val;
2515 clear = ~val;
2516 break;
2518 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520 return tty->ops->tiocmset(tty, set, clear);
2523 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2525 int retval = -EINVAL;
2526 struct serial_icounter_struct icount;
2527 memset(&icount, 0, sizeof(icount));
2528 if (tty->ops->get_icount)
2529 retval = tty->ops->get_icount(tty, &icount);
2530 if (retval != 0)
2531 return retval;
2532 if (copy_to_user(arg, &icount, sizeof(icount)))
2533 return -EFAULT;
2534 return 0;
2537 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2539 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2540 tty->driver->subtype == PTY_TYPE_MASTER)
2541 tty = tty->link;
2542 return tty;
2544 EXPORT_SYMBOL(tty_pair_get_tty);
2546 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2548 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2549 tty->driver->subtype == PTY_TYPE_MASTER)
2550 return tty;
2551 return tty->link;
2553 EXPORT_SYMBOL(tty_pair_get_pty);
2556 * Split this up, as gcc can choke on it otherwise..
2558 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2560 struct tty_struct *tty = file_tty(file);
2561 struct tty_struct *real_tty;
2562 void __user *p = (void __user *)arg;
2563 int retval;
2564 struct tty_ldisc *ld;
2565 struct inode *inode = file->f_dentry->d_inode;
2567 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2568 return -EINVAL;
2570 real_tty = tty_pair_get_tty(tty);
2573 * Factor out some common prep work
2575 switch (cmd) {
2576 case TIOCSETD:
2577 case TIOCSBRK:
2578 case TIOCCBRK:
2579 case TCSBRK:
2580 case TCSBRKP:
2581 retval = tty_check_change(tty);
2582 if (retval)
2583 return retval;
2584 if (cmd != TIOCCBRK) {
2585 tty_wait_until_sent(tty, 0);
2586 if (signal_pending(current))
2587 return -EINTR;
2589 break;
2593 * Now do the stuff.
2595 switch (cmd) {
2596 case TIOCSTI:
2597 return tiocsti(tty, p);
2598 case TIOCGWINSZ:
2599 return tiocgwinsz(real_tty, p);
2600 case TIOCSWINSZ:
2601 return tiocswinsz(real_tty, p);
2602 case TIOCCONS:
2603 return real_tty != tty ? -EINVAL : tioccons(file);
2604 case FIONBIO:
2605 return fionbio(file, p);
2606 case TIOCEXCL:
2607 set_bit(TTY_EXCLUSIVE, &tty->flags);
2608 return 0;
2609 case TIOCNXCL:
2610 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2611 return 0;
2612 case TIOCNOTTY:
2613 if (current->signal->tty != tty)
2614 return -ENOTTY;
2615 no_tty();
2616 return 0;
2617 case TIOCSCTTY:
2618 return tiocsctty(tty, arg);
2619 case TIOCGPGRP:
2620 return tiocgpgrp(tty, real_tty, p);
2621 case TIOCSPGRP:
2622 return tiocspgrp(tty, real_tty, p);
2623 case TIOCGSID:
2624 return tiocgsid(tty, real_tty, p);
2625 case TIOCGETD:
2626 return put_user(tty->ldisc->ops->num, (int __user *)p);
2627 case TIOCSETD:
2628 return tiocsetd(tty, p);
2629 case TIOCGDEV:
2631 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2632 return put_user(ret, (unsigned int __user *)p);
2635 * Break handling
2637 case TIOCSBRK: /* Turn break on, unconditionally */
2638 if (tty->ops->break_ctl)
2639 return tty->ops->break_ctl(tty, -1);
2640 return 0;
2641 case TIOCCBRK: /* Turn break off, unconditionally */
2642 if (tty->ops->break_ctl)
2643 return tty->ops->break_ctl(tty, 0);
2644 return 0;
2645 case TCSBRK: /* SVID version: non-zero arg --> no break */
2646 /* non-zero arg means wait for all output data
2647 * to be sent (performed above) but don't send break.
2648 * This is used by the tcdrain() termios function.
2650 if (!arg)
2651 return send_break(tty, 250);
2652 return 0;
2653 case TCSBRKP: /* support for POSIX tcsendbreak() */
2654 return send_break(tty, arg ? arg*100 : 250);
2656 case TIOCMGET:
2657 return tty_tiocmget(tty, p);
2658 case TIOCMSET:
2659 case TIOCMBIC:
2660 case TIOCMBIS:
2661 return tty_tiocmset(tty, cmd, p);
2662 case TIOCGICOUNT:
2663 retval = tty_tiocgicount(tty, p);
2664 /* For the moment allow fall through to the old method */
2665 if (retval != -EINVAL)
2666 return retval;
2667 break;
2668 case TCFLSH:
2669 switch (arg) {
2670 case TCIFLUSH:
2671 case TCIOFLUSH:
2672 /* flush tty buffer and allow ldisc to process ioctl */
2673 tty_buffer_flush(tty);
2674 break;
2676 break;
2678 if (tty->ops->ioctl) {
2679 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2680 if (retval != -ENOIOCTLCMD)
2681 return retval;
2683 ld = tty_ldisc_ref_wait(tty);
2684 retval = -EINVAL;
2685 if (ld->ops->ioctl) {
2686 retval = ld->ops->ioctl(tty, file, cmd, arg);
2687 if (retval == -ENOIOCTLCMD)
2688 retval = -EINVAL;
2690 tty_ldisc_deref(ld);
2691 return retval;
2694 #ifdef CONFIG_COMPAT
2695 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2696 unsigned long arg)
2698 struct inode *inode = file->f_dentry->d_inode;
2699 struct tty_struct *tty = file_tty(file);
2700 struct tty_ldisc *ld;
2701 int retval = -ENOIOCTLCMD;
2703 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2704 return -EINVAL;
2706 if (tty->ops->compat_ioctl) {
2707 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2708 if (retval != -ENOIOCTLCMD)
2709 return retval;
2712 ld = tty_ldisc_ref_wait(tty);
2713 if (ld->ops->compat_ioctl)
2714 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2715 tty_ldisc_deref(ld);
2717 return retval;
2719 #endif
2722 * This implements the "Secure Attention Key" --- the idea is to
2723 * prevent trojan horses by killing all processes associated with this
2724 * tty when the user hits the "Secure Attention Key". Required for
2725 * super-paranoid applications --- see the Orange Book for more details.
2727 * This code could be nicer; ideally it should send a HUP, wait a few
2728 * seconds, then send a INT, and then a KILL signal. But you then
2729 * have to coordinate with the init process, since all processes associated
2730 * with the current tty must be dead before the new getty is allowed
2731 * to spawn.
2733 * Now, if it would be correct ;-/ The current code has a nasty hole -
2734 * it doesn't catch files in flight. We may send the descriptor to ourselves
2735 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2737 * Nasty bug: do_SAK is being called in interrupt context. This can
2738 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2740 void __do_SAK(struct tty_struct *tty)
2742 #ifdef TTY_SOFT_SAK
2743 tty_hangup(tty);
2744 #else
2745 struct task_struct *g, *p;
2746 struct pid *session;
2747 int i;
2748 struct file *filp;
2749 struct fdtable *fdt;
2751 if (!tty)
2752 return;
2753 session = tty->session;
2755 tty_ldisc_flush(tty);
2757 tty_driver_flush_buffer(tty);
2759 read_lock(&tasklist_lock);
2760 /* Kill the entire session */
2761 do_each_pid_task(session, PIDTYPE_SID, p) {
2762 printk(KERN_NOTICE "SAK: killed process %d"
2763 " (%s): task_session(p)==tty->session\n",
2764 task_pid_nr(p), p->comm);
2765 send_sig(SIGKILL, p, 1);
2766 } while_each_pid_task(session, PIDTYPE_SID, p);
2767 /* Now kill any processes that happen to have the
2768 * tty open.
2770 do_each_thread(g, p) {
2771 if (p->signal->tty == tty) {
2772 printk(KERN_NOTICE "SAK: killed process %d"
2773 " (%s): task_session(p)==tty->session\n",
2774 task_pid_nr(p), p->comm);
2775 send_sig(SIGKILL, p, 1);
2776 continue;
2778 task_lock(p);
2779 if (p->files) {
2781 * We don't take a ref to the file, so we must
2782 * hold ->file_lock instead.
2784 spin_lock(&p->files->file_lock);
2785 fdt = files_fdtable(p->files);
2786 for (i = 0; i < fdt->max_fds; i++) {
2787 filp = fcheck_files(p->files, i);
2788 if (!filp)
2789 continue;
2790 if (filp->f_op->read == tty_read &&
2791 file_tty(filp) == tty) {
2792 printk(KERN_NOTICE "SAK: killed process %d"
2793 " (%s): fd#%d opened to the tty\n",
2794 task_pid_nr(p), p->comm, i);
2795 force_sig(SIGKILL, p);
2796 break;
2799 spin_unlock(&p->files->file_lock);
2801 task_unlock(p);
2802 } while_each_thread(g, p);
2803 read_unlock(&tasklist_lock);
2804 #endif
2807 static void do_SAK_work(struct work_struct *work)
2809 struct tty_struct *tty =
2810 container_of(work, struct tty_struct, SAK_work);
2811 __do_SAK(tty);
2815 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2816 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2817 * the values which we write to it will be identical to the values which it
2818 * already has. --akpm
2820 void do_SAK(struct tty_struct *tty)
2822 if (!tty)
2823 return;
2824 schedule_work(&tty->SAK_work);
2827 EXPORT_SYMBOL(do_SAK);
2829 static int dev_match_devt(struct device *dev, void *data)
2831 dev_t *devt = data;
2832 return dev->devt == *devt;
2835 /* Must put_device() after it's unused! */
2836 static struct device *tty_get_device(struct tty_struct *tty)
2838 dev_t devt = tty_devnum(tty);
2839 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844 * initialize_tty_struct
2845 * @tty: tty to initialize
2847 * This subroutine initializes a tty structure that has been newly
2848 * allocated.
2850 * Locking: none - tty in question must not be exposed at this point
2853 void initialize_tty_struct(struct tty_struct *tty,
2854 struct tty_driver *driver, int idx)
2856 memset(tty, 0, sizeof(struct tty_struct));
2857 kref_init(&tty->kref);
2858 tty->magic = TTY_MAGIC;
2859 tty_ldisc_init(tty);
2860 tty->session = NULL;
2861 tty->pgrp = NULL;
2862 tty->overrun_time = jiffies;
2863 tty->buf.head = tty->buf.tail = NULL;
2864 tty_buffer_init(tty);
2865 mutex_init(&tty->termios_mutex);
2866 mutex_init(&tty->ldisc_mutex);
2867 init_waitqueue_head(&tty->write_wait);
2868 init_waitqueue_head(&tty->read_wait);
2869 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2870 mutex_init(&tty->atomic_read_lock);
2871 mutex_init(&tty->atomic_write_lock);
2872 mutex_init(&tty->output_lock);
2873 mutex_init(&tty->echo_lock);
2874 spin_lock_init(&tty->read_lock);
2875 spin_lock_init(&tty->ctrl_lock);
2876 INIT_LIST_HEAD(&tty->tty_files);
2877 INIT_WORK(&tty->SAK_work, do_SAK_work);
2879 tty->driver = driver;
2880 tty->ops = driver->ops;
2881 tty->index = idx;
2882 tty_line_name(driver, idx, tty->name);
2883 tty->dev = tty_get_device(tty);
2887 * tty_put_char - write one character to a tty
2888 * @tty: tty
2889 * @ch: character
2891 * Write one byte to the tty using the provided put_char method
2892 * if present. Returns the number of characters successfully output.
2894 * Note: the specific put_char operation in the driver layer may go
2895 * away soon. Don't call it directly, use this method
2898 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2900 if (tty->ops->put_char)
2901 return tty->ops->put_char(tty, ch);
2902 return tty->ops->write(tty, &ch, 1);
2904 EXPORT_SYMBOL_GPL(tty_put_char);
2906 struct class *tty_class;
2909 * tty_register_device - register a tty device
2910 * @driver: the tty driver that describes the tty device
2911 * @index: the index in the tty driver for this tty device
2912 * @device: a struct device that is associated with this tty device.
2913 * This field is optional, if there is no known struct device
2914 * for this tty device it can be set to NULL safely.
2916 * Returns a pointer to the struct device for this tty device
2917 * (or ERR_PTR(-EFOO) on error).
2919 * This call is required to be made to register an individual tty device
2920 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2921 * that bit is not set, this function should not be called by a tty
2922 * driver.
2924 * Locking: ??
2927 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2928 struct device *device)
2930 char name[64];
2931 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2933 if (index >= driver->num) {
2934 printk(KERN_ERR "Attempt to register invalid tty line number "
2935 " (%d).\n", index);
2936 return ERR_PTR(-EINVAL);
2939 if (driver->type == TTY_DRIVER_TYPE_PTY)
2940 pty_line_name(driver, index, name);
2941 else
2942 tty_line_name(driver, index, name);
2944 return device_create(tty_class, device, dev, NULL, name);
2946 EXPORT_SYMBOL(tty_register_device);
2949 * tty_unregister_device - unregister a tty device
2950 * @driver: the tty driver that describes the tty device
2951 * @index: the index in the tty driver for this tty device
2953 * If a tty device is registered with a call to tty_register_device() then
2954 * this function must be called when the tty device is gone.
2956 * Locking: ??
2959 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2961 device_destroy(tty_class,
2962 MKDEV(driver->major, driver->minor_start) + index);
2964 EXPORT_SYMBOL(tty_unregister_device);
2966 struct tty_driver *alloc_tty_driver(int lines)
2968 struct tty_driver *driver;
2970 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2971 if (driver) {
2972 kref_init(&driver->kref);
2973 driver->magic = TTY_DRIVER_MAGIC;
2974 driver->num = lines;
2975 /* later we'll move allocation of tables here */
2977 return driver;
2979 EXPORT_SYMBOL(alloc_tty_driver);
2981 static void destruct_tty_driver(struct kref *kref)
2983 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2984 int i;
2985 struct ktermios *tp;
2986 void *p;
2988 if (driver->flags & TTY_DRIVER_INSTALLED) {
2990 * Free the termios and termios_locked structures because
2991 * we don't want to get memory leaks when modular tty
2992 * drivers are removed from the kernel.
2994 for (i = 0; i < driver->num; i++) {
2995 tp = driver->termios[i];
2996 if (tp) {
2997 driver->termios[i] = NULL;
2998 kfree(tp);
3000 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3001 tty_unregister_device(driver, i);
3003 p = driver->ttys;
3004 proc_tty_unregister_driver(driver);
3005 driver->ttys = NULL;
3006 driver->termios = NULL;
3007 kfree(p);
3008 cdev_del(&driver->cdev);
3010 kfree(driver);
3013 void tty_driver_kref_put(struct tty_driver *driver)
3015 kref_put(&driver->kref, destruct_tty_driver);
3017 EXPORT_SYMBOL(tty_driver_kref_put);
3019 void tty_set_operations(struct tty_driver *driver,
3020 const struct tty_operations *op)
3022 driver->ops = op;
3024 EXPORT_SYMBOL(tty_set_operations);
3026 void put_tty_driver(struct tty_driver *d)
3028 tty_driver_kref_put(d);
3030 EXPORT_SYMBOL(put_tty_driver);
3033 * Called by a tty driver to register itself.
3035 int tty_register_driver(struct tty_driver *driver)
3037 int error;
3038 int i;
3039 dev_t dev;
3040 void **p = NULL;
3041 struct device *d;
3043 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3044 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3045 if (!p)
3046 return -ENOMEM;
3049 if (!driver->major) {
3050 error = alloc_chrdev_region(&dev, driver->minor_start,
3051 driver->num, driver->name);
3052 if (!error) {
3053 driver->major = MAJOR(dev);
3054 driver->minor_start = MINOR(dev);
3056 } else {
3057 dev = MKDEV(driver->major, driver->minor_start);
3058 error = register_chrdev_region(dev, driver->num, driver->name);
3060 if (error < 0) {
3061 kfree(p);
3062 return error;
3065 if (p) {
3066 driver->ttys = (struct tty_struct **)p;
3067 driver->termios = (struct ktermios **)(p + driver->num);
3068 } else {
3069 driver->ttys = NULL;
3070 driver->termios = NULL;
3073 cdev_init(&driver->cdev, &tty_fops);
3074 driver->cdev.owner = driver->owner;
3075 error = cdev_add(&driver->cdev, dev, driver->num);
3076 if (error) {
3077 unregister_chrdev_region(dev, driver->num);
3078 driver->ttys = NULL;
3079 driver->termios = NULL;
3080 kfree(p);
3081 return error;
3084 mutex_lock(&tty_mutex);
3085 list_add(&driver->tty_drivers, &tty_drivers);
3086 mutex_unlock(&tty_mutex);
3088 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3089 for (i = 0; i < driver->num; i++) {
3090 d = tty_register_device(driver, i, NULL);
3091 if (IS_ERR(d)) {
3092 error = PTR_ERR(d);
3093 goto err;
3097 proc_tty_register_driver(driver);
3098 driver->flags |= TTY_DRIVER_INSTALLED;
3099 return 0;
3101 err:
3102 for (i--; i >= 0; i--)
3103 tty_unregister_device(driver, i);
3105 mutex_lock(&tty_mutex);
3106 list_del(&driver->tty_drivers);
3107 mutex_unlock(&tty_mutex);
3109 unregister_chrdev_region(dev, driver->num);
3110 driver->ttys = NULL;
3111 driver->termios = NULL;
3112 kfree(p);
3113 return error;
3116 EXPORT_SYMBOL(tty_register_driver);
3119 * Called by a tty driver to unregister itself.
3121 int tty_unregister_driver(struct tty_driver *driver)
3123 #if 0
3124 /* FIXME */
3125 if (driver->refcount)
3126 return -EBUSY;
3127 #endif
3128 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3129 driver->num);
3130 mutex_lock(&tty_mutex);
3131 list_del(&driver->tty_drivers);
3132 mutex_unlock(&tty_mutex);
3133 return 0;
3136 EXPORT_SYMBOL(tty_unregister_driver);
3138 dev_t tty_devnum(struct tty_struct *tty)
3140 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3142 EXPORT_SYMBOL(tty_devnum);
3144 void proc_clear_tty(struct task_struct *p)
3146 unsigned long flags;
3147 struct tty_struct *tty;
3148 spin_lock_irqsave(&p->sighand->siglock, flags);
3149 tty = p->signal->tty;
3150 p->signal->tty = NULL;
3151 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3152 tty_kref_put(tty);
3155 /* Called under the sighand lock */
3157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3159 if (tty) {
3160 unsigned long flags;
3161 /* We should not have a session or pgrp to put here but.... */
3162 spin_lock_irqsave(&tty->ctrl_lock, flags);
3163 put_pid(tty->session);
3164 put_pid(tty->pgrp);
3165 tty->pgrp = get_pid(task_pgrp(tsk));
3166 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3167 tty->session = get_pid(task_session(tsk));
3168 if (tsk->signal->tty) {
3169 printk(KERN_DEBUG "tty not NULL!!\n");
3170 tty_kref_put(tsk->signal->tty);
3173 put_pid(tsk->signal->tty_old_pgrp);
3174 tsk->signal->tty = tty_kref_get(tty);
3175 tsk->signal->tty_old_pgrp = NULL;
3178 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3180 spin_lock_irq(&tsk->sighand->siglock);
3181 __proc_set_tty(tsk, tty);
3182 spin_unlock_irq(&tsk->sighand->siglock);
3185 struct tty_struct *get_current_tty(void)
3187 struct tty_struct *tty;
3188 unsigned long flags;
3190 spin_lock_irqsave(&current->sighand->siglock, flags);
3191 tty = tty_kref_get(current->signal->tty);
3192 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3193 return tty;
3195 EXPORT_SYMBOL_GPL(get_current_tty);
3197 void tty_default_fops(struct file_operations *fops)
3199 *fops = tty_fops;
3203 * Initialize the console device. This is called *early*, so
3204 * we can't necessarily depend on lots of kernel help here.
3205 * Just do some early initializations, and do the complex setup
3206 * later.
3208 void __init console_init(void)
3210 initcall_t *call;
3212 /* Setup the default TTY line discipline. */
3213 tty_ldisc_begin();
3216 * set up the console device so that later boot sequences can
3217 * inform about problems etc..
3219 call = __con_initcall_start;
3220 while (call < __con_initcall_end) {
3221 (*call)();
3222 call++;
3226 static char *tty_devnode(struct device *dev, mode_t *mode)
3228 if (!mode)
3229 return NULL;
3230 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3231 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3232 *mode = 0666;
3233 return NULL;
3236 static int __init tty_class_init(void)
3238 tty_class = class_create(THIS_MODULE, "tty");
3239 if (IS_ERR(tty_class))
3240 return PTR_ERR(tty_class);
3241 tty_class->devnode = tty_devnode;
3242 return 0;
3245 postcore_initcall(tty_class_init);
3247 /* 3/2004 jmc: why do these devices exist? */
3248 static struct cdev tty_cdev, console_cdev;
3250 static ssize_t show_cons_active(struct device *dev,
3251 struct device_attribute *attr, char *buf)
3253 struct console *cs[16];
3254 int i = 0;
3255 struct console *c;
3256 ssize_t count = 0;
3258 console_lock();
3259 for_each_console(c) {
3260 if (!c->device)
3261 continue;
3262 if (!c->write)
3263 continue;
3264 if ((c->flags & CON_ENABLED) == 0)
3265 continue;
3266 cs[i++] = c;
3267 if (i >= ARRAY_SIZE(cs))
3268 break;
3270 while (i--)
3271 count += sprintf(buf + count, "%s%d%c",
3272 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3273 console_unlock();
3275 return count;
3277 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3279 static struct device *consdev;
3281 void console_sysfs_notify(void)
3283 if (consdev)
3284 sysfs_notify(&consdev->kobj, NULL, "active");
3288 * Ok, now we can initialize the rest of the tty devices and can count
3289 * on memory allocations, interrupts etc..
3291 int __init tty_init(void)
3293 cdev_init(&tty_cdev, &tty_fops);
3294 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3295 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3296 panic("Couldn't register /dev/tty driver\n");
3297 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3299 cdev_init(&console_cdev, &console_fops);
3300 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3301 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3302 panic("Couldn't register /dev/console driver\n");
3303 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3304 "console");
3305 if (IS_ERR(consdev))
3306 consdev = NULL;
3307 else
3308 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3310 #ifdef CONFIG_VT
3311 vty_init(&console_fops);
3312 #endif
3313 return 0;